
Energy Efficiency manuscript No.
(will be inserted by the editor)

Quality of Service Optimization in Solar Cells-based
Energy Harvesting Wireless Sensor Networks

Received: date / Accepted: date

Abstract In energy harvesting wireless sensor networks the sensors are able
to harvest energy from the environment to recharge their batteries and thus
prolong indefinitely their activities. Widely used energy harvesting systems
are based on solar cells, which are predictable (i.e. their energy production
can be predicted in advance). However, since the energy production of solar
cells is not constant during the day, and it is null at night time, these systems
require algorithms able to balance the energy consumption and production
of the sensors. In this framework, we approach the design of a scheduling
algorithm for the sensors that selects among a set of available tasks for the
sensors (each assigned with a given quality of service), in order to keeping
the sensors energy neutral, i.e. the energy produced during a day exceeds the
energy consumed in the same time frame, while improving the overall quality
of service. The algorithm solves an optimization problem by using a greedy
approach that can be easily implemented on low-power sensors. The simulation
results demonstrate that our approach is able to improve the quality of the
overall scheduling plan of all networked sensors and that it actually maintains
them energy neutral.

Keywords Energy Harvesting Systems · Wireless Sensor Networks · Energy
Efficiency · Quality of Service · Solar Cells

1 Introduction

A Wireless Sensor Network (WSN) is composed by a set of sensor nodes, or
simply sensors, with the ability of monitoring its environment through trans-
ducers and of transmitting data wirelessly, typically towards a special sensor,
or sink, that acts as a bridge between the WSN and the user.

Address(es) of author(s) should be given

2

The most important constraint for sensors is doubtless the energy. Gene-
rally, they are powered on by limited-capacity batteries that feed the sensor’s
circuitry and provide the current draw necessary to sustain their operations
along the time. This means that if the sensor battery level drops below a
minimum level, the sensor simply stops working. One of the approaches for
prolonging the sensors’ lifetime is the use of energy harvesting systems, which
extract the energy found naturally in the environment, for instance from the
sun, wind, or vibrations, to power on the sensors. However, since the energy
production from these sources is generally uncontrollable and intermittent,
batteries are still required to maintain an adequate energy buffer that can be
used in conditions of low production.

In this work we consider a WSN composed by n sensors, where exactly one
sensor acts as the sink of the network, and where exists at least one sensor
for monitoring and communication purposes, i.e n ≥ 2. In our scenario, each
sensor communicates wirelessly with the sink for transmitting and for receiv-
ing data; the sink, in turn, communicates with the n − 1 sensors. Note that
this communication pattern corresponds to a star-connected network topology.
Note also that this is just a requirement of the application and not a constraint
of the problem (in fact, there exist a wide range of applications that follow this
communication pattern, as for instance home/office automation or Internet of
Things applications [4,10]). Each sensor is equipped with an energy harvesting
system based on a solar cell with different opportunities for scavenging. Note
that it does not prevent from the case of a sensor or the sink have no restric-
tions of energy. For example, the solar cells from different manufacturers may
have different efficiencies; also, the geographic position of the sensors within
the network affect, in general, their energy production. On the other hand,
sensors consume energy by executing applications, which we model as a set of
tasks. A task performs sensing, processing, and communicating activities with
a given rate. Each task has an associated cost and a quality level that expresses
the degree in which it fulfills the user requirements; thus, the same activity
could be accomplished by alternative tasks each one with a different quality
level. Additionally, each sensor has a set of candidate applications for execu-
tion with a certain cost and quality; then, the problem becomes the selection
of the most adequate tasks to be executed at any time on the sensors, in order
to maximize the overall quality level, while all sensors keep a minimum level of
battery such that guarantees them to work uninterruptedly. The fact of hav-
ing a set of cooperating networked sensors complicates the problem, since the
sink is affected by any change in the sensors scheduling and, correspondingly,
a change in the sink scheduling could imply the adaptation of the scheduling
of other sensors, which leads to a continuous reschedule of the applications.

Under these assumptions we propose a strategy devoted at finding a schedul-
ing of applications within a time frame taken as reference, both for the sensors
and for the sink, that maximizes the global quality of service (QoS) of the
applications executed on the WSN. In our model, a sensor node executes some
activity with a certain degree of quality, i.e. the degree of satisfaction with
which the requirements of such activity are fulfilled. For example, a monitor-

QoS Optimization in Solar Cells-based Energy Harvesting WSN 3

ing application could use in alternative two different transducers with different
resolutions and different energy costs. If the energy budget is sufficient, the
user has a preference for the transducer with high resolution, but the use of
the low-resolution transducer (which consumes less energy) is also acceptable.
We thus use QoS to model this preference of the user, which, of course, is
encoded with the application. Thus, maximizing the global QoS means to get
that all sensors and the sink perform their activities with the highest degree
of satisfaction for the user.

Four are the main contributions of this paper: 1) the design of an energy
harvesting system composed of a real-world sensor node platform and a solar
cell; 2) a solar energy prediction model based on the distribution of the daily
power output among the hours of a day for each day of the year and for the
specific solar cell that we are using; 3) a heuristic that finds a (sub-)optimal
assignment of execution plans within the time frame for all sensors in the
WSN, that maximizes the quality level achieved by the sensors and avoids
their unavailability; and 4) a simulator that generates test cases, with different
network configurations and solar cell properties, and applies the optimization
algorithms proposed.

The remainder of this paper is organized as follows. After reviewing the
related work in Section 2, we present in Section 3 the design of a real-world
sensor node platform connected to a solar cell-based energy harvesting system
and provide its energy production model as well as the energy consumption
of the applications. Section 4 describes the system model that supports the
scheduling of applications on energy harvesting WSN and formulates the QoS
optimization problem. In Section 5 we present the algorithms aimed at finding
a (sub-)optimal scheduling of applications for all sensor nodes of the network
on the basis of the solar energy prediction model proposed and in Section 6
we provide the simulation results. Finally, Section 7 discusses the conclusions
and further research.

2 Related Work

Wireless sensors are equipped with a radio transceiver, a set of transducers to
sense the surrounding environment [3], a low-power microcontroller for com-
putation purposes as well as a couple of batteries to support their operations.
In order to prolong sensors lifetime, applications have to be designed with
the objective of reducing their energy consumption, which involves necessar-
ily to reduce the time of use of the physical components. This means that
the applications must find a trade-off between a suitable performance and a
minimal consumption. While technology continues advancing more and more
towards ultra-low components with different states of lower consumptions,
techniques as Dynamic Power Management (DPM) [5] enable switching off
the components when not necessary and waking them up on demand reduc-
ing thus their activity. By adjusting the sensing rates [2] and the radio duty
cycles [33] of the applications, the activity periods of the components can be

4

adapted to the requirements while maintaining a low energy consumption. Al-
though these strategies prolong the sensor lifetimes by slowing the velocity to
which the battery drains, none of them could potentially achieve infinite life-
times. This is precisely the objective of energy harvesting systems: scavenging
energy from an external source and converting it into electricity able to power
on constrained embedded systems indefinitely.

Energy harvesting systems have been classified according to the next three
categories [35]: 1) the source; 2) the controllability ; and 3) the predictability ;
The first category distinguishes between ambient energy sources (that extract
energy from the surrounding environment, for example from the sun or the
wind), and human source (in which case the energy is harvested from active
and passive movements of humans, for instance from the blood pressure, breath
or from the steps). The controllability is the capacity for extracting energy on-
demand: an energy source is controllable if the energy can be extracted when
required while it is non-controllable if the energy can be extracted only when
it is available. In the latter case, predictability is the ability to forecast the
availability of energy according to a prediction model. Solar energy can be
classified as ambient, uncontrollable, and predictable in daily and seasonal
cycles [6, 35]. Solar energy is also one of the most easily accessible, as har-
vesting systems have been implemented in form of small solar cells, which fit
very well the space restrictions of sensor nodes. As a matter of a fact, several
sensor platforms employ this type of energy harvesting (e.g. Prometheus [21],
HelioMote [28]).

The ability of combining efficiently solar energy harvesting systems con-
nected to the sensors with strategies aimed at balancing the harvested and
consumed energy, enables long-lasting applications and the dynamic adapta-
tion of the service level of the application to the available energy along the
time. In this sense, QoS refers to the capability to provide assurance that the
service requirements of the applications can be satisfied [38]. QoS does not
only concerns the network protocols (e.g. at MAC [39] and routing [1,16,34])
but it also concerns the services provided at the application layer for which
specific QoS metrics are defined. Examples of such metrics are coverage, expo-
sure, deployment, or reliability [19]. In [8] it is given a classification of the QoS
parameters into two categories: user-specific, which includes parameters that
the user can usually control (as for instance, priority, periodicity, deadline,
and availability) and low-level, that includes the features that the user cannot
usually modify (as, for instance, bandwidth, latency, throughput, and packet
loss).

The goal of achieving perpetual operation of a sensor requires exploiting
adequately the energy that is harvested from the sun. Due to the fact that
the energy is cyclically generated, the problem can be formulated in terms
of what application to execute and when. To this aim, algorithms have to be
redesigned for scheduling sensor applications along a reference time based on
solar energy predictions [32], optimizing the energy level stored in the batteries.
[22] proposes the use of the harvested energy at an appropriate rate such that
the sensor continues operating perpetually. This could be achieved for a sensor

QoS Optimization in Solar Cells-based Energy Harvesting WSN 5

and for a period of reference if the consumption is lower than the production
of energy in that period; they call this mode energy-neutral operation. They
describe an algorithm for dynamically adapting the duty cycle (quality metric)
of the sensor such that the constraint of energy neutrality is kept. [30] proposes
to maximize the QoS by adapting the level of service without wasting the
harvested energy. The authors explain that, differently to other works, where
only continuous parameters for quality maximization are considered (basically,
sampling rates and duty cycles), they consider a finite set of discrete levels of
service and propose an algorithm to dynamically assign a level of service to
a time interval in the future, for which the energy to be harvested has been
predicted. The condition for operating uninterruptedly is achieved iff, after
the assignment, the remaining energy in the battery is larger or equal than a
minimal level. [29] proposes adapting multiple quality parameters to optimize
the applications performance in a long-term perspective (days or even weeks)
by evaluating different kinds of applications of embedded systems that are
modeled as a class of linear programs and by solving them (total or partially)
offline.

The quality optimization in scenarios where more than one sensor is in-
volved, and where each sensor is equipped with an energy harvesting system,
also called energy harvesting network, has been approached in several works.
Differently to traditional WSNs where the focus is on maximizing the network
lifetime, the focus in energy harvesting WSNs is on maximizing some perfor-
mance metric. [22] describes a harvesting network where n sensors have a
choice for harvesting. The problem becomes how to distribute in space and
time the total amount of energy that is harvested among the sensors in such
a way that some application-specific performance metric can be maximized
while the n sensors remain energy-neutral. The authors provide two particu-
lar application examples: a field monitoring application, where data is sam-
pled and routed at constant rate, and an event monitoring application where
only special events are transmitted. The first problem is written as a linear
program for n = 4 nodes in a random topology, where the objective is the
maximization of the amount of data to transmit by n − 1 nodes subject to
keep nodes energy-neutral. The second problem was previously described in
another work [23] and consists in minimizing the total route delay instead of
minimizing the number of hops. For this work, the authors do not provide re-
sults but refer to the results of the mentioned paper, which does not consider
energy-neutrality. The work described in [15] aims at maximizing two per-
formance metrics of energy harvesting WSNs: the end-to-end delay and the
sensing rate. They propose ODMAC, an on-demand MAC protocol, based on
carrier sensing schemes, and that supports multi-hop topologies. In ODMAC,
idle listening is minimized by transmitting on-demand, i.e. each transmitter
has to wait the receiver to wake up and transmit a beacon packet before the
data packet transmission. Note that the frequency of the beacons impacts on
the end-to-end delay and, subsequently, on the energy consumption; similarly,
the sensing rate impacts on the transmission frequency and, subsequently, on
the energy consumption. ODMAC adjusts individually the duty cycle of each

6

node, to the level that the energy consumed is at the same level of the energy
harvested, thus maintaining it at state energy neutral. [36] is a first attempt to
approach the energy harvesting WSNs in the metering industry by using the
harvested thermal energy from radiators to power the nodes of the network
(meters). Several are the contributions of this work: 1) to measure the energy
harvested from the heat of a radiator, for which they developed a real pro-
totype; 2) to compare analytically the default ALOHA-based MAC protocol
typically used in the metering industry (IMR+) against ODMAC, the MAC
scheme specifically designed for energy harvesting WSNs. The results of this
comparison shows the efficiency of ODMAC and its ability to adapt to har-
vested ambient energy. [26] studies the problem of optimal routing in energy
harvesting WSNs. To this purpose, the authors introduce the metric Maxi-
mum Energetically Sustainable Workload (MESW), which is the maximum
workload that can be autonomously sustained by the network, where the term
”energetically sustainable” means that the power spent by each node due to
its workload is lower than the power that it can harvest from the environment.
The authors select a set of five routing algorithms for WSNs and compute for
each one its MEWS. The optimal MESW (MESW opt) is the highest MESW
achieved by any routing algorithm, then, the optimality of a routing algorithm
is computed as the ratio between its MESW and MESW opt. The results show
that routing strategies that do not take into account environmental power pro-
vide poor results in terms of workload sustainability. In a later work [7], the
same authors propose Self-Adapting Maximum Flow (SAMF), a routing strat-
egy for energy harvesting WSNs, to route the maximum sustainable workload
subject to the capacity constraints, automatically adapting it to time-varying
operating conditions. More recently, the authors published a survey [25] that
overviews their contributions in this field, where the view of quality is always
expressed as the maximum load supported by an energy-harvesting WSN. [37]
is a tutorial that explores examples of WSNs in different fields, as health, auto-
motive, or maintenance of structures, typically battery-operated. The authors
then discuss how the usage of energy harvesting systems may contribute to
their autonomy, providing a description of real deployments that use commer-
cial harvesters to achieve unbounded lifetimes. In this article, four technologies
for energy harvesting are analyzed and compared (vibrational, thermal, pho-
tovoltaic and RF) in terms of source power and harvested power.

