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Abstract 

 
A multi-level computational protocol is devised to calculate the absorption spectra in ethanol solution of a series of 

anthocyanidins relevant for dye-sensitized solar cells. The protocol exploits the high accuracy of second order multi-

reference perturbation theory to correct the results of the more feasible TD-DFT calculations, which were performed on 

hundreds of configurations sampled from Molecular Dynamics (MD) trajectories. The latter were purposely carried out 

with accurate and reliable force fields, specifically parameterized against Quantum Mechanical data, for each of the 

investigated dyes. Besides yielding maximum absorption wavelengths very close to the experimental values, the present 

approach was also capable to predict reliable band-shapes, even accounting for the subtle differences observed along 

the homologue series. Finally, the atomistic description achieved by MD simulations allowed for a deep insight into the 

different micro-solvation patterns around each anthocyanidin and their effects on the resulting dye’s properties. This 

work can be considered as a step toward the implementation of a computational protocol able to simulate the whole 

system formed by the organic dye and its heterogeneous embedding, that constitutes dye-sensitized solar cells. 
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Introduction 

Devices able to generate electricity from sunlight using charge transfer (CT) molecules and, in particular, 

Dye Sensitized Solar Cells (DSSC) were first investigated by O’Regan and Grätzel.[1] Their work has given 

the impulse to an intense activity aiming to engineer efficient solar cells based on molecular systems rather 

than on silicon. Transition metal complexes, mainly based on Ru(II), were first utilized for capturing sunlight 

[2-6], but disadvantages and costs have moved the interest to organic dyes [4,7-12] and in particular to those 

of natural origin, [13-15] which in spite of the low efficiency available today, offer low cost and reduced 

environmental impact. Such characteristics make these compounds much more appealing than transition 

metal complexes and big effort is still being devoted to improving the efficiency of sun light-electric energy 

conversion in these systems. 

Among natural dyes, anthocyanidins are well known polyphenols of natural origin that are responsible for 

the intense color of red fruits, vegetables and flowers and are therefore present in many foods and beverages. 

For this reason, anthocyanidins and their colors are of wide interest in many aspects of biology, nutrition and 

enology.[16-20] For instance, anthocyanidins at pH values of wine and vegetables are not expected to have 

intense colors, thus the understanding of how the species are stabilized and how the final color can be tuned 

may contribute to improve wine making and commerce. Finally, in the past decade, their natural origin and 

the sensitivity of their optical properties to the embedding environment made anthocyanidins promising dyes 

for application in optoelectronic devices in general [17,21] and, specifically, in DSSC.[22-25] This latter 

aspect, although appealing for the wide availability and low environmental impact of anthocyanidins, after 

the first attempts, has not found the interest it deserved, mainly for the low efficiency obtained. 

The color of anthocyanidins depends on many factors: the number of hydroxyl groups and their mutual 

orientation, the torsion around the main dihedral angle , which drives the reciprocal orientation of the two 

aromatic moieties constituting the whole anthocyanidin (A/C and B rings, see Figure 1), the embedding 

environment and the solvent’s pH. In fact, owing to their electron withdrawing character the OH groups are 

capable to modify the aromatic ring electron density, the  torsion may alter electron delocalization between 

the two moieties, while solvent and pH affect the withdrawing character of the OHs themselves. In natural 

substances we can also have bulk effects, such as stacking of two or more molecules of the same or different 

species, which can originate co-pigmentation.[26-28]  

In this perspective, the achievement of an accurate understanding of factors and quantities governing the 

light absorption of these dyes is of basic importance and computational approaches may serve to guide the 

research in the field. In fact, several studies have been performed on the various members of the class of 

anthocyanidins, while few experimental investigations are also available. After the work by Harborne in 

1958, [29] only Dai and Rabani in 2002 [30] reported on measured spectra for the three most representative 

species of the class: pelargonidin, cyanidin and delphinidin. Harborne discusses the observed absorption of 

all anthocyanidins in acid solution of methanol and ethanol, while Dai and Rabani, being motivated by the 

potential use of the dies in photovoltaic devices, also investigate aqueous solution at pH=1 and 2.8, both for 

simply solvated molecules (i.e. in H2O or ethanol) as well as in presence of TiO2 layers. From a 
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computational point of view, most of the work has been carried out for anthocyanidins and similar 

flavonoids species, exploiting density functional theory (DFT) and its time-dependent extension (TDDFT). 

[31-34,19,24,20,35-38] Post-Hartree-Fock methods have been considered only in two papers, [39,40] where 

the results of symmetry adapted cluster configuration interaction (SAC-CI) and multi reference configuration 

interaction (MRCI) calculations, complemented with second order perturbation theory (CI-MRPT2), were 

reported, respectively. Most of the TDDFT work is focused on the calculation of vertical excitation energies 

in vacuo [31-33] or in solution, modeling solute-solvent interactions by dielectric continuous models. 

[34,19,24,20,36,37]  

On the one hand, notwithstanding the many computational efforts, the assessment of the most reliable DFT 

functional to compute anthocyanidins optical properties is still under debate.[20,33,36] As a matter of fact, 

despite the good performances of hybrid functionals (e.g. B3P86, PBE0 or B3LYP) recently reported for the 

flavonoid family,[20,34-36] a remarkable underestimation of the experimental absorption wavelength (λmax) 

was systematically found in the case of charged anthocyanidins.[20,34] Yet, it is worth noticing that in most 

of these works the TDDFT vertical transition wavelengths are directly compared with the energies 

corresponding to the experimental λmax, i.e. without taking into account the vibronic spectral shift and 

broadening.[41] On the other hand, reliable calculations of the absorption spectra requires a detailed 

[20,35,36,38] account for both molecular flexibility and specific solvation effects. In this framework, the 

dynamical evolution of the solvent surrounding some anthocyanins dyes has been recently accounted for 

through the Car-Parrinello (CP) method, [35,38] and their absorption spectra in water successfully evaluated 

at TDDFT level. Up to our knowledge, no attempt to extend the approach to anthocyanidins has been 

reported yet. However, both the CP computational cost (that rules out applications involving large hybrid 

systems as DSSC) and the possible TDDFT inaccuracies expected in the calculations of anthocyanidins 

spectra,[20,34] prompted us to adopt an alternative protocol described in the following. 

With the present paper we aim to investigate the absorption spectrum of three anthocyanidins (pelargonidin, 

cyanidin and delphinidin; Figure 1) in ethanol solution, setting up a protocol which both allows for the 

reproduction of the whole spectral line-shape and can be safely extended to the simulation of more complex 

systems (e.g. DSSC). As already mentioned, the three molecules differ for the number of OH groups in the B 

ring (see Figure 1), thus solute-solvent interactions are expected to play a different role for the three systems. 

