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Abstract

Modern asteroid surveys produce an increasingly large number of observations, which are
grouped into very short arcs (VSAs) each containing a few observations of the same object
in one single night. To decide whether two VSAs collected in different nights correspond
to the same observed object we can attempt to compute an orbit with the observations of
both arcs: this is called the linkage problem. Since the number of linkages to be attempted
is very large, we need efficient methods of orbit determination. Using the first integrals of
Kepler’s motion we can write algebraic equations for the linkage problem, which can be put
in polynomial form. In [7] these equations are reduced to a polynomial equation of degree
9: the unknown is the topocentric distance of the observed body at the mean epoch of one
VSA. Here we derive the same equations in a more concise way, and show that the degree
9 is optimal in a sense that will be specified in Section 3.3. We also introduce a procedure
to join three VSAs: from the conservation of angular momentum we obtain a polynomial
equation of degree 8 in the topocentric distance at the mean epoch of the second VSA. For
both identification methods, with two and three VSAs, we discuss how to discard solutions.
Finally we present some numerical tests showing that the new methods give satisfactory
results and can be used also when the time separation between the VSAs is large. The low
polynomial degree of the new methods makes them well suited to deal with the very large
number of asteroid observations collected by the modern surveys.

1 Introduction

We consider very short arcs (VSAs) of optical observations of a solar system body whose motion
is dominated by the gravitational attraction of the Sun. These small sets of observations are
called tracklets, see [8], and the corresponding arc described in the sky is usually too short to
compute a least squares orbit, see [12, Chap.8]. In each observing night we can detect thousands
of these data, thus it is difficult to decide whether two such arcs, collected in different nights,
correspond to the same body. This gives rise to an identification problem, that can be solved
by attempting to compute an orbit with the information contained in two or more tracklets.
The efficiency of the existing identification methods needs to be improved, as shown by the
large database of unidentified tracklets of asteroid observations, the isolated tracklet file (ITF)
currently available at the MPC website, which now (July 2016) contains about 12 millions of
observations.
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Using the classical methods of initial orbit determination, e.g., those by [9] or [4], we usually
can not compute a preliminary orbit with three observations belonging to the same VSA because
they are too close in time to provide us with information on the radial distance. In fact, in this
case, the geodesic curvature of the arc is usually not statistically significant, and this quantity
appears in the formulas of the classical methods, see [12, Chap.9]. For the same reason, even using
observations taken from two different VSAs of the same object it may be difficult to compute an
orbit. In most cases the methods of Laplace and Gauss work well if we use observations from
three different VSAs at the same apparition. To compute a preliminary orbit with these methods
we have to find the roots of a univariate polynomial of degree 8 (see [12]), which correspond to
the possible values of the radial distance (geocentric for Laplace, topocentric for Gauss) of the

observed body at a given epoch (the mean epoch of the observations
∑3

h=1 th/3 for Laplace, the
central epoch t2 for Gauss).

Assume for simplicity that we deal with this identification problem using observations made
by a single telescope performing an asteroid survey, like Pan-STARRS1, or the next generation
telescope LSST2. The average number of observations per night is N ≈ 104 for Pan-STARRS3

and this number will be larger for the next generation surveys. To systematically perform the
identification by Gauss’ method using the data of three observing nights we should test O(N3)
triples of observations. This is clearly a cumbersome task. For this reason the computation of
preliminary orbits with only two VSAs has been investigated. The identification of two VSAs
is usually called linkage. Among the different methods currently in use for the linkage there
are the following: statistical ranging [15], systematic ranging [1, 16], sampling of the admissible
region [10, 11] and kd-tree algorithms [8]. These methods can be used successfully to link
VSAs over relatively short time spans, but they can not be employed when the time separation
between the tracklets is large. However, when the time separation is large, we can use the
Keplerian integrals methods introduced in [5, 6, 7], based on the conservation laws of the two-
body motion. A common feature of these three works is that they use polynomial equations
for the linkage, leading to univariate polynomials of degree 48, 20 and 9 respectively. The
polynomial equations introduced in [7] are derived in a more concise way in Section 3. Moreover,
using elimination theory [2], we show that 9 is the minimum degree for the univariate polynomial
equations that are consequence of the conservation laws of Kepler’s problem, provided that we
drop the dependence between the inverse of the heliocentric distance 1/|r| and the topocentric
distance ρ (see Section 3.3 for the details). This approach avoids the squaring operations needed
in [5, 6] to bring the selected equations4 in polynomial form. In Section 3.4 we sketch a method
to check the validity of the identification: this is done by checking some compatibility conditions
for the solutions, similar to the ones in [5], that use the full two-body dynamics.

In this paper we also deal with the identification of three VSAs: in Section 4 we introduce a
univariate polynomial equation of degree 8 to join three VSAs of optical observations by means
of the conservation of angular momentum only. Then the other laws of Kepler’s motion can
be used to set up restrictive compatibility conditions, allowing us to test the identification and
select solutions.

Assume we set up an identification procedure with a large database of asteroid observations.
For simplicity, we can consider three observing nights, in which we collect O(N) VSAs of ob-
servations per night. We can try to identify pairs of VSAs belonging to the first two nights by
applying O(N2) times the linkage algorithm introduced in [7] and reviewed in Section 3. The
output is composed by preliminary orbits obtained with pairs of VSAs. If the thresholds in the

1Panoramic Survey Telescope & Rapid Response System, http://pan-starrs.ifa.hawaii.edu/public/
2Large Synoptic Survey Telescope, http://www.lsst.org/
3see http://hamilton.dm.unipi.it/astdys/index.php?pc=2.1.1&o=F51
4In these papers not all the algebraic conservation laws are used.
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controls for acceptance (see Section 3.4) are well selected, we do not obtain more than O(N)
pairs of VSAs, in fact the number of different objects observed in the two nights is O(N). Then
we can apply the method to join three VSAs introduced in Section 4 to the O(N) selected pairs
and the O(N) VSAs of the third observing night. We conclude that this identification problem
can be faced with O(N2) computations of roots of a polynomial of degree 9 or 8, instead of
O(N3) computations of roots of Gauss’ polynomial.

Finally, in Section 5 we present some numerical tests showing that the Keplerian integrals
methods give satisfactory results and can be used also when the time separation between the
VSAs is large.