We have addressed the problem of the quality optimization of the applica-
tions in several works [11–14], following an approach that increases progres-
sively the number of sensors involved. Our first work [11] proposes a local
scheduler aimed at selecting the applications that maximize the quality level
in one only sensor (based on sampling rates), adapting its quality level to the
energy production of its solar energy harvesting system. The optimization de-
scribed in [13], which still uses one only sensor, introduces the constraint of
energy-neutrality, which states that the sensor’ battery budget cannot drop
in the period of reference (according to [22]). Here, our view of quality refers
to any activity of the sensor that can be performed at different satisfaction
degrees for the user, for which we provide different scheduling plans, with

QoS Optimization in Solar Cells-based Energy Harvesting WSN 7

a cost and a quality associated. We also solve the re-optimization problem,
which consists of adapting the initial assignment of scheduling plans accord-
ing to the excess or deficit of energy production. After that, we approach the
problem in harvesting networks first in [12], where we propose a solution for
just two networked devices, a sensor and a sink, each one using an energy
harvesting system, by means of a low-complexity algorithm aimed at finding
a (sub)optimal assignment of scheduling plans to the sensor and to the sink,
such that the quality is maximized in both nodes while keeping them energy
neutral. The work presented in [14] is a further extension of [12] where we
theoretically discuss the generalization of this problem to consider any num-
ber of sensors, i.e. for an energy harvesting network. Differently to [12, 14],
this paper proposes an algorithm for achieving quality optimization in energy
harvesting WSNs composed of n ≥ 2 sensors, including the sink. Each sensor
has a different opportunity for scavenging and different scheduling plans with
a consumption and a quality associated to its service level. Differently to the
works presented by other authors to provide energy-neutral operation in en-
ergy harvesting WSNs [7, 15, 25, 26, 36], our focus is to maximize the quality
of the applications executed on each node of the network, where quality is a
wider concept than the performance network, for which we provide a variety
of scheduling plans that can be dynamically selected for execution.

3 Solar Cells-based Sensors

We have designed a real energy harvesting system based on solar cells. The
purpose of this system is to obtain energy from the solar light and convert
it into electricity to recharge the sensor’s batteries, with the ultimate goal of
achieving potentially infinite lifetimes. Every sensor in the scenario that we are
addressing in this paper has attached the energy harvesting system proposed,
which is described in detail in this section.

The energy harvesting system consists in a solar module KL-SUN3W [24]
that is connected to a Waspmote [27], an open source wireless sensor platform
manufactured by the Spanish company Libelium. The module KL-SUN3W is
composed of 28 mono-crystalline silicon solar cells with the property of con-
verting the energy of the photons into electricity by means of the photovoltaic
effect. The amount of energy that a solar cell is able to absorb depends on
several parameters. First, the irradiance (D), which is defined as the density
of incident power on the surface of the solar cell under standard conditions. In
turn, it depends on several factors mainly related to the place where the cell is
deployed, as for instance, the solar time, the location, or the inclination with re-
spect to the sun rays. Second, the efficiency of the solar cell (η), that represents
the percentage of the energy conversion efficiency of the irradiance absorbed at
some specific place and time into electrical power. The efficiency is computed
as Pout

D×S , where Pout is the maximum power output provided by the cell (in W),

D is the irradiance (in W
m2), and S is the surface of the solar cell (in m2). Ac-

cording to its manufacturer, under standard conditions (Irradiance=1000 W
m2 ,

8

Temperature=25◦C, Air mass=1.5 spectrum, Angle Sun/Surface: 41.81◦) the
solar module KL-SUN3W achieves an efficiency of η=12.8%. Other electrical
specifications are shown in Table 1.

Parameter Value
Peak Power (Pout) 3W
Maximum Power Voltage (Vmp) 5.82V
Maximum Power Current (Imp) 0.52A
Open Circuit Voltage (Voc) 7.38V
Short Circuit Current (Isc) 0.55V
Dimensions (in mm) 225 × 155 × 17
Operating Temperature -40 - 85 ◦C

Table 1: KL-SUN3W electrical specifications.

Waspmote is a low power sensor platform composed of an ATmega1281 mi-
crocontroller operating at 14.7456MHz, 8KB SRAM, 4KB EPPROM, 128KB
flash memory and the possibility to attach a SD card of 2GB. Waspmote sup-
ports different types of sensorboards (e.g. smart cities, gases, weather station)
and up to 10 different network connections including Zigbee, 802.15.4, WiFi,
868MHz, 900MHz and 3G/GPRS. For its correct working the platform requires
a single battery that provides a voltage between 3.3V and 4.2V. Waspmote
counts with four operational modes: On, the normal operation state requires a
current draw of 15mA; Sleep and Deep Sleep states, where the microcontroller
passes to a latent state (but it still can be waken up by means of interruptions)
requires 55µA; and Hibernate state in which the microcontroller is turned off
that requires 0.07µA. According to its manufacturer, the Waspmote operation
at Hibernate mode reaches up one year without recharging. However, note that
the real power demand depends on the application requirements; in particular
depends on the components used (e.g. communication module, sensors), on its
operational state (e.g. in case of microcontroller On, Sleep, Hibernate) and on
its operation time.

The power generated by the module KL-SUN3W is used to recharge the
Waspmote’s battery, since feeding directly the sensor circuitry could lead to
long inactivity periods coinciding with the hours of low or null solar light
intensity. Thus, the Waspmote operation is maintained still through the bat-
tery, whose level can increase (or decrease) along the time depending on the
energy production and on the application consumption. For this reason, the
next two subsections present the KL-SUN3W energy production model and
the Waspmote energy consumption model. Note, however, that these models
may apply to other solar modules and sensor platforms. Figure 1 shows our
energy harvesting system composed by the solar module KL-SUN3W (on the
left) and the Waspmote platform (on the right).

QoS Optimization in Solar Cells-based Energy Harvesting WSN 9

Fig. 1: Our solar energy harvesting system: The solar module KL-SUN3W (on
the left) and the Waspmote platform (on the right).

3.1 Energy Production Model

This subsection presents the energy production model that we propose to
estimate the amount of solar energy that is harvested from the solar module
KL-SUN3W. Our approach is to elaborate a prediction model based on formu-
lations. However, note that there exist other methods of forecasting that could
have been adopted, such as regressive models, intelligent artificial techniques,
or numerical weather prediction [18].

The maximum power output (ignoring losses) delivered by a photovoltaic
system during a period of time (e.g. a month, a day, or a year) can be computed
as Pout = D × η × S, where D is the value of the irradiance corresponding to
the same period of time and it is measured in watts. As an example, if we take
the average daily solar irradiance in the city of Madrid (Spain) in the month
of February, whose value is 2.96 KWh/m2 according to the NASA program
RETScreen [31], the average power output provided by KL-SUN3W in a day
of February is 11.22 Wh. We consider that the solar panel KL-SUN3W is
located titled on the surface, with an inclination angle given by the standard
condition of 41.81◦ between the sun and the surface. Figure 2 shows the average
daily power output from KL-SUN3W generated from the data of irradiance in
Madrid (Spain) for all months of the year (on the left) and the hourly solar
irradiance computed for one day of the months of February, June, September,
and December (on the right). Figure 3 presents the same parameters for the
city of Hamburg (Germany). The comparison of the figures enables to easily
visualize how the geographical location where the solar cell is deployed affects
to the energy production. The amount of power output generated from the sun
is larger in regions with latitude lower, since the angle of incidence of the sun
rays with regard to the Earth’s surface increases from the Ecuador towards
the poles; in the figures, Madrid (latitude: 40.437944; longitude: -3.679536)
receives more amount of sun than Hamburg (latitude: 53.558869; longitude:
9.927821).

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months of the year

0

5

10

15

20

25

En
er
gy

 p
ro
du

ct
io
n
(W

h/
da

y)

Pout (Wh/day)
D (KWh/m2/day)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time in hours

0

1

2

3

4

5

6

7

8

Ho
ur

ly
 ir
ra
di
an

ce
 D

(h
)

Feb 19th
Jun 22nd
Sep 7th
Dec 21st

Fig. 2: Daily power output in Madrid (Spain) and its distribution per hour.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months of the year

0

5

10

15

20

25

En
er
gy

 p
ro
du

ct
io
n
(W

h/
da

y)

Pout (Wh/day)
D (KWh/m2/day)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time in hours

0

1

2

3

4

5

6

7

8

Ho
ur

ly
 ir
ra
di
an

ce
 D

(h
)

Feb 19th
Jun 22nd
Sep 7th
Dec 21st

Fig. 3: Daily power output in Hamburg (Germany) and its distribution per
hour.

For a given power output Pout the corresponding amount of energy that
can be produced is computed as Pout

Vmp , where V mp is the voltage at maxi-
mum power. We are particularly interested in knowing the hourly curve of
the energy production for the solar module KL-SUN3W. We compute the
curve by approaching the distribution of the daily power output among the
hours of a day. For approaching the distribution function, we consider the
solar light intensity incident on the surface (irradiance) during a day, which
depends on the climatic conditions at the moment and on the solar zenith
angle ΘZ , the angle between the Sun and the vertical axis of the Earth sur-
face. The rotational movement of the Earth on its own axis and around the
Sun makes ΘZ varying along the 365 days of the year and time of the day.
Three parameters are required to compute ΘZ : 1) the latitude of the point
geographic Φ; 2) the solar declination angle δ; and 3) the time of day H. Fol-
lowing the model described in [17] and [20] we have computed the zenith angle
as: ΘZ = cos−1(sin(Φ) sin(δ) + cos(Φ) cos(δ) cos(H)), where according to [9] δ
is computed as 23.45◦(360◦(284+d

366)) (being d the number of the day of the year
to be computed, e.g. d ∈ [1, 365]) and H is the hour angle or angle of radiation
due to time of day, which is computed as H = 15◦(t − 12), with t given as
solar time, due to the fact that the Earth shifts approximately 15◦ each hour.
Knowing the zenith angle, the hourly irradiance can be estimated as a func-
tion of ΘZ and the average daily irradiance D, as D(t) = D cos(ΘZ), where
t is any hour of the day (t ∈ [0, 23]) and ΘZ represents the zenith angle at

QoS Optimization in Solar Cells-based Energy Harvesting WSN 11

time t. Finally, the hourly energy production is obtained as E(t) = D(t)×η×S
Vmp ,

t ∈ [0, 23].
For the city of Madrid and for all days of the year we have computed its

zenith angle and the estimation of the hourly irradiance. Figure 2 on the right
shows the hourly irradiance D(t) for the days February 19th, June 22th (sum-
mer solstice), September 7th, and December 21st (winter solstice) assuming
the values of daily irradiance of 2.96, 7.09, 4.87, and 1.7 KWh/day/m2 for
the months of February, June, September, and December, respectively (data
provided by RETScreen).

3.2 Energy Consumption Model

We present here the energy consumption model for the platform Waspmote.
As described before, the solar module KL-SUN3W recharges the battery of the
Waspmote; on the other hand, the battery is drained along the time depending
on the consumption of the application that is executed, which depends on the
hardware components, the energy consumption state of each one, and the time
that is being used in each state. The Waspmote platform is connected to a
Lithium-ion battery (Li-Ion) with 3.7V nominal voltage and a voltage ranging
between 3.3 and 4.2 volts, which represent the minimum and maximum oper-
ational battery voltage, respectively. This battery can be recharged through
USB at a voltage of 5V providing a maximum charging current of 100mA and,
alternatively, through a solar panel, as KL-SUN3W, at 6-12V and providing
a maximum charging current of 280mA. To compute the discharge time of
the battery we manage two parameters: C is the capacity of the battery (in
mAh) and I is the current draw required for the working of the application
(in mA). The time (in hours) to completely discharge the Waspmote assuming
that there is no energy production from the solar cell and a constant current
draw I comes given then by C

I . As an example, considering the capacity of the
Waspmote battery, C = 6600mAh, and assuming a simple application that
only makes usage of the microcontroller in state On, I = 15mA, the time to
discharge would be 6600

15 = 440h. Note, however, that the current draw is ge-
nerally not constant and vary with the application requirements. In this sense,
the current draw to be applied for this computation is the sum of the partial
consumptions of the hardware components use.