To the aim of investigating this aspect, since experimental results for all three species are to date available 

only in ethanol, we limit our study here only to this solvent. The need to account for the structural 

modifications on the dye’s geometry induced by the aforementioned specific and local interactions and the 

intention to extend the approach to more complex and inhomogeneous systems, rule out the possibility to 

adopt standard vibronic approaches,[42,43,41,44-46] which could have also allowed for the simulation of 

spectral band shapes. Instead, a sequential molecular dynamics/quantum mechanics (MD/QM) 

approach[47,48] will be here employed, which has been successfully applied to large and complex 

systems[49,50] and is based on computing the absorption spectrum averaging on a set of configurations 

extracted from classical MD. Besides including specific solvent conformational and thermal 
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effects,[47,48,51] with this approach we also take into account at a classical level[52] dye’s nuclear degrees 

of freedom, that also affect the spectrum, as shown for cyanidin in Ref. [[40]]. 

Concretely, after a detailed QM investigation, the computational route starts with the construction of an 

accurate force field (FF) for each molecule/solvent system. Indeed, the subtle structural differences among 

the three investigated homologues, as well as their not negligible influence on the optical behavior, prompted 

us to take into account their chemical specificity through the adoption of specifically tailored FFs. The FFs 

were parameterized according to the JOYCE protocol, [53,54] and thereafter employed in MD simulations. A 

set of geometrical arrangements of the dye and of the nearest solvent molecules is then sampled and 

transition energies and oscillator strengths computed for each set. For the calculation of these quantities we 

have chosen a TDDFT approach for its low computational cost. However, since we are aware that DFT, in 

the case of anthocyanidins, fails in reproducing quantitatively the position of the observed bands is affected, 

in the case of anthocyanidins, by remarkable inaccuracies,[20,34] we have decided to calibrate the choice of 

the functional by means of accurate CI-MRPT2 calculations, performed on selected molecular geometries 

with the “in house” software BALOO. [55,56] By the comparison with CI-MRPT2 results, we have found that 

CAM-B3LYP, which is already well known to be suitable for the treatment of CT excitations,[57,58] 

behaves much better than B3LYP along the torsional profile of φ. However, in order to obtain an accurate 

overlap of TDDFT and CI-MRPT2 data, it is necessary to displace TDDFT by a constant value, to correct 

the systematic overestimation of the transition energies found for all tested functionals. CAM-B3LYP 

excitation energies and oscillator strengths, computed for each species for a set of 200 coordinates extracted 

from MD, show that our approach is able to reproduce the experimental data very well. Indeed, absorption 

maxima and band shape profiles are found very close to those observed experimentally, also accounting for 

the small difference measured among the three species. Furthermore, MD simulations allow an accurate 

investigation, at the classical level, of the different micro-solvation patterns around each anthocyanidins and 

their effects on the dye’s properties. 
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2. Computational Details 
 
2.1 General Scheme 

All absorption spectral line shapes were obtained according to a sequential MD/QM multi-level protocol that 

can be summarized as follows: 

i. A detailed QM investigation on the energy minima, conformational energy landscapes and 

vibrational frequencies is preliminarily carried out for each target molecule, collecting all optimized 

geometries, energies and the Hessian matrix in the minimum energy geometry. 

ii. An accurate intramolecular FF is parameterized with the JOYCE [53,54] protocol exploiting the 

previously assembled QM data for each molecule. 

iii. MD simulations are performed on systems composed by the target chromophore solvated by a large 

ensemble of solvent molecules, describing the solute through the JOYCE FF.  

iv. A large collection of snapshots, containing the target molecule as well as all the solvent molecules 

within a fixed distance, is extracted from the MD trajectories and used to sample the conformational 

landscape explored by the system. 

v. QM/MM calculations are performed on each snapshot to compute the vertical transition energies to a 

number of excited states. The solute is always accounted for at QM level, whereas the surrounding 

solvent molecules are included at different levels of accuracy. 

vi. The final spectrum is obtained by averaging the resulting stick spectra, after convoluting each 

transition line with a Gaussian function of a given width. 

Additional details regarding the implementation of the above general scheme can be found in Refs. [[55,48]].  

 

2.2 QM calculations 

All energy optimizations were performed at DFT level, employing the CAM-B3LYP functional with the 6-

311+G(2d,2p) basis set. Minimum energy conformations were obtained by simultaneous optimization of all 

internal coordinates, whereas relaxed scans were carried out by optimizing all degrees of freedom, but the 

scanned coordinate. The Hessian matrix was computed for the ground state (GS) minimum geometry. To 

minimize the effect of the overall positive charge (+1) of the target compounds, all calculations above were 

performed in solution (ethanol), modeling solute solvent interaction by the Polarizable Continuum Model 

(PCM).[59] 

TDDFT vertical transition energies were computed for the first three excited states employing several 

functionals (B3LYP, PBE0, M06-2X, CAM-B3LYP and ωB96XD) and basis sets, namely 6-31G(d), 6-

311G(d), 6-311G(d,p), 6-311+G(2d,2p) and  6-311++G(2d,2p). The calculations were carried out for both 

the dye in vacuo and solvated in ethanol. In the latter the surrounding ethanol molecules within a radius of 15 

Å from the solute were considered as point charges, taking the same charges as those previously employed in 

the MD simulations (vide infra).  The whole system was then inserted in a single PCM cavity with a radius 

of about 15 Å. All DFT and TDDFT calculations were performed with the Gaussian09 package. [60] 

CI-MRPT2 calculations were performed using the BALOO code. [56] The molecular orbital (MO) basis set is 
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first obtained by an Hartree-Fock (HF) calculation with the 6-311G(d) basis set using GAMESS [61] 

followed by a transformation from atomic to molecular basis of the one- and two-electron integrals. The CI-

MRPT2 calculation is then carried out by four subsequent steps in which the dimension of the initial 

configurational space is gradually enlarged by a given factor, adding at each step those configurations with 

the largest second order perturbative energy correction to the CI states. In the present case, we have made 3 

different calculations with dimension roughly 240-1200-4800-20500, 240-1700-9500-47600 and 240-2200-

15200-90200, respectively (dimensions slightly depend from the species and from geometry [56]). Notice 

that the final variational space includes excitations up to 4 and the subsequent perturbative correction 

includes then excitation level up to 6. These four steps are followed by a last MRPT2 step which exploits the 

diagrammatic perturbation theory, [62] which is much more efficient than the traditional many-body 

perturbation theory.  