2 Keplerian integrals

We consider the Keplerian motion of a celestial body around a center of force, set at the origin
of a given reference system, which in the asteroid case corresponds to the center of the Sun.
Optical observations of the body are made by a telescope whose heliocentric position is a known
function of time. Then the heliocentric position and velocity of the body are given by

r = ρeρ + q, ṙ = ρ̇eρ + ρη + q̇, (1)

where q, q̇ are the heliocentric position and velocity of the observer, ρ, ρ̇ are the topocentric
radial distance and velocity, eρ is the line of sight unit vector, which can be written in terms of
the topocentric right ascension α and declination δ as

eρ = (cos δ cosα, cos δ sinα, sin δ).

Moreover in (1) we use the proper motion vector

η = α̇ cos δeα + δ̇eδ,

where

eα = (cos δ)−1 ∂e
ρ

∂α
, eδ =

∂eρ

∂δ
,

and α̇, δ̇ are the angular rates. The Keplerian integrals, represented by the angular momentum
vector c, the Laplace-Lenz vector L and the energy E , are defined by

c = r× ṙ, µL =
(

|ṙ|2 − µ

|r|
)

r− (r · ṙ)ṙ, E =
1

2
|ṙ|2 − µ

|r| . (2)

Given the values of α, δ, α̇, δ̇, they can be written as algebraic functions of ρ, ρ̇ using relations
(1).

3 Linking two VSAs

Given a very short arc of optical observations (αi, δi), i = 1 . . .m, obtained at the same station
at different epochs ti, it is often possible to compute the attributable vector (see [13])

A = (α, δ, α̇, δ̇)

at the mean epoch t̄ = 1
m

∑m
i=1 ti. The missing quantities to obtain a preliminary orbit are the

topocentric distance and velocity ρ, ρ̇ at t = t̄. When the second derivatives (α̈, δ̈) are either not
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available (if m = 2), or not statistically significant due to the errors in the observations, then
the attributable summarizes essentially all the information contained in the VSA. In this case a
preliminary orbit can be obtained by linking together two different VSAs.

The key idea of the linkage method presented here is to use the conservation of the Keplerian
integrals c, L, E at the two mean epochs t̄1, t̄2 of two attributables A1,A2:

c1 = c2, L1 = L2, E1 = E2, (3)

where the indexes 1, 2 refer to the epoch.
Below we derive the polynomial equations for the linkage problem introduced in [7] in a more

concise way, and we review the procedure to obtain the univariate polynomial of degree 9 giving
the possible values for the topocentric distance ρ2. Moreover, we show an optimal property of
this polynomial.

3.1 Conservation of angular momentum

The angular momentum as function of ρ, ρ̇ can be written as

c(ρ, ρ̇) = r× ṙ = Dρ̇+Eρ2 + Fρ+G,

where
D = q× eρ,

E = α̇ cos δeρ × eα + δ̇eρ × eδ = α̇ cos δeδ − δ̇eα,

F = α̇ cos δq× eα + δ̇q× eδ + eρ × q̇,
G = q× q̇.

Then the equation
c1 = c2,

represents the conservation of the angular momentum and is written

D1ρ̇1 −D2ρ̇2 = J(ρ1, ρ2), (4)

where
J(ρ1, ρ2) = E2ρ

2
2 −E1ρ

2
1 + F2ρ2 − F1ρ1 +G2 −G1. (5)

We can eliminate the radial velocities ρ̇1, ρ̇2 from (4) by making the scalar product with D1×D2,
that gives the quadratic equation

q(ρ1, ρ2) := D1 ×D2 · J(ρ1, ρ2) = 0 (6)

in the variables ρ1, ρ2. The radial velocities are given by

ρ̇1(ρ1, ρ2) =
(J×D2) · (D1 ×D2)

|D1 ×D2|2
, ρ̇2(ρ1, ρ2) =

(J×D1) · (D1 ×D2)

|D1 ×D2|2
. (7)

These expressions are obtained by projecting (4) onto the vectors D1 × (D1 × D2) and D2 ×
(D1 × D2), generating the plane orthogonal to D1 × D2. Therefore using such expressions of
ρ̇1, ρ̇2 we have

(c1 − c2)× (D1 ×D2) = 0

whatever the values of ρ1, ρ2.
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3.2 The univariate polynomial u

By relations (7) we can eliminate the dependence on ρ̇1, ρ̇2 in the Laplace-Lenz and energy
conservation laws

L1 = L2, E1 = E2. (8)

These are algebraic equations in ρ1, ρ2 that are not polynomial because of the terms 1/|r1|, 1/|r2|.
However, in the equation

ξ :=
[

µ(L1 − L2)− (E1r1 − E2r2)
]

× (r1 − r2) = 0, (9)

which is a consequence of (8), the terms 1/|r1|, 1/|r2| cancel out. The monomials of ξ with the
highest total degree, i.e. 6, are all parallel to eρ1 × eρ2, so that the bivariate polynomials

p1 = ξ · eρ1, p2 = ξ · eρ2 (10)

have total degree 5. In [7] the authors show that the over-determined bivariate polynomial system

q = 0, ξ = 0

is consistent, i.e. its set of solutions in C2 is not empty, and is equivalent to

q = p1 = p2 = 0.

Moreover, if we consider the resultants (see [2])

u1 = Res(p1, q, ρ1), u2 = Res(p2, q, ρ1),

which are both univariate polynomials in the variable ρ2 of degree 10, then their greatest common
divisor

u = gcd(u1, u2) (11)

has degree 9 (see [7, Theorem 1]).

Remark 1. Since in this problem the role of ρ1 and ρ2 is symmetric, for a generic choice of the
data Aj ,qj , q̇j , j = 1, 2, we obtain an analogous result by eliminating the variable ρ2, instead of
ρ1, from p1, p2.

We also recall the construction used in [7] to compute uj , j = 1, 2. We can write

q(ρ1, ρ2) =

2
∑

h=0

bh(ρ2)ρ
h
1 ,

where
b0(ρ2) = q0,2ρ

2
2 + q0,1ρ2 + q0,0, b1 = q1,0, b2 = q2,0,

with the coefficients qh,k depending only on the data Aj ,qj , q̇j , j = 1, 2. Moreover, we have

p1(ρ1, ρ2) =

4
∑

h=0

a1,h(ρ2)ρ
h
1 , p2(ρ1, ρ2) =

5
∑

h=0

a2,h(ρ2)ρ
h
1 , (12)

for some polynomials ak,h whose degrees are described by the upper small circles used to construct
Newton’s polygons (see [14]) of p1, p2 in Figure 1. Assume q2,0, q0,2 6= 0. From q = 0 we obtain
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Figure 1: We draw Newton’s polygons Pj , P̃j for the polynomials pj , p̃j, j = 1, 2. In this figure
the polygons are overlapping: the nodes with circles correspond to the (multi-index) exponents
of the monomials in pj ; the nodes with asterisks correspond to the exponents of the monomials
in p̃j .