4 System Model

Let us consider a WSN composed of n sensors {n1, n2, . . . , nn}, where nn acts
as a sink. Each sensor executes a subset of the available tasks θ. A task T ∈ θ
is represented by a triple T = ⟨t, p, w⟩, where t is the time of execution of
the task, p is the period of execution of the task (note that must be p > t,
otherwise the period of execution of the task cannot be met), and w is the
energy consumption of the node per unit of time, due to the execution of task

12

T . For each task T , its duty cycle, expressed as the percentage of system time
required, is computed as dc = t

p ×100. There also exists a special task T0 (also

called Idle task) which is executed when there is no other task to execute.
In a given period of time, a sensor may be assigned to execute a scheduling

plan, which is defined by a finite subset of tasks in θ. When a plan is selected
to be executed, all of its tasks are cyclically executed. Each sensor i, with
i ∈ [1, n), has a set of m scheduling plans to be selected for execution. For
simplicity, we assume that m is the same for all of the sensors. However, note,
that it is not a limitation of the model, and its generalization is straightforward.
We define Pi[] as the m elements vector containing all the available plans for
sensor i. For any given scheduling plan P , we define its energy consumption per
unit of time c(P) as the sum of the energy consumptions of the tasks in P , and
its duty cycle dc(P) as the sum of the duty cycles of the tasks in P (note that
must be dc(P) ≤ 100%, otherwise the plan is not feasible as the sensor does
not have enough processing capacity to run it). We also define the quality level
q(P) of the plan to express the degree in which this plan fulfills the application
requirements. Specifically, quality levels enable the representation of different
user-defined metrics for the application, such as the sampling rate, the duty
cycle, or the communication pattern employed. As an example, let us consider
two scheduling plans A and B, intended for monitoring an area through a video
camera. The definition for A is A = {TA

1 , TA
2 , TA

3 , TA
0 }, where TA

1 is the task
for sampling the camera at a rate of 10 seconds with a high resolution, TA

2 is
the task for processing the sample, and TA

3 is the communicating task that
uses a routing protocol with guaranteed-delivery. Alternatively, the definition
for B is B = {TB

1 , TB
2 , TB

3 , TB
0 }, where TB

1 is the task for sampling the camera
at a rate of 60 seconds with a low resolution, TB

2 is the task for processing
the sample, and TB

3 is the communicating task that uses a best-effort routing
protocol (TA

0 and TB
0 are the Idle tasks for plans A and B, respectively).

Generally speaking, a higher quality in the performing of a task, for instance
the sampling or the transmission, implies a better quality of such activity as
well as a higher cost. Specifically, q(A) > q(B) and, subsequently, c(A) > c(B).

The sink also has a set of scheduling plans to be selected for execution. For
any given plan Pi[j] of sensor i (j ∈ [1,m]) there exists one (and only one) plan
Qi[j] in the sink that enables the overall execution of the pair ⟨Pi[j], Qi[j]⟩. In
other words, Qi[j] is the only set of tasks for the sink that is compatible with
the execution of Pi[j] in sensor i. In the rest of the paper, we use function
p(P) that returns the only sub-plan for the sink compatible with a plan P of
a sensor, i.e. Qi[j] = p(Pi[j]).

The energy consumption per unit of time of Qi[j] is denoted by c(Qi[j]) and
the duty cycle of Qi[j] is defined similarly to the duty cycles of the plans for the
sensors, and it is denoted by dc(Qi[j]). Note that, given a pair ⟨Pi[j], Qi[j]⟩,
the duty cycles dc(Pi[j]) and dc(Qi[j]) can be rather different from each other
because the tasks executed by the sensor differ from the tasks executed by
the sink, and because the sink and the sensor may have completely different
processing power. Note that we do not need to define a quality level for the
sub-plans of the sink as these can be considered as service plans for the corre-

QoS Optimization in Solar Cells-based Energy Harvesting WSN 13

spondent plans executed on the sensors and therefore, the quality of Qi[j] is
equal to the quality of Pi[j].

The efficiency of a scheduling plan P is denoted by ϵ(P) and is defined

as q(P)
c(P)+c(p(P)) , that is, the ratio between its quality level q(P) and the costs

c(P) and c(p(P)) (i.e. the cost of P and the cost of the sub-plan in the sink
compatible with P). It should be noted that a plan P for which q(P) < q(P ′)
and c(P) + c(p(P)) ≥ c(P ′) + c(p(P ′)) for some other plan P ′ is inefficient,
and it can be excluded a priori. For this reason we assume that, without loss
of generality, the higher the quality level, the higher the energy consumption.

Hereafter we assume that the vector Pi[] is initially ordered in terms of
efficiency in descendant order, i.e. ϵ(Pi[j]) ≥ ϵ(Pi[k]) for each j < k.

For the ease of notation, we also denote with P []|q the vector obtained
from vector P [] by removing all elements that have quality level smaller or
equal than q. Similarly, we denote with P []|c the vector obtained from P [] by
removing all elements that have a cost larger or equal than c. Note that, if
P [] is sorted, the vectors P []|q and P []|c are also sorted according to the same
order, and both operations can be performed in a linear time with the size
of the vector. The operations P []|q and P []|c return an empty vector, denoted
with ∅, if no elements in P [] satisfy the requested property.

Both the sensors and the sink are powered by means of the solar cell-based
energy harvesting system described in Section 3. Since the energy that can be
produced from a solar cell depends on different factors such as, for instance, the
solar time and the geographic location, batteries are still necessary to feed the
circuitry of the sensors and to keep their operations when there is no energy
production. We assume that the energy production in the sink is sufficient to
attend several sensors simultaneously (for example, the sink could use larger
solar cells and have batteries of larger capacity). Thus, the energy harvesting
system converts the solar energy into electricity which is used to increase (or
decrease) the battery level in the sensors and the sink. It is also known that
the solar energy production has a natural cycle of 24 hours that, although
uncontrollable, is predictable [22]. For this reason, we consider a time frame
taken as reference of ∆ = 24 hours and we discretize the time axis into v slots
of duration ∆×60×60

v seconds. For each slot k (k ≤ v) and for each sensor i
(i ≤ n) we devise a strategy aimed at finding the assignment of scheduling
plans to the time slots in order to optimize the overall quality of service.

Let S be the scheduling matrix of dimension n × v that represents the
assignment of scheduling plans to the sensors and to the sink in every slot,
specifically:

si,k =

{
the scheduling plan assigned to sensor i in slot k if i < n
the scheduling plan assigned to the sink in slot k if i = n

(1)

Note that, for a given slot k ∈ [1, v], the assignment of scheduling plans to
all the sensors is represented by the kth column of S. Note also that, for a given
sensor i ∈ [1, n), its assignment of scheduling plans to the slots is represented
by the ith row of S. In order to attend the selections done by the n−1 sensors

14

in each slot k the sink must select for execution a plan that is compatible
with the plans selected for all the sensors in the same slot. For this reason
the sink has to schedule several of its plans, one for each sensor with whom
it interacts. Considering that a plan for a sensor is compatible with only one
sub-plan for the sink, we have that the plan for the sink at slot k must always
be sn,k =

∪n−1
i=1 p(si,k). This plan has a cost given by

∑n−1
i=1 c(p(si,k)) and a

duty cycle equal to
∑n−1

i=1 dc(p(si,k)). Note that the duty cycle of the plan for
the sink must clearly be lower or equal than 100% to be feasible (otherwise
the sink cannot attend the plans selected by the sensors); this means that an
assignment of plans to all the sensors in a slot is feasible only if the resulting
plan for the sink has a duty cycle not above 100%.

Let G = gi,k and E = ei,k be two n×v matrices that represent the amount
of energy generated and estimated, respectively, ∀i ∈ [1, n] and ∀k ∈ [1, v] (note
that the energy that is finally produced may not match with the expected one).
Let also B = bi,k be the n×v matrix that represents the battery level for each
sensor and for the sink in each slot k. Referring to the current time slot t,
matrix B contains the past battery levels of the sensors and the sink in all
the columns k < t, the current battery levels in column t, and the expected
battery levels in all columns k > t. Finally, we denote as Bmax

i and Bmin
i to

the maximum and minimum admissible levels of the batteries, respectively,
and as B0

i to the initial battery level at the beginning of slot 1 for any sensor
i ∈ [1, n]. We define the rectifier function [x]+ as:

[x]+ =

{
x x ≥ 0
0 x < 0

(2)

If the duration of the slots is small enough we can assume that, if the charge
tends to overflow the battery above its maximum Bmax

i , then the battery
charge will be Bmax

i also at the end of the slot. Similarly, if the charge tends
to underflow the battery below Bmin

i , then the battery charge will be Bmin
i

also at the end of the slot. This assumption is motivated by the fact that
the slots are short, the energy production will keep the same trend while the
energy consumption will remain almost the same. Under these assumptions,
disregarding the power leakage of the battery, and assuming that the actual
energy production equals the expected energy production, we can express the
battery level for each sensor i in slot k as:

bi,k =

{
max{Bmax

i , bi,k–1 + ϕ[ei,k − c(si,k)]
+ − [c(si,k)− ei,k]

+} k ∈ [2, v]
B0

i k = 1
(3)

where ϕ is the efficiency of the battery recharge process. In order to sim-
plify the formulation of the optimization problem we provide the following
definitions.

Definition 1 A sensor i satisfies the condition of energy neutrality iff bi,v ≥
bi,1, i.e. its battery level at the last slot v is always greater or equal than the
battery level at slot 1. For evaluating this condition we define the boolean
function Neutral(i) that returns true iff the sensor i holds this condition.

QoS Optimization in Solar Cells-based Energy Harvesting WSN 15

Definition 2 A sensor i satisfies the condition of minimal battery iff bi,k ≥
Bmin

i , i.e. the battery level ∀k ∈ [1, v] is always greater or equal than its
minimum battery level Bmin

i . We define the boolean function Minbat(i) that
returns true iff the sensor i holds this condition.

Definition 3 An assignment of scheduling plans to the sensors in slot x is
feasible iff

∑n−1
i=1 dc(si,x) ≤ 100%, i.e. the sum of their duty cycles is lower or

equal than the maximum possible (100%); otherwise, these plans cannot run
together because the sink has not enough capacity to run them simultaneously
in the same slot. We define the boolean function Sumdc(x) that returns true
iff the assignment done in slot x holds this condition.

Definition 4 An assignment of scheduling plans represented by matrix S is
feasible iff holds that Neutral(i), Minbat(i), and Sumdc(k) ∀i ∈ [1, n], k ∈
[1, v]. We define the boolean function Feasible(S) that returns if the assign-
ment is feasible or not. For the sake of simplicity we also define the boolean
function Feasible(si,k) that returns true iff the assignment to sensor i in
slot k is feasible.

Then, we can formulate the optimization problem as follows:

max
∑

i∈[1,n],k∈[1,v]

q(si,k) (4)

Feasible(S)

The constraint Feasible(S) states that the assignment of the scheduling
plans to slots must be always feasible, i.e. each sensor i must be energy neutral
and hold the condition of minimal battery, and the sum of the duty cycles of
the assigned plans to slot k must be always less or equal than 100%.

5 Energy Management Optimization

We present in this section the algorithms for energy management optimization.
Firstly, we consider the initial assignment problem of scheduling plans to slots
for each sensor, assuming that the energy produced in the sensors coincides
with the energy estimated. Secondly, we address the scenario in which it is
necessary the re-scheduling of the initial assignment. This could happen, for
instance, because of the previous condition does not hold, e.g. there is an excess
or defect of energy production in the sensors with regard to the estimation
done, or because some sensors may leave or join the network. Finally, we discuss
the choice of communication for the sensors and compare the centralized and
distributed approach.

5.1 Initial Assignment

The purpose of the initial assignment algorithm is to find a feasible assignment
of scheduling plans to slots for each sensor. Such initial assignment may later

16

be upgraded or downgraded by increasing or reducing the quality level of the
plans initially assigned. The pseudo-code for the initial assignment is presented
in Algorithm 1.

