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Highlights

• We extend previously available models of delay-constrained routing problems.

• We account for the latency formulae of the most relevant classes of GPS-derived schedulers

from the literature.

• We explicitly introduce the concept of admission control constraints, and show how to im-

plement them for all classes of schedulers.

• We show how to model the difference between reserved and guaranteed rates taking into

account admission control.

• We prove that the all models are MI-SOCP and computationally viable for real-life commu-

nication networks.
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Abstract

As shown in [1], the problem of routing a flow subject to a worst-case end-to-end delay constraint

in a packed-based network can be formulated as a Mixed-Integer Second-Order Cone Program,

and solved with general-purpose tools in real time on realistic instances. However, that result only

holds for one particular class of packet schedulers, Strictly Rate-Proportional ones, and implicitly

considering each link to be fully loaded, so that the reserved rate of a flow coincides with its

guaranteed rate. These assumptions make latency expressions simpler, and enforce perfect isola-

tion between flows, i.e., admitting a new flow cannot increase the delay of existing ones. Other

commonplace schedulers both yield more complex latency formulæ and do not enforce flow isola-

tion. Furthermore, the delay actually depends on the guaranteed rate of the flow, which can be

significantly larger than the reserved rate if the network is unloaded. In this paper we extend the

result to other classes of schedulers and to a more accurate representation of the latency, showing

that, even when admission control needs to be factored in, the problem is still efficiently solvable

for realistic instances, provided that the right modeling choices are made.

Keywords: Routing problems, maximum delay constraints, scheduling algorithms, admission

control, Second-Order Cone Programs, Perspective Reformulation

2010 MSC: 90B18, 90C35, 90C90

1. Introduction

The Internet already supports applications that require stringent guarantees on end-to-end

delays (voice/video streaming, remote operation of industrial/medical tools, etc.). Obtaining

Quality of Service (QoS) guarantees for a packet flow, such as a maximum delay, is thus a crucial

problem, which is made nontrivial by the packed-based nature of the infrastructure. QoS routing is5

the practice of computing network paths where a suitable QoS can be guaranteed, which gives rise
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to Constrained Shortest Path (CSP) problems. CSPs having a single end-to-end constraint which

is an additive or multiplicative concave function of per-link metrics admit polynomial solution

algorithms, while CSPs with two or more constraints are NP-hard (cf. [1] and the references

therein). Due to the typically strict requirements on the time to deliver the solution in practice10

(say, some 10s or 100s of milliseconds), approximate approaches are normally employed to solve

them (e.g., [2, 3, 4]). Furthermore, rather simplified network models have been traditionally

employed where the relevant QoS parameters, say link delays, are considered statically known and

additive. This neglects queueing, i.e., the delay due to the fact that the same link is shared by

different flows, whose packets are transmitted sequentially. Queueing delays depend on the packet15

schedulers employed to arbitrate the flows.

A well-known paradigm for QoS scheduling is Generalized Processor Sharing (GPS) [5], that

defines an ideal reference system which serves backlogged flows simultaneously at a rate propor-

tional to their weight. If flow weights are chosen equal to their reserved rates, and their sum

does not exceed the link capacity, then GPS guarantees that the flows’ guaranteed rates will be20

at least as large as the reserved ones. This allows per-link and end-to-end Worst-case Delay

(WCD) bounds to be computed if the traffic arrival rate at the source is constrained. Two practi-

cal implementations of GPS have been proposed, namely Packet-by-packet Generalized Processor

Sharing (PGPS) [5] and Worst-case Fair Weighted Fair Queueing (WF2Q) [6]. Both exhibit

tight guarantees on the latency, i.e., the worst-case scheduling delay at a link, which is—barring25

a small additive constant—inversely proportional to the guaranteed rate, thereby earning them

the moniker of Strictly Rate-Proportional (SRP) schedulers. Since a flow’s WCD depends on the

guaranteed rates along its path, QoS routing problems with WCD constraints can easily be defined

assuming SRP schedulers in the network. For instance, [7, 8] show that the problem of finding a

path with a pre-specified WCD is NP-hard in general, unless the same rate is reserved at each30

link. Recently, [1] showed that, nonetheless, optimal solutions can be found in split-second times

for realistic-sized networks even allowing different rates for each link, and that this leads to sizable

performance gains in terms of flow blocking probability [9].

