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Abstract

Variational quantum Monte Carlo ground-state electron densities have first
been obtained for N2 at its equilibrium bond length, as well for the isoelec-
tronic ions N+

2 and C−2 at the same bond length. These have been used to
calculate the electrostatic potentials at the nucleus for all three species. Using
the Bright Wilson four dimensional density, the ground-state energy has thus
been reproduced. For N2, also the Thomas-Fermi and the von Weizsäcker
kinetic energies have been calculated.

Keywords: Homonuclear Diatomic Molecules; Electron Density; Quantum
Monte Carlo; Inhomogeneous Electron Liquid.
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1 Introduction

The electron density, namely the probability distribution of finding an electron at a

given point in the space, is a fundamental quantity to understand, from a physico-

chemical point of view, the behavior of the matter in any physical state [1]. Such

a probability density has a clear quantum-mechanical interpretation and can be

obtained either by the theory, from partial integration of the square of the electronic

wave function, or by X-ray diffraction experiments, through the inverse Fourier

transform of the structure factor [2]. For a molecular system, the electron density,

which is normalized to the number of electrons, is mainly localized in regions which

are both in close proximity of the nuclei and between the pairs of neighboring nuclei

determining the size and the shape of the system itself. Despite the electron density

is a function of only the position, it brings information on many-body effects. This

fact has led to the development of the density functional theory (DFT) for the

treatment of electronic systems in the ground state [3, 4] and of time-dependent

DFT (TDDFT) to consider also the dynamics in the presence of a time-dependent

external potential [5]. In this case the functional is the electronic energy that has

been shown to be a functional of only the electron density [3] although, to date, its

exact dependence remains unknown. However, the DFT has gained great popularity,

as demonstrated by the huge number of publications still in fast growing [6].

In a more general sense, the theory of the electron density transcends the DFT

being addressed to the fine study of all aspects related to the density function and not

only to the search of an energy density functional. Noteworthy is, for example, the

approach of Bader and co-workers based on gradient and Laplacian of the density [7]

which is the basis of the so-called quantum theory of atoms in molecules (QTAIM)

[8]. The study of electron localization from the electron density is also the basis of

other derivations as done by Becke and Edgecombe for their electron localization

function [9] or, as done very recently, to reconstruct a correlated wave function from

the decomposition of Kohn-Sham orbitals [10].

In the context of the theory of electron density, we have been utilizing here

the early important proposal of Bright Wilson [11] in which molecular ground-state

energies for both neutral and charged species are represented in terms of their four
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dimensional electron density ρ(x, y, z, Z) where (capital) Z, in atomic units, denotes

a nuclear charge which can be chosen to be non-integer. To utilize the proposal in

an optimal manner, we here invoke the variational quantum Monte Carlo (VMC)

approach for the calculation of the above density. We prove the validity of Bright

Wilson relation by accurate numerical examples on homonuclear diatomic molecules.

Moreover, with the approximate but many body electron density computed here we

calibrate a simple form of kinetic energy functional in an orbital free framework.

The paper is organized as follows. In Section 2, we give the computational details

for the calculation of an efficient VMC wave function and of the relevant electron

density function by means of a simple recipe. In Section 3, we apply the Bright

Wilson formula to compute the ionization potential of N2 while, in Section 4, we use

the electron density to evaluate the Thomas-Fermi (TF) and von Weizsäcker (W)

kinetic energy functionals. Finally, conclusions are drawn in the last Section 5.

2 Computational details

The Bright Wilson formula for the energy of a molecule involves, in principle, the

optimal electron density. For this reason, we resort in this work to a very efficient

method of calculation of the wave function, namely the VMC method. The many-

body VMC wave function used here was built in a standard Slater-Jastrow form of

the type:

ΨVMC(r1, r2, ...) = Φ(r1, r2, ...)J (r1, r2, ..., r12, ...) (1)

where Φ is written in term of a linear combination of Slater determinant products

of spin-up and spin-down electrons as follows

Φ =
∑
K

D↑KD
↓
K dK . (2)

The determinants D
(σ)
K include occupied orbitals for all electrons resulting from

a linear combination of Slater type atomic orbitals. To this purpose we use a ba-

sis set of 3 orbitals of 1s, 2s and 2p type for each atom. This choice introduces a

good flexibility to the basis set without the need of an optimization of the atomic
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orbital exponents. The full list of exponents used in this work is given in Table 1.