Algorithm 1 Initial Assignment Algorithm

Ensure: S: the scheduling matrix.
si,k = Pi[1]; sn,k =

∪n−1
i=1 p(si,k)∀k ∈ [1, v]

loop
case 1: Feasible(S)

if(bi,v == bi,1)∀i then
exit; % the solution is optimal

improved=Upgrade(S)
break;

case 2: !Feasible(si,k) for some i ̸= n and some k
improved=Downgrade(S,i)
break;

case 3: !Feasible(sn,k) for some k
improved=DowngradeAll(S)

if (improved ==false) then
exit; % the solution cannot be upgraded/downgraded

end loop

The algorithm starts assigning to each sensor i its most efficient plan, i.e.
the plan Pi[1] to all of the slots of sensor i. The plan to be executed in the
sink is computed in each plan replacement accordingly. Once the matrix S has
been initialized, three cases may occur: 1) feasibility of all the assignments
(case 1); 2) non-feasibility of the assignment for a sensor i < n in some slot
(case 2); and 3) non-feasibility of the assignment in the sink (case 3). The first
case occurs when all the sensors (included the sink) are energy neutral, their
battery levels at every slot are above Bmin

i and the sum of the duty cycles
of the plans assigned to all the sensors in each slot k is below 100%. In this
case, if the battery level at last slot v is equal to the battery level at slot 1 for
all sensors, then there is no excess of battery to improve the current solution
and the algorithm finishes; otherwise the solution can be improved and the
algorithm invokes function Upgrade with the purpose of iteratively finding
a better assignment than the current one. In the second case the algorithm
uses function Downgrade with the purpose of iteratively finding a cheaper (less
energy demanding) assignment for the sensor that is not energy neutral. In
the last case the algorithm uses function DowngradeAll with the purpose of
iteratively finding a cheaper assignment for all the sensors, in order to reach a
feasible assignment for all the sensors. In any of the three cases, the algorithm
iterates until no improvements are possible to the plans assignment.

Algorithm 2 shows the function Upgrade. This function takes the assign-
ment matrix S and selects the plan of the sensor whose replacement provides
the largest increase on the current quality (of course, the new assignment will
also have a larger cost). To this purpose, the Upgrade function considers the
upgradable plans, i.e. the assigned plans that can be replaced with a plan with

QoS Optimization in Solar Cells-based Energy Harvesting WSN 17

higher quality. Specifically, given an assigned plan si,k with a quality level
q = q(si,k), it is said to be upgradable iff the list Pi[]|q ̸= ∅, i.e. there exists
a plan that improves the quality level of the current assignment. We define
the function up(si,k) that returns the plan in Pi[]|q with minimum cost (and
with a larger quality than q), and that returns the empty set ∅ if such a plan
does not exists. In practice, the Upgrade function looks for an assigned plan
that is upgradable with minimum cost and upgrades it only if this results in
an overall admissible assignment.

Algorithm 2 Upgrade Function

Require: S: the scheduling plans assignment matrix
Ensure: a boolean value that states if S has been upgraded

Let U={s(i,k) s.t. i ∈ [1, n− 1], k ∈ [1, v] and s(i,k) is upgradable}
% U is the set of assigned scheduling plans that are upgradable
Let s(h,x) ∈ U be a plan s.t. c(up(s(h,x))) ≤ c(up(s(i,k))) ∀ s(i,k) ∈ U
% s(h,x) is the assigned plan that is upgradable with minimum cost
S’=S; s’(h,x)=up(s’(h,x)); % upgrades the plan of sensor h in slot x
s’(n,x)=

∪n−1
i=1 p(s’(i,x)) % updates the state of the sink

% considers an assignment in which s(h,x) is replaced with up(s(h,x))
if Feasible(S’) then

S=S’;
return true

return false

Algorithm 3 shows the function Downgrade. This function takes the assign-
ment matrix S and a sensor i and attempts to reduce the cost only for the
assignment of the sensor i (of course, the new assignment will also have a lower
quality). To this purpose, the Downgrade function considers the downgradable
plans, i.e. the assigned plans that can be replaced with a plan with lower cost.
Specifically, given an assigned plan si,k with a cost c = c(si,k), it is said to
be downgradable iff the list Pi[]|c ̸= ∅, i.e. there exists a plan that reduces
the cost of the current assignment. We define the function down(si,k) that
returns the plan of maximum quality in Pi[]|c (and with a cost lower than c),
and that returns the empty set ∅ if such a plan does not exists. In practice,
the Downgrade function looks for an assigned plan that is downgradable with
maximum quality.

Finally, Algorithm 4 shows the function DowngradeAll. This function takes
the assignment matrix S and attempts to reduce the overall cost of the as-
signment (of course, the new assignment will also have a lower quality). This
function is similar to function Downgrade, with the difference that it is not
limited to downgrade only a specific sensor.

5.2 Re-optimization

The strategy described computes a (sub-)optimal scheduling of the plans to be
executed along a time frame, such that the overall quality level is maximized

18

Algorithm 3 Downgrade Function

Require: S: the scheduling plans assignment matrix.
Require: α: the sensor to be downgraded.
Ensure: a boolean value that states if the assignment S of sensor i has been downgraded

Let D={s(i,k) s.t. i = α, k ∈ [1, v] and s(i,k) is downgradable}
% D is the set of assigned scheduling plans in S that are downgradable
if D==∅ then

return false% solution cannot be downgraded
Let s(h,x)∈D be a plan s.t. q(down(s(h,x))) ≥ q(down(s(i,k))) ∀s(i,k)∈D
% s(h,x) is the assigned plan that is downgradable with maximum quality
s(h,x)=down(s(h,x)); % downgrades s(i,k)
s(n,x)=

∪n−1
i=1 p(s(i,x)) % updates the state of the sink

return true

Algorithm 4 DowngradeAll Function

Require: S: the scheduling plans assignment matrix.
Ensure: a boolean value that states if the assignment S has been downgraded

Let D={s(i,k) s.t. i ∈ [1, n− 1], k ∈ [1, v] and s(i,k) is downgradable }
% D is the set of assigned scheduling plans in S that are downgradable
if D==∅ then

return false% solution cannot be downgraded
Let s(h,x)∈ D be a plan s.t. q(down(s(h,x))) ≥ q(down(s(i,k))) ∀s(i,k)∈ D
% s(h,x) is the assigned plan that is downgradable with maximum quality
s(h,x)=down(s(h,x)); % downgrades s(h,k)
s(n,x)=

∪n−1
i=1 p(s(i,x)) % updates the state of the sink

return true

both in the sensors and in the sink. This scheduling is based on estimations
of the energy to be produced by the energy harvesting systems attached to
the sensors and to the sink, as well as the energy consumption of each specific
plan. However, the amount of energy that is actually harvested from the sun
could differ from the amount of energy predicted at some slot along the time
frame taken as reference. This may happen for different reasons, as for ins-
tance the unexpected change of solar conditions or a wrong prediction. Note
that the amount of the real energy harvested can be obtained by reading the
battery sensor at the instant of time appropriate. If it is observed a mean-
ingful deviation between the estimated and the harvested energy, i.e. if the
amount of estimated energy at some slot is higher (or lower) than the amount
of energy that is really produced, the scheduling for the future slots is no
longer valid and the re-optimization is triggered (note that small differences
between the estimated and produced energy are still tolerable). If this is the
case, re-optimization makes necessary only for the next slots, i.e. the slots be-
tween the following slot to the slot in which the energy estimation changed,
let say v0 and the last slot v. The re-optimization algorithm behaves equal to
Algorithm 1 except that it starts the initial assignment of plans from slot v0
instead of from slot 1.

Finally, we want to stress that in our task model we assume a cyclic exe-
cution of tasks with a uniform consumption in each slot. Under the event of
the battery level is very low and the energy production drops dramatically

QoS Optimization in Solar Cells-based Energy Harvesting WSN 19

between the beginning and the end of slot (which would lead the sensor to
interrupt its operation), we consider that there exist a minimum admissible
battery level (Bmin

i) that enables sustaining the sensor operation during one
slot, after which the re-optimization will be triggered for the next slots.

5.3 Centralized vs. Distributed Communication

The algorithms presented so far allow for both a centralized and distributed
implementations. However, the choice of communication (centralized or dis-
tributed) impacts significantly on the efficiency of the solution. The main dif-
ference between the centralized and distributed model lies in who has the
knowledge to make the decisions. For the sake of simplicity, we consider two
extreme cases. One, centralized, in which the sensors do not have any knowl-
edge (apart the plan assigned to them by the sink), and one (that we call
distributed), in which the sensors know all the parameters of their tasks (basi-
cally quality and consumption), and they can perform the optimization of their
own scheduling, while the sink do not have specific knowledge of the sensors’
task parameters (energy consumption and quality). The distributed scenario
models the case in which the set of sensors participating to the network is not
defined a priori, new sensors with new sets of tasks may join the network. In
these conditions, when a new sensor joins, the sink chooses the set of tasks
that fit the sensor ones (for example tasks that publish the sensor data at the
appropriate rate), but it does not know the specific parameters of the tasks of
the sensor (consumption, production and quality). Note, however, that there
are many different ways to implement distributedly the algorithms, depending
on the assumption made about the capability of the sensors and on the knowl-
edge they have. Note also, that, regardless the choice of the communication
and, according to our algorithms, the sink is always responsible of deciding
about its own scheduling, based on the scheduling of the sensors, which can
be made by the sensors (in the distributed case) or by the sink itself (in the
centralized case). Considering these two opposite scenarios, we compute the
overhead of these approaches due to communication messages that the sink
and the sensors interchange.

– The centralized approach. Following this approach, the sink acts as co-
ordinator node by centralizing the global knowledge, making decisions for
upgrading/downgrading each sensor with a plan, and driving the commu-
nication with the sensors. The sink knows the properties of the scheduling
plans of the sensors, their initial battery levels, and their energy estima-
tions, therefore, it may compute in advance the plan to be assigned to every
slot in each sensor and, correspondingly, the plan to be executed in each
slot in the sink. To communicate their scheduling the sink needs to send
one message to each sensor. If the precision of the energy solar prediction
algorithm is good enough it will not be necessary to send more than (n−1)
messages. Otherwise, if re-optimization is necessary (for instance due to a
non-tolerable difference between the energy estimated and produced), the

20

sensor that detects such imprecision has to communicate to the sink the
amount of energy that is really produced and the slot where it was detected,
in such a way that the sink can proceed to recompute the assignment for
the next slots (between v0 and v) of that sensor, as well as to recompute its
own scheduling. This involves two messages more for each slot: one from
the sensor directed to the sink and the other one from the sink directed to
the sensor. Thus, the number of messages interchanged in the centralized
approach depends on the number of sensors n − 1, the number of slots v
but, more importantly, on the precision of the energy prediction algorithm,
and it goes to range between n− 1 messages (the best case, it occurs when
no re-optimization must be done) and 3v(n− 1) (the worst case, it occurs
when re-optimization must be done for all slots in all sensors).

– The distributed approach. In the distributed approach, the initial as-
signment is triggered when the sink sends to each sensor the order to start
assigning its most efficient plan to all slots. In turn, each sensor i responses
to the sink if, after the assignment of the most efficient plan to the v slots,
it is still feasible or not, e.g. Feasible(si,k) ∀k ∈ [1, v] as well as the plan
assigned, since the sink has to adapt its plan accordingly. Therefore, in this
first step the number of messages interchanged between the sink and the
sensors sum up to 2(n− 1) messages. After that, three cases may happen:
1) Upgrade all the sensors; 2) Downgrade a subset of the sensors; and 3)
Downgrade all the sensors. In the first case, if the sink finds feasible all the
assignments of all sensors, broadcasts a message ordering Upgrade ((n−1)
messages). In the second case, if the sink finds that some assignment in
some sensor (different to the sink) is not feasible, sends a message towards
the subset of sensors whose assignment is not feasible (a number of mes-
sages lower than (n− 1)). In the third case, the sink broadcasts a message
ordering Downgrade to all the sensors ((n − 1) messages). The reception
of any of these messages implies that each sensor starts independently to
upgrade/downgrade its solution and, after the replacement of one single
plan in one single slot, each one must send back a new message to the sink
indicating the possibly new plan assigned and if it improved or reduced
the cost of its solution (note that if the solution was not improved or its
cost was not reduced, the sensor undoes the replacement and leaves the old
plan). This is necessary because the change of one plan in one sensor in-
volves a change in the plan in the sink. For each message received, the sink
selects its new scheduling plan accordingly to the new plan received from
a sensor, and checks again if it is still energy neutral. At this point, the
three cases previously mentioned could happen again. The process repeats
until there are no more plans that improve the solution (or that reduce its
cost). Therefore, the maximum number of messages interchanged between
the sink and the sensors by using a distributed approach in the initial as-
signment is 2(n− 1) + 2(n− 1)((m− 1)v) = 2(n− 1)(1 + v(m− 1)). Thus,
in this case, the number of messages interchanged between the sensors and
the sink depends on the number of sensors n−1, the number of scheduling
plans m, and the number of slots v. Note that the re-optimization does not

QoS Optimization in Solar Cells-based Energy Harvesting WSN 21

n 5 5 6 6 7 7 8 8 9 9

m 4 6 4 6 4 6 4 6 4 6

Central-best 4 4 5 5 6 6 7 7 8 8

Central-worst 3600 3600 4500 4500 5400 5400 6300 6300 7200 7200

Distributed 7208 12008 9010 15010 10812 18012 12614 21014 14416 24016

Table 2: Maximum number of messages interchanged between the sensors and
the sink for different values of n,m, and with v = 300 for centralized (best
and worst case) and distributed communication.

impact on the number of messages in the distributed communication, be-
cause the sensors always have to send any change done in their scheduling
to the sink. For this reason, there is no a best and a worst case since the
distributed scenario is always the same.

