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Abstract—Worldwide, four people die every minute as a
consequence of illnesses and accidents at work. This considerable
number makes occupational safety an important research area
aimed at obtaining safer and safer workplaces. This paper
presents a semi-supervised learning-aided evolutionary approach
to improve occupational safety by classifying workers depending
on their own risk perception for the task assigned. More in detail,
a semi-supervised learning phase is carried out to initialize a good
population of a non-dominated sorting genetic algorithm (NSGA-
II). Each chromosome of the population represents a pair of
classifiers: one determines a worker’s risk perception with respect
to a task, the other determines the level of caution of the same
worker for the same task. Learning from constraints reinforces
the initial training performance. The best Pareto-optimal solution
to the problem is selected by means of the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS). The
proposed framework was tested on real-world data gathered
through a website purposely developed. Results showed a good
performance of the obtained classifiers, thus validating the
effectiveness of the proposed approach in supporting the decision-
maker in critical job assignment problems, where risks are a
serious threat to the workers’ health.

I. INTRODUCTION

Every year, about 2.3 million people die worldwide as a
result of occupational illnesses and accidents at work [1]. Also,
there are 860,000 injury-causing occupational accidents every
day.

Solutions to occupational safety problems are continuously
being developed. However, with a more and more changing
world of work, the workers’ health and wellness remain a
paramount concern. This requires new and integrated strategies
for prevention to connect safety, health and welness of the
individual.

One way to improve the safety and health of people at work
could be to completely redesign the way the job assignment is
carried out, i.e., the assignment process of workers to jobs. In
fact, traditional job assignment lacks to consider people’s risk
perception, i.e., the way individuals evaluate characteristics
and hazardousness of dangerous situations [2]–[6]. This is
an important weakness particularly with reference to working
environments characterized by risks that might cause serious
consequences for workers’ health.

With the foresight of achieving the awareness that every
single task should be assigned to the person able to interact
with the risks of that task in the safest way, this paper presents
a way to model people’s risk perception and their behaviour

toward the risks of the tasks to be assigned. Such model should
be reliable and consistent because it can significantly con-
tribute, together with other typical aspects like the candidate’s
ability to perform a given task and the acquired expertise, to
the final conclusions of the decision maker in the process of
job assignment.

During a personnel recruitment (or assignment) process, the
idea is to build two models (actually, classifiers) for each
worker, representing the worker’s risk perception for the risks
of every single task, and the candidate’s caution for that task,
respectively. More in detail, the caution is expressed in terms
of the preventive actions wokers would perform to prevent
the risks of the task [7]. A preventive action can decrease the
probability of risk occurrence and/or the risk impact on the
worker’s health.

Risk perception is influenced by criticality factors, i.e.,
age, education level, acquired expertise, number and type of
accidents suffered in the workplace, etc [8]–[10]. Criticality
factors are here split into general (like, e.g., age and education
level), which are related to the worker no matter the task,
and task-related (like, e.g., acquired expertise). The general
criticality factors are used to compute the general perception
level of risks by a worker. Then, the general perception level
is used, together with the task-related criticality factors, to
evaluate the workers’ perception level of the risks associated
with a given task. Further, the preventive actions a worker
would perform with respect to the risks of a task are here
used to assess the worker’s caution level with respect to that
task [11]. It would be reasonable to expect that when a person’s
perception level of the risks of a task is classified as high, then
also the caution level of that person with respect to the same
task should be classified as high, and vice-versa. The same
would hold for the other levels.

Semi-supervised learning [12] within a stage-based learning
scheme is used: for each classifier, a supervised learning stage
is performed beforehand; the training process continues by
using predictions on the unlabeled examples. For a given can-
didate, the outputs of the two classifiers represent two different
(but related) aspects of that person (which is represented with
different features in input to the two classifiers). Hence, given
an unlabeled sample, the output of either classifier can be
transformed into the corresponding label required by the other
classifier, so as to build a supervised example for that classifier.
This just stems from the fact that the two classifiers must
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produce consistent answers. For this reason, a consistency
constraint between the two classifiers is established in terms
of the coherence degree between their answers, given the same
inputs.