ρh1 = βhρ1 + γh, h = 2, 3, 4, 5, (13)

where

β2 = −b1
b2
, γ2 = −b0

b2
,

and
βh+1 = βhβ2 + γh, γh+1 = βhγ2, h = 2, 3, 4.

Inserting (13) into (12) we obtain

p̃j(ρ1, ρ2) = ãj,1(ρ2)ρ1 + ãj,0(ρ2), j = 1, 2, (14)

where

ã1,1 = a1,1 +

4
∑

h=2

a1,hβh, ã1,0 = a1,0 +

4
∑

h=2

a1,hγh, (15)

ã2,1 = a2,1 +

5
∑

h=2

a2,hβh, ã2,0 = a2,0 +

5
∑

h=2

a2,hγh. (16)

In Figure 1 we also draw Newton’s polygons of p̃1, p̃2. In this case the nodes with asterisks
correspond to the exponents of the monomials in p̃j and the upper asterisks describe the degrees
of the polynomials ãk,h. Let us also introduce the resultants

v1 = Res(p̃1, q, ρ1), v2 = Res(p̃2, q, ρ1).

We can show the following result, mentioned without proof in [7].

Lemma 1. By the properties of resultants we find that

u1 = q32,0v1, u2 = q42,0v2. (17)
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Proof. We prove the first relation, the proof of the second one being similar. We have

u1 = Res(p1, q, ρ1) = det

















a1,0 0 b0 0 0 0
a1,1 a1,0 b1 b0 0 0
a1,2 a1,1 b2 b1 b0 0
a1,3 a1,2 0 b2 b1 b0
a1,4 a1,3 0 0 b2 b1
0 a1,4 0 0 0 b2

















.

By performing raw operations and by the properties of determinants we obtain

Res(p1, q, ρ1) = det

















a1,0 0 b0 0 0 0
a1,1 + γ2a1,3 + γ3a1,4 ã1,0 b1 0 0 0
a1,2 + β2a1,3 + β3a1,4 ã1,1 b2 0 0 0

a1,3 + β2a1,4 a1,2 + β2a1,3 + β3a1,4 0 b2 0 0
a1,4 a1,3 + β2a1,4 0 0 b2 0
0 a1,4 0 0 0 b2

















=

= det

















ã1,0 0 b0 0 0 0
ã1,1 ã1,0 b1 0 0 0
0 ã1,1 b2 0 0 0

a1,3 + β2a1,4 a1,2 + β2a1,3 + β3a1,4 0 b2 0 0
a1,4 a1,3 + β2a1,4 0 0 b2 0
0 a1,4 0 0 0 b2

















= b32Res(p̃1, q, ρ1).

The last matrix is obtained from the previous one by adding to its first column a suitable multiple
of the third column.

�

3.3 An optimal property of the polynomial u

If we consider the auxiliary variable u defined by relation

u|r| = µ, (18)

then the Keplerian integrals introduced in (2) can be viewed as polynomials in the variables
ρ, ρ̇, u by writing u in place of µ/|r|. In particular, we obtain

L = (|ṙ|2 − u)r− (ṙ · r)ṙ, E =
1

2
|ṙ|2 − u.

We observe that, for all ρ, ρ̇, u,

c · L = 0, µ2|L|2 = u2|r|2 + 2E|c|2; (19)

the second relation generalizes the classical formula relating eccentricity, energy and angular
momentum.

The polynomial system

c1 = c2, µL1 = µL2, E1 = E2, u2
1|r1|2 = µ2, u2

2|r2|2 = µ2, (20)

with unknowns ρ1, ρ2, ρ̇1, ρ̇2, u1, u2, is generically not consistent, see Corollary 2 at the end of
this section. Next we show that if we drop the dependence between uj and ρj given by (18),
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that is we eliminate the last two equations from (20), then we obtain a consistent polynomial
system. Moreover, the univariate polynomial u of degree 9 introduced in [7] has the minimum
degree among the polynomials in ρ2 that are obtained by elimination of variables from

c1 − c2, µL1 − µL2, E1 − E2. (21)

Let
I ⊆ R[ρ1, ρ2, ρ̇1, ρ̇2, u1, u2]

be the ideal of the polynomial ring in the variables ρ1, ρ2, ρ̇1, ρ̇2, u1, u2, with real coefficients,
generated by the seven polynomials in (21). We recall that a set {g1, . . . , gn}, with n ∈ N, is a
Groebner basis of a polynomial ideal I for a fixed monomial order ≻ if and only if the leading
term (for that order) of any element of I is divisible by the leading term of one gj, see [2]. The
main result of this section is the following.

Theorem 1. For a generic choice of the data Aj ,qj , q̇j, j = 1, 2, we can find a set of polynomials

{g1, . . . , g6} ⊂ R[ρ1, ρ2, ρ̇1, ρ̇2, u1, u2]

that is a Groebner basis of the ideal I for the lexicographic order

ρ̇1 ≻ ρ̇2 ≻ u1 ≻ u2 ≻ ρ1 ≻ ρ2, (22)

and such that
g6 = u,

where u is the polynomial defined in (11).

Proof. Assuming
D1 ×D2 6= 0, eρ1 × eρ2 6= 0,

we consider the following set of generators of the ideal I:

q1 = (c1 − c2) ·D1 ×D2,

q2 = (c1 − c2) ·D1 × (D1 ×D2),

q3 = (c1 − c2) ·D2 × (D1 ×D2),

q4 = µ(L1 − L2) · eρ1 × eρ2,

q5 = µ(L1 − L2) ·D1,

q6 = µ(L1 − L2) ·D2,

q7 = E1 − E2.

The first three polynomials have the form

q1 = q,

q2 = |D1 ×D2|2ρ̇1 − J ·D1 × (D1 ×D2),

q3 = |D1 ×D2|2ρ̇2 − J ·D2 × (D1 ×D2),

with q = q(ρ1, ρ2), J = J(ρ1, ρ2) defined in (6), (5) respectively. The other generators can be
written as

q4 = −(D1 · eρ2)u1 − (D2 · eρ1)u2 + f4,

q5 = (D1 · r2)u2 + f5,

q6 = −(D2 · r1)u1 + f6,

q7 = −u1 + u2 + f7,
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for some polynomials fj = fj(ρ1, ρ2, ρ̇1, ρ̇2), j = 4 . . . 7. Set

A = D1 · eρ2 +D2 · eρ1 = (q1 − q2) · eρ1 × eρ2.