Unfortunately, the implementation of SRP schedulers is rather complex, which is a downside on

high-speed links and/or with many simultaneous flows. In the last two decades, several schedulers35

have been devised which exhibit different trade-offs between latency and implementation cost,

some having made their way into commercial hardware [10]. At one end of the spectrum we

find GPS approximations based on flow grouping [11, 12], and at the other end lie frame-based

algorithms such as Deficit Round Robin [13] and its derivatives [14, 15, 10]. Both are simpler, but

exhibit looser latency guarantees as well. To the best of our knowledge, no attempt has been made40

so far to devise QoS-routing schemes for these other schedulers. The only related work that we are

aware of, [16], shows that non-uniform rate allocation given a pre-specified routing plan achieves

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

better network utilization than uniform rate allocation in the presence of WCD constraints. This

means that so far it has been impossible to estimate the impact of employing lower-complexity

schedulers on the network performance (e.g., utilization or blocking probability).45

Furthermore, all previous works—including [1, 9]—have resorted to simplifying the latency

formulæ by assuming that the guaranteed rate of a flow is equal to its reserved rate. This bound

assumption is safe, in that the reserved rate is always no larger than the guaranteed one, but it leads

to over-estimating the WCD experienced by a flow, and therefore to a more conservative resource

allocation than necessary. To the best of our knowledge, the impact of the bound assumption on50

the network performance has not been investigated yet.

This paper provides a first, necessary step towards answering the above questions by formu-

lating and solving the Admissible Delay-Constrained Shortest Path (ADCSP) problem: given the

current state of the network, a set of link reservation costs, and a new flow to be routed between

a given source and destination under a pre-specified WCD constraint, determine a feasible path55

and a feasible rate reservation on each link (if there exists one) minimizing the total reservation

cost and ensuring that existing flows still satisfy their WCD constraints. We show that, for several

classes of packet schedulers, the ADCSP problem can be formulated as a Mixed-Integer Second-

Order Cone Problem (MI-SOCP) and solved by general-purpose tools in split-second times for

realistically-sized networks. This paves the way to exploring the impact of employing different60

scheduling algorithms on network performance. We also show that, while distinguishing between

reserved and guaranteed rates in the latency formulæ does increase the complexity of the mod-

els, the cost of doing so remains bearable, thus opening the way to studying the impact of these

modeling choices, too, on network performance.

This paper is organized as follows. In Section 2 we present our system model and hypotheses.65

In Sections 3, 4 and 5 we discuss models for the three main classes of latency formulæ—respectively,

Strictly Rate-Proportional (and their Group-Based approximations), Weakly Rate-Proportional

and Frame-Based ones—under different assumptions on the description of reserved and guaranteed

rates. In Section 6 we report computational results which show the relative efficiency (and, partly,

effectiveness) of the various models on real networks with realistic traffic data. Finally, in Section70

7 we draw some conclusions.

2. System model

We are given a computer network represented by a directed graph G = (N,A), with n = |N |
and m = |A|. Nodes are switching elements (e.g., routers), and arcs are the links interconnecting

them. Henceforth, delays are in seconds, packet lengths are in bits, and rates and link speeds are75

in bits per second. Each node i ∈ N is characterized by a fixed node delay ni. Each arc (i, j) ∈ A
is characterized by a fixed link delay lij , a physical link speed wij , and the maximum transmit

4
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unit (MTU) L (assumed to be constant for simplicity). A set Q of flows is already present in the

network. Each q ∈ Q is characterized by a fixed path in G (which, for notational simplicity, we

will denote by q as well), fixed reserved rates rqij for all (i, j) ∈ q, an upper bound on the tolerable80

WCD—called its deadline—δq, and a leaky-bucket arrival-curve constraint. That is, if F (t) denotes

the number of bits of the flow injected at the source in [0, t), F (t + τ) − F (t) ≤ σq + ρqτ has to

hold for all t and τ ≥ 0, where σq and ρq are the burst and the rate of the flow, respectively.

We now introduce the Admissible Delay-Constrained Shortest Path (ADCSP) problem: given

the current state Q of the network, the cost fij of reserving one unit of capacity on (i, j), and the85

data describing one “new” flow to be routed in G (its endpoints s and d, burst σ and rate ρ, and

deadline δ), find one feasible s-d path p and a feasible reservation of capacity at each of its arcs—if

any exist—so that the flow can be routed along p and both the new flow and all the existing ones

meet their deadline, at the minimum possible reservation cost for the new flow. ADCSP requires

one to compute the WCD of a flow, which depends on several factors:90

1. the selected routing for the flow, i.e., the s-d path p in G;

2. the reserved rate rij ∈ [0, wij ] for each arc (i, j) ∈ p;

3. the latency guarantees of the schedulers employed to share the output links’ bandwidth

among the flows (for the sake of simplicity, we will always assume the schedulers to be the

same at each link, but extending the models to non-uniform cases is obvious);95

4. the paths and reserved rates of all the other flows q ∈ Q.