A solution to this problem consists of a pair of systems
that implement the first and the second classifier, respectively.
The aim of the presented work is to generate a solution with
the lowest possible classification error (i.e., the sum of the
classification errors made by the two classifiers) and the lowest
consistency constraint violation. The problem is here solved
by means of a multi-objective optimization algorithm, namely
the non-dominated sorting genetic algorithm (NSGA-II) [13],
with two objectives to be minimized: the classification error
and the consistency constraint violation extent.

The proposed methodology was validated using a dataset
of real-world data gathered thanks to shoe factories which
participated to the experiments.

The paper is organized as follows: Section II contains the
formal model of the worker’s risk perception and caution;
Section III presents the problem; Section IV describes the evo-
lutionary optimization methodology and the semi-supervised
learning-based initialization of the chromosomes; Section V
discusses the results obtained during the experiments; Section
VI draws the conclusions.

II. MODELING WORKER’S RISK PERCEPTION AND
CAUTION

A. Elements of the model and their correlation

Let us consider a work environment characterized by a set of
tasks (or jobs) J , wherein each task is assigned to one worker.
LetW = {w1, . . . , w|W|} be the set of the workers. Each task
ti, where i ∈ {1, . . . , |J |}, exposes the worker performing that
task to a set of risks Ri. The set of all the risks of the work
environment is R =

⋃|J |
i=1Ri.

Each risk rk ∈ R, with k ∈ {1, . . . , |R|} can be prevented
by a set Ak = {ak,1, . . . , ak,|Ak|} of preventive actions,
i.e., actions able to decrease the probability of the risk
materializing and/or make the consequences of the risk on
the worker’s health (the so-called risk impact) less injurious.
A preventive action is associated with a prevention level in
L = {1, . . . , L}. The more a preventive action reduces the risk
probability and/or the risk impact, the higher its prevention
level. Prevention levels are typically assigned by experts in
risk assessment.

Consider a set of criticality factors F = {f1, . . . , f|F|}
affecting risk perception. Each criticality factor fv takes values
in a domain Dv . The set F is composed, in the order, of two
subsets of criticality factors: dependent and independent on
the task performed. The former contains G general criticality
factors, while the latter T task-related criticality factors. Given
a worker wj , where j ∈ {1, . . . , |W|}, the risk perception gen-
eral level gen percj of wj depends on the set Gj =

⋃G
v=1 dv,j ,

where dv,j ∈ Dv is the value in the domain Dv of the
general criticality factor fv for worker wj . Obviously, it holds

that Gj ∈ D1 × · · · × DG. Hence, there exists a function
ϕGENERAL : D1 × · · · × DG → [0, 1] such that

Gj 7→ ϕGENERAL(Gj) = gen percj . (1)

On the other hand, still considering worker wj , the percep-
tion level task perci,j of wj for the set of risks of task ti
depends on the set Tj =

⋃G+T
v=G+1 dv,j . Here, dv,j is the value

in the domain Dv of the task-related criticality factor fv for
worker wj . Also, task perci,j depends on the risk perception
general level gen percj of wj . This means that there exists a
function ϕTASK : DG+1 × · · · × DG+T × [0, 1]→ [0, 1] such
that

(Tj , gen percj) 7→ ϕTASK(Tj , gen percj) = task perci,j .
(2)

For each risk rk and each worker wj , the caution level of wj
with respect to rk depends on the number of preventive actions
wj would perform to protect himself/herself from rk, for every
single prevention level. More rigorously, let #Ak,`=`,j denote
the count of `-level actions performed by wj to prevent rk.
There exists a set of functions ρk : {0, . . . , |Ak,1|} × · · · ×
{0, . . . , |Ak,L|} → [0, 1] such that

(#Ak,`=1,j , . . . ,#Ak,`=L,j) 7→
ρk(#Ak,`=1,j , . . . ,#Ak,`=L,j) = risk cautionk,j , (3)

for each k = 1, . . . , |R|.
Finally, for each task ti and each worker wj , the caution

level of wj with respect to ti depends on every single
risk cautionk,j of wj , each with respect to a risk rk of task
ti. A set of functions τi : [0, 1]|R| → [0, 1] such that⋃

rk∈Ri
risk cautionk,j 7→

τi
(⋃

rk∈Ri
risk cautionk,j

)
= task cautioni,j (4)

maps a configuration of risk cautions into the task caution of
wj for each task ti of the workplace.