 

2.3 FF parameterization and MD simulations 

The total energy in MD simulations is expressed as a sum of an intra-molecular term, E
intra

,
 
and an inter-

molecular contribution E
inter

. The former is computed for each molecule (either the anthocyanidins dye or the 

ethanol solvent) as the usual[47,48,54,53] sum of stretching, bending, dihedral torsions and intra-molecular 

non-bonded contributions, whereas E
inter

, which accounts for both solute-solvent and solvent-solvent 

interactions, is expressed by a standard atom-atom Lennard-Jones (LJ) term plus a Coulomb charge-charge 

contribution. 

As far as the dyes are concerned, the E
intra

 term was specifically parameterized for each molecule with the 

JOYCE program,[54,53] using the energy and Hessian matrix in the GS minimum and relaxed energy scans 

computed at QM level. The energies of several conformers obtained by rotation of the flexible dihedrals 

displayed in Figure 1, have been computed separately for pelargonidin, cyanidin and delphinidin. For the 

E
inter

 contribution, the LJ parameters have been taken from the Optimized Potentials for Liquid Simulations 

(OPLS-AA)[63] FF, whereas the point charges were computed, in PCM solution (ethanol), through the CM5 

protocol[64] at CAM-B3LYP/6-311+G(2d,2p) level on the optimized geometry. All parameters are reported 

in the Supporting Information, along with additional details of the parameterization procedure. Turning to 

the surrounding environment, the intermolecular FF parameters of the Cl
-
 counterion, included in all systems 

to neutralize the positive charge of the dyes, were taken from Ref. [[65]]. A full atomic description was 

adopted for ethanol, describing intra- and inter-molecular terms through the OPLS-AA FF, whose 

parameters were taken from the Virtual Chemistry database.[66]  

All MD simulations, as well as molecular mechanics (MM) optimizations, were performed with the 

GROMACS4.5 engine.[67] All simulations were carried out in the NPT ensemble, on systems composed of 

one solute molecule (either pelargonidin, cyanidin or delphinidin), ~800 ethanol molecules and one Cl
-
 

counterion, keeping temperature T (300 K) and pressure P (1 atm) constant through the v-rescale[68] and 

Parrinello-Rahman[69] schemes, using coupling constants of ps 0.1 and 1 ps, respectively. Due to the fast 

stretching vibrations, a time step of 0.25 fs was employed in all runs. A cut-off of 11 Å was employed for 
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both charge-charge and van der Waals terms, whereas long-range electrostatics was accounted through the 

particle mesh Ewald procedure. The starting conformations were created through the genbox tool[67] of the 

GROMACS package, by solvating the charged dye molecule and its counterion in a pre-equilibrated cubic box 

containing ~800 solvent molecules. The resulting systems were first minimized, then velocities were 

assigned to each atom according to a Maxwell-Boltzmann distribution at 300 K and each system was 

equilibrated for 2 ns. Thereafter production runs were performed for further 5 ns, collecting configurations 

every 1.25 ps and 25 ps, for a total of 4000 and 200 snapshots, to be used for trajectory analysis and spectra 

computation, respectively.  

The equilibrated systems were characterized by computing the average bulk density (ρ), dye’s solvation 

energy 𝛥𝐸𝑠𝑜𝑙𝑣  (i.e. the total intermolecular energy between the considered anthocyanidin and all solvent 

molecules), and number of hydrogen bonds <nHB>. The solvent structure embedding the dye, with particular 

attention on the HB network, was investigated by computing the number of HBs over time (nHB), the 

distribution of selected geometrical patterns describing the HB network and the atom-atom pair correlation 

functions gij(r) between atom i of the solute and atom j of the solvent. 

A more accurate validation could be obtained by a direct comparison of QM and MM energies and structural 

data for various dye-ethanol clusters, but this would have required extremely long computations for the QM 

part and, also in light of the use of standard parameters for the solvent, we have decided to avoid such 

computationally expensive tests. 

 

2.4 Absorption Spectra 

Once the vertical transition energies and oscillator strengths for the first three excited states were obtained 

for each of the given snapshot as previously described, the resulting stick spectrum was convoluted with a 

Gaussian function with a Half Width at Half Maximum (HWHM) of 0.05. A simple average on the set of the 

convoluted spectra for all snapshots allows us to obtain the final absorption band shape profile, whose profile 

is connected to both solvent effects and solute vibrational dynamics.  

 

 

3. Results and Discussion 

 

3.1 Preliminary analysis of anthocyanidins geometry and flexibility 

The three anthocyanidin dyes investigated in the present work are displayed in Figure 1. All homologues are 

composed by two building blocks, namely two condensed aromatic rings (A and C) and a poly-phenol cycle 

(B), connected by a single bond, with partial π character. Pelargonidin, cyanidin and delphinidin differ in the 

number of OH groups attached onto the B ring (one, two or three, respectively), whereas the structure of the 

A and C rings remains unaltered.  
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Figure 1 Equilibrium structures of the investigated anthocyanidin dyes. Flexible dihedrals are evidenced with black arrows. In the 

displayed conformers the dihedrals are: = 0°; δ1 = δ2 = 180°; δ3 = 0°; δ4 = δ5 = δ6 = 180°. 

 

The geometry of each dye was optimized at QM level, as described in the previous sections, resulting in a 

perfectly planar arrangement, in agreement with previous reports. [31-34,19,24,20,35] Vibrational 

calculations, yielded in all cases several low frequencies, suggesting that large amplitude slow motions can 

be expected for some internal coordinates. In fact, normal mode analysis revealed that all normal coordinates 

connected with low frequencies are essentially localized on a single (or a few) internal coordinate, i.e. the 

dihedral  between the two aromatic moieties and/or the dihedrals δ1 – δ6 (see Figure 1), which drive the 

orientation of each hydroxyl group. All molecules are thus expected to exhibit a certain degree of flexibility, 

essentially located in the dihedrals evidenced in Figure 1. The  dihedral drives the overall molecular shape 

and, most important for the optical properties, influences the electronic density distribution over the two 

aromatic moieties that constitute the chromophore. On the other hand, δ1 – δ6 dihedrals rule the orientation of 

the OH groups, which may become fundamental in the interaction with the neighboring (protic) ethanol 

molecules. Moreover, the absorption properties of the dyes could be affected by the different number of -OH 

substituents, since their electron withdrawing character may alter the electronic density on the aromatic 

moieties and in particular in the B ring. In conclusion, the not negligible role on absorption properties of both 

the expected flexibility and the possible interactions with the surrounding ethanol molecules, evidenced by 

this preliminary analysis, seems to suggest that a static approach, which only considers the equilibrium 

geometry of each dye, might be inadequate in the present case. For this reason, the multi-level approach 

described in the previous section was adopted. 