The Jastrow factor J is, instead, a function which depends explicitly on interparti-

cle distances. In this work, we use a Jastrow factor that contains electron-nuclear,

electron-electron, and electron-electron-nuclear terms[12]. The determinantal part

of the wave function, instead, has been constructed by means of a recipe successfully

used by Giannelli and Amovilli for the study of low lying states of NO molecule[13].

Following this recipe, the selection of the determinants is done in two steps: a first

selection is performed from an extended CASSCF involving all the valence electrons

by considering all excited configurations up to a given order of excitation with re-

spect to the main configuration and, in the second step, by introducing a threshold

on the determinant coefficients which allows the recovering of at least 97 percent

of the resulting configuration interaction (CI) probability distribution. In this work

we started from a CASSCF in which all the valence electrons are distributed in 10

active orbitals. Then, after a CI step including all excitations up to quadruples, we

recovered more than 98 percent of the probability distribution by selecting the most

important 33 determinants for C−2 and N+
2 and 23 determinants for N2. The coef-

ficients of the determinants and the active orbitals have been reoptimized together

with the Jastrow factor at the VMC step. For the optimization of all parameters in

our SJ wave functions, we used the iterative linear method developed by Umrigar

et al [14].

In order to apply the Bright Wilson relation for the electronic energy, one needs

the computation of the electronic potential at all nuclear positions. Such a potential

Ve, at a given coordinate ra, is calculated from the following relation in terms of the

electron density ρ(r)

Ve(ra) = −
∫

dr
ρ(r)

|ra − r|
(3)

in atomic units. Because the density function used here, namely the number of

electrons per unit volume, comes from the contraction (the integration over all the

coordinates of N − 1 electrons) of the square of the wave function, the electronic

potential at the nuclear position can be computed directly from the Monte Carlo

configurations sampled from the square of the VMC wave function itself. Thus, we
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Z ζ1s ζ2s ζ2px ζ2py ζ2pz
6.0 4.3 6.0 7.4 0.9 1.7 2.5 0.8 1.7 3.5 0.8 1.7 3.5 1.1 2.1 6.3
6.1 4.4 6.1 7.5 0.9 1.8 2.5 0.8 1.7 3.6 0.8 1.7 3.6 1.1 2.2 6.4
6.2 4.5 6.2 7.6 1.0 1.8 2.6 0.8 1.7 3.8 0.8 1.7 3.8 1.1 2.3 6.4
6.3 4.6 6.3 7.6 1.0 1.8 2.7 0.8 1.7 3.9 0.8 1.7 3.9 1.1 2.3 6.5
6.4 4.7 6.4 7.7 1.0 1.9 2.8 0.9 1.7 4.0 0.9 1.7 4.0 1.2 2.3 6.5
6.5 4.7 6.5 7.8 1.0 2.0 2.8 0.9 1.7 4.1 0.9 1.7 4.1 1.2 2.3 6.6
6.6 4.7 6.6 7.9 1.0 2.0 2.9 0.9 1.8 4.2 0.9 1.8 4.2 1.2 2.3 6.7
6.7 4.8 6.7 7.9 1.0 2.0 3.0 0.9 1.8 4.3 0.9 1.8 4.3 1.2 2.4 6.8
6.8 5.0 6.8 8.0 1.0 2.0 3.0 0.9 1.9 4.4 0.9 1.9 4.4 1.2 2.4 6.9
6.9 5.1 6.9 8.0 1.1 2.0 3.0 0.9 2.0 4.4 0.9 2.0 4.4 1.2 2.4 6.9
7.0 5.2 7.0 8.0 1.2 2.0 3.0 1.0 2.0 4.5 1.0 2.0 4.5 1.3 2.5 6.9

Table 1: Slater type orbital exponents used in this work. The molecular axis is the
z-axis.

use the following average for the potential Ve(ra)

Ve(ra) ≈ −
1

M

M∑
k=1

N∑
j=1

1

|ra − r
(k)
j |

(4)

whereM is the number of sampled Monte Carlo configurations andN the number

of electrons. As we will show below, the statistical error on this VMC estimate is

small enough for our purposes in this work.