Therefore, in this model, a worker wj is represented by the
tuple

θj =
{⋃G+T

v=1 dv,j ,
⋃|R|
k=1

⋃L
λ=1 #Ak,l=λ,j

}
, (5)

where
⋃G+T
v=1 dv,j are the values of each criticality factor

and
⋃|R|
k=1

⋃L
λ=1 #Ak,l=λ,j are the counts of preventive ac-

tions for each prevention level toward each risk. Note that
v ∈ {1, . . . , G} denotes general criticality factors, while task-
related criticality factors are indexed with v ∈ {G+1, . . . , G+
T}.

Fig. 1 summarizes the relationships between all the compo-
nents described above.

III. PROBLEM

A. Outline

The problem dealt with in this paper is developing the two
classifiers C1 and C2 of Fig. 1, which compute, respectively,
task perci,j and task cautioni,j , coherently with each other.
In order to intuitively explain the coherence concept, three
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Fig. 1. Block diagram of the system. In the figure, it is supposed |Ri|= n.

perception levels for every single risk of a task are here
considered: low, medium, high. The same levels are used
for the worker’s caution with respect to a task.

The coherence of the outputs of the two classifiers (C1 and
C2) establishes that when C1 classifies a worker as having a
high perception level for the risks of a given task, then C2
classifies the same worker as having a high caution level with
respect to that task, and vice-versa. The same holds for the
other two levels, no matter the sets of definition of the labels.

B. Formulation and objectives
The problem is here conceived as a multi-objective opti-

mization problem:

min
p

E(p) = [L(p), C(p)], (6)

where E(p) is a vector-valued function representing the global
error expressed by means of two terms:
• empirical risk (or loss) L(p);
• constraint violation C(p).

Objectives L(p) and C(p) depend on the parameters p used
to implement the classifiers.

Loss is expressed as the total mean-squared error as:

L(p) =MSEC1 +MSEC2 =

1

n

(
n∑
i=1

(ŷC1
i − yC1

i )2 +

n∑
i=1

(ŷC2
i − yC2

i )2

)
, (7)

where MSEC1 and MSEC2 are the mean-squared errors
of classifier C1 and C2, respectively, n is the number of
examples, and ŷC1

i , yC1
i and ŷC2

i , yC2
i are the obtained and

desired output for classifier C1 and C2, respectively.
Constraint violation is measured with the opposite of the

Pearson product-moment correlation coefficient:

C(p) = −
E[(Ŷ C1 − µŶ C1)(Ŷ C2 − µŶ C2)]

σŶ C1σŶ C2

(8)

where E is the expectation, Ŷ C1 and Ŷ C2 are the output
vectors of classifier C1 and C2, respectively, µŶ C1 and µŶ C2

are the means of Ŷ C1 and Ŷ C2, respectively, and σŶ C1 and
σŶ C2 are the standard deviations of Ŷ C1 and Ŷ C2, respec-
tively. C(p) measures the extent of consistency violation on
the outputs of the two classifiers: the greater the violation, the
higher C(p).

IV. OPTIMIZATION METHODOLOGY

A. Overview

A semi-supervised learning-aided evolutionary methodol-
ogy is here proposed to solve the problem presented in
Section III. The methodology is aimed at finding the best
implementation of C1 and C2 in order to minimize E(p).

Semi-supervised learning is used beforehand to initialize
the population of a non-dominated sorting genetic algorithm
(NSGA-II). In particular, each chromosome contains an MLP-
based implementation of both C1 and C2. Implementations
evolve till the genetic algorithm ends. The solution to the
problem is represented by the chromosome containing the
best implementation of classifiers C1 and C2. This solution is
selected by means of the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [14]. The optimization
methodology is described in detail in the next sections.

B. Representation of the chromosome

In Fig. 2, the representation of the chromosome is shown.
In detail, each chromosome consists of two genes, related
to classifier C1 and C2, respectively. These genes contain
data structures representing the corresponding neural system
implementation (in Fig. 2, MLP1 for classifier C1 and MLP2
for classifier C2).