 

3.2 CI characterization of the transition and DFT functional selection 

In view of the large number of calculations that the chosen sequential MD/QM protocol requires, the vertical 

transition energies for each snapshot have to be computed with some cost-effective QM technique, among 

which TDDFT is certainly the most popular and efficient. Nonetheless, as recently reported in literature for 

anthocyanidins and, more in general, for similar flavonoid compounds,[20,36,34] care must be taken in 

choosing the functional, as the results may dramatically depend on it. Moreover, as previously mentioned, 

the choice of the ”best” functional should not be solely based on the comparison between experimental λmax 

and the computed wavelength corresponding to the vertical transition from the GS minimum, but the 

comparison of the experimental and computed broadened spectral shapes should be also taken into 

account.[41] On the other side, since, due to the multiple OH groups, the coupling between solvent and 
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solute dynamics is not expected to be negligible, standard vibronic approaches, [42,43,41,44-46] which take 

into account only solute vibrational contributions were also not considered for the present study. Here we 

thus choose to follow a third route, which has also the advantage to preserve the predicting capabilities of 

QM and MD approaches, since no experimental data is exploited in the DFT functional choice. To this aim, 

high-level CI-MRPT2 calculations of the lowest four states are performed on selected geometries of each 

dye, and the DFT functionals benchmarked in their ability to reproduce the CI-MRPT2 trends. Assuming 

that both calculations are affected in the same way by solvation, the comparison between reference CI-

MRPT2 and TDDFT results can be safely performed in vacuo. Besides the equilibrium geometry, the 

comparison was performed for several values of the torsional angle , which is expected to give a large 

contribution to the line shape. Moreover, the comparison between the two methods can be extended to the 

charge density of both the ground and excited states, in order to further check the quality of the several 

functionals for these specific systems.  

Considering the pelargonidin at the optimized energy minimum as a reference case, we have first checked 

the convergence of CI-MRPT2 computations performing three different calculations with the CI spaces 

listed in section 2.2. The results are reported in Table 1.  

 

Dimension of the 

CI spaces 

S0S1 S0S2 S0S3 CPU time 

(days) ΔE01  f ΔE02 f ΔE03 f 

236-1170-4749-25272 2.35 0.858 2.84 0.061 3.73 0.007 8 

240-1200-4800-20500 2.28 0.833 2.75 0.062 3.64 0.007 19  

240-1700-9500-47600 2.33 0.868 2.83 0.065 3.71 0.008 37  

240-2200-15200-90200 2.43   0.905 2.98   0.065 3.74   0.012 124  
 

 
Table 1 CI-MRPT2 transition energies (ΔE0n, eV) and oscillator strengths (f) computed for the first three singlet excited states of 

pelargonidin, increasing the CI space (first columns) using the 6-311G(d) basis set. In the last column the CPU time/processor on a 2 

GHz Intel® Xeon® are reported. The calculations refer to the optimized geometry in vacuo. 

 

Of the first three excitations from the ground state S0 to the singlet excited states S1, S2 and S3, only the first 

two are bright, with the second which is one order of magnitude less intense than the first one (Table 1). 

These are both * transitions which can be essentially assigned as HOMOLUMO and HOMO-

1LUMO (Figure 2), respectively. S3 corresponds again to a * transition, mainly HOMO-2LUMO. 

From the results reported in Table 1, it appears that for the strongest S0S1 transition the difference between 

the calculations performed in the smallest and the largest CI space is 0.15 eV, being 0.1 eV the difference 

between the intermediate and the largest one. In order to have a good compromise between computational 

effort and accuracy, we then decided to adopt the intermediate CI space for the calculations at various values 

of the torsion ϕ (see next section), whereas the excitation energy obtained with the largest space was taken as 

reference value for DFT tuning (vide infra).  
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Figure 2 CI-MRPT2 (top) and DFT (bottom) MOs involved in the visible absorption of pelargonidin at the optimized 

minimum geometry in vacuo. 

 

As far as the charge distribution in the A/C and B moieties of the molecule is concerned, the CI-MRPT2 

Mulliken charge distributions computed with the intermediate CI space are reported in Table 2. In Table 2, 

are also shown the results of DFT computations which will be discussed later in the article. 

 

Method Basis set Localization S0 S1 S2 

   A/C B A/C B A/C B 

CI-MRPT2 6-311G(d) Mulliken 0.71 0.29 0.56 0.44 0.75 0.25 

CAM-B3LYP 6-311G(d) Mulliken 0.70 0.30 0.68 0.32 0.73 0.27 

CAM-B3LYP 6-311+G(2d,2p) Mulliken 0.46 0.54 0.45 0.55 0.50 0.50 

CAM-B3LYP 6-311+G(2d,2p) CM5
(a)

 0.77 0.23 - - - - 

(a) CM5 charges were computed only for the GS in ethanol PCM solution 

Table 2 Mulliken charge distribution over the two fragments (A/C and B) of pelargonidin as computed by CI-MRPT2 and CAM-

B3LYP level for the first three excited states in vacuo. In the last row, CM5 point charges, computed from the CAM-B3LYP density 

in ethanol PCM solution, are reported for the GS (S0). 

 

According to CI results, the GS electron density is more localized in the B fragment and a significant CT can 

be observed when going to the first excited state, where the charge results more delocalized over the two 

moieties. On the contrary, the excitation to S2 does not show any significant CT character. This is in line 

with the assignments based on the single excitations and with the charge distribution shown by the frontier 

orbitals of Figure 2.  

The CI-MRPT2 vertical transition energies (ΔE0n, n=1-3) and their oscillator strengths (f) were then used to 

benchmark different DFT functionals and basis sets. Regarding the latter, it was found that for all tested 

functionals the 6-311+G(2d,2p) basis set was a good compromise between computational efficiency and 

accuracy, also because the addition of a second diffuse function (i.e. the 6-311++G(2d,2p) basis set) did not 

result in any appreciable change in the computed properties (see Table A in the Supporting Information for 

details). As far as the functional choice is concerned, literature results seem to indicate hybrid functionals as 

the most appropriate for flavonoids,[20,36,34] although, within this class of compounds, anthocyanidins 

were reported to be somewhat outside the good average trend.[34] Considering the CT character of the 
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investigated transition, an alternative choice could stand in long range corrected functionals, which are 

recommended in these cases.[57] ΔE0n for the first three excited states and their f’s, computed with several 

functionals belonging to the aforementioned classes and coupled with the 6-311+G(2d,2p) basis set are 

reported for pelargonidin in Table 3.  