Although not used to compute the electrostatic potential at nuclei, we extracted

an approximate electron density from our simulations. We performed this operation

by means of an expansion of the density in terms of orthogonal functions generated

by a symmetrical distribution of spherical gaussian functions along the molecular

axis. Given a basis set {ϕj(r)}, if we write

ρ(r) =
∑
j

Cjϕj(r) (5)

with the condition

< ϕi|ϕj >= δij (6)
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we have

Cj =
∫
dr ρ(r)ϕj(r) (7)

and, again, we can resort to a statistical average over the same sampled Monte

Carlo configurations used above for the computation of the electrostatic potential

at a given position. In this case we have

Cj ≈
1

M

M∑
k=1

N∑
j=1

ϕ(r
(k)
j ) . (8)

We will use below this approximate electron density in the calculation of some

orbital free kinetic energy density functionals.

Finally, to assess the quality of the VMC wave function, we performed some

diffusion quantum Monte Carlo (DMC) calculations, using as trial wave function the

VMC one, for the three different species C−2 , N+
2 and N2. In this work, we used a time

step of 0.0125 a.u.. A plot of the resulting VMC and DMC energy curves in proximity

of the equilibrium internuclear distance is presented in Figure 1. The quality of our

results is rather good (see, for comparison, refs [12, 16, 17]). For N2, we recover

about 87 percent of non relativistic correlation energy at VMC level and about 99

percent with DMC. Moreover, we tested also the DMC atomization energy of N2

by comparison with the nitrogen atomic energy resulting from an optimized guiding

SJ wave function derived from a CASSCF(5,5) determinantal part. The resulting

value, namely 226.2±0.3 kcal/mol, is in agreement within chemical accuracy with

theoretical benchmark [18].

For the VMC optimization of the wave function and for the VMC and DMC

energy calculations we used the CHAMP code [19].

3 Bright Wilson type calculation of ionization po-

tential of N2

In this work, we deal with homonuclear diatomic molecules. The electronic ground

state energy, say E(N,Z), is thus a function of the number of electrons N and of the
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Figure 1: VMC (upper) and DMC (lower) energy curve as a function of the inter-
nuclear distance (R) for N2, N+

2 and C−2 in proximity of the equilibrium distance.
Energies are in Hartree and distances in Å.

charge Ze of the two identical nuclei at a given fixed distance. The external nuclear

potential v(r) is in a one-to-one correspondence with the electron density ρ(r) via

the Hohenberg-Kohn theorem of density functional theory (DFT) [3] but a direct

relation can be established by means of the Hellmann-Feynman theorem, namely(
δE

δv(r)

)
N

= ρ(r) (9)

which leads to the earlier formula of Bright Wilson [11], in atomic units,

E(N,Z) =
Z2

R
−
∫ Z

0
dZ ′

∫
dr

(
1

|r−R/2|
+

1

|r + R/2|

)
ρ(r, Z ′) (10)

in which a four-dimensional electron density ρ(r, Z ′) is explicitly considered. In

this equation, Z ′ is a non integer nuclear charge introduced in order to define a

charging process of the external potential. The above equation has been initially

proposed for any polyatomic molecule [11] through a more general charging param-

eter ranging from 0 to 1, where 1 corresponds to the charging of all the nuclear
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charges to their final values. The Bright Wilson relation is formally exact but, as