In the following, we will denote by P (i, j) = { q : (i, j) ∈ q } ⊆ Q the set of existing paths (not

counting the one just to be routed) traversing arc (i, j). We will also find it expedient to consider

A partitioned into A′ ∪ A′′, where A′ contains the arcs (i, j) that are “empty” (P (i, j) = ∅) and

A′′ those that contain at least one flow.100

While the natural decision variables of the problem are the reserved rates rij at each link, in

general the WCD rather depends on the guaranteed rate gij obtained by the flow on each (i, j) ∈ p.
For all the fair-queueing schedulers that we will examine, the guaranteed rate is at least as large

as the reserved rate. In fact, under the assumption that the arc is not over-provisioned

rij ≤ wij − r̄ij , (1)

where r̄ij =
∑
q∈P (i,j) r

q
ij (≥ 0) is the total reserved rate of all the other flows at link (i, j), the

guaranteed rates are given by the expression

gij = (wijrij)/(r̄ij + rij) . (2)

It is easy to see that gij = wij when r̄ij = 0 (≡ (i, j) ∈ A′), i.e., the arc is “completely unloaded”

and the new flow is the only one traversing it. Conversely, gij = rij when r̄ij + rij = wij , i.e.,

5
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the arc is “completely loaded”. In order for the WCD to be finite, the minimum guaranteed rate

among all links of p must be at least as large as the traffic injection rate of the flow, i.e.,

gij ≥ ρ ∀(i, j) ∈ p . (3)

If (3) is satisfied, the general form of the WCD of path p is

σ

min{ gij : (i, j) ∈ p} +
∑

(i,j)∈p

(
θij + lij + ni

)
, (4)

where θij is the link latency experienced by the flow on path p when traversing the arc (i, j),

i.e. the maximum scheduling delay that its head-of-line packets may undergo due to the presence

of competing flows [17]. Note that θij does not incorporate the fixed node traversal and link

propagation delays, which are in fact separately considered in (4). The exact form of θij depends

on the scheduling algorithm employed at the link. In all the previous developments in the literature

[1, 7, 8, 9, 16], a “pessimistic” view has been taken, where one assumes that

gij = rij ∀(i, j) ∈ p . (5)

In turn, (5) logically implies that (i, j) ∈ A′′. We will refer to the delay formulæ obtained under

assumption (5) as the bound delay estimates, as opposed to the more accurate worst-case estimates

obtained by eschewing (5) and employing the actual formulæ based on the guaranteed rates. While

bound estimates on the WCD are safe, they may be arbitrarily loose. To the best of our knowledge,

this is the first work in which worst-case formulæ are studied.105

Although many different schedulers have been proposed in the literature, differing regarding

several properties, from the point of view of latency most of them fall into the following categories:

• Strictly Rate-Proportional (SRP) schedulers, such as PGPS [5] and WF2Q [6], with worst-

case latency and bound latency, respectively, of

θij =
L

wij
+





L/gij if (i, j) ∈ A′′

0 otherwise
, (6)

θij =
L

rij
+

L

wij
. (7)

SRP latency can only be achieved by schedulers that require relatively complex implemen-110

tations [18, 19], which can be a burden at high link speeds, when only a few ns are available

to make scheduling decisions.

• Group-based approximations of SRP (GSRP), e.g. [11, 12], which group flows according to

their reserved rate, at logarithmic intervals, thereby decreasing the complexity but increasing

the latency to [11]

θij = 3
2dlog2 wijL/rije

wij
+ 2

L

wij
. (8)

6
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The complex expression (8) can be shown to satisfy the simpler bounds

3
L

rij
+ 2

L

wij
≤ θij ≤ 6

L

rij
+ 2

L

wij
. (9)

Hence, the latency is still (approximately) rate-proportional, but three to six times larger

than (7), even disregarding the constant term, which is twice as large. To the best of our

knowledge, worst-case versions of (9) not only are not know, but are considered to be unlikely115

to exist at all [20], hence only the bound version can be used.