Assuming the three terms
A, D2 · eρ1, D1 · eρ2

do not vanish, we can substitute the generators q4, . . . , q7 with the polynomials

p4 = (D1 · eρ2)q7 − q4 = Au2 + a1,

p5 = −(D2 · eρ1)q7 − q4 = Au1 + a2,

p6 = (D1 · r2)p4 −Aq5,

p7 = (D2 · r1)p5 +Aq6,

where
a1 = (D1 · eρ2) f7 − f4, a2 = −(D2 · eρ1) f7 − f4.

We note that the monomials containing u1, u2 cancel out in p6, p7. Using relations q2 = q3 = 0,
we can also eliminate ρ̇1, ρ̇2 from p6, p7: we call p̃6, p̃7 the polynomials obtained in this way,
that can be written as

p̃6 = p6 + b2q2 + b3q3, p̃7 = p7 + c2q2 + c3q3

for some polynomials bj, cj , j = 2, 3 in the variables ρ1, ρ2, ρ̇1, ρ̇2.
We can prove that

p̃6 = −(D1 · eρ2)p1, p̃7 = (D2 · eρ1)p2, (23)

where p1, p2 are the bivariate polynomials defined in (10). We show the first relation in (23),
the computations for the second being similar. We have

p6 = (D1 · eρ2)(D1 · r2)(E1 − E2)− µ(L1 − L2) ·
[

(r1 − r2)×
(

D1 × (eρ1 × eρ2)
)]

= −(D1 · eρ2)
[

(E1 − E2)(r1 × r2 · eρ1) + µ(L1 − L2) · (r1 − r2)× eρ1
]

,

where we used the relations

A = (r1 − r2) · eρ1 × eρ2, D1 · r1 = 0, D1 · eρ1 = 0.

We conclude by noting that

ξ = (E1 − E2)r1 × r2 + µ(L1 − L2)× (r1 − r2).

Let us now consider the elimination ideal

J = 〈q1, p̃6, p̃7〉 = 〈q, p1, p2〉,

in R[ρ1, ρ2]. The ideal
J̃ = 〈q, p̃1, p̃2〉,

with the polynomials p̃j defined in (14), coincides with J , in fact

p̃j = pj + djq, j = 1, 2

for some polynomials dj = dj(ρ1, ρ2). In particular, we have

V (J) = V (J̃),
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where the variety V (K) of a polynomial ideal K ∈ R[ρ1, ρ2] is the set

V (K) = {(ρ1, ρ2) ∈ C
2 : p(ρ1, ρ2) = 0, ∀p ∈ K}.

The ideal
J̃1 = 〈p̃1, p̃2〉,

fulfills
J̃1 ⊆ J̃ , (24)

so that
V (J̃1) ⊇ V (J̃). (25)

Indeed, we shall show that
V (J̃1) = V (J̃).

Let us introduce the polynomial

v := Res(p̃1, p̃2, ρ1) = ã1,1ã2,0 − ã1,0ã2,1.

We need the following results.

Lemma 2. For a generic choice of the data Aj ,qj , q̇j , j = 1, 2, the polynomials u, v have 9
distinct solutions in C.

Proof. We show this property for u; the proof for v is analogous. Let

u(ρ2) =
9

∑

j=0

cjρ
j
2,

for some coefficients cj ∈ R depending on the data. First we show that, for a generic choice of
the data, the rank of the Jacobian matrix

∂(c0, . . . , c9)

∂(A1,A2,q1, q̇1,q2, q̇2)

is maximal, that is 10. To check this property it suffices to show that the rank is maximal for a
particular choice of the data. In fact, if the rank were smaller than 10 in an open set, then by
the analytic dependence of the coefficients cj on the data it would not be maximal at any point.
We made this check using the symbolic computation software Maple 18 with the following data:

A1 =
(

2 arctan(1/2), 0, 1, 1
)

, A2 =
(

2 arctan(1/2), 2 arctan(1/2), 1, 1
)

,

q1 = (1, 0, 0), q̇1 = (0, 1/2, 0), q2 = (0, 1, 0), q̇2 = (−1/2, 0, 0).

Moreover, by a well known property of polynomials, u is square-free (i.e. without multiple roots)
for a generic choice of the coefficients cj . This fact, together with the maximal rank property
showed above, concludes the proof of the lemma.

�

Lemma 3. For a generic choice of the data Aj ,qj , q̇j , j = 1, 2, we have

gcd(ã1,1, ã2,1) = 1, (26)

where ã1,1, ã2,1 are the univariate polynomials defined in (15), (16).
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Proof. We give a proof similar to the one of Lemma 2. Let us write

ã11(ρ2) =
3

∑

j=0

c1,jρ
j
2, ã21(ρ2) =

4
∑

j=0

c2,jρ
j
2,

for some coefficients ci,j depending on the data. We can show that the Jacobian matrix

∂(c1,0, . . . , c1,3, c2,0, . . . , c2,4)

∂(A1,A2,q1, q̇1,q2, q̇2)

has generically maximal rank, i.e. 9, by checking that the rank is maximal for the data of
Lemma 2. To conclude we use the fact that for a generic choice of the coefficients ci,j relation
(26) holds true.

�

By Lemma 3 we can find two univariate polynomials β, γ in the variable ρ2 such that

βã1,1 + γã2,1 = 1. (27)

Let us introduce
w = βp̃1 + γp̃2 = ρ1 + z(ρ2), (28)

where
z = βã1,0 + γã2,0.

Lemma 4. The polynomial ideal
J̃2 = 〈w, v〉

is equal to J̃1.

Proof. From the definition of w and from relation

v = ã1,1p̃2 − ã2,1p̃1 (29)

we have J̃2 ⊆ J̃1. On the other hand, we can easily invert relations (28), (29) and, using (27),
we obtain

p̃1 = ã1,1w+ γv, p̃2 = ã2,1w− βv,

so that the other inclusion J̃1 ⊆ J̃2 holds true.
�

Lemmata 2 and 4 imply that V (J̃1) has 9 distinct points. In fact, for each root ρ2 of v, we
find from w = 0 a unique ρ1 such that (ρ1, ρ2) ∈ V (J̃1). On the other hand, since J̃ = J we have
V (J̃) = V (J) and generically V (J) has 9 distinct points too. We can prove it by using Theorem
1 in [7] and Lemma 2 for the polynomial u. Then from (25) we have that

V (J̃1) = V (J̃). (30)

In particular, the polynomials v and u coincide up to a constant factor.
Now we prove that J̃1 is indeed equal to J̃ . Let us take h ∈ J̃ . Making the division by w we

obtain
h(ρ1, ρ2) = h1(ρ1, ρ2)

(

ρ1 + z(ρ2)
)

+ r(ρ2) (31)
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for some polynomials h1, r. The remainder r depends only on ρ2 because w is linear in ρ1. From
(24) and (31) we have that r ∈ J̃ . Using relation (30) and the fact that u is generically square-free
we obtain that u divides r (polynomial division), which together with (31) implies that h ∈ J̃1.
We conclude that

J̃1 = J̃ .