In order to compare the centralized approach against the distributed one,
we provide values for n ∈ [5, 9], m = {4, 6}, and v = 300, and we compute the
number of messages in the three cases: distributed and centralized, best and
worst case. Table 2 shows the number of resulting messages; in the case of the
distributed approach the number of messages increases when n and m grow.
In the case of the centralized approach, the number of messages increases with
n and not with m, but depends on the accuracy of the prediction algorithm.
As observed, the number of messages interchanged by using the centralized
approach is much lower than in the distributed approach; this is especially
true when re-optimization is not required, i.e. when the number of slots with
a wrong energy estimation tends to 0.

6 Evaluation

We have evaluated the algorithms described in Section 5 by simulation. With
the purpose of evaluating a large number of scenarios the simulator first gen-
erates a valid test case and then proceeds to its optimization. This section
presents the description of the simulator and the results obtained for a subset
of selected test cases. We stress here that Figure 1, which shows the real energy
harvesting system used for elaborating the energy production and consump-
tion model, has not been used in this evaluation since we evaluate the system
completely by simulation.

The cases generator considers n − 1 sensors and m scheduling plans per
sensor to produce n − 1 × m scheduling plans. For each plan, it randomly
generates a set of tasks θ (i.e. the number of tasks is not fixed), and for each
task T ∈ θ generates its amount of execution time t, its period p (with p > t),
and its cost per unit of time w. Remember that the special task T0 is executed
when there is no other task to execute. Knowing the description of each task
T = ⟨t, p, w⟩, the duty cycle of the plan as well as its cost can be computed
as described in Section 4 while its quality is randomly generated by taking
into account that a larger duty cycle and a larger cost involves necessarily
higher quality. Conversely, the cases generator must also generate n − 1 ×m

22

scheduling plans for the sink, where each one corresponds to one and only one
plan of the sensor. The cost of a plan in the sink is generated (quasi-)randomly
by considering that it should not be less than the cost of its corresponding
plan in the sensor (to model the additional data processing and aggregation
work performed by the sink). Since the sink has to simultaneously attend to
n− 1 sensors, its duty cycle comes given by the sum of the duty cycles of the
corresponding plans executed by the sensors in the same instant of time.

We have considered a time frame of ∆ = 24 hours, composed of 300 slots
(v = 300) with a duration of ∆×60×60

v =288 seconds each one. The energy
produced in an hour E(t) is equally distributed among all the slots of an hour.

In our simulations the n sensors (including the sink) employ the energy
harvesting system described in Section 3. Our simulator estimates the energy
production in the city of Madrid (latitude=40.24 North) that provides the solar
module KL-SUN3W, according to the model described in Section 3. Specifi-
cally, for each day of the year it first computes the hourly irradiance D(t) as
the product between D and cosΘZ and then it calculates the energy produc-

tion at time t ∈ [0, 23] as E(t) = D(t)×η×S
Vmp . The values for the average daily

irradiance D in Madrid that we took were the data provided by RETScreen:
2.03,2.96,4.29,5.11,5.95,7.09,7.2,6.34,4.87,3.13,2.13,1.7 KWh/m2/day, corres-
ponding to the months of the year from January to December. Note that, at
implementation time, the programmer must provide as an input the data of
irradiance (D) corresponding to the specific geographical location where the
sensors will be located in order to compute the amount of solar energy that
is harvested from the sun at that location, according to our energy prediction
model. To enable the sink attend simultaneously several sensors, we increase
the energy production in the sink by assuming that the energy to be produced
in the sink is f times the energy production in the sensors and, for the sake of
simplicity, all the sensors produce the same amount of energy. The maximum
capacity of the battery attached to the sensors is Bmax

i = 6600mAh∀i ∈ [1, n)

and for the sink is the double Bmax
n = 13200mAh; Bmin

i =
Bmax

i

2 ∀i ∈ [1, n]
and, in slot 1, the battery levels were configured to be B0

i = Bmax
i − 500

∀i ∈ [1, n].

We have generated and evaluated a set of experiments. From them, we have
selected the next three, that correspond to the three cases distinguished by
the Initial Assignment algorithm: 1) Case 1: Upgrade; 2) Case 2: Downgrade
sensors that are not energy-neutral; and 3) Case 3: Downgrade All. The day
used for estimating the energy production was December 21st, winter solstice
(d = 358) and the starting hour was 0:00am. For each case, we configure the
cases generator to create a number of instances different, where each instance
corresponds to a simulation of n sensors with m different scheduling plans each
one. First, the next three subsections analyze separately one only instance of
each case and later, in the last subsection we provide the global results for the
complete set of instances.

QoS Optimization in Solar Cells-based Energy Harvesting WSN 23

Sensor 1

T1 T2 T3 T4 T5 T0 c q(%) dc(%) O

P1 ⟨5, 39, 13⟩ ⟨8, 39, 17⟩ ⟨9, 39, 13⟩ ⟨6, 39, 8⟩ ⟨9, 39, 7⟩ T2
0 1.58 51.0 5.5 2

P2 ⟨3, 20, 20⟩ ⟨5, 20, 16⟩ – – – T12
0 3.0 74 9 3

P3 ⟨4, 16, 1⟩ ⟨4, 16, 18⟩ ⟨4, 16, 11⟩ ⟨3, 16, 11⟩ – T1
0 2.68 63 7 5

P4 ⟨4, 17, 4⟩ ⟨1, 17, 3⟩ ⟨1, 17, 7⟩ – – T11
0 2.11 53 6 4

P5 ⟨4, 24, 4⟩ ⟨6, 24, 3⟩ ⟨3, 24, 8⟩ ⟨3, 24, 5⟩ ⟨6, 24, 6⟩ T2
0 1.25 50 4.5 1

P6 ⟨2, 11, 11⟩ ⟨2, 11, 5⟩ ⟨2, 11, 1⟩ ⟨1, 11, 19⟩ ⟨2, 11, 10⟩ T2
0 4.54 87 15 6

Sensor 2

P1 ⟨6, 38, 6⟩ ⟨6, 38, 20⟩ ⟨9, 38, 15⟩ ⟨5, 38, 2⟩ – T12
0 1.76 48.5 6 1

P2 ⟨3, 21, 13⟩ ⟨1, 21, 12⟩ ⟨3, 21, 6⟩ ⟨5, 21, 16⟩ – T9
0 3.09 77 16 2

P3 ⟨3, 17, 11⟩ ⟨1, 17, 12⟩ – – – T13
0 2.88 51 11 5

P4 ⟨2, 26, 6⟩ ⟨2, 26, 15⟩ – – – T22
0 2.5 50 9 4

P5 ⟨1, 13, 17⟩ ⟨2, 13, 3⟩ – – – T10
0 3.07 52 14 6

P6 ⟨1, 31, 14⟩ – – – – T30
0 2.38 49.5 7 3

Sensor 3

P1 ⟨6, 25, 2⟩ ⟨1, 25, 15⟩ ⟨6, 25, 6⟩ ⟨5, 25, 19⟩ ⟨2, 25, 14⟩ T5
0 2.64 83 23 1

P2 ⟨2, 32, 14⟩ ⟨6, 32, 12⟩ – – – T24
0 2.31 62 9 3

P3 ⟨5, 23, 7⟩ ⟨5, 23, 14⟩ – – – T13
0 2.04 54 7 5

P4 ⟨5, 40, 12⟩ ⟨5, 40, 4⟩ – – – T30
0 1.9 51 5.5 4

P5 ⟨1, 29, 20⟩ ⟨3, 29, 9⟩ ⟨3, 29, 2⟩ ⟨6, 29, 7⟩ ⟨3, 29, 6⟩ T13
0 2.41 75 12 2

P6 ⟨4, 23, 1⟩ ⟨4, 23, 15⟩ – – – T15
0 2.0 53 6 6

Sensor 4

P1 ⟨8, 40, 1⟩ ⟨9, 40, 8⟩ ⟨9, 40, 10⟩ – – T14
0 1.17 51 8 1

P2 ⟨7, 36, 20⟩ ⟨5, 36, 12⟩ – – – T24
0 2.22 54 11 3

P3 ⟨1, 13, 3⟩ – – – – T12
0 2.07 53 9 2

P4 ⟨3, 13, 4⟩ ⟨3, 13, 17⟩ ⟨2, 13, 17⟩ – – T5
0 3.69 68 21 5

P5 ⟨4, 19, 19⟩ ⟨1, 19, 7⟩ ⟨1, 19, 16⟩ ⟨3, 19, 2⟩ – T10
0 3.36 60 19 6

P6 ⟨1, 13, 16⟩ ⟨1, 13, 5⟩ ⟨1, 13, 10⟩ – – T10
0 3.92 78 23 4

Table 3: Scheduling plans for Case 1. Legend: P: Plan; O: Order.

6.1 Case 1: Upgrade

We study the case of upgrading for n = 5 sensors (including the sink) and
m = 6 scheduling plans. Table 3 shows the details of the plans of a specific
instance for this case. For each plan, the columns from 2 to 6 present the
definition of the tasks 1 to 5 respectively (a maximum number of 6 tasks
was fixed); the column 7 indicates the execution time for the Idle task; the
next three columns indicate the cost per unit of time of the plan, its quality
level, and its duty cycle, respectively. The last column indicates the number
of order of the plan by efficiency (e.g. the lowest order number corresponds to
the largest efficiency).

After assigning the most efficient plan to each sensor, the duty cycle is
41.5% and all the sensors including the sink are energy-neutral. There is,
therefore, a choice of improving the solution for which the Algorithm 1 starts
upgrading the sensors. Figure 4a shows the battery level in the sink and Fig-
ures 4c and 4d depict the duty cycle and the resulting quality level after
upgrading, respectively. As observed, the sink keeps energy-neutral after the
first plan is assigned (red line) and also after upgrading (green line). Since
the process of upgrading improves the solution by increasing necessarily its
cost, the battery level at slot v = 300 is slightly lower than the battery level
when the initial plan, which is cheaper, is assigned. The effect of upgrading
the solution increases its duty cycle and, in turn, its quality: the duty cycle
grows from 41.5% up to 77.0% (see Figure 4c) while the overall quality grows
from 58.125% up to 81.25% (see Figure 4d). Note that in these figures we are

24

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots

12400

12600

12800

13000

13200

Ba
tte

ry
 le

ve
l i

n
th

e
si

nk
 (m

Ah
)

IA(mAh)
Upgrade (mAh)

(a) Battery level in the sink

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
6000

6100

6200

6300

6400

6500

6600

6700

Ba
tte

ry
 le

ve
l i

n
th

e
se

ns
or

s
(m

Ah
)

Sensor 1
Sensor 2

Sensor 3
Sensor 4

(b) Battery levels in the sensors

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

20

40

60

80

100

Du
ty

 c
yc

le
 (%

)

DC=41.5%

DC=77.0%

DC IA(%)
DC Upgrade(%)

(c) Duty cycle before/after upgrading

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

20

40

60

80

100

Av
er
ag
e
Qu

al
ity
 (%

)

QoS=58.125%

QoS=81.25%

QoS IA(%)
QoS Upgrade(%)

(d) Quality before/after upgrading

Fig. 4: Case 1: Battery levels in the sink and in the sensors after upgrading
(above); duty cycle and quality (below) after the initial assigning (IA) of the
most efficient plan and after upgrading.

overlapping the results of the assignments in two situations: after initial as-
signment (IA) and after upgrading/downgrading. It is important to point out
that, in these cases, the axis x, which is showing the slots of time in a day, does
not represent absolute time, since clearly the upgrading/downgrading process
occurs later, but the relative time within the time frame in which the plan
that upgrades/downgrades is assigned, and its consequent profit with regard
to the plan assigned by the IA algorithm at the same slot. Figure 4b demon-
strates that all sensors remain energy-neutral after upgrading. As observed,
they experience a reduction of their battery levels during the hours of low (or
null) energy production and an increase coinciding with the hours of solar light
(remember that slot 1 coincides with the instant of time 0:00am). The battery
levels vary slightly among sensors, since each sensor executes a different plan
with a different consumption (note that, for the sake of simplicity, we assume
that the energy production is the same for all sensors). During the upgrading
process, the sensors 1, 2, and 4 were selected for upgrading according to the
Algorithm 2, i.e. first the plans that are upgradable are selected, and among
them, it is selected the plan whose replacement provides the smallest increase
in the cost of the solution. Note that the plans selected for replacement could
not be the most efficient plans. For this case, we checked that the sensors 1,
2, and 4 transit progressively to each one of the m = 6 possible scheduling
plans, until the solution cannot be improved, which occurs when the quality
level achieves 81.25% and the duty cycle achieves 77%.