we pointed out in our previous work on atoms [15], it is not possible to compute

the electronic potential at nuclear position when one or more electrons cannot be

bound. This normally happens when the nuclear charge is smaller than a critical

value at which the ionization potential goes to zero. The Bright Wilson relation

needs to be rewritten in the following form

E(N,Z) = E(N,Zcr) +
Z2 − Z2

cr

R
−∫ Z

Zcr

dZ ′
∫

dr

(
1

|r−R/2|
+

1

|r + R/2|

)
ρ(r, Z ′) (11)

in practical applications on real systems. When Z = Zcr we have E(N,Zcr) =

E(N − 1, Zcr) and we can use Eqn.(11) to get an explicit relation for the ionization

potential, namely

IP (N,Z) =∫ Z

Zcr

dZ ′
∫

dr

(
1

|r−R/2|
+

1

|r + R/2|

) [
ρ(N)(r, Z ′)− ρ(N−1)(r, Z ′)

]
(12)

which takes the simpler form

IP (N,Z) = 2
∫ Z

Zcr

dZ ′ [V0(N,Z
′)− V0(N − 1, Z ′)] (13)

in terms of the electronic potential −V0 evaluated at the nuclear position (±R/2)

. Here, we use

V0(N,Z) =
∫

dr
ρ(N)(r, Z)

|r−R/2|
=
∫

dr
ρ(N)(r, Z)

|r + R/2|
. (14)

We have tested the ionization potential equation on nitrogen molecule at the

equilibrium geometry. Our QMC energies together with the relevant V0 potential

values are collected in Table 2 for N = 14 and Table 3 for N = 13. The interval of

nuclear charges considered in this study varies from Z = 6 (C−2 ) to Z = 7 (N2 and

N+
2 ). The statistical error on V0 resulted small enough to guarantee a satisfactory
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Z EVMC V0 EDMC

6.2 -82.0280(2) 18.957(2) -82.1318(3)
6.3 -85.2489(2) 19.295(4) -85.3501(2)
6.4 -88.5319(2) 19.666(1) -88.6229(2)
6.5 -91.8745(2) 20.004(3) -91.9677(3)
6.6 -95.2770(2) 20.348(3) -95.3607(3)
6.7 -98.7377(2) 20.689(4) -98.8186(3)
6.8 -102.2562(2) 21.025(2) -102.3328(4)
6.9 -105.8321(2) 21.368(6) -105.9100(3)
7.0 -109.4684(2) 21.691(3) -109.5418(3)

Table 2: VMC electronic energy (EVMC) and electronic potential at nuclear position
(V0) for a homonuclear diatomic molecule with 14 electrons and not integer nuclear
charge Z in the 1Σ+

g ground state. The internuclear distance is 2.070 a0 (1.0954

Å), namely the equilibrium distance of N2 molecule. DMC electronic energy is also
reported for comparison. All energies are in Hartree.

Z EVMC V0 EDMC

6.0 -75.9287(2) 18.005(5) -75.9940(2)
6.1 -78.9773(2) 18.331(5) -79.0415(2)
6.2 -82.0816(2) 18.638(9) -82.1578(2)
6.3 -85.2430(2) 18.989(2) -85.3078(2)
6.4 -88.4595(2) 19.303(3) -88.5226(2)
6.5 -91.7305(2) 19.629(5) -91.7945(2)
6.6 -95.0576(2) 19.957(1) -95.1198(2)
6.7 -98.4381(2) 20.266(8) -98.5007(2)
6.8 -101.8723(2) 20.590(6) -101.9346(2)
6.9 -105.3598(2) 20.917(4) -105.4210(2)
7.0 -108.9020(2) 21.218(2) -108.9624(2)

Table 3: VMC electronic energy (EVMC) and electronic potential at nuclear position
(V0) for a homonuclear diatomic molecule with 13 electrons and not integer nuclear
charge Z in the 2Σ+

g ground state. The internuclear distance is 2.070 a0 (1.0954

Å), namely the equilibrium distance of N2 molecule. DMC electronic energy is also
reported for comparison. All energies are in Hartree.
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interpolation with respect to Z for the reproduction, by integration over Z itself, of

the Bright Wilson formula. As a result of this interpolation we have estimated the

critical binding nuclear charge Zcr by finding the value of 6.29 a.u. We remark here

that this critical charge depends on the internuclear distance. For this reason, C2−
2

is not stable at the equilibrium distance of N2 while, in the repulsive region of the

potential energy curve, it is more stable than C−2 due to the electron affinity of the

carbon atom.