The polynomials g1, . . . , g6, with

g1 = q2, g2 = q3, g3 = p4, g4 = p5, g5 = w, g6 = u,

form a Groebner basis of the ideal I for the lexicographic order (22). To show this we can simply
check that the leading monomials of each pair (gi, gj), with 1 ≤ i < j ≤ 6, are relatively prime
(see [2, Chap.2]). This concludes the proof of the theorem.

�

From the definition of Groebner basis we immediately obtain the following

Corollary 1. The polynomial u has the minimum degree among the univariate polynomials in
the variable ρ2 belonging to the ideal I.

As a consequence of the computations in the proof of Theorem 1 we also obtain

Corollary 2. The polynomial system (20) is generically not consistent. The same result holds
true by removing from (20) only one of the two equations u2

j |rj |2 = µ2, j = 1, 2.

Proof. We show that the system

gj = 0, j = 1 . . . 6, u2
2|r2|2 − µ2 = 0 (32)

is generically not consistent, where gj are the polynomials in the statement of Theorem 1. By
using equations g1 = g2 = g3 = g5 = 0 we can obtain from u2

2|r2|2 = µ2 another univariate
polynomial, say û in the variable ρ2. Then u and û have a common root in C (i.e. are compatible)
if and only if

Res(u, û, ρ2) = 0. (33)

Assume there is an open set in the space of the data Aj ,qj , q̇j , j = 1, 2 such that equation (33)
holds. Since the left-hand side of (33) is an analytic function of the data, then this equation
holds on the whole data set. Therefore, to conclude it is enough to check that equations (32) are
not compatible for a particular choice of the data, e.g. as in Lemma 2. In a similar way we can
prove that the system

gj = 0, j = 1 . . . 6, u2
1|r1|2 − µ2 = 0

is generically not consistent.
�

3.4 Compatibility conditions and covariance of the solutions

In this section we discuss how to discard some of the solutions computed with the method
described in Section 3 on the base of the full two-body dynamics. Given a pair of attributables
A = (A1,A2) at epochs t̄1, t̄2 with covariance matrices ΓA1

,ΓA2
, we call R = (ρ1, ρ̇1, ρ2, ρ̇2) one

of the solutions of the equation
Φ(R;A) = 0, (34)
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with

Φ(R;A) =

(

c1 − c2
Ξ · eρ1

)

,

where

Ξ =
1

2
(|ṙ2|2 − |ṙ1|2)r1 × r2 − (ṙ1 · r1)ṙ1 × (r1 − r2) + (ṙ2 · r2)ṙ2 × (r1 − r2),

which corresponds to the vector ξ defined in (9) after eliminating ρ̇1, ρ̇2 by (7). We can repeat
what follows for each solution of (34). The notation is similar to the one in [5].

Let us introduce the difference vector

∆a,ℓ = (∆a,∆ℓ),

with
∆a = a1 − a2, ∆ℓ =

[

ℓ1 −
(

ℓ2 + n(a2)(t̃1 − t̃2)
)

+ π
]

(mod 2π)− π,

where n(a) =
√
µa−3/2 is the mean motion and t̃i = t̄i − ρi/c, i = 1, 2. Note that here we

consider the difference of the two mean anomalies at the same epoch t̃1 in a way that it is a
smooth function at each integer multiple of 2π. We introduce the map

(A1,A2) = A 7→ Ψ(A) = (A1,R1,∆a,ℓ) ,

giving the orbit (A1,R1) in attributable coordinates at epoch t̃1 together with the vector ∆a,ℓ

which is not constrained by equation (34). Introducing the matrices

∂Ψ

∂A
=













I 0
∂R1

∂A1

∂R1

∂A2

∂∆a,ℓ

∂A1

∂∆a,ℓ

∂A2













and ΓA =

[

ΓA1
0

0 ΓA2

]

we map the covariance of A to the covariance of Ψ(A) through the formula

ΓΨ(A) =
∂Ψ

∂A
ΓA

[

∂Ψ

∂A

]T

. (35)

We can check if there is any solution of (34) fulfilling the compatibility conditions

∆a,ℓ = 0

within a threshold defined by the covariance matrix of the attributables ΓA. From (35) we
compute the marginal covariance of the vector ∆a,ℓ:

Γ∆a,ℓ
=

∂∆a,ℓ

∂A
ΓA

[

∂∆a,ℓ

∂A

]T

.

The inverse matrix C∆a,ℓ = Γ−1
∆a,ℓ

defines a norm ‖ · ‖⋆ in the (∆a,∆ℓ) plane, allowing us to test
an identification between the attributables A1,A2: we check whether

‖∆a,ℓ‖2⋆ = ∆a,ℓC
∆a,ℓ∆T

a,ℓ ≤ χ2
max,
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where χmax is a control parameter, to be selected on the basis of large scale tests (see [5, Sect.
5.1]). If a preliminary orbit (A1,R1) is accepted, from (35) it is also possible to compute its
marginal covariance as the 6× 6 matrix

Γ(A1,R1) =

[

ΓA1
ΓA1,R1

ΓR1,A1
ΓR1

]

,

where

ΓA1,R1
= ΓA1

[

∂R1

∂A1

]T

, ΓR1
=

∂R1

∂A
ΓA

[

∂R1

∂A

]T

, ΓR1,A1
= ΓT

A1,R1
.

4 Joining three VSAs

Here we introduce a method to compute preliminary orbits from three VSAs belonging to different
nights using the Keplerian integrals (2). In this case the conservation of the angular momentum
at the three epochs is enough to obtain a finite number of solutions of the identification problem.
In this section indexes 1, 2, 3 will refer to the mean epochs t̄j of three VSAs with attributables
Aj . We consider the equations:

c1 = c2, c2 = c3, c3 = c1, (36)

that can be written as

D1ρ̇1 −D2ρ̇2 = J12(ρ1, ρ2), D2ρ̇2 −D3ρ̇3 = J23(ρ2, ρ3), D3ρ̇3 −D1ρ̇1 = J31(ρ3, ρ1),

where

J12(ρ1, ρ2) = E2ρ
2
2 −E1ρ

2
1 + F2ρ2 − F1ρ1 +G2 −G1,

J23(ρ2, ρ3) = E3ρ
2
3 −E2ρ

2
2 + F3ρ3 − F2ρ2 +G3 −G2,

J31(ρ3, ρ1) = E1ρ
2
1 −E3ρ

2
3 + F1ρ1 − F3ρ3 +G1 −G3.