QoS Optimization in Solar Cells-based Energy Harvesting WSN 25

Sensor 1

T1 T2 T3 T4 T5 T0 c q(%) dc(%) O

P1 ⟨4, 27, 20⟩ – – – – T23
0 2.44 49.5 7 3

P2 ⟨7, 34, 12⟩ ⟨8, 34, 18⟩ ⟨4, 34, 14⟩ ⟨5, 34, 5⟩ ⟨7, 34, 3⟩ T3
0 1.70 48.5 6 2

P3 ⟨1, 13, 11⟩ – – – – T12
0 2.69 51 20 5

P4 ⟨2, 35, 20⟩ ⟨3, 35, 16⟩ ⟨1, 35, 9⟩ ⟨8, 35, 18⟩ ⟨3, 35, 8⟩ T18
0 3.05 91 24 1

P5 ⟨1, 24, 11⟩ ⟨1, 24, 5⟩ – – – T22
0 2.5 50 10 4

Sensor 2

P1 ⟨2, 36, 15⟩ ⟨2, 36, 12⟩ ⟨2, 36, 3⟩ – – T30
0 2.5 60 5.5 1

P2 ⟨7, 35, 16⟩ – – – – T28
0 2.05 51 3.5 2

P3 ⟨3, 21, 14⟩ ⟨2, 21, 4⟩ ⟨1, 21, 16⟩ ⟨1, 21, 6⟩ – T14
0 3.23 61 6 4

P4 ⟨1, 22, 14⟩ ⟨4, 22, 7⟩ ⟨4, 22, 5⟩ ⟨1, 22, 16⟩ ⟨4, 22, 19⟩ T8
0 3.5 64 8 5

P5 ⟨2, 18, 10⟩ ⟨3, 18, 5⟩ – – – T13
0 2.27 53 4.5 3

Sensor 3

P1 ⟨3, 28, 18⟩ ⟨7, 28, 19⟩ ⟨6, 28, 15⟩ – – T12
0 2.71 70 17 2

P2 ⟨3, 33, 12⟩ ⟨1, 33, 7⟩ ⟨7, 33, 12⟩ ⟨6, 33, 17⟩ – T16
0 2.42 69 15 1

P3 ⟨1, 15, 15⟩ ⟨2, 15, 15⟩ ⟨2, 15, 9⟩ ⟨1, 15, 3⟩ ⟨3, 15, 1⟩ T6
0 3.66 72 23 5

P4 ⟨6, 28, 9⟩ ⟨5, 28, 14⟩ – – – T17
0 2.03 52 6 4

P5 ⟨7, 37, 12⟩ ⟨1, 37, 3⟩ – – – T29
0 1.97 51 5.5 3

Sensor 4

P1 ⟨2, 26, 2⟩ – – – – T24
0 1.92 50 3.5 2

P2 ⟨5, 27, 15⟩ ⟨1, 27, 19⟩ ⟨5, 27, 19⟩ – – T16
0 3.14 73 6 3

P3 ⟨1, 20, 3⟩ ⟨5, 20, 13⟩ – – – T14
0 2.2 57 5.5 1

P4 ⟨4, 16, 17⟩ ⟨4, 16, 20⟩ ⟨1, 16, 5⟩ ⟨3, 16, 15⟩ ⟨3, 16, 6⟩ T1
0 4.06 80 14 5

P5 ⟨6, 27, 2⟩ ⟨2, 27, 20⟩ ⟨4, 27, 2⟩ ⟨6, 27, 16⟩ – T9
0 2.14 52 4.5 4

Sensor 5

P1 ⟨1, 17, 6⟩ ⟨1, 17, 13⟩ ⟨2, 17, 16⟩ – – T13
0 3.58 50 9 5

P2 ⟨6, 31, 4⟩ ⟨6, 31, 4⟩ ⟨5, 31, 2⟩ ⟨2, 31, 16⟩ ⟨4, 31, 2⟩ T8
0 1.41 47.5 4.5 1

P3 ⟨7, 35, 9⟩ ⟨2, 35, 7⟩ ⟨6, 35, 19⟩ – – T20
0 2.14 49.5 6 3

P4 ⟨3, 15, 15⟩ ⟨3, 15, 18⟩ ⟨3, 15, 12⟩ ⟨1, 15, 13⟩ ⟨3, 15, 3⟩ T2
0 4.33 79 24 4

P5 ⟨3, 24, 2⟩ – – – – T21
0 1.83 48.5 5.5 2

Sensor 6

P1 ⟨3, 12, 1⟩ – – – – T9
0 1.58 48.5 5.5 1

P2 ⟨6, 37, 20⟩ ⟨3, 37, 8⟩ – – – T28
0 2.27 50 7 3

P3 ⟨6, 37, 16⟩ ⟨5, 37, 10⟩ – – – T26
0 2.10 49.5 6 2

P4 ⟨3, 16, 20⟩ ⟨1, 16, 14⟩ – – – T12
0 3.62 71 14 5

P5 ⟨4, 21, 15⟩ ⟨5, 21, 15⟩ – – – T12
0 2.57 53 13 4

Sensor 7

P1 ⟨2, 17, 13⟩ ⟨4, 17, 5⟩ ⟨2, 17, 19⟩ ⟨1, 17, 1⟩ – T8
0 3.17 50 9 5

P2 ⟨2, 25, 17⟩ ⟨3, 25, 19⟩ ⟨5, 25, 10⟩ ⟨4, 25, 18⟩ ⟨3, 25, 18⟩ T8
0 3.92 97 16 1

P3 ⟨1, 29, 19⟩ ⟨5, 29, 3⟩ – – – T23
0 2.34 49.5 7 4

P4 ⟨3, 38, 4⟩ – – – – T35
0 1.94 48.5 6 3

P5 ⟨4, 20, 3⟩ – – – – T16
0 1.75 47.5 5.5 2

Table 4: Scheduling plans for Case 2. Legend: P: Plan; O: Order.

6.2 Case 2: Downgrade sensors different to the sink

This case uses n = 8 sensors (including the sink) and m = 5 scheduling plans
(see Table 4 for details). The assignment of the most efficient plan to each
sensor may make some sensor (different than the sink) not energy-neutral;
specifically, as shown in Figure 5 on the left, these sensors are the sensor 1,
2, 3, and 7. Thus, the Algorithm 1 proceeds to downgrade all of them until
finding a feasible solution. The Downgrade function (Algorithm 3) proceeds
by selecting for each sensor to downgrade, a cheaper plan than the current
one but whose replacement involves the lowest reduction on the quality of the
solution. The transitions required for sensors 1, 2, 3, and 7 become energy-
neutral can be viewed in Figure 6, where we have used the red color to show
the initially assigned plan, the green color to show the final plan assigned, and
yellow color to show the intermediate transitions.

26

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
6000

6050

6100

6150

6200

Ba
tte

ry
 le

ve
l i

n
th

e
se

ns
or

s
(m

Ah
)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

Sensor 5
Sensor 6
Sensor 7

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
6000

6050

6100

6150

6200

Ba
tte

ry
 le

ve
l i

n
th

e
se

ns
or

s
(m

Ah
)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

Sensor 5
Sensor 6
Sensor 7

Fig. 5: Case 2: Battery levels in the sensors after the initial assignment (on
the left) and after downgrading the sensors not energy-neutral (on the right).

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

1

2

3

4

5

6

7

Sc
he

du
lin

g
Pl

an

Sensor 1 transitions
Init
Transition 1

Transition2
End

Transition3

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

1

2

3

4

5

6

Sc
he

du
lin

g
Pl

an

Sensor 2 transitions
End
Init

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

1

2

3

4

5

6

Sc
he

du
lin

g
Pl

an

Sensor 3 transitions
End
Init

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

1

2

3

4

5

6

Sc
he

du
lin

g
Pl

an

Sensor 7 transitions
Init
End
Transition 1

Fig. 6: Case 2: Transitions of the sensors 1, 2, 3, and 7 to achieve energy-
neutrality.

Note that downgrading the sensors involves also downgrading the sink as
shown in Figure 7a, where the battery level that is obtained after assigning
the first plan and after the downgrading process is compared. As observed, the
battery level after downgrading (green line) is slightly larger than the battery
level after assigning the first plan; the reason for that is that also in the sink
a cheaper plan has to be selected. The downgrading process impacts also on
the duty cycle and the quality of the solution such as shown in Figures 7b
and 7c, respectively: the lower cost of the plan, the lower duty cycle and, in
turn, the lower quality. Specifically, the duty cycle drops from 76% to 39-52%,
depending on the set of plans selected for the sensors in each specific slot.
Similarly, the quality drops from 67.14% to 50.85-54.5%, again depending of
the plans selected for the sensors.

QoS Optimization in Solar Cells-based Energy Harvesting WSN 27

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots

12400

12600

12800

13000

13200

Ba
tte

ry
 le

ve
l i
n
th
e
si
nk

 (m
Ah

)

Battery IA(mAh)
Battery Down(mAh)

(a) Battery levels in the sink after initial assignment (IA) and after downgrading

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

20

40

60

80

100

Du
ty

 c
yc

le
 (%

)

DC=76.0%

DC=39%

DC=49% DC=50% DC=52%

DC IA(%)
DC Down(%)

(b) Duty cycle after downgrading

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

20

40

60

80

100

Av
er
ag

e
Qu

al
ity

 (%
)

QoS=67.142%

QoS=50.85%

QoS=53.42% QoS=54.42% QoS=54.5%

QoS IA(%)
QoS Down(%)

(c) Quality after downgrading

Fig. 7: Case 2: Battery level in the sink (above) and duty cycle and quality
(below) after the initial assigning (IA) of the most efficient plan and after
downgrading.

6.3 Case 3: Downgrade All

The third case uses a number of n = 10 sensors (including the sink) and m = 5
scheduling plans. Table 5 shows the details of the plans generated.

The initial assignment of the most efficient plan of each sensor to the v
slots results in a non-feasible assignment in which the sink does not hold the
Sumdc(k) condition, ∀k ∈ [1, v]; this leads to downgrade all the sensors to find a
feasible solution where the sum of the duty cycles be lower or equal than 100%.
Figure 8 shows the results obtained after downgrading the sensors. The initial
assignment algorithm finds a feasible solution where the duty cycle is reduced
from 119.5% (which is the sum of the original duty cycles after assigning the
most efficient plan) to 97.5% (the sum of the duty cycles after downgrading
the sensors) as shown in Figure 8c. Observe that reducing the duty cycle
reduces also the overall quality achieved (see Figure 8d), which decreases from
53.55% to 44.33%; a larger duty cycle involves a higher quality level since the
sensor consumes more resources to perform better its tasks. We also observe
in Figure 8a that the battery level of the sink increases very slightly with
regard to the battery level after assigning the most efficient plan; the reason
for that is that the plans selected for the sensors during the downgrade must
necessarily have a lower cost and, therefore, the corresponding plan selected
in the sink, in turn, have a lower cost.