MLP1 MLP2

Classifier C1 Classifier C2

Fig. 2. Representation of the chromosome.

C. Risk perception general level and risk caution

Considered a worker wj and a task ti, this first phase is
aimed at developing:
• an MLP neural network to perform the fitting of
ϕGENERAL in order to compute gen percj , given Gj ;



• an MLP neural network for each risk of ti, to fit ρk so as
to compute each risk cautionk,j (one for each rk ∈ Ri)
from the counts of actions {

⋃L
λ=1 #Ak,l=λ,j} that wj

would perform for each prevention level.

D. Initialization and training technique for C1 and C2

In the second phase, classifiers C1 and C2 are developed
so as they make coherent decisions (as specified in Sec-
tion III) acting on a different representation of the same pattern
(worker) expressed by a subset of the tuple in Eq. (5).

For each classifier, a neural system based on a multi-layer
perceptron neural network (MLP) is implemented. Each neural
system is trained in two steps.

1) Step 1: supervised learning: Supervised data are used
here to train each system beforehand. At the end of this step,
a trained system for each classifier is obtained. In the next
sections, these systems are referred to as MLP1 for classifier
C1, and MLP2 for classifier C2, respectively.

2) Step 2: semi-supervised refining: In this second step,
the two systems resulting from the supervised learning of the
previous step (i.e., MLP1 for C1, and MLP2 for C2) are refined
through a learning phase, by means of newly created data,
starting from the values the system parameters assume at the
end of the first step. In this way, the classification performance
achieved at the end of the previous step is expected to improve,
because each classifier improves itself by taking advantage of
what the other learned in the previous step.

More in detail, let us consider, e.g., C1. For each sample, the
output of C1 is taken into account. This output is transformed
into the corresponding “consistent” output of C2. Therefore,
the supervised pair consisting of the input (represented as
required by C2) and the output of C1 (transformed as required
by C2) is built. The same procedure is carried out for C2. Now,
C1 and C2 are trained with the new supervised data obtained as
described above, assuring that the training process starts from
the values assumed by the system parameters at the end of the
first step. In practice, unsupervised data are used to generate,
through each of the two classifiers, the desired outputs from
the other. So-generated training sets are used to improve the
performance of C1 and C2.

E. Generating the initial population

Individuals of the initial population are generated as fol-
lows. For each classifier, m MLP-based neural systems are
initialized as follows. In particular, m random integer numbers
are generated, with uniform probability, between a minimum
and a maximum heuristically chosen. So-generated numbers
represent the number of hidden neurons of the single hidden
layer of as many MLPs. As demonstrated by the universal
approximation theorem, under mild conditions, a single hidden
layer is enough to represent any function of the inputs [15].
The resulting networks are created and trained as explained in
Section IV-D. In this way, the obtained population is made of
pairs of classifiers having a good performance.

The m neural systems are eventually distributed over m
chromosomes.

F. Evolution
The evolution of the population is here performed with

a modified version of the NSGA-II algorithm, based on the
mutation operator only. Anyway, this work just represents a
first step to validate the methodology, and it can obviously be
enhanced (as future work) with purposely designed recombina-
tion operators and other types of system to implement the two
classifiers in order to investigate the achievable improvement
extent.

Here, for each part of the chromosome, the corresponding
neural system (MLP1 or MLP2) is mutated with probability
PMLP . More in detail, each parameter ω of the network (i.e.,
neural weights) is transformed into ξω, with ξ ∈ [ξmin, ξmax].
Also, with probability P−MLP , the sign changes.

Limit cases (e.g., boundaries) are managed. Also, sign
change is applied just when it really makes sense.

V. EXPERIMENTS AND DISCUSSION

A. Dataset
This section presents the validation results of the proposed

methodology applied to real-world data gathered within small
manufacturing enterprises producing shoes.

The methodology proposed in this paper was validated
in MATLAB. A web application containing a questionnaire
(i.e., a multi choice test) was implemented in Java EE and
MySQL. Data gathering was carried out thanks to the workers
of the aforementioned shoe factories, which filled out the
questionnaire anonymously. The questionnaire is composed of
two parts, each aimed at:

1) collecting data related to the worker’s general and task-
related criticality factors (the elements dv,j in Eq. (5));

2) collecting data related to the worker’s behaviour in
dealing with risk (the elements #Ak,l=λ,j in Eq. (5)).

