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Abstract—This work aims at developing a distributed power
control algorithm for energy efficiency maximization (measured
in bit/Joule) in wireless networks. Unlike most previous works,
a new formulation is proposed to jointly account for the energy
efficiency and communication delay while ensuring quality-of-
service constraints. A non-cooperative game-theoretic approach is
taken, and feasibility conditions are derived for the best-response
of the game. Under the assumption that these conditions are met,
it is shown that the game admits a unique Nash equilibrium,
which is guaranteed to be reached by implementing the game
best-response dynamics. Based on these results, a convergent
power control algorithm is derived, which can be implemented
in a fully decentralized fashion.

I. INTRODUCTION

Currently, the percentage of the global world CO2 emissions
due to the Information and Communication Technology (ICT)
is estimated to be 5% [1]. While this may seem a small
percentage, it is rapidly increasing, and the situation will
escalate in the near future with the advent of 5G networks. It
is anticipated that the number of connected devices will reach
50 billions by 2020 [2], and that a 1000x data rate increase is
required to serve so many connected devices [3]. However, it is
also clear that obtaining the required 1000x by simply scaling
up the transmit power is not possible, as it would result in an
unmanageable energy demand, and in greenhouse gas emis-
sions and electromagnetic pollution above safety thresholds.
Instead, the data rate must be increased by a factor 1000,
at a similar power consumption as in present networks. This
requires a 1000× increase of the energy efficiency (EE), i.e.,
the efficiency with which ICT systems use energy to transmit
data [4]. This is of paramount importance for operators (e.g.,
to save on electricity bills) and end-users (e.g., to prolong the
lifetime of batteries) and thus has motivated a great interest
in studying and designing power control strategies taking into
account the cost of energy.

The objective of this work is to develop a distributed
power control algorithm for energy efficiency maximization.
Unlike centralized solutions, distributed approaches allow for
a limited feedback overhead and require less computational
complexity. The proposed solution is derived by modeling the
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mobile terminals as utility-driven rational agents that engage
in a non-cooperative game [5]. Among the existing works in
the context of non-cooperative energy efficiency maximization,
the authors in [6] study the Nash equilibrium (NE) problem
for a group of players aiming at maximizing their own EE
while satisfying power constraints in single and multi-carrier
systems. A quasi-variational inequality (QVI) approach is
taken in [7], where power control algorithms for networks
with heterogenous users are developed. In [8], [9], a similar
problem is considered for relay-assisted systems. A common
drawback of all of these works is that no rate requirement
is taken into account. This might result into fairly low rates
at the equilibrium. Imposing target rates changes the setting
drastically since any user’s admissible power allocation policy
depends crucially on the policies of all other users. This
problem has been studied in [10] wherein Nash equilibria are
found to be the fixed points of a water-filling best-response
operator whose water level depends on the rate constraints
and circuit power. Another example in this context is given
by [11] wherein the authors propose a general framework to
investigate different cooperative and non-cooperative energy
efficiency maximization problems looking at some candidate
5G technologies.

All the aforementioned works do not take into account
communication delays. The latter are included in the analysis
in [12], wherein a non-cooperative energy efficiency maxi-
mization is carried out subject to minimum delay guarantees.
In [13], a new performance metric accounting at the same time
for both delay and energy efficiency is given. In light of the
described state of the art, this work makes the following major
contributions:

• The framework proposed in [13] is extended to include
quality-of-service (QoS) constraints in terms of minimum
bit error rate or minimum achievable rate. Following [11],
a more general users’ signal-to-interference-plus-noise-
ratio (SINR) expression is considered so as to encompass
some of the emerging 5G technologies.

• A non-cooperative game formulation is taken, and it is
proved that the energy-efficient non-cooperative power
control problem has a unique NE , which can be reached
by a fully distributed algorithm based on the game best
response dynamics (BRD), provided that some feasibility
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conditions are fulfilled.
• Numerical results are used to assess the performance of

the proposed algorithm. To this end, a massive multiple-
input multiple-output (MIMO) system is considered.