 

 

Method 

S0 S1 S0S2 S0S3 

ΔE01 f ΔE02 f ΔE03 f 

B3LYP 2.68 0.448 3.07 0.276 3.45 0.015 

PBE0 2.75 0.499 3.18 0.253 3.61 0.013 

M062X 2.91 0.670 3.55 0.136 4.10 0.012 

CAM-B3LYP 2.89 0.671 3.56 0.128 4.07 0.013 

ωB97XD 2.91 0.669 3.60 0.128 4.14 0.013 

CI-MRPT2  2.43   0.905 2.98   0.065 3.74   0.012 
 

Table 3 TDDFT transition energies (ΔE0n, eV) and oscillator strengths (f) in vacuo computed for the first three excited states of 

pelargonidin, computed with different functionals with the 6-311+G(2d,2p) basis set at the equilibrium geometry. 

 
The TD-DFT assignments of the three transitions do not differ from those of CI-MRPT2 and, for all 

functionals, the Kohn-Sham orbitals are graphically similar to the CI MO’s displayed in Figure 2. 

Conversely, all functionals yield ΔE01 and ΔE02 blue shifted with respect to the CI-MRPT2 values. 

Nonetheless, the DFT excitation energies show a marked dependence on the functional, in particular for the 

highest state. In fact, the shift with respect to CI results seems associated with the nature of the functional: 

standard hybrids (B3LYP and PBE0) overestimate ΔE01 reference values by ~0.3 eV, whereas dispersion 

corrected (M062X) and range separated (CAM-B3LYP and ωB97XD) functionals are blue shifted by ~0.5 

eV. The S0S1 oscillator strengths are all smaller than the CI-MRPT2 ones, whereas those of the S0S2 

transition are higher and their sum is rather similar for TDDFT and CI-MRPT2. Thus it seems that in the 

TDFFT results the absorption intensity is distributed in the first two lowest transitions, whereas in the CI-

MRPT2 case the intensity in mainly concentrated in the first transition. Finally, the S3 state is not optically 

active according to all methods, but a peculiar trend inversion is worth mentioning: B3LYP and PBE0 

underestimate or match the CI-MRPT2 ΔE03 energies, whereas, consistently with the lowest transitions, long 

range corrected functionals still overestimate the reference value.  

The differences in the oscillator strength between CI-MRPT2 and TDDFT may find an explanation in the 

composition of the states in term of HF-MOs and Kohn-Sham MOs (KS-MOs). In fact, in both cases, S1 and 

S2 are made by combination of HOMOLUMO and HOMO-1LUMO excitations (with some HOMO-

3LUMO for S2), but the contribution of the HOMOLUMO excitation to S1 is slightly larger for CI-

MRPT2 than for TDDFT, while it is slightly smaller in the excitation at S2 (the opposite holds for HOMO-

1LUMO). This seems to indicate that the HOMOLUMO single excitation is the main source of intensity. 

The DFT benchmarking was then extended to the other two homologues of the series. Given the similar 

results obtained within the two classes of functional (i.e. with or without the long range correction), in the 

following only one functional of each class, namely B3LYP and CAM-B3LYP, will be tested. In Table 4 the 

absorption spectrum computed at different levels of theory are reported for pelargonidin, cyanidin and 

delphinidin. 
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S0 S1 S0S2 S0S3 

ΔE01 f ΔE02 f ΔE03 f 

Pelargonidin   

CI-MRPT2 2.43  0.905  2.98   0.065 3.74   0.012 

B3LYP 2.68 0.448 3.07 0.277 3.45 0.015 

CAM-B3LYP 2.89 0.671 3.56 0.128 4.07 0.013 

       

Cyanidin   

CI-MRPT2 2.34  0.907  2.92   0.022 3.24   0.018 

B3LYP 2.62 0.557 2.91 0.011 3.11 0.161 

CAM-B3LYP 2.83 0.727 3.47 0.045 3.65 0.040 

       

Delphinidin   

CI-MRPT2 2.27   0.882  2.67    0.007 2.84  0.020 

B3LYP 2.44 0.007 2.58 0.585 2.90 0.048 

CAM-B3LYP 2.80 0.706 3.07 0.059 4.27 0.025 

 

Table 4 CI-MRPT2 and TDDFT transition energies (ΔE0n, eV) and relative oscillator strengths (f) computed for the first three 

excited states of the investigated anthocyanidins, in vacuo at the equilibrium geometry.  

 

It is apparent that the small red shift along the series (from 2.43 to 2.34 to 2.27 eV, on going from 

pelargonidin to delphinidin) registered at CI level and in agreement with the experimental trend[29] is 

reproduced by both DFT functionals. However, for the B3LYP functional, f significantly varies along the 

homologue series, being 0.448 for pelargonidin, 0.557 for cyanidin and 0.007 for delphinidin. This latter 

value is in strong disagreement with both the CI-MRPT2 and CAM-B3LYP results, where the strength of the 

transition is nearly constant along the series. Such suspect behavior, which is rooted in the B3LYP inversion 

of the S1 and S2 states, prompted us to orient ourselves towards the CAM-B3LYP functional, which seems to 

yield a more consistent overall picture. However, since for the minimum energy geometry B3LYP vertical 

transitions are closer in energy to the reference CI ones, an additional comparison is carried out.  

 

3.3 TD-DFT performances on conformers different from the minimum 

Considering that many different conformers will be sampled from MD to compute the spectral broadening, 

the dependence on molecular geometry of the performances of both B3LYP and CAM-B3LYP 

representative of the two investigated classes should also be tested. To this aim, reference CI-MRPT2 

calculations were performed for different pelargonidin and cyanidin conformers, obtained for each 

homologue through the DFT relaxed scan of the torsional angle . To avoid computational burden, these 

calculations were limited to the intermediate size CI space reported in Table 1. The same geometries were 

thereafter employed for the calculations with the two chosen functionals. The results are compared in Figure 

3 for the first transition and in Figures A and B of the Supporting Information for the next two excited states. 
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Figure 3 CI-MRPT2 and TDDFT in vacuo vertical transition energies (ΔE01) and oscillator strengths (f) computed for the first 

excited state of pelargonidin (orange) and cyanidin (magenta) in the geometries obtained along the relaxed energy scan of dihedral ϕ 

(see Figure 1). 

 
By looking at the top panels of Figure 3, it results that, despite B3LYP ΔE01 for the minimum energy 

conformation (ϕ = 0°) is closer to the reference data with respect to CAM-B3LYP, its dependence from 

conformational changes is qualitatively different, whereas CAM results seem to retain their shift with respect 

to the reference CI curve. The same observation holds for the oscillator strength, whose monotonic decrease 

for increasing  angles is found for both CI-MRPT2 and CAM-B3LYP. 