Equations (36) are redundant, that is, if two of them hold true, then the third equation is also
fulfilled. We consider the following projections of equations (36):

(c1 − c2) ·D1 ×D2 = 0, (37)

(c1 − c2) ·D1 × (D1 ×D2) = 0, (38)

(c2 − c3) ·D2 ×D3 = 0, (39)

(c2 − c3) ·D2 × (D2 ×D3) = 0, (40)

(c3 − c1) ·D3 ×D1 = 0, (41)

(c3 − c1) ·D3 × (D3 ×D1) = 0. (42)

Proposition 1. Assume
D1 ×D2 ·D3 6= 0. (43)

Then the system of equations (37)–(42) is equivalent to (36).

Proof. Assuming that (41), (42) are fulfilled, to prove that c3 = c1 we only need to show that
the projection of this equation onto a vector v, such that D3×D1,D3×(D3×D1),v are linearly
independent, holds true. We denote by

Π12 = 〈D1 ×D2,D1 × (D1 ×D2)〉, Π23 = 〈D2 ×D3,D2 × (D2 ×D3)〉
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the planes passing through the origin generated by the vectors within the brackets. If relation
(43) holds, then we have

Π12 ∩ Π23 = 〈D1 ×D2〉,
i.e. the intersection of the two planes is the straight line generated by the vector v = D1 ×D2.
Moreover, we have

(D1 ×D2) · (D3 ×D1)×
(

D3 × (D3 ×D1)
)

= |D3 ×D1|2D1 ×D2 ·D3,

which does not vanish by (43). Therefore, from (37)–(40) we obtain (c1−c2)·v = (c2−c3)·v = 0,
that yield (c3 − c1) · v = 0. In a similar way we can prove that c1 = c2, c2 = c3, provided that
(37)–(42) hold.

�

Equations (37), (39), (41) depend only on the radial distances. In fact, they correspond to
the system

J12 ·D1 ×D2 = 0, J23 ·D2 ×D3 = 0, J31 ·D3 ×D1 = 0, (44)

which can be written as

q3 = a3ρ
2
2 + b3ρ

2
1 + c3ρ2 + d3ρ1 + e3 = 0, (45)

q1 = a1ρ
2
3 + b1ρ

2
2 + c1ρ3 + d1ρ2 + e1 = 0, (46)

q2 = a2ρ
2
1 + b2ρ

2
3 + c2ρ1 + d2ρ3 + e2 = 0, (47)

where

a3 = E2 ·D1 ×D2, b3 = −E1 ·D1 ×D2,

c3 = F2 ·D1 ×D2, d3 = −F1 ·D1 ×D2,

e3 = (G2 −G1) ·D1 ×D2,

and the other coefficients aj , bj , cj, dj , ej , for j = 1, 2, have similar expressions, obtained by
cycling the indexes. To eliminate ρ1, ρ3 from (44) we first compute the resultant

r = Res(q3, q2, ρ1),

which depends only on ρ2, ρ3. Then we compute the resultant

q = Res(r, q1, ρ3),

which is a univariate polynomial of degree 8 in the variable ρ2. Therefore, provided that (43)
holds, to get the solutions of (36) first we search for the roots ρ̄2 of q(ρ2), then we compute the
corresponding values ρ̄3 from system r(ρ3, ρ̄2) = q1(ρ3, ρ̄2) = 0, and finally the corresponding
values ρ̄1 from system q3(ρ1, ρ̄2) = q2(ρ̄3, ρ1) = 0. Since the unknowns ρj represent distances we
can discard triples (ρ̄1, ρ̄2, ρ̄3) where some ρj is non-positive. From equations (38), (40), (42) we
can write the radial velocities ρ̇j as functions of pairs of radial distances:

ρ̇2 =
J12(ρ1, ρ2) ·D1 × (D1 ×D2)

|D1 ×D2|2
,

ρ̇3 =
J23(ρ2, ρ3) ·D2 × (D2 ×D3)

|D2 ×D3|2
,

ρ̇1 =
J31(ρ3, ρ1) ·D3 × (D3 ×D1)

|D3 ×D1|2
.

15



Remark 2. A simple way to discard triples (A1,A2,A3), before making the computation de-
scribed in this section, is to use the intersection criterion introduced in [7] to discard pairs of
attributables. More precisely, we can apply this criterion three times, i.e. we check for each
j = 1, 2, 3 whether the conic Qj, defined by qj = 0 (see equations (45), (46), (47)), intersects the
square R = [ρmin, ρmax]× [ρmin, ρmax] for some fixed ρmax > ρmin > 0. If this criterion fails in
one of these cases we discard the selected triple. For more details see the appendix in [7].

4.1 Solutions with zero angular momentum

A particular solution of system (36) can be obtained by searching for values of ρj , ρ̇j such that

cj(ρj , ρ̇j) = 0, j = 1, 2, 3.

Relation r× ṙ = 0 implies that there exists λ ∈ R such that

ρ̇eρ + ρη + q̇ = λ(ρeρ + q), (48)

with η = α̇ cos δeα + δ̇eδ. Setting σ = ρ̇− λρ we can write (48) as

σeρ + ρη − λq = −q̇. (49)

We introduce the vector

u = q− (q · eρ)eρ − 1

η2
(q · η)η,

which is orthogonal to both eρ,η, where η = |η| is called the proper motion. Thus, we can write
(49) as

[σ − λ(q · eρ)]eρ +
[

ρ− λ

η2
(q · η)

]

η − λu = −q̇.

Since {eρ,η,u} is generically an orthogonal basis of R3, we find

λ =
1

|u|2 (q̇ · u), ρ =
1

η2
(λq− q̇) · η, ρ̇ = λρ+ (λq − q̇) · eρ.

In particular, we obtain the value

ρ =
1

η2

( 1

|u|2 (q̇ · u)(q · η)− q̇ · η
)

for the radial distance, corresponding to a solution with zero angular momentum.