II. SYSTEM MODEL

Consider the uplink of a wireless interference network, with
K transmitters and M receivers and let the SINR of user
equipment (UE) k take the following general form:

γk =
pkαk

σ2
k + φkpk +

∑
j 6=k pjβk,j

. (1)

In (1), pk is the transmit power of UE k, αk is the k-
th link’s channel power gain, σ2

k is the noise power at the
receiver associated to UE k, {βj,k} are multi-user inter-
ference coefficients depending on the other links’ channel
coefficients as well as on global system parameters, and φk
is a self-interference coefficient which depends on the k-
th user’s channel and possibly on global system parameters.
The presence of non-zero coefficients {φk} makes (1) more
general than the traditional SINR expression encountered in
wireless networks, which can be obtained by simply setting
φk = 0. The SINR (1) arises in several relevant instances of
wireless communication systems such as hardware-impaired
networks, receivers with imperfect channel state information
(CSI) estimation, relay-assisted communications, and systems
affected by inter-symbol interference [8], [11], [14]. In par-
ticular, [11] shows how (1) arises when adopting candidate
5G technologies like cooperative communications and massive
MIMO. Indeed, it should be stressed that (1) is not limited to
single-antenna systems, but also models vector channels with
matched filtering or zero forcing detectors. Additionally, in
multi-carrier networks, (1) models the SINR achieved on each
transmit subcarrier individually and forms the basis for system
analysis and design [11].

In the considered system model, two relevant performance
metrics are the transmission delay and the energy consumption
of the communication link. As for the transmission delay,
following the approach proposed in [13], we consider a
system in which packets arrive at the transmit queue of UE k
independently from one another and from transmission success
and failure events. Under these assumptions, we denote by
Sk(γk) the probability of correct packet reception and let R
be the communication rate in bit/s. Therefore, the average
time required for the reliable transmission of a data packet
is expressed as:

cd,k =
1

R(Sk(γk)− λk)
(2)

wherein λk is a delay parameter accounting for the additional
delay due to queuing and buffering at the UE side. Otherwise
stated, the communication delay depends on both the time
necessary for the correct packet reception, and on the waiting
time to receive the packet from the upper layer. Observe that
(2) represents a valid delay only if Sk(γk)− λk > 0.

The trade-off between reducing energy consumption and
obtaining fast and reliable communication can be mathe-
matically captured by considering the cost-benefit ratio of
the communication link, in terms of consumed energy and
corresponding amount of data reliably decoded at the receiver.
This leads to the following definition:

ce,k =
µkpk + Pc,k
RSk(γk)

(3)

wherein µk = 1/ηk with ηk being the efficiency of the transmit
amplifier of UE k and Pc,k is the static hardware power
dissipated in all other circuit blocks required to operate the
k-th communication link. Thus, (3) is measured in Joule per
bit, and represents the amount of the energy to be spent to
transmit a given amount of data, or, otherwise stated, as the
energy cost per reliably transmitted bit.1

The explicit expression of Sk depends on the system under
investigation and it can be a very involved function. A widely
used approximation is given by [8], [13]:

Sk(γk) = 1− e−δkγk (4)

where δk > 0 is a design parameter that can be chosen to
refine the approximation according to the different system
under investigation. However, the following analysis is not
limited to the expression in (4) but it applies to any function
that has the following general properties:

1) Sk(γk) ≥ 0, for all γk ≥ 0, with Sk(0) = 0, i.e. a non-
negative amount of data is transmitted for any γk ≥ 0,
but no data is sent if no transmit power is used, and in
this case the energy cost (3) tends to infinity;

2) 1
γk
Sk(γk) → 0 for γk → +∞, i.e. by using an infinite

amount of power, the energy cost diverges;
3) Sk(γk) is increasing for all γk ≥ 0, i.e. more data can

be sent by spending more power;
4) Sk(γk) is concave for all γk ≥ 0.

It is easy to check that (4) fulfills Properties 1 – 4. The
same happens if RSk(γk) is replaced by the achievable rate
W log2(1 + γk). Note that in this case the measure units of
both (2) and (3) do not change, since the achievable rate
can be regarded as an upper-bound to the amount of bits
which can be reliably transmitted per unit of time. Indeed,
the achievable rate is also a very popular choice to model the
energy efficiency of a system [?], [6], [16].

Observe that, while Properties 1 – 3 stem from natural
physical considerations (as explained above), Property 4 is
not necessarily fulfilled by all physically meaningful functions
Sk(·). Indeed, another popular approximation of the probabil-
ity of correct packet reception is:

Sk(γk) = (1− e−γk)Q (5)

with Q being the number of bits in the packet. The two
approximations in (4) and (5) are closely related, and indeed

1The quantity in (3) can be seen to be the inverse of the so-called energy
efficiency of link k, which is a more widely used, yet equivalent, metric to
measure the efficiency with which energy is used to transmit data [15].



both use the exponential function to approximate the true
probability of correct packet reception. However, (5) is not
a concave function in γk and therefore cannot be included in
the framework developed in this work.