As a final test for the CAM-B3LYP functional, the distribution of Mulliken charges over the two fragments 

was computed for the minimum energy conformer of pelargonidin, and compared to the CI values in Table 

2. The remarkable disagreement observed between the values obtained by localization of the CI and TDDFT 

electron density, computed for this latter with the 6-311+G(2d,2p) basis set, confirms that Mulliken 

population analysis is not the most appropriate algorithm to derive point charges for CT molecules[58] when 

diffuse functions are included in the basis set. In fact, by repeating the calculations with the smaller 6-

311G(d) basis set (i.e. the same employed in the CI calculations), it is evident that the lack of charge 

separation between the two moieties suggested by the larger basis set is an artifact, introduced by the diffuse 

functions, and it disappears when either the diffuse functions are removed form the basis set or an alternative 

localization scheme, such as CM5 reported in Table 2 is adopted. It is important to note that CM5 charges, 

actually employed in MD simulations, closely respect the CI charge distributions. 

In conclusion, the CAM-B3LYP functional will be adopted in the following, since it seems able to better 

catch the difference among homologues found with reference CI calculations, as well as the dependence of 

the absorption features for different conformations of the molecules. Furthermore, in the hypothesis that the 

significant shift Δcorr (~0.5 eV), found in ΔE01 for each considered dye, might be nearly constant and almost 
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independent on the dye’s geometry, the CAM-B3LYP transition energies will be corrected for such shift Δcorr 

to yield more accurate predictions in the position of the absorption bands. In Table 5, the values computed at 

both CI-MRPT2 and TDDFT level for ΔE01 are reported together with the correction factor Δcorr
.  

 

Anthocyanidin ΔE01 CI-MRPT2 (eV) ΔE01 CAM-B3LYP (eV) Δ
corr

 (eV) 

Pelargonidin  2.43 2.89 0.46 

Cyanidin 2.34 2.83 0.49 

Delphinidin 2.27 2.80 0.53 

 

Table 5 CI-MRPT2 and CAM-B3LYP vertical energies (ΔE01) computed for the first transition (S0 S1) in the investigated 

anthocyanidins.  

 

3.4 FF parameterization and validation  

Pelargonidin 

The first FF was parameterized for the pelargonidin molecule. Following JOYCE standard protocol, 

[48,54,53] all internal coordinates, except flexible dihedrals, were represented by harmonic potentials (see 

Supporting Information for further details), whereas the dihedrals ϕ and δ1 to δ4 were parameterized using a 

sum of cosine functions with different multiplicity (n=0-6). The same FF torsional parameters were imposed 

for δ2 and δ4 (see Supporting Information). Finally, intra-molecular LJ interactions, between the H3 atom (i.e. 

the one rotated by δ3) and the B ring Hydrogens were also included in the FF, to take into account the 

coupling between the ϕ and δ3 torsions. In fact, as shown in Figure 4, a δ3 rotation alters the interaction of the 

O3H3 group with the B ring, which can readjust its position by a rotation of the ϕ dihedral, to further 

minimize the intramolecular energy. The JOYCE fitting was performed achieving a final standard deviation of 

1.6 10
-2

 kJ/mol. To validate the FF, three different tests were conceived. First, both full optimization and 

relaxed scans were performed at MM level, optimizing the geometry according to the E
intra

 JOYCE potential. 

The resulting structures were then visually compared to their QM optimized counterparts (see Figures D and 

E in the Supporting Information), to check significant differences. Thereafter, on each MM optimized 

structure, the FF conformational energy was computed and compared to the QM energy obtained on the QM 

optimized counterpart. In particular, to ascertain the capability of the FF to mimic the coupling between the 

δ3 and ϕ dihedrals, the ϕ values obtained during the QM and MM δ3 scan were also compared, and displayed 

in Figure 4. Finally, the accuracy of the MM structures was further ascertained by computing, at TD-DFT 

level on the MM geometries, the vertical transition energies and their oscillator strengths, comparing them 

with the same quantities computed at the same level of theory on the QM optimized structures. By looking at 

all panels of Figure 5, it is evident that the agreement is again very good for all investigated conformers, 

supporting the conclusion that parameterized FF can be safely used to sample, through MD simulations, 

pelargonidin conformational space. 
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Figure 4 Comparison of QM (magenta circles) and MM (blue squares) internal torsional energies of pelargonidin, computed along 

the relaxed scans of ϕ (top panel) and δ3 (middle panel) dihedrals, performed with DFT and Joyce FF, respectively.  Bottom panel: 

values taken by the ϕ dihedral during the δ3 relaxed scan, performed at QM (DFT, magenta) and MM (Joyce FF, blue), respectively. 

 

Cyanidin 

The FF for cyanidin was also parameterized through the JOYCE protocol (see Supporting Information for 

details) and validated by a careful check, as performed with pelargonidin, of the QM and MM torsional 

profiles and their relative optimized structures. 

 

 
Figure 5 Vertical transition energies (bottom panels, ΔE0n, n = 1,2,3) and oscillator strengths (top panel, f) for the first 

three electronic transitions, computed for different pelargonidin structures. Each structure was obtained through a 
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relaxed scans of the φ (orange and blue symbols) and the δ3 (green and brown symbols) dihedrals, performing 

optimization either at QM (CAM-B3LYP/6-311+G(2d,2p), solid circles) or MM (JOYCE FF, empty squares) level. 

 

 
Figure 6 Comparison of QM (circles) and MM (squares) internal torsional energies of cyanidin, computed along relaxed scans of 

the δ4 dihedral performed with the CAM-B3LYP functional or with the Joyce FF, respectively.  Bottom panel: δ4 torsional profiles 

with δ5 constrained to 0° (magenta) or 30° (cyan). Middle panel: δ4 torsional profiles with δ5 constrained to 60° (violet), 90° (blue) or 

120° (green). Top panel: δ4 torsional profiles with δ5 constrained to 150° (red) or 180° (brown). 