• Schedulers with Weakly Rate-Proportional (WRP) latency, e.g., Self-Clocked Fair Queueing

[21], whose (worst-case and bound) latency also depends on the number of flows |P (i, j)|:

θij = |P (i, j)| L
wij

+
L

gij
, (10)

θij = |P (i, j)| L
wij

+
L

rij
. (11)

The non-rate-proportional offset in (10)/(11) is larger than in (6)/(7), especially if |P (i, j)|
is large; thus increasing the reserved rate may decrease the latency only marginally.120

• Frame-based (FB) schedulers [13, 14, 15] impose that flows are visited in a fixed order, each

for a minimum amount of time called a quantum; the guaranteed rate is thus the ratio of the

quantum to the round duration. If the quantum is lower-bounded by the MTU L, the flow

requesting the smallest reserved rate must get a quantum equal to the lower bound L, and

all the other flows get their quanta scaled accordingly. Thus, the latency, besides the number125

of flows, also depends not only on the sum r̄ij of the reserved rates of other flows on the

link, but also on their minimum rminij = min{ rqij : q ∈ P (i, j) } (≥ ρ). Some straightforward

algebraic manipulations [22] on the expression reported in [15] give

θij =
L

wij

r̄ij
min{ rij , rminij } + |P (i, j)| L

wij
+

L

gij
, (12)

θij =
L

wij

wij − rij
min{ rij , rminij } + |P (i, j)| L

wij
+

L

rij
, (13)

for the worst-case and bound versions, respectively. The difference between the two depends

on the fact that the bound assumption (5), besides gij = rij , also implies that r̄ij + rij =130

wij . Note that the difference depends on rij , i.e., on the reserved rates rather than on the

guaranteed ones. Some FB schedulers [14, 15] have latency expressions similar to (12)/(13),

save for a multiplying constant κ > 1 at the denominator of the first term. As the impact

of this change on the models is straightforward, we will limit our presentation to (12)/(13).

Comparing formulæ (6) and (10) shows that SRP schedulers have smaller latency than WRP ones.135

Remarkably, for the bound ones (7) and (11) there would seem to be an exception for the case

of the “completely unloaded” arcs in A′, but this is only a figment due to the overestimate: for

7
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(i, j) ∈ A′, both schedulers give the same L/wij latency, which is clearly the minimum possible

(a packet needs to be fully received before it can be re-transmitted). Comparing (10)/(11) with

(12)/(13) also shows that the WRP latency is always smaller than or equal to that of FB.140

In general, the link latency expression of all schedulers depends on the routing and reservation

choices for all the other flows. In the bound SRP case (7) this is only due to (1); hence, provided

that links are not oversubscribed, the new flow p can be routed without the others being affected.

However, in all other cases routing p in the network can (and does) affect the delay of any existing

flow q that shares at least one arc (i, j) with p, for several different reasons:145

• r̄ij as “perceived” by q increases, which means that the guaranteed rate of q decreases;

• for WRP and FB, the term |P (i, j)| increases for all arcs of p;

• for FB only, if the reserved rate rij of the new flow is strictly smaller than rminij , then the

delay caused to q by that arc will also increase.

Since we assume that the routing of the new flow is only possible if existing flows remain delay-150

feasible without their routing/rates decisions be changed, further non obvious admission control

mechanisms must be put in place. To the best of our knowledge, no work on QoS routing so far

has investigated incorporating global-scale admission control tests in the routing algorithm. The

reason is that all previous work has focused on the bound formula (7) for SRP schedulers, for

which admission control is “automatic” (note that the same also holds for GSRP schedulers). In155

the next sections we will show that this is not the case with worst-case formulæ and/or WRP and

FB schedulers.

3. Strictly Rate Proportional and Group-based Schedulers

In this section we describe ADCSP for SRP and GSRP schedulers. We start by presenting

a SRP model under the bound assumption (5), which is a modification of that of [1], that will160

be the basis for all the other ADCSP models. We then discuss how to modify the model to use

worst-case formulæ instead. This is nontrivial, since guaranteed rates have to substitute reserved

rates in two different places: the expression of the link latency θij , and the formula for the overall

end-to-end delay. As these two aspects can be partly separated, i.e., one can write models where

only one of the two modifications is performed, we discuss them separately.165

3.1. SRP with bound assumption

A natural way to construct a Mixed-Integer NonLinear model of ADCSP is to introduce arc-

flow variables xij ∈ {0, 1} indicating whether or not arc (i, j) belongs to the path p chosen for

the new flow, together with variables rij indicating the amount of reserved rate on (i, j). Clearly,

8
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rij = 0 if xij = 0. With these, one can define the following formulation for the problem, under

the bound SRP formula (7):

min
∑

(i,j)∈A fijrij (14)

∑

(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =





−1 if i = s
1 if i = d
0 otherwise

i ∈ N (15)

xij ∈ {0, 1} (i, j) ∈ A (16)

σt+
∑

(i,j)∈A
[
θij + (lij + ni)xij

]
≤ δ (17)

sijrij ≥ x2
ij , sij ≥ 0 (i, j) ∈ A (18)

t ≥ sij (i, j) ∈ A (19)

ρxij ≤ rij ≤ (wij − r̄ij)xij (i, j) ∈ A (20)

θij = Lsij + (L/wij)xij (i, j) ∈ A (21)

The objective function (14) represents the total reservation cost. Most often fij = 1, which can

be useful for algorithmic purposes [1]. Note that (14) could be trivially generalized to the case

where there is a given fixed cost for selecting arcs. The standard flow conservation constraints

(15), together with the integrality ones (16), ensure that the xij variables represent a s-d path.