The joint optimization of the energy and delay costs of
a communication link can be cast as a multi-objective opti-
mization problem [17] in which the two objective functions to
minimize are given by (2) and (3). Applying the well-known
scalarization technique, an overall cost function for the generic
link k can be formulated by taking a linear combination of the
delay and energy costs. In doing this, we obtain:

ck = ρkcd,k + ce,k =
1

R

(
ρk

Sk(γk)− λk
+
µkpk + Pc,k
Sk(γk)

)
(6)

where ρk is a positive coefficient2 weighting the relative
importance of the delay cost cd,k with respect to the energy
cost ce,k.

By taking a distributed approach to the power control prob-
lem, each UE k aims at optimizing its own system performance
by locally minimizing the corresponding cost function (6).
To this end, we model the UEs as independent decision-
makers which engage in the following non-cooperative game
(in normal form) [18]:

G =
{
K, {Ak}Kk=1, {ck}Kk=1(pk,p−k)

}
(7)

wherein K = {1, . . . ,K} is the players’ set, p−k =
[p1, . . . , pk−1, pk+1, . . . , pK ], and Ak is the k-th player’s
action set. The latter defines the feasible set in which player k
can choose its transmit power pk. We assume that the feasible
powers are limited by a maximum transmit power Pmax,k and
a minimum QoS constraint θk. Then, we have that:

Ak = {pk ∈ R+ : pk ≤ Pmax,k , Sk(γk) ≥ θk}. (8)

Given the above notation, the best response (BR) of player k
to a given power vector p−k can be determined as the solution
of the following problem:

min
pk

ck(pk,p−k) (9a)

s.t. pk ∈ Ak. (9b)

The coupled problems (9) for k = 1, . . . ,K define the BRD of
G, and a fixed point, if any, of the BRD is a NE of G [18]. The
main challenges posed by the game (7) can be summarized as
follows:
• Unlike what happens in regular non-cooperative games, in

which only the players’ cost functions are coupled in the
players’ strategies, both the cost functions and the action
sets of G are coupled. Indeed, Ak depends on the SINR
γk and therefore on the other players’ transmit powers. A
non-cooperative game in normal form in which both the
cost functions and the action sets are coupled is referred
to as a generalized non-cooperative game [19], [20], and
its analysis is typically more involved than for regular
non-cooperative games;

2Note that ρk is a dimensional constant measured in J/s, in order to ensure
that ρkcd,k has the same dimensions as ce,k .

• Unlike most previous works, the cost functions ck are not
given by the ratio of a convex over a concave function
(or vice versa for utility maximization problems). This
property was used in previous works to immediately
conclude that the cost functions were quasi-convex (or
quasi-concave for utility maximization problems), which
is one of the required conditions for the existence of
an NE. In our case, expressing (6) as a single fraction
does not lead to a cost function with a convex numerator
and a concave denominator. This further complicates the
analysis of (7).

• A third challenge lies in the SINR expression (1), which
is more involved than the traditional SINR expression
in cellular networks due to the presence of non-zero
coefficients {φk}k. This turns the k-th user’s SINR γk
into a fractional function of the k-th user’s power. This
is in sharp contrast to the canonical SINR expression,
which is linear in the useful power pk.

In the next section, sufficient conditions will be derived which
guarantee the existence of a unique NE for the game (7), and
the convergence of its BRD.

III. DISTRIBUTED POWER CONTROL

Plugging (6) into (9), the BRD of (7) is obtained solving
∀k:

min
pk

ρ̃k
Sk(γk)− λk

+
pk + P̃c,k
Sk(γk)

(10a)

s.t. pk ∈ Ak (10b)

where we have defined ρ̃k = ρk/µk and P̃c,k = Pc,k/µk, and
we have neglected the constant factor R. Also, we assume
θk > λk, recalling that the SINR range of interest is γk >
S−1(λk).