 

Two additional tests were also performed, to verify: i) the capability of the FF to take into account the effect 

of the coupling between δ4 and δ5; ii) the accuracy of the MM optimized geometries in reproducing the 

TDDFT vertical energies yielded by the structures minimized at QM level with the same restraints. The first 

of these requirements is satisfied, as appears by looking at Figure 6, where the δ4 MM scans at given δ5 are 

compared to their QM counterparts. More in detail, an excellent agreement is registered for δ5 angles less 

than 90°, whereas the FF accuracy diminishes for the less stable conformers. However, their weight in 

standard conditions is expected to be limited according to Boltzmann populations. Furthermore, the visual 

examinations of such repulsive conformers as well as the root mean squared deviations with respect their 

QM counterparts, reveal the agreement over the geometry seems better than that achieved on energies. To 

confirm these finding, TD vertical energies were computed for selected conformers and compared with those 

obtained with the analogous DFT optimized geometries. From the results summarized in the Table 6, it is 

evident that MM and QM structure are practically identical (as they give the same transition energies and f), 

with the exception of the most repulsive ϕ=90° conformer. Also in this case however, the effect of such kind 

of conformers on the final spectrum is expected to be negligible, both for its scarce probability to be 

populated and for its null oscillator strength. 
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Table 6 Conformational energies (ΔE), vertical transition energies to the first excited state (ΔE01) and oscillator strengths (f) for 

selected cyanidin conformations, obtained after a constrained optimization carried out by fixing φ, δ4 and δ5 dihedrals and performing 

minimization at either QM (CAM-B3LYP/6-311+G(2d,2p)) or MM (JOYCE FF) level. 

 

 
 

Figure 7 Conformational energies (ΔE), vertical transition energies to the first excited state (ΔE01) and oscillator strengths (f) for 

selected delphinidin conformations, obtained after a constrained optimization carried out by fixing δ4, δ5 and δ6 dihedrals and 

performing minimization at either QM (CAM-B3LYP/6-311+G(2d,2p)) or MM (Joyce FF) level. 
 

Delphinidin 

The FF parameterized for delphinidin (see Supporting Information for details) was validated with all the tests 

performed for pelargonidin and cyanidin. 

By looking at Figure 7, it appears as most probable conformers are again well described by the FF, whereas 

more repulsive geometries (ΔE > 30 kJ/mol) are more difficult to be described. Nonetheless, as mentioned 

for cyanidin, the agreement with respect to reference QM data achieved for delphinidin geometries is 

definitely better than that found for energetics. In fact, as displayed in the top and middle panel of Figure 7, 

all TDDFT energies and oscillator strengths (with the exception of the δ4 = 90° conformer) are reproduced 

with good accuracy, testifying the reliability of the subtending MM structures. 

 

3.5 MD simulations 

 
MD simulations were performed, exploiting the FFs parameterized for the three anthocyanidins, over 

systems composed by one dye and one Cl
-
 counterion, both solvated in ~800 ethanol molecules at 300 K and 

1 atm.  A preliminary analysis of some relevant thermodynamic properties, averaged over the 5 ns 

production runs performed for each dye, is reported in Table 7. All systems appear equilibrated to very 

ϕ  δ4  δ5 QM MM 

ΔE
 

(kJ/mol)
 

ΔE01
 

(eV)
 

f
 

 

ΔE
 

(kJ/mol)
 

ΔE01
 

(eV)
 

f
 

 
0 0 180 26.0 2.85 0.681 16.0 2.85  0.691 

0 180 0 8.5 2.81 0.720 8.0 2.84  0.684 

90 0 0 24.2 2.61  0.004 23.6 2.47 0.000 

150 0 0 2.5 2.80  0.551 1.9 2.81  0.640 
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similar densities, not far from the values reported for pure ethanol at 298 K, namely 796 and 785 kg/m
3
, 

obtained[66] by OPLS FF simulations and experiment, respectively. The solvation energy  𝛥𝐸𝑠𝑜𝑙𝑣, shows a 

clear trend along the series, increasing as expected with the number of OH groups. By looking at the 

different contributions to the solvation, i.e. to the total LJ and charge-charge interaction energies between the 

dye and the solvent, it is also evident that it is the Coulomb term that essentially determines such increase, 

while the LJ part is practically constant. This suggests that the augmented solvation energy might be 

connected to a larger number of HB, formed between the dye and the surrounding ethanol molecules. This 

hypothesis is confirmed by looking at the last row of Table 7, where the average number of HB nHB is 

computed over the stored trajectories, based on geometrical factors:[67] nHB increase from 4 to 6 along the 

series, pairing the number of OH groups in the dye. 

 
 Pelargonidin Cyanidin Delphinidin 

ρ (kg/m3) 782 785 782 

𝜟𝑬𝒔𝒐𝒍𝒗  (kJ/mol) 299 336 360 

𝜟𝑬𝒔𝒐𝒍𝒗
𝑳𝑱

  (kJ/mol) 99 97 102 

𝜟𝑬𝒔𝒐𝒍𝒗
𝑪𝒐𝒖𝒍  (kJ/mol) 200 239 258 

<nHB> 3.9 5.1 5.9 

 

Table 7 Average density (ρ), number of HBs (<nHB>) and solvation energy (𝜟𝑬𝒔𝒐𝒍𝒗), and its LJ and charge-charge contributions, 

𝜟𝑬𝒔𝒐𝒍𝒗
𝑳𝑱

 and 𝜟𝑬𝒔𝒐𝒍𝒗
𝑪𝒐𝒖𝒍) achieved in MD simulations at 300 K and 1 atm performed on systems composed by one anthocyanidin dye 

solvated with ~800 ethanol molecules   

 
Considering the different local solvation environments, it can be expected that the dyes conformation 

“reacts” in different ways, to enhance the interaction with the surrounding ethanol molecules. This should 

reflect in conformational changes on the “softer” part of the molecules, i.e. in rotation around the identified 

flexible dihedrals. In Figure 8, the distributions P, computed over the stored MD trajectories, are displayed 

for all three homologues. As could be expected, the larger differences among the investigated anthocyanidins 

are found for those dihedrals located on the B ring, where the chemical structure differs the most. Indeed, the 

ϕ and δ3 angles show almost identical profiles along the series, indicating for all homologues rather large 

fluctuations centered around 0°. Slight differences arise in the δ1 and δ2 distributions, where the 0° conformer 

shows a not negligible population only for pelargonidin. Concerning the distribution of the dihedrals located 

on the B ring (δ4 to δ6), significant differences arise for delphinidin, whereas the δ4 profiles of pelargonidin 

and cyanidin are almost equal. Due to the vicinity of the three OH groups, and to the presence of a third, H-

bonded, ethanol molecule, the δ4 dihedral in delphinidin is displaced from its equilibrium value (180°) by 

almost 30° and shows larger amplitude motions, which, at variance with the smaller homologues, eventually 

populate also the ±30° region. Similarly, also δ5 and δ6 dihedral profiles show larger amplitude motion with 

respect of cyanidin’s δ5, again showing maxima (±30°) slightly displaced from the minimum energy value, 

indicating a less stable situation in the established HB network. 
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Figure 8 Dihedral distributions (P) achieved for each investigated dye during MD simulations of the dye solvated by ethanol 

molecules.  