4.2 Compatibility conditions and covariance of the solutions

We discuss how to discard solutions of (36) in a way similar to Section 3.4. Given a triple of at-
tributablesA = (A1,A2,A3) with covariance matrices ΓA1

,ΓA2
,ΓA3

, we callR = (ρ1, ρ̇1, ρ2, ρ̇2, ρ3, ρ̇3)
one of the solutions of the equation

Φ(R;A) = 0, (50)

with

Φ(R;A) =

















(c1 − c2) ·D1 × (D1 ×D2)
(c1 − c2) ·D1 ×D2

(c2 − c3) ·D2 × (D2 ×D3)
(c2 − c3) ·D2 ×D3

(c3 − c1) ·D3 × (D3 ×D1)
(c3 − c1) ·D3 ×D1

















.
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We can repeat what follows for each solution of (50).
Let us introduce the difference vectors

∆12 =
(

a1 − a2, [ω1 − ω2 + π](mod 2π)− π,
[

ℓ1 −
(

ℓ2 + n(a2)(t̃1 − t̃2)
)

+ π
]

(mod 2π)− π
)

,

∆32 =
(

a3 − a2, [ω3 − ω2 + π](mod 2π)− π,
[

ℓ3 −
(

ℓ2 + n(a2)(t̃3 − t̃2)
)

+ π
]

(mod 2π)− π
)

,

where the third component is the difference of the two mean anomalies referring to epoch t̃i =
t̄i−ρi/c, and n(a) =

√
µa−3/2 is the mean motion. Here the difference of two angles is computed

in a way that it is a smooth function at each integer multiple of 2π. We introduce the map

(A1,A2,A3) = A 7→ Ψ(A) = (A2,R2,∆12,∆32) ,

giving the orbit (A2,R2) in attributable coordinates at epoch t̃2 together with the vectors ∆12,
∆32, which are not constrained by the angular momentum integrals. We want to check if there
is any solution of (50) fulfilling the compatibility conditions

∆12 = ∆32 = 0

within a threshold defined by the covariance matrix of the attributables

ΓA =





ΓA1
0 0

0 ΓA2
0

0 0 ΓA3



 .

We map the covariance of A to the covariance of Ψ(A) through

ΓΨ(A) =
∂Ψ

∂A
ΓA

[

∂Ψ

∂A

]T

,

where

∂Ψ

∂A
=





















0 I 0
∂R2

∂A1

∂R2

∂A2

∂R2

∂A3

∂∆12

∂A1

∂∆12

∂A2

∂∆12

∂A3

∂∆32

∂A1

∂∆32

∂A2

∂∆32

∂A3





















.

The matrices ∂R2

∂Aj
, j = 1, 2, 3, can be computed from the relation

∂R

∂A
(A) = −

[

∂Φ

∂R
(R(A),A)

]−1
∂Φ

∂A
(R(A),A).

The marginal covariance matrix for the vector ∆ = (∆12,∆32) is given by the block

Γ∆ =

[

Γ∆12
Γ∆12,∆32

Γ∆32,∆12
Γ∆32

]

of ΓΨ(A), where

Γ∆12
=

∂∆12

∂A
ΓA

[

∂∆12

∂A

]T

, Γ∆12,∆32
=

∂∆12

∂A
ΓA

[

∂∆32

∂A

]T

,

Γ∆32
=

∂∆32

∂A
ΓA

[

∂∆32

∂A

]T

, Γ∆32,∆12
= ΓT

∆12,∆32
.
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The inverse matrix C∆ = Γ−1
∆

defines a norm ‖ · ‖⋆ allowing us to test an identification between
the attributables A1,A2,A3: we check whether

‖∆‖2⋆ = ∆C∆∆T ≤ χ2
max, (51)

where χmax is a control parameter.
For each orbit, solution of (50), fulfilling condition (51) we can also define a covariance matrix

Γ2 for the attributable coordinates (A2,R2):

Γ2 =

[

ΓA2
ΓA2,R2

ΓR2,A2
ΓR2

]

,

where ΓA2
is given and

ΓA2,R2
= ΓA2

[

∂R2

∂A2

]T

, ΓR2
=

∂R2

∂A
ΓA

[

∂R2

∂A

]T

, ΓR2,A2
= ΓT

A2,R2
.

5 Numerical tests

In this section we test the methods described in Sections 3, 4 using the observations of two
main belt asteroids: (450003) and 2014 YW11. In Table 1 we list three tracklets composed by
four observations (right ascension α, declination δ) of asteroid (450003), collected with the Pan-
STARRS telescope (PS1). We also display the observational biases due to systematic errors in
the star catalog for which we have correction tables (see [3]).

tr obs α (deg) bias (α) δ (deg) bias (δ) date (UTC)
1 1 350.66612 −0.044 4.05939 0.132 2015 07 28.56903

2 350.66973 −0.044 4.06026 0.132 2015 07 28.58174
3 350.67334 −0.044 4.06114 0.132 2015 07 28.59445
4 350.67698 −0.044 4.06201 0.132 2015 07 28.60688

2 1 355.75182 −0.028 3.71542 0.074 2015 08 21.50571
2 355.75278 −0.028 3.71413 0.074 2015 08 21.51835
3 355.75375 −0.028 3.71282 0.074 2015 08 21.53096
4 355.75470 −0.028 3.71151 0.074 2015 08 21.54360

3 1 356.33105 −0.051 0.05804 0.188 2015 09 12.39647
2 356.33029 −0.051 0.05559 0.188 2015 09 12.40823
3 356.32952 −0.051 0.05312 0.188 2015 09 12.41999
4 356.32875 −0.051 0.05064 0.188 2015 09 12.43174

Table 1: The three selected tracklets, each composed by four observations of asteroid (450003).
The angles α and δ are given in degrees, their biases in arcseconds.

In Table 2 we show the approximated values of the components of the three attributables com-
puted from the tracklets in Table 1. The observational bias is applied to the values of α, δ listed
above.

We compare the preliminary orbits obtained by Gauss’ method with the methods described
in this paper by means of the least squares solution, computed with all the tracklets of Table 1,
and of its covariance matrix. In Table 3 we show the results of this comparison. The labels G2,
G3 refer to the orbits obtained with Gauss’ method using different observations from Table 1: for
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att α (deg) δ (deg) α̇ (arcsec/d) δ̇ (arcsec/d) date (TDT)
1 350.67152 4.06066 1031.73966 248.94682 2015 07 28.58881
2 355.75328 3.71346 273.91459 −371.71349 2015 08 21.52544
3 356.32992 0.05430 -234.37136 −755.55043 2015 09 12.41490

Table 2: Attributables computed from the three tracklets in Table 1.

a (au) e I Ω ω ℓ norm
G2 2.13208 0.32946 4.79407 177.16888 155.00135 2.11089 3622.9
L2 2.14785 0.33138 4.90092 177.00134 157.19614 1.18703 4786.1
G3 2.06025 0.30304 4.91806 176.87697 156.93193 1.46197 10957.8
L3 2.05587 0.31248 4.66792 176.87899 155.66710 1.88742 1540.3
LS3 2.09738 0.31910 4.83036 176.87550 156.85541 1.38240 //

Table 3: Preliminary orbits at the date 2015 8 20.84305 (TDT), obtained with Gauss’ method
and with the identification methods described in Sections 3, 4. The last line contains the least
squares solution used for the comparison. The angles are given in degrees. In the last column
we list the values of the norms defined in (52).