In order to develop a distributed power control algorithm, it
is necessary to characterize the properties of the generalized
non-cooperative game (7). Specifically, we are interested in
answering the following questions:
• Are the best-response problems in (10) always feasible?
• Does the generalized non-cooperative game (7) admit an

NE? If yes, is there a unique NE?
• Is the BRD (10) guaranteed to converge from any initial-

ization point?
Specific answers to the above questions are provided by the
following propositions, whose proofs are omitted for space
limitations (more details will be provided in the extended
version).

Proposition 1: A sufficient condition for the best-response
problem (9) to be feasible for any p−k is

Sk

(
αk
φk

)
> θk (11)

Pmax,k ≥
S−1k (θk)

(
σ2
k +

∑
j 6=k βk,jPmax,j

)
αk − S−1k (θk)φk

. (12)



Proposition 2: If (9) is feasible, then its solution is given
by

p∗k = min{Pmax,max{Pmin,k, p̄k}} (13)

in which p̄k is the unique stationary point of the objective (9a)
whereas

Pmin,k =
S−1k (θk)ωk

αk − S−1k (θk)φk
(14)

with

ωk = σ2
k +

∑
j 6=k

pjβk,j . (15)

Moreover, if (9) is feasible ∀k, then the non-cooperative
generalized game (7) admits an NE.

Proposition 3: Assume (9) is feasible ∀k, and that Sk is
such that ∀k

Sk(γk)S
′

k(γk)− γk(S
′

k(γk))2 + γkSk(γk)S
′′

k (γk) ≤ 0 .
(16)

Then, the game (7) admits a unique NE, and the BRD is
guaranteed to converge to the unique NE.

On the basis of above results, a distributed power control
algorithm can be obtained by implementing the BRD (10) until
convergence.

At a first sight, it would seem that implementing the BRD
(13) in a distributed fashion is not possible, since a player k
needs to know the other players’ channels and transmit powers
to compute its best-response. More in detail, each player
k needs to know the parameter ωk, which depends on the
interference coefficients {βk,j}j and on the interfering powers
{pj}j , which are not locally available to player k. However,
this issue can be overcome as explained next. Solving for ωk
in (1), we obtain the following equivalent expression for ωk:

ωk =
αkpk
γk
− φkpk . (17)

The advantage of this reformulation is that γk is locally
available for link k. Indeed, γk can be measured at the receiver
associated to UE k, and fed back by a return downlink chan-
nel, which is typically available in wireless communication
systems. We stress that such an approach does not require
any overhead communication between a given receiver and
the UEs associated to different receivers, but only between
a receiver and its associated UEs. Finally, as for the other
parameters αk and φk, they can be locally computed as
they only depend on the k-th UE’s own channel coefficient.
Bearing this in mind, the formal pseudo-code for the proposed
distributed power allocation algorithm is stated as in Algorithm
1, which is guaranteed to converge to the unique NE of G, by
virtue of Proposition 3.

Algorithm 1 Distributed Power Control
Initialize pk to feasible values for k = 1, . . . ,K;
Compute αk and φk for k = 1, . . . ,K;
repeat

for k = 1 to K do
ωk = αkpk

γk
− φkpk;

pk = min{Pmax,max{Pmin,k, p̄k}};
end for

until Convergence

IV. NUMERICAL RESULTS

Numerical results are now used to assess the performance
of the proposed solution. To this end, we consider a multi-
cell system with L = 4 cells, and 3 users per-cell. Therefore,
we have that K = 12. Each cell is a square with edge
500 m which is served by a base station (BS) with N = 128
antennas. In each cell, the users are randomly distributed, with
a minimum distance of 50 m from the service BS. All users
have the same maximum feasible power Pmax and hardware-
dissipated power Pc = 10 dBm. The receive noise power
is σ2 = FBN0, wherein F = 3 dB is the receive noise
figure, B = 180 kHz is the communication bandwidth, and
N0 = −174 dBm/Hz is the noise spectral density at the
receiver. All channels are generated according to the Rayleigh
fading model with path-loss model as in [21]. Both hardware
impairments at the mobile users, and channel estimation errors
at the BSs are assumed and modeled following [11], with
the channel estimation accuracy factor τ = 0.3 and the
hardware impairment factor ε = 0.1. It was shown in [11]
that such a scenario leads to an SINR expression in the same
form as in (1), for particular expressions of the coefficients
{αk}k, {φk}k, {βk,j}k,j . The exact formulae can be found in
[11]. Here it suffices to remark that, according to the general
assumptions made in Section II, {αk}k and {φk}k depend
only on the k-th user’s own channel and on global system
parameters, whereas {βk,j}k,j depend on the interfering users’
channels. For all k = 1, . . . ,K, the delay parameter is set to
λk = λ = 0.5, the weight factor to ρk = ρ = 1 J/s, while the
adopted efficiency function is:

RSk(γk) = R(1− e−γk) (18)

with R = 100 kbit/s.
Fig. 1 compares the cost function (6), averaged over the K

users, versus Pmax, for the following schemes:
(a) Algorithm 1 with θk = θ = 1 − 10−6 ∀k. If a best-

response is unfeasible, we relax the QoS constraint to
θ = 0;

(b) Algorithm 1 with θk = θ = 1 − 10−4 ∀k. If a best-
response is unfeasible, we relax the QoS constraint to
θ = 0;

(c) Algorithm 1 without QoS constraints, i.e. θ = 0.
As expected, the minimum cost function is achieved when
no QoS constraints are enforced. In fact, enforcing QoS
constraints inevitably degrades the performance in terms of
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Fig. 1. K = 12;N = 128; ε = 10−1; τ = 0.3. Average cost versus Pmax

for: (a) Algorithm 1 with θ = 1−10−6; (b) Algorithm 1 with θ = 1−10−4;
(c) Algorithm 1 with θ = 0.

TABLE I
K = 12;N = 128; ε = 10−1; τ = 0.3. AVERAGE NUMBER OF REQUIRED

ITERATIONS TO REACH CONVERGENCE VERSUS Pmax FOR: (A)
ALGORITHM 1 WITH θ = 1− 10−6 ; (B) ALGORITHM 1 WITH

θ = 1− 10−4 ; (C) ALGORITHM 1 WITH θ = 0.

QoS θ = 1− 10−6 θ = 1− 10−4 θ = 0
Pmax = −28 [dBW] 3.11 3.11 3.11
Pmax = −24 [dBW] 3.91 3.91 3.91
Pmax = −20 [dBW] 4.38 4.36 4.34
Pmax = −16 [dBW] 4.93 4.90 4.80
Pmax = −12 [dBW] 5.20 5.10 5.06
Pmax = −8 [dBW] 5.35 5.41 5.29
Pmax = −4 [dBW] 5.89 5.71 5.74
Pmax = 0 [dBW] 6.17 6.01 5.83

(6). In particular, it is seen that for low values of Pmax, all
schemes perform similarly. This happens because when Pmax

is small the QoS cannot be met and therefore are relaxed -
falling back to the unconstrained case. On the other hand, for
larger values of Pmax, the cost function increases as the QoS
constraint becomes more demanding. This is because the more
demanding the QoS constraint is, the more the feasible sets
of the best-response problems shrink. However, enforcing the
QoS constraints allows one to guarantee minimum probabili-
ties of correct packet reception to each user in the system. For
the case at hand, Scheme (a) and (b) ensure a probability of
error lower than 10−6 and 10−4, respectively.

Next, we analyze the computational complexity of Al-
gorithm 1. A similar scenario as in Fig. 1 is considered,
reporting in Table I the average number of iterations required
by Algorithm 1 to converge, for Schemes (a), (b), and (c).
The rule ‖p(n)−p(n−1)‖2/‖p(n)‖2 ≤ 10−4 is used to declare
convergence, with p(n) the vector of the players’ powers after
iteration n of Algorithm 1. It is seen that convergence occurs
after a handful of iterations, which tends to increase for larger
Pmax, since increasing Pmax results in a larger feasible set.

This shows that the proposed non-cooperative approach has a
very limited computational complexity, thereby lending itself
to a simple implementation in practical systems.

V. CONCLUSIONS

The problem of energy-efficient and delay-aware power
control in wireless networks has been studied. A distributed
scenario has been considered, and the problem has been
formulated as a generalized non-cooperative game in normal
form, in which each mobile aims at minimizing its own
cost function subject to power and QoS constraints. Under
feasibility conditions which have been derived in closed-form,
the game admits a unique generalized NE, which can be
reached by implementing the game BRD. This result enabled
the development of a distributed power control algorithm
which requires minimum feedback overhead. The numerical
analysis indicates that the algorithm converges in a limited
number of iterations, and that the performance degrades as
the QoS constraints become more demanding.
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