As an example, considering the cut risk, the preventive
actions here used to characterize the worker’s behaviour are:
• activation of the machinery safety elements;
• verification of the safety elements efficiency;
• put the gauntlet on;
• keep hands away from the cutting elements;
• switch off the cutting machine to fix a fault;
• periodically check and sharpen the cutting utensils;
• no particular action.

Each preventive action above has a prevention level.
Data collection was very difficult because of privacy laws

and the fact that workers had to spend part of their working
day in filling the questionnaire. The dataset consists therefore
of 140 interviews. The footwear industry was chosen since it
is characterized by serious risks, e.g., intoxication, crushing,
fall, burn and amputation. The experiments were carried out
by considering 20 typical tasks of a shoe factories, with their
own risks.

B. Setup and parametrization
The values of the most important parameters used in the

experiments are summarized in Table I and are justified in the
following.



NSGA-II was set up with a population of 20 individuals,
each consisting of a variable-length chromosome as explained
in Section IV-B. This number was chosen to speed up the
simulations. Even though this is a low number of individ-
uals, the obtained Pareto front approximation was good. The
NSGA-II parametrization was validated by using the Student’s
t-test on 27 different parameter configurations. Configurations
were obtained by combining a population size in {20, 50, 100},
a mutation probability and a sign inversion probability in
{0.05, 0.1, 0.15}. Therefore, 27 configurations were consid-
ered. The maximum number of generations was kept to 2000.

Each chromosome was built with two genes containing the
two MATLAB data structures representing the single-hidden
layer MLPs that implement the first and the second classifier
(i.e., C1 and C2), respectively.

TABLE I
BEST PARAMETERS FOUND IN THE EXPERIMENTS

Parameter Value

Hidden neurons range {3, 15}
Neural learning algorithm Backpropagation

Number of individuals 20
Max epochs for evolution 2000

Mutation probability (PMLP ) 0.05
Mutation extent (ξ) range [0.8, 1.2]

Sign inversion probability (P−
MLP ) 0.05

The initial population was created as follows. For each
chromosome, two random integer numbers were generated
between 3 and 15 to represent the number of hidden neurons
of the single hidden layer of the two MLPs (i.e., C1 and C2).
Minimum and maximum values were chosen heuristically. So-
structured networks were created and trained through the two-
stage learning process explained in Section IV-D.

Individuals evolved through the mutation operator as fol-
lows. Upon selection, for every single gene of the selected
chromosome, each parameter of the corresponding MLP (i.e.,
the neural weights) is perturbed with a probability equal
to 0.05. Greater values showed too much of randomness.
Lower values made the search process dramatically slow and
generations ran out producing a poor approximation of the
Pareto front.

From an operation point of view, a neural weight ω to be
perturbed was transformed into ξω, with ξ ∈ [0.8, 1.2]. This
range produced the best results and was determined by means
of a trial-and-error procedure. Finally, with a probability of
0.05, the sign of ω is reversed. For the sake of simplicity, this
probability was chosen to be equal to the weight perturbation
probability.

C. Discussion

The best Pareto front approximation obtained in the exper-
iments is shown in Fig. 4.

Within Fig. 4, the solution with the lowest classification
error (i.e., L(p)) is solution 19, while the one with the lowest
consistency constraint violation (i.e., C(p)) is solution 20. The
best compromise, i.e., solution 11, was automatically selected

by the TOPSIS algorithm, with weights 0.5 and 0.5, for classi-
fication error and consistency constraint violation, respectively.
With these weights we just gave the same importance to the
objectives.

Now, let us examine solutions 11, 19 and 20 more in detail.
As stated above, solution 19 is the one of the front having
the lowest classification error. However, it cannot be used in
practical applications since the consistency constraint violation
is high.

This consistency constraint violation is evident from the
scatter plot in Fig. 3, since the associated cloud is very
sparse. The cloud dispersion stems from the poor Pearson
correlation coefficient, with a value of ∼0.59. This suggests a
poor consistency of the two classifiers, even though they are
very accurate if considered singularly (the classification error
is ∼0.017).