 
The last observation is confirmed by looking at the time evolution of nHB, displayed in Figure 9 together with 

the distribution of some geometrical quantities relevant in the description the HB network. While for 

pelargonidin nHB always remains close to its average value, larger fluctuations arise for the other two 

homologues, delphinidin showing the largest (see also Figure F in the Supporting Information), as the result 

of a competition established between the intermolecular HBs and the intramolecular ones, formed among the 

OH groups present on the ring. However, by looking at the last panels of Figure 9, it appears as such 

competition affects more the aforementioned dihedral motions rather than the HB network features, whose 

geometrical distributions appear almost unaltered. 

 

 

Figure 9 HB network settled around each investigated dye during MD simulations. Top panel: number of HBs (nHB) vs simulation 

time (t). Middle panel: distribution population of the donor-acceptor distance rOO. Bottom panel: distribution population of the donor-

acceptor angle αOHO. 
 

A final deeper insight in the HB network established by ethanol molecules around each dye can be obtained 

by looking at the atom-atom pair correlation functions, computed between either the hydroxyl dye’s 

Hydrogens (Hn, n=1-6) and ethanol Oxygen atom (Osolv, left panels of Figure 10) or between the dye’s 
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Oxygen (On, n=1-6) and the ethanol’s proton (Hsolv, right panel). A very similar picture emerges for all dyes, 

where the ethanol molecules behave as HB acceptors, whereas the dye acts as proton donor: in fact, the g(r) 

peaks for the Hn-Osolv pairs are always found at smaller distances (~1.8 Å) with respect to the On-Hsolv ones. 

Finally, it could be worth noticing that the lesser stability of the HBs formed by the O4H4 group in 

delphinidin, due to both the steric hindrance of the neighboring OH groups and to the intramolecular HB 

competition, is also confirmed by this analysis, considering that the gH4-Osolv peak is less intense and shifted 

to larger distance with respect to the smaller homologues. 

 

 

Figure 10 Atom-atom pair correlation functions, gnm(r) between Hn atom of the dye and an ethano Oxygen (n = Hn and m = Osolv, 

left panels) and between On atom of the dye and an ethanol Hydrogen (n = On and m = Hsolv, right panels). All functions were 

computed over the MD trajectories obtained at 300 K and 1 atm for each anthocyanidin. 

 

3.6 Absorption Spectra 

 

Before computing the final absorption spectra for the three investigated anthocyanidins, some preliminary 

tests were performed on some technical factors that might affect the calculations, as detailed in the SI (see 

Figure G and H). Based on these results, all calculations have been performed for each homologue on 

samples of 200 MD frames, convoluting each of the TDDFT stick spectra with a Gaussian function with 

HWHM of 0.05 eV. A simple average over the resulting set of functions gives the broadened absorption 

spectrum. To finally compare the simulated spectra with those obtained in the experiment, as displayed in 

Figure 12, the TDDFT lineshape is corrected by the Δcorr values reported in Table 5 for each homologue. It is 

important to recall that this shift is not an empirical quantity applied to match the experimental result, but a 

correction established on the basis of high level ab initio calculations, thus preserving the intrinsic predictive 

features of the adopted protocol.  
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Figure 11 Computed (solid lines) and experimental[30] (dotted/dashed lines) absorption spectra for the three anthocyanidins 

solvated in ethanol. All computed signals were obtained by averaging the TDDFT vertical energy transitions to the first three excited 

states, calculated for 200 snapshots extracted from the MD trajectories and convoluted with a 0.05 HWHM Gaussian function. 

 
The agreement of the computed results with the experiment is good. Despite the scale in wavelength, which 

somehow visually amplifies the differences, the position of the computed bands well matches the 

experiments. The red shift of the most intense band observed on going from the smallest to the largest 

homologues is well reproduced by the computations. This also holds for the less intense band at lower 

wavelength, although the computed intensity is slightly underestimated. A further minor difference is in the 

computed line-shape profile, which, for every species, has a smaller width with respect to the measured one. 

For this aspect, it should be taken into account that the band profile is obtained by MD simulations and 

therefore the effect of nuclear vibrations is then included classically. As discussed elsewhere,[52] a 

consequence of neglecting quantum effects of the solute vibrations is indeed a significant underestimation of 

the homogeneous broadening. Yet, in the present work, the former artifact is partially covered by the 

inhomogeneous component of the broadening, due to the coupling with the solvent which makes the width 

difference between computed and experimental signals much less evident. 

 

 

4. Conclusions 

In light of the importance that organic dyes of natural origin, occurring in many foods and beverages, may 

have in several fields as biology, nutrition and enology, as well as in the construction of low-cost and low-

environmental impact DSSC, we have reported on an accurate computational study of the absorption spectra 
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in the visible for three representative members of the class of antocyanidins in ethanol.  

We have followed a MD/QM computational route where TDDFT spectra are computed for a wide series of 

molecular conformations, randomly selected as snapshots from MD in solution, and averaged to obtain the 

spectrum to be compared with available experimental data. 

The choice of the most suitable functional was driven by the comparison, for the equilibrium molecular 

geometry, of TDDFT spectra with those obtained by an accurate post-HF method such as CI-MRPT2. 

Despite B3LYP results are closer to CI-MRPT2 ones for planar configurations, we have chosen CAM-

B3LYP since it was found to be more well-behaved with the torsion around the angle . The energy position 

of the TDFT excitation energies was shifted in order to match those obtained by CI-MRPT2. This has the 

advantage of making the computational results independent from the experimental measurements, allowing 

an unbiased comparison between theory and experiments.  

For each of the three species, which differ for the number of OH groups in the ring B, in ethanol solution, we 

have calibrated a system-specific FF to be used in MD simulations. This allows us to take into account at 

classical level, both intramolecular and solute solvent nuclear effects specifically for each species.  

CAM-B3LYP spectra for each molecular configuration pertaining to the 200 selected snapshots of MD, 

replacing solvent molecules with point charges, were then computed and compared to the experimental data 

available. The overall result, taking advantage from the specificity of the FF, is indeed very good, both in 

terms of position, intensity and lineshape profile of the bands in the visible. In addition, MD simulations, 

although at a classical level, allow the analysis of the solvation pattern for the three different anthocyanidins.  

We are confident that the accuracy of the present approach and the possibility to extend its application to 

larger and more complex systems paves the way to the description of a full organic DSSC.  
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