G2 we use observations 1, 4 of tracklet 1 and observation 1 of tracklet 2; for G3 we use observation
1 of each tracklet. The labels L2, L3 refer to the methods described in Sections 3, 4. For L2 we
use attributables 1, 2 listed in Table 2; for L3 we use all the attributables in this table. Let EG2

,
EL2

, EG3
, EL3

be the preliminary orbits computed with the different methods. The label LS3 in
the last line of Table 3 refers to the least squares orbit computed from EG3

. We call ELS3
the

corresponding least squares orbit and ΓLS3
the related covariance matrix. All the preliminary

orbits are propagated to the mean epoch of the observations used to compute the least squares
solution ELS3

. The norms displayed in the last column of Table 3 are defined as

|EG2
| = ∆G2

· CLS3
∆G2

, |EL2
| = ∆L2

· CLS3
∆L2

,

(52)

|EG3
| = ∆G3

· CLS3
∆G3

, |EL3
| = ∆L3

· CLS3
∆L3

,

where

∆G2
= EG2

− ELS3
, ∆L2

= EL2
− ELS3

, ∆G3
= EG3

− ELS3
, ∆L3

= EL3
− ELS3

,

and CLS3
= Γ−1

LS3
is the normal matrix corresponding to ELS3

. For this test case the norm |EL3
|

is smaller than |EG3
| by one order of magnitude, while the norms |EG2

| and |EL2
| are comparable.

However, we observe that the role of the linkage of two VSAs is simply to test the compatibility
of pairs of tracklets and discard a large number of them. When we join a third tracklet to a pair
of linked VSAs we compute from scratch a preliminary orbit.

As a second test, we consider three tracklets composed by four observations of asteroid 2014
YW11 made by PS1. In this case the first tracklet is very far apart in time from the other two (see
Tables 4, 5), therefore Gauss’ method can not be used. In Table 6 we compare the preliminary
orbits EL2

, EL3
with the least squares solution ELS3

, where the latter is computed starting from
EL3

. From these results, the Keplerian integrals methods described in this paper appear well
suited to identify VSAs with a large time separation.
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tr obs α (deg) bias (α) δ (deg) bias (δ) date (UTC)
1 1 130.53486 0.119 20.56497 0.094 2012 02 13.30727

2 130.53097 0.119 20.56493 0.094 2012 02 13.32181
3 130.52707 0.119 20.56489 0.094 2012 02 13.33638
4 130.52318 0.119 20.56483 0.094 2012 02 13.35096

2 1 61.09531 −0.022 29.84245 0.136 2014 12 29.40432
2 61.09403 −0.022 29.84132 0.136 2014 12 29.41580
3 61.09269 −0.022 29.84016 0.136 2014 12 29.42728
4 61.09142 −0.022 29.83898 0.136 2014 12 29.43881

3 1 62.07000 0.009 27.87887 0.124 2015 01 23.33565
2 62.07199 0.009 27.87816 0.124 2015 01 23.34820
3 62.07398 0.009 27.87739 0.124 2015 01 23.36075
4 62.07598 0.009 27.87666 0.124 2015 01 23.37329

Table 4: The three selected tracklets, each composed by four observations of asteroid 2014 YW11.
The angles α and δ are given in degrees, their biases in arcseconds.

att α (deg) δ (deg) α̇ (arcsec/d) δ̇ (arcsec/d) date (TDT)
1 130.52898 20.56488 -962.06502 -11.39645 2012 02 13.32987
2 61.09336 29.84070 -407.39435 -362.76023 2014 12 29.42233
3 62.07298 27.87775 571.09302 -212.16315 2015 01 23.35525

Table 5: Attributables computed from the three tracklets in Table 4.

a (au) e I Ω ω ℓ norm
L2 2.19793 0.15470 4.95738 328.99987 103.96920 239.71121 52915.1
L3 2.19479 0.14983 4.96004 328.99346 105.99094 238.85008 363.4
LS3 2.19507 0.14899 4.96545 328.94870 106.08163 238.83817 //

Table 6: Preliminary orbits at the date 2013 11 9.48155 (TDT), obtained with the methods
described in Sections 3, 4. The angles are given in degrees. In the last column we list the values
of the norms defined in (52).

6 Conclusions

The methods currently in use to deal with the linkage problem (statistical ranging, systematic
ranging, sampling of the admissible region, kd-tree algorithm) can be used successfully to link
VSAs over relatively short time spans, but they can not be employed when the time separation
between the tracklets is large. The need of improving the efficiency of the existing identification
methods is shown by the large database of unidentified tracklets of asteroid observations available
at the MPC website. In this paper we used elimination theory to show that the polynomial
equation of degree 9 introduced in [7] has the minimum degree among the univariate polynomial
equations that are consequence of the conservation laws of Kepler’s problem, provided that we
drop the dependence between the inverse of the heliocentric distance and the topocentric distance.
We also introduced a method to join triples of VSAs leading to a polynomial equation of degree
8. Being based on the conservation laws of the two-body motion, the Keplerian integrals methods
can be used also with VSAs observed at different apparitions. Moreover, the related equations
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can be fast and accurately solved by numerical methods, therefore these algorithms are suitable
to be used with large database of tracklets. We think that the Keplerian integral methods are a
significant addition to the suite of already available methods. In particular, they will be useful
in an orbit determination pipeline, similar to the ones described in [12, Chap.11].
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[7] Gronchi, G. F., Baù, G., Marò, S.: Orbit determination with the two-body integrals. III.
Celest. Mech. Dyn. Astron. 123/2, 105-122 (2015)

[8] Kubica, J. et al.: Efficient intra- and inter-night linking of asteroid detections using kd-trees.
Icarus 189/1, 151-168 (2007)

[9] Laplace, P. S.: Mém. Acad. R. Sci. Paris, in Laplace’s collected works, 10, 93-146 (1780)

[10] Milani, A., Gronchi, G. F., De’ michieli Vitturi, M., Knežević, Z.: Orbit determination with
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