On the other side, solution 20 can be neither used in
real-world situations, since the error of the two classifiers
is high, leading to inaccurate results, even though the two
classifiers exhibit high consistency. We verified that the high
consistency is due to correlated mistakes (i.e., C1 and C2 tend
to misclassify the same patterns). This is why solution 20
deserves to be discarded definitely.

TABLE II
OBJECTIVE FUNCTIONS VALUES OF THE INVESTIGATED MORE RELEVANT

SOLUTIONS OF THE PARETO FRONT

Solution L(p) E(p)

19 0.59 0.017
11 0.682 0.0188
20 0.71 0.0265
4 0.681 0.02
9 0.68 0.0218

15 0.681 0.0225
8 0.688 0.023

16 0.69 0.0235
17 0.705 0.026

Solution 11, surrounded by a square in Fig. 4, is a good
trade-off instead. Its classification error is lower than the one
obtained by solution 20 and the coherence is higher than the
one showed by solution 19, and it is good enough, in absolute.
Fig. 3 shows a much better scatter plot if compared to the one
of solution 19: in this case, the Pearson correlation coefficient
is ∼0.682. In addition, the scatterplot of solution 11 is the
unique wherein boundary lines separate the three classes (low,
medium, high) pretty well, leading to just 10 misclassified
workers out of 140. Considering the inherent difficulty of the
problem at hand, this result is judged as good.

Even though TOPSIS selected solution 11 as the best com-
promise between classification error and constraint violation,
during the experiments, we also investigated the performance
of all the solutions in the region of the Pareto front on the
right of solution 11.

As it can be seen from Fig. 4, all these solutions are
characterized by similar classification errors. Considering the
solution chosen by TOPSIS as reference, i.e., solution 11, the
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Fig. 3. Scatterplots of the most relevant Pareto-optimal solutions, each denoting a pair of classifiers (i.e., C1 and C2, whose outputs are task_perc and
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Fig. 4. Approximation of the Pareto front obtained at the end of the
experiments. Each circle represents a Pareto-optimal solution identified by
the closest number.

Pearson coefficient can be increased from 0.682 to 0.705. This
is why we considered it important to evaluate this increase of
consistency compared to the low increase of the classification
error. Fig. 3 shows the scatterplots of the most significant

solutions among those having a Pearson coefficient higher than
solution 11. The objective functions values of these solutions
are summarized in Table II. By inspecting the figure, it is
possible to notice that all the other solutions are characterized
by a poor performance. This is evident by looking at the
thresholds used to define the low, medium and high classes,
i.e., the dotted lines within the scatterplots.

VI. CONCLUSION

This paper presented a semi-supervised learning-aided evo-
lutionary approach to occupational safety improvement. The
goal was the automatic design of a pair of classifiers able to
meet a consistency constraint between each other. The first
classifier determines a worker’s risk perception with respect
to a task, while the second determines the level of caution of
the same worker for the same task.

A semi-supervised learning approach is used within a two-
stage learning scheme. During the first stage, the two classi-
fiers are trained independently on their own training data. In
the second stage, the training is continued using the predictions



of the classifiers on an unlabeled dataset. In particular, the
output provided by either classifier is transformed into the
corresponding label required by the other classifier so as
to build a new supervised example for that classifier. This
strategy was used to create an initial population of multi-
layer perceptron neural network-based classifiers of an evo-
lutionary multi-objective algorithm (NSGA-II). The obtained
Pareto front approximation contains trade-offs between the
classification error and the associated coherence constraint
violation of each pair of classifiers. By using TOPIS, we
picked a single solution from the Pareto front, characterized by
an acceptable classification error and an acceptable coherence
constraint violation. This solution was able to predict both an
accurate risk perception and an accurate (and consistent) level
of caution, for 130 out of the 140 considered workers.

Therefore, the proposed technique represents a promising
approach in supporting the decision-maker in critical job
assignment problems, where risks are a serious threat to the
workers’ health.

As a future work, we are planning to strengthen each sub-
module of our system (more powerful neural network-based
classifiers), purposely developed recombination operators, and
additional constraints/objectives to improve the quality of the
final solution.
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