28

Sensor 1

T1 T2 T3 T4 T5 T0 c q(%) dc(%) O

P1 ⟨3, 40, 4⟩ ⟨10, 40, 18⟩ ⟨2, 40, 17⟩ ⟨10, 40, 6⟩ ⟨1, 40, 3⟩ T14
0 1.90 19.5 6 1

P2 ⟨2, 27, 3⟩ ⟨4, 27, 15⟩ ⟨1, 27, 7⟩ ⟨3, 27, 13⟩ – T17
0 2.66 22 10 3

P3 ⟨7, 39, 18⟩ ⟨3, 39, 13⟩ ⟨9, 39, 6⟩ ⟨6, 39, 20⟩ – T14
0 2.17 20 7 5

P4 ⟨5, 40, 14⟩ ⟨1, 40, 16⟩ ⟨1, 40, 10⟩ – – T33
0 2.65 21 8 2

P5 ⟨2, 10, 20⟩ ⟨2, 10, 9⟩ – – – T6
0 4.1 33 12 4

Sensor 2

P1 ⟨3, 29, 2⟩ ⟨3, 29, 19⟩ ⟨4, 29, 4⟩ ⟨3, 29, 8⟩ ⟨5, 29, 7⟩ T11
0 2.13 38 15 3

P2 ⟨2, 23, 9⟩ ⟨5, 23, 9⟩ ⟨4, 23, 6⟩ – – T12
0 2.08 30 11 4

P3 ⟨1, 26, 10⟩ – – – – T25
0 2.30 77 24 1

P4 ⟨7, 32, 17⟩ ⟨8, 32, 18⟩ – – – T17
0 2.15 56 19 2

P5 ⟨10, 40, 11⟩ ⟨2, 40, 15⟩ ⟨9, 40, 6⟩ – – T19
0 1.75 21 10 5

Sensor 3

P1 ⟨8, 35, 6⟩ ⟨3, 35, 2⟩ ⟨3, 35, 17⟩ ⟨5, 35, 9⟩ – T16
0 1.88 20 5.5 2

P2 ⟨2, 28, 3⟩ ⟨6, 28, 19⟩ ⟨4, 28, 13⟩ ⟨1, 28, 13⟩ ⟨2, 28, 3⟩ T13
0 2.75 50 8 3

P3 ⟨2, 10, 4⟩ ⟨1, 10, 18⟩ ⟨2, 10, 10⟩ ⟨2, 10, 13⟩ ⟨1, 10, 13⟩ T2
0 5.2 82 11 1

P4 ⟨1, 20, 12⟩ ⟨4, 20, 8⟩ ⟨2, 20, 3⟩ – – T13
0 2.45 22 6 4

P5 ⟨2, 29, 18⟩ ⟨2, 29, 9⟩ – – – T25
0 2.65 23 7 5

Sensor 4

P1 ⟨3, 12, 7⟩ ⟨1, 12, 15⟩ ⟨1, 12, 17⟩ ⟨1, 12, 17⟩ ⟨2, 12, 16⟩ T4
0 6.66 35 12 3

P2 ⟨6, 31, 17⟩ ⟨4, 31, 20⟩ ⟨3, 31, 8⟩ ⟨2, 31, 14⟩ ⟨3, 31, 2⟩ T13
0 2.80 20 5.5 4

P3 ⟨4, 34, 8⟩ ⟨1, 34, 10⟩ – – – T29
0 2.23 18.5 3.5 2

P4 ⟨1, 31, 13⟩ ⟨3, 31, 16⟩ – – – T27
0 2.67 19.5 4.5 5

P5 ⟨1, 16, 3⟩ ⟨1, 16, 17⟩ ⟨2, 16, 19⟩ ⟨4, 16, 8⟩ – T8
0 3.93 23 6 1

Sensor 5

P1 ⟨3, 24, 11⟩ ⟨4, 24, 13⟩ – – – T17
0 2.41 22 12 2

P2 ⟨5, 23, 19⟩ ⟨5, 23, 1⟩ ⟨5, 23, 15⟩ – – T11
0 2.47 57 15 4

P3 ⟨3, 39, 4⟩ ⟨9, 39, 15⟩ ⟨4, 39, 20⟩ ⟨5, 39, 19⟩ – T18
0 2.41 20 10 1

P4 ⟨2, 14, 17⟩ ⟨3, 14, 6⟩ ⟨3, 14, 11⟩ ⟨1, 14, 16⟩ – T5
0 4.28 81 19 5

P5 ⟨4, 19, 10⟩ – – – – T15
0 2.1 19.5 8 3

Sensor 6

P1 ⟨3, 12, 4⟩ ⟨3, 12, 1⟩ ⟨2, 12, 2⟩ ⟨1, 12, 15⟩ – T2
0 2.75 42 18 3

P2 ⟨5, 31, 10⟩ ⟨2, 31, 20⟩ ⟨5, 31, 6⟩ – – T19
0 2.38 22 12 1

P3 ⟨2, 22, 3⟩ ⟨1, 22, 10⟩ ⟨4, 22, 14⟩ ⟨1, 22, 10⟩ – T14
0 2.95 93 24 4

P4 ⟨6, 30, 17⟩ ⟨4, 30, 7⟩ ⟨3, 30, 20⟩ ⟨1, 30, 19⟩ – T16
0 2.56 39 15 2

P5 ⟨4, 30, 15⟩ – – – – T26
0 2.23 20 6 5

Sensor 7

P1 ⟨2, 19, 3⟩ ⟨4, 19, 20⟩ ⟨4, 19, 19⟩ ⟨2, 19, 15⟩ ⟨3, 19, 16⟩ T4
0 4.26 59 18 3

P2 ⟨4, 31, 12⟩ ⟨1, 31, 4⟩ ⟨7, 31, 10⟩ – – T19
0 2.06 18.5 4.5 1

P3 ⟨3, 33, 15⟩ – – – – T30
0 2.27 51 9 5

P4 ⟨8, 32, 10⟩ ⟨8, 32, 20⟩ ⟨2, 32, 8⟩ ⟨2, 32, 8⟩ – T12
0 2.18 20 6 4

P5 ⟨3, 13, 15⟩ ⟨1, 13, 4⟩ – – – T9
0 2.07 19.5 5.5 2

Sensor 8

P1 ⟨3, 15, 9⟩ ⟨2, 15, 6⟩ ⟨3, 15, 3⟩ T7
0 2.13 19.5 6 4

P2 ⟨3, 14, 3⟩ ⟨1, 14, 8⟩ – – – T10
0 2.21 20 7 3

P3 ⟨7, 36, 4⟩ ⟨8, 36, 17⟩ ⟨3, 36, 2⟩ – – T18
0 1.63 18.5 5.5 5

P4 ⟨3, 12, 3⟩ ⟨2, 12, 8⟩ – – – T7
0 2.91 79 24 1

P5 ⟨3, 23, 15⟩ ⟨5, 23, 3⟩ ⟨5, 23, 18⟩ – – T10
0 2.43 25 12 2

Sensor 9

P1 ⟨1, 27, 18⟩ ⟨1, 27, 11⟩ – – – T25
0 2.92 37 6 1

P2 ⟨3, 39, 14⟩ – – – – T36
0 2.20 22 4.5 5

P3 ⟨5, 20, 16⟩ ⟨4, 20, 18⟩ – – – T11
0 2.8 26.0 5.5 2

P4 ⟨1, 16, 18⟩ ⟨2, 16, 19⟩ ⟨1, 16, 11⟩ ⟨2, 16, 14⟩ – T10
0 5.12 39 8 3

P5 ⟨4, 24, 6⟩ – – – – T20
0 1.91 20 3.5 4

Table 5: Scheduling plans for Case 3. Legend: P: Plan; O: Order.

Figure 8b demonstrates that all the sensors keep energy-neutral after down-
grading, following the same trend than in case 1 and 2: the battery level de-
creases when the solar production is low (or null) and increases during the
hours of solar light. Note that sensors 6 and 2 present the lowest battery lev-
els. Given that the assignment of the most efficient plan in each sensor (the
first plan that is assigned) would make the solution not feasible since the
sum of the duty cycles would be larger than 100%, the Algorithm 1 invokes

QoS Optimization in Solar Cells-based Energy Harvesting WSN 29

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
12200

12400

12600

12800

13000

13200

Ba
tte

ry
 le

ve
l i
n
th
e
si
nk

 (m
Ah

)

Battery IA(mAh)
Battery DownAll(mAh)

(a) Battery level in the sink

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
5900

5950

6000

6050

6100

6150

6200

6250

Ba
tte

ry
 le

ve
l i

n
th

e
se

ns
or

s
(m

Ah
)

Sensor 1
Sensor 2
Sensor 3

Sensor 4
Sensor 5
Sensor 6

Sensor 7
Sensor 8
Sensor 9

(b) Battery levels in the sensors

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 234 240 246 252 258 264 270 276 282 288 294 300

Slots
0

20

40

60

80

100

120

140

Du
ty

 c
yc

le
 (%

)

DC=119.5%

DC=97.5%

DC IA(%)
DC DownAll(%)

(c) Duty cycle before/after downgrading

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228 234 240 246 252 258 264 270 276 282 288 294 300

Slots
0

20

40

60

80

100

Av
er
ag

e
Qu

al
ity

 (%
)

QoS=53.55%

QoS=44.33%

QoS IA(%)
QoS DownAll(%)

(d) Quality before/after downgrading

Fig. 8: Case 3: Battery levels in the sink and in the sensors after downgrading
(above); duty cycle and quality (below) after the initial assigning (IA) of the
most efficient plan and after downgrading.

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

1

2

3

4

5

6

Sc
he

du
lin
g
Pl
an

DC(%)=119.5%

DC(%)=114.5%

DC(%)=101.5%

DC(%)=97.5%

Sensor 2 transitions
Init
Transition 1

Transition2
End

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252258264270276282288294300

Slots
0

1

2

3

4

5

6

Sc
he

du
lin
g
Pl
an

DC(%)=119.5%

DC(%)=108.5%

DC(%)=105.5%

Sensor 6 transitions

Init
Transition 1

End

Fig. 9: Case 3: Transitions of the sensors 2 and 6 to achieve a feasible solution.

DowngradeAll, which proceeds selecting first the plans of all sensors that are
downgradable and, among them, selects the first plan whose replacement in-
volves the lowest reduction on the quality. Among all the sensors, the plans
assigned to sensors 2 and 6 were selected several times for downgrading until
the solution became feasible. The transitions among plans in sensor 2 and sen-
sor 6 can be viewed in Figure 9, where the resulting duty cycle (after replacing
the plan) is also displayed. As observed, the first sensor that downgrades is
the sensor 2, where the plan 4 replaces the original plan 3; next, the sensor
6 downgrades two successive times: in the first one, all the slots are replaced
by plan 4 and in the second one, this plan is replaced by plan 1; finally, the
sensor 2 is selected again and downgrades other two times: the first one, in
which the plan 4 is replaced by the plan 1; and the second one, in which the

30

plan 1 is replaced by the plan 2; after these transitions the value of duty cycle
gets lower than 100%, which stops downgrading.

6.4 Average optimization for each case

To compute the average optimization provided by our simulator, we first ge-
nerate a set of instances for each specific case of upgrading, downgrading, and
downgrading all, and run the Algorithm 1 for each one. Each instance of a case
keeps the same values n,m, where m scheduling plans are generated randomly
and have therefore different values. Table 6 shows the average optimization
values obtained for 50 occurrences of the three cases, in terms of average bat-
tery level in the n − 1 sensors and in the sink at the last slot (v = 300),
the average init/end duty cycle (%), and the average init/end quality (%). Re-
member that the sensors and the sink start with an initial battery level of 6100
and 12700mAh, respectively. Note that to compute the values corresponding
to duty cycle and quality, we had into account the average of the values in the
v = 300 slots of each instance, since these values could differ from one slot to
another. We observe that in the three cases both the sensors and the sink hold
the feasibility condition. In the case of upgrade, as it is expected, the duty
cycle and the quality grow an average of 42.6% and 14.5%, respectively. The
results for downgrading show that all sensors get set slightly above the mini-
mum battery level (6100mAh) which, in turn, involves reducing both its duty
cycle and its quality level, an average of 10.5% and 7%, respectively. Finally,
the last column depicts the results for the case downgrading all sensors, where
the algorithm gets adjusting the average battery level in the sink slightly above
its minimum level, 12700mAh. As a consequence of having a sink not energy-
neutral (e.g. the sink is not able to attend simultaneously all the sensors), the
algorithm downgrades all the sensors up to the system becomes feasible, which
results in a reduction of the duty cycle and the subsequent loss of quality, an
average of 18.53% and 8.4%, respectively.

7 Discussion and Conclusions

Energy harvesting systems have become a very appealing strategy to prolong
the lifetime of sensor nodes. Generally, the energy sources employed by these
systems are uncontrollable, which makes necessary the use of algorithms aimed
at balancing the amount of energy that is produced and consumed by the node,
in order to find a high overall quality level while conserving an energy level
sufficient to maintain the sensors operations. The problem becomes more com-
plicated in energy harvesting sensor networks, where all (or a subset) sensor
nodes employ an energy harvesting system, possibly with different harvesting
properties and different candidate applications to be elected, because a mini-
mal change in the scheduling of a node may affect to the rest of the nodes
leading to recompute their schedulings.

QoS Optimization in Solar Cells-based Energy Harvesting WSN 31

Upgrade Downgrade DowngradeAll

(n=5,m=6) (n=8,m=5) (n=10,m=5)
Avg. End Sensor
Battery (mAh)

Sensor 1 6192.9 6100.03 6166.45

Sensor 2 6212.5 6100.04 6161.05
Sensor 3 6201.9 6100.02 6164.37
Sensor 4 6194.3 6100.02 6165.46
Sensor 5 −− 6100.03 6167.72
Sensor 6 −− 6100.02 6163.07
Sensor 7 −− 6100.03 6162.81
Sensor 8 −− −− 6157.95
Sensor 9 −− −− 6166.35

Avg. End Sink Battery (mAh) 12968.6 12938.4 12701.17
Avg. Init DC (%) 28.1 54.56 73.24
Avg. End DC (%) 60.7 44.07 55.71
Avg. Init q(%) 60.1 61.61 62.32
Avg. End q (%) 74.6 54.46 53.91

Table 6: Average optimization for 50 instances of upgrade, downgrade, and
downgrade all.

In this paper we consider a scenario composed by n sensor nodes, one of
them acting as the sink, equipped with a solar cell-based energy harvesting
system. We address an optimization problem that consists in finding a (sub-
)optimal assignment of execution plans at different instants of time (slots)
within a reference period, both for the nodes and for the sink, such that
it maximizes the overall quality level keeping their schedulings feasible (i.e.
energy neutral, minimal battery, and sum of duty cycles below 100%). To
solve this problem we propose an heuristic that proceeds assigning initially
the most efficient plan of each sensor to all their time slots and, from here,
upgrades/downgrades the solution according to the energy production and
the energy consumption of the candidate plans, to compute schedulings that
maximize the quality for the n sensors. We have evaluated our approach by
simulation. Our simulator may generate test cases with different configurations
and properties, and then it applies the algorithms proposed to find the optimal
schedulings. Our algorithms find always a feasible solution even when the space
of searching could be very large; we show how the nodes adapt dynamically
their initial assignments to the actual solar conditions and improve/reduce the
global quality level while respect the given constraints.