Figure 2: Comparison between the ionization potential (IP) derived from the Bright
Wilson formula (line) and the computed VMC (+) and DMC (*) corresponding
values. All data are in a.u.

In Figure 2 we compare the ionization potential computed by means of the Bright

Wilson formula with the corresponding VMC and DMC values resulting from QMC

data of Tables 2 and 3. The agreement with VMC is very good and the discrepancies

between the two sets of data, namely VMC and DMC, are between 0.01 and 0.02

Hartree.
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4 Orbital free kinetic energy calculation

In Section 2, we have introduced a simple method for the estimate of the Bright

Wilson four dimensional density from a set of QMC electronic configurations. Such

a density function is subjected to a statistical error. It is important to remark

that the method does not resort to any orbital based technique and could be useful

in complementing with QMC the so called orbital free density functional theory

(OFDFT)(see, for example, [20]). We have computed in this way the density for the

cases with N = 14 in the range of nuclear charges between Z = 6.2 and Z = 7.0.

In Figure 3, we show a comparison of the density contours calculated at these two

extrema. The case with Z = 6.2 is below the critical value, namely 6.29. The

reduced confinement is evident from the shape of the contour lines.

Figure 3: Electron density contour plots for the two limiting cases of homonuclear
diatomic molecules with 14 electrons. All data are in a.u.

One of the main problem in OFDFT is the lack of a good functional for the kinetic

energy. The forerunner of these functionals, namely the Thomas-Fermi one[21, 22],

is valid only in the limit of a degenerate homogeneous electron gas. Moreover,

it has been demonstrated that, with such a functional, it is not possible to form
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molecules[23]. Inhomogeneity is of fundamental importance in forming chemical

bonds. The von Weizsäcker kinetic energy functional[24], which depends explicitly

on the gradient of the density, has been used to correct the Thomas-Fermi kinetic

energy. In order to maintain the correct limit for the homogeneous electron gas, the

corrected functional has the form

TTFW = TTF + λTW (15)

where

TTF = CTF

∫
dr ρ(r)5/3 (CTF =

(3π2)5/3

10π2
) (16)

and

TW =
∫

dr
|~∇ρ|2

8ρ
. (17)

The parameter λ has been found to be 1/9 by studying the inhomogeneity caused

by a small perturbation due to a non constant external potential applied to the

electron gas.

Here, to reproduce the density of all diatomic molecules with 14 electrons con-

sidered in this work, we used 33 spherical Gaussian functions distributed along the

internuclear axis. We generated in this way 17 symmetrical orthogonal functions

that have been combined to approximate the electron density by means of the aver-

age over the QMC configurations as described in Section 2. The statistical error on

the coefficients determines at most an uncertainty on the kinetic energy functionals

of the order

∆T ≈< T >
∑
j

|∆Cj
Cj
| . (18)

We report our computed TF and W kinetic energies in Table 4 together with the

VMC corresponding values for both the Jackson-Feenberg (JF) and Pandharipande-

Bethe (BT) forms. As expected, there is a big difference between the wave function

based calculation of the kinetic energy and the other two density functionals. In

the literature, there are few data of this type for N2. Here we mention the work of
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Z TF W JF PB
6.2 74.60(11) 66.71(11) 82.74(2) 82.75(2)
6.3 77.35(12) 69.04(12) 85.89(3) 85.89(2)
6.4 80.40(12) 71.62(12) 89.02(2) 89.02(2)
6.5 83.37(13) 73.88(13) 92.30(3) 92.29(2)
6.6 86.27(14) 76.10(14) 95.59(2) 95.58(2)
6.7 89.55(14) 78.69(14) 99.00(4) 98.99(2)
6.8 92.82(15) 81.74(15) 102.39(2) 102.43(2)
6.9 96.12(16) 84.10(16) 105.89(2) 105.92(2)
7.0 99.56(16) 86.82(16) 109.45(2) 109.45(2)

Table 4: Comparison between Thomas-Fermi (TF) and von Weizsäcker (W) kinetic
energy with VMC Jackson-Feenberg (JF) and Pandharipande-Bethe (BT) corre-
sponding values for a homonuclear diatomic molecule with 14 electrons and not
integer nuclear charge Z in the 1Σ+

g ground state. The internuclear distance is 2.070

a0 (1.0954 Å), namely the equilibrium distance of N2 molecule. All energies are in
Hartree. TF and W values have been calculated from a fitted density obtained from
a set of VMC configurations.

Deb and Chattaraj [25] and of Piris and March [26]. Deb and Chattaraj found a

TF energy of 101.45 E0 and a W energy of 85.62 E0 while Piris and March found

a W energy of 86.37 E0. It is of some interest to make contact with the work

of Piris and March who studied, in fact, dominantly the inhomogeneity W kinetic

energy for some 30 homonuclear neutral diatomic molecules at their experimental

geometries. They found that this W form varied simply with N2, N being the

number of electrons.

Finally, we have attempted a fit of VMC kinetic energy by using the equation

(15). Our best fit leads to a value of 0.118(1) for λ, not very different from 1/9. In

Figure 4, we compare the resulting TTFW from our fit with the VMC kinetic energy.

The agreement is rather good and, although limited to the systems studied in this

work, our scheme to connect QMC to OFDFT is promising for future development.

14



Figure 4: Thomas-Fermi-Weizsäcker kinetic energy calculated in this work (line)
compared with the VMC kinetic energy (points) for some model homonuclear di-
atomic molecules with 14 electrons in the ground state. Z is the non integer nuclear
charge in atomic units. The energy is in Hartree.

5 Conclusions

In this work, we have verified the formally exact formula of Bright Wilson for the

electronic energy of a molecule on selected homonuclear diatomic systems. The

formula involves a density function depending on four variables, namely the (x, y, z)

coordinates of the point and a continuus charging parameter. Here, because we

take homonuclear diatomic molecules, this parameter can be fixed directly to the

charge of the nuclei. During the charging process, the nuclear charge is non integer.

In order to consider the peculiarity of the Coulomb confinement, we have limited

the charging process of the Bright Wilson formula to the interval of nuclear charges

for which all electrons are bounded. As test example, we have considered the N2

molecule at the equilibrium distance. We computed a good correlated wave function

at VMC level at different nuclear charges starting from 7 and reaching 6.2. In order

to estimate the critical charge for which the ionization potential goes to 0, we did
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the same for N+
2 at the same bond length of N2. In this case we reduced the nuclear

charge up to the limit of C−2 (Z = 6). We found a critical charge of 6.29. With

this finding, we have been able to reproduce the VMC ionization potential, and

consequently the VMC energy, of N2 by the use of the Bright Wilson formula.

As a further application, we used the approximate electron density generated by

a relatively high number of VMC electronic configurations to compute the TF and

the W kinetic energies for 14 electrons in the external field of two identical nuclei at

a distance of 2.070 a0 (1.0954 Å), namely the equilibrium distance of N2. We fitted

the VMC kinetic energy by the form TTF + λTW in the range of nuclear charges

between 6.2 and 7. We found λ = 0.118 ± 0.001, very close to λ = 1/9, the value

typically used to correct the Thomas-Fermi kinetic energy for the inhomogeneity.

We believe that this result, although limited to the selected systems studied in this

work, is interesting and promising in the idea to establish a bridge between QMC

and OFDFT for practical purposes.
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