There are still two open issues that we discuss next: scalability and opti-
mality. For the first issue, we stress that our model considers a star-connected
WSN, where the sensors communicate wirelessly only with the sink, and vice
versa. The star topology is the typical one used in some scenarios of WSNs,
as in Internet of Things applications and in Wireless Body Area Networks
(WBAN), where the sensors transmit their data to some controller device
through a wireless communication protocol, for instance, Bluetooth or Zigbee.
The stronger constraint to scalability in a star-connected network is due to
the technology of the radio communications that cannot support a scalable

32

Scheduling Plans
Plan 1 Plan 2 Plan 3 Slots

DC Q C DC Q C DC Q C 1 . . . 10
Test 1 Sensor 1 43 51 1.58 67 74 3.0 59 63 2.7 1

Sensor 2 36 49 1.76 55 77 3.09 49 51 2.9 2
Test 2 Sensor 1 42 50 2.44 37 49 1.7 59 51 2.7 3

Sensor 2 35 60 2.5 25 51 2.05 37 61 3.23 3
Test 3 Sensor 1 42 42 2.75 37 22 2.38 65 93 3 3

Sensor 2 46 59 4.26 25 19 2.06 37 51 2.3 2

Table 7: Values for the test scenarios (on the left) and the results of the optimal
assignments and of our algorithms (on the right). Legend: DC: Duty Cycle
(%); Q: Quality Level; C: Cost.

number of devices; for example, Bluetooth supports up to seven slave devices
communicating to a master. For this reason, the scalability issue is relatively
marginal in star connected networks, which is the subject of this work. As
a future work we plan to address the problem of multi-hop energy harvest-
ing sensor networks, connected by using different network topologies as, for
instance, meshes and trees, where the issue of scalability becomes a primary
concern.

The second open issue is the assessment of the sub-optimality of our ap-
proach. We propose low-complexity algorithms that use an heuristic to greed-
ily achieve (sub-)optimal assignments for all sensors in the face of high cost
computational algorithms that clearly cannot be embedded into resources con-
strained sensors. We do not guarantee the optimality of the solutions achieved
since ensuring optimality involves traversing a search space composed by all
possible combinations of assignments to find the optimum. However, as a first
approach to evaluate the distance of our greedy approach from the optimal
solution, we have implemented an algorithm based on brute force that com-
putes all the possible assignments, on a small scale network, and selects the
assignment feasible that maximizes the overall quality. For each sensor, the
size of its search space are variations with repetition of a elements (plans)
chosen of b different ways (slots), i.e. V Ra,b = ab. Specifically, we consider 2
sensors, a = 3 scheduling plans, b = 10 slots with equal constant production
for both sensors.

Table 7 shows the parameters used in the evaluation (on the left) and the
optimal solutions provided by the brute force algorithm for each case (on the
right), and that coincide with the solutions achieved by our algorithms, in the
three cases. However, although these results are encouraging, we are far from
ensuring sub-optimality since we are using a very small scale and a very limited
set of cases. Clearly, it is not possible with exhaustive search to enlarge much
the scale or to consider a significant number of cases, hence we can present it
just as a first step towards the future work, which is to assess analytically the
sub-optimality of our approach.

Another future work is the implementation of our heuristic directly on
the platform Waspmote connected to the solar module KL-SUN3W. This en-

QoS Optimization in Solar Cells-based Energy Harvesting WSN 33

ables us to evaluate our heuristic on a real sensor in terms of feasibility and
performance.

References

1. Akkaya, K., Younis, M.: Energy and qos aware routing in wireless sensor networks.
Cluster Computing 8(2-3), 179–188 (2005)

2. Alippi, C., Anastasi, G., Francesco, M.D., Roveri, M.: An adaptive sampling algorithm
for effective energy management in wireless sensor networks with energy-hungry sensors.
Instrumentation and Measurement, IEEE Transactions on 59(2), 335 –344 (2010). DOI
10.1109/TIM.2009.2023818

3. Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor net-
works: A survey on the state of the art and the 802.15.4 and zigbee standards. Computer
Communications 30(7), 1655 – 1695 (2007). Wired/Wireless Internet Communications

4. Barsocchi, P., Chessa, S., Furfari, F., Potorti, F.: Evaluating ambient assisted living so-
lutions: The localization competition. Pervasive Computing, IEEE 12(4), 72–79 (2013).
DOI 10.1109/MPRV.2013.23

5. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-
level dynamic power management. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 8(3), 299–316 (2000). DOI 10.1109/92.845896

6. Bergonzini, C., Brunelli, D., Benini, L.: Algorithms for harvested energy prediction
in batteryless wireless sensor networks. In: Advances in sensors and Interfaces, 2009.
IWASI 2009. 3rd International Workshop on, pp. 144 –149 (2009). DOI 10.1109/IWASI.
2009.5184785

7. Bogliolo, A., Delpriori, S., Lattanzi, E., Seraghiti, A.: Self-adapting maximum flow
routing for autonomous wireless sensor networks. Cluster Computing 14(1), 1–
14 (2011). DOI 10.1007/s10586-009-0115-x. URL http://dx.doi.org/10.1007/

s10586-009-0115-x

8. Chen, J., Daz, M., Llopis, L., Rubio, B., Troya, J.M.: A survey on quality of service sup-
port in wireless sensor and actor networks: Requirements and challenges in the context
of critical infrastructure protection. Journal of Network and Computer Applications
34(4), 1225 – 1239 (2011). Advanced Topics in Cloud Computing

9. Cooper, P.: The absorption of solar radiation in solar stills. Solar Energy 12 (1969)
10. Escolar, S., Carretero, J., Marinescu, M.C., Chessa, S.: Estimating energy savings in

smart street lighting by using an adaptive control system. International Journal of
Distributed Sensor Networks 2014, 17 (2014)

11. Escolar, S., Chessa, S., Carretero, J.: Optimization of quality of service in wireless sensor
networks powered by solar cells. In: 10th IEEE International Symposium on Parallel
and Distributed Processing with Applications, p. 8. Madrid, Spain (2012)

12. Escolar, S., Chessa, S., Carretero, J.: Energy management of networked, solar cells
powered, wireless sensors. In: Proceedings of the 16th ACM International Conference
on Modeling, Analysis & Simulation of Wireless and Mobile Systems, MSWiM ’13, pp.
263–266. ACM, New York, NY, USA (2013)

13. Escolar, S., Chessa, S., Carretero, J.: Energy management in solar cells powered wireless
sensor networks for quality of service optimization. Personal and Ubiquitous Computing
18(2), 449–464 (2014). DOI 10.1007/s00779-013-0663-1

14. Escolar, S., Chessa, S., Carretero, J.: Energy-neutral networked wireless sensors. Simu-
lation Modelling Practice and Theory 43(0), 1 – 15 (2014). DOI http://dx.doi.org/10.
1016/j.simpat.2014.01.002. URL http://www.sciencedirect.com/science/article/

pii/S1569190X14000033

15. Fafoutis, X., Dragoni, N.: Odmac: An on-demand mac protocol for energy harvesting -
wireless sensor networks. In: Proceedings of the 8th ACM Symposium on Performance
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, PE-WASUN ’11,
pp. 49–56. ACM, New York, NY, USA (2011). DOI 10.1145/2069063.2069072. URL
http://doi.acm.org/10.1145/2069063.2069072

34

16. Felemban, E., Lee, C.G., Ekici, E.: Mmspeed: multipath multi-speed protocol for qos
guarantee of reliability and. timeliness in wireless sensor networks. Mobile Computing,
IEEE Transactions on 5(6), 738–754 (2006). DOI 10.1109/TMC.2006.79

17. Hartmann, D.L.: Global Physical Climatology, International Geophysics, vol. 56, 1 edn.
Academic Press, Boston (1994)

18. Inman, R.H., Pedro, H.T., Coimbra, C.F.: Solar forecasting methods for renewable en-
ergy integration. Progress in Energy and Combustion Science 39(6), 535 – 576 (2013).
DOI http://dx.doi.org/10.1016/j.pecs.2013.06.002. URL http://www.sciencedirect.

com/science/article/pii/S0360128513000294
19. Iyer, R., Kleinrock, L.: Qos control for sensor networks. In: Communications, 2003.

ICC ’03. IEEE International Conference on, vol. 1, pp. 517–521 vol.1 (2003). DOI
10.1109/ICC.2003.1204230

20. Jacobson, M.Z.: Fundamentals of Atmospheric Modeling, 2 edn. Cambridge University
Press (2005)

21. Jiang, X., Polastre, J., Culler, D.: Perpetual environmentally powered sensor networks.
In: Proceedings of the 4th International Symposium on Information Processing in Sensor
Networks, IPSN ’05. IEEE Press, Piscataway, NJ, USA (2005)

22. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy harvest-
ing sensor networks. ACM Trans. Embed. Comput. Syst. 6(4) (2007)

23. Kansal, A., Potter, D., Srivastava, M.B.: Performance aware tasking for environmentally
powered sensor networks. SIGMETRICS Perform. Eval. Rev. 32(1), 223–234 (2004)

24. KL.: KL Solar company pvt ltd. http://www.klsolar.com/ (2014, India)
25. Lattanzi, E., Bogliolo, A.: WSN Design for Unlimited Lifetime, chap. Sustainable Energy

Harvesting Technologies - Past, Present and Future. 978-953-307-438-2. InTech (2011)
26. Lattanzi, E., Regini, E., Acquaviva, A., Bogliolo, A.: Energetic sustainability of routing

algorithms for energy-harvesting wireless sensor networks. Computer Communications
30(1415), 2976 – 2986 (2007). DOI http://dx.doi.org/10.1016/j.comcom.2007.05.035.
URL http://www.sciencedirect.com/science/article/pii/S0140366407002228. Net-
work Coverage and Routing Schemes for Wireless Sensor Networks

27. Libelium: Waspmote. http://www.libelium.com/downloads/documentation/

waspmote_datasheet.pdf (Document version: v4.7 - 02/2014)
28. Lin, K., Yu, J., Hsu, J., Zahedi, S., Lee, D., Friedman, J., Kansal, A., Raghunathan,

V., Srivastava, M.: Heliomote: Enabling long-lived sensor networks through solar energy
harvesting. In: Proceedings of the 3rd International Conference on Embedded Networked
Sensor Systems, SenSys ’05, pp. 309–309. ACM, New York, NY, USA (2005)

29. Moser, C., Chen, J.J., Thiele, L.: An energy management framework for energy har-
vesting embedded systems. J. Emerg. Technol. Comput. Syst. 6(2), 7:1–7:21 (2008)

30. Moser, C., Chen, J.J., Thiele, L.: Power management in energy harvesting embedded
systems with discrete service levels. Low Power Electronics and Design, International
Symposium on 0, 413–418 (2009). DOI http://doi.ieeecomputersociety.org/10.1145/
1594233.1594338

31. NASA: Surface meteorology and solar energy (retscreen). https://eosweb.larc.nasa.
gov/sse/RETScreen/ (2013)

32. Piorno, J., Bergonzini, C., Atienza, D., Rosing, T.: Prediction and management in en-
ergy harvested wireless sensor nodes. In: Wireless Communication, Vehicular Technol-
ogy, Information Theory and Aerospace Electronic Systems Technology, 2009. Wire-
less VITAE 2009. 1st International Conference on, pp. 6–10 (2009). DOI 10.1109/
WIRELESSVITAE.2009.5172412

33. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: Proceedings of the 2Nd International Conference on Embedded Networked
Sensor Systems, SenSys ’04, pp. 95–107. ACM, New York, NY, USA (2004)

34. Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.: Protocols for self-organization of a
wireless sensor network. Personal Communications, IEEE 7(5), 16–27 (2000). DOI
10.1109/98.878532

35. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: Survey and implications.
IEEE Communications Surveys and Tutorials 13(3), 443–461 (2011)

36. Vithanage, M., Fafoutis, X., Andersen, C., Dragoni, N.: Medium access control for
thermal energy harvesting in advanced metering infrastructures. In: EUROCON, 2013
IEEE, pp. 291–299 (2013). DOI 10.1109/EUROCON.2013.6624999

QoS Optimization in Solar Cells-based Energy Harvesting WSN 35

37. Vullers, R., Schaijk, R., Visser, H., Penders, J., Hoof, C.: Energy harvesting for au-
tonomous wireless sensor networks. Solid-State Circuits Magazine, IEEE 2(2), 29–38
(2010). DOI 10.1109/MSSC.2010.936667

38. Xia, F.: Qos challenges and opportunities in wireless sensor/actuator networks. Sensors
8(2), 1099–1110 (2008). DOI 10.3390/s8021099

39. Yigitel, M.A., Incel, O.D., Ersoy, C.: Qos-aware MAC protocols for wireless sensor
networks: A survey. Computer Networks 55(8), 1982 – 2004 (2011)