Constraint (17) imposes the end-to-end delay restriction, implementing (4) provided that appro-

priate conditions are imposed, so that the variables θij correctly represent the link latencies for the

given scheduler, and that the auxiliary variable t represents the term σ/rmin in (4). The (rotated)

Second-Order Cone (SOCP) constraints (18) ensure that

sij =

{
1/rij if xij = 1

0 if xij = 0
.

These employ the Perspective Reformulation technique [23, 24] to ensure that the resulting for-

mulation is “tight”, which results in significantly improved performances w.r.t. standard “big-M”

formulations [1]. The constraints (19) impose that t = σ/rmin, based on the fact that

t = max{ sij(= 1/rij) : (i, j) ∈ p } = 1/min{ rij : (i, j) ∈ p } = 1/rmin . (22)

This part of the formulation is different from the one originally presented in [1], where an explicit

variable rmin was introduced with the appropriate constraints. The version presented here has

been found to be computationally convenient in practice, at least on out test bed. The details

are omitted for space reasons, but can be found in [22]. Finally, constraints (20) enforce the170

semi-continuous nature of reserve rate variables rij , i.e., xij = 0 =⇒ rij = 0 and xij = 1 =⇒ rij ∈
[ρ, wij − r̄ij ].

All the constraints discussed so far are independent of the specific link latency formula, and

therefore of the exployed scheduler. The specific (7) is implemented in (21). Clearly, the θij

9
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variables are useless in the formulation: substituting them into (17) would just yield

σt+
∑

(i,j)∈A
[
Lsij + (L/wij + lij + ni)xij

]
≤ δ . (23)

This is not particularly relevant, not even computationally: typically, the preprocessor of any

general-purpose solver will form (23) out of (17) and (21) automatically anyway. Because the

second term in the sum in (23) will be common to many cases, for the sake of notational simplicity175

we define l̄ij = L/wij + lij + ni. The formulation (14)–(21) can be solved in various ways, the

simplest one being passing it to a general-purpose MI-SOCP solver like Cplex or Gurobi. A

judicious combination of this and combinatorial heuristics has been shown in [1] to be efficient

and effective for solving realistic instances.

3.2. SRP with guaranteed rates in the link latency180

To implement the worst-case link latency formula (6), one just has to use (2) to get

θij =
L

wij
+

{
(L/wij)/(r̄ij/rij + 1) if (i, j) ∈ A′′
0 otherwise

(24)

Thus, employing (24) instead of (7) in the models is relatively straightforward. Indeed, the

“empty” arcs have constant latency (in fact, r̄ij = 0 =⇒ gij = wij), and the others, besides yet

another constant, have the same “1/rij” form, with just a different scaling factor. Hence, the

optimization problem is largely unaffected: one only has to replace (21) with

θij =
L

wij
+

{
(Lr̄ij/wij)sij + (L/wij)xij if (i, j) ∈ A′′
0 otherwise

, (25)

which is in no way significantly more complex. In fact, it is somewhat less so, since for arcs in A′,

the variables θij and sij and the corresponding conic constraints (18) are not needed. Of course,

the θij variables could be eliminated similarly to (23).

However, removing assumption (5) also implies that the delay depends on the other flows via

the term r̄ij in (24), and therefore admission control is required. Indeed, consider an existing flow

q and some (i, j) ∈ q such that rij > 0 (=⇒ xij = 1). Note that this means that, “from the

viewpoint of q”, P (i, j) is nonempty because it contains at least the new flow, i.e., (i, j) ∈ A′′.
The arrival of the new flow then affects the delay of q because

gqij =
rqijwij

r̄ij + rij
=⇒ θqij =

L

wij
+
L

gqij
=

L

wij

(
r̄ij + rij
rqij

+ 1

)
=

Lrij
wijr

q
ij

+
L

wij

(
r̄ij
rqij

+ 1

)
. (26)

This means that the increase in latency due to the new flow passing through (i, j) is

∆θqij =
Lrij
wij r

q
ij

+

{
0 if |P (i, j) \ {q}| > 0

L/wij otherwise
.

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In fact, the rightmost addendum in the last part of (26) was the previous delay (for rij = 0) if

P (i, j) \ {q} 6= ∅, i.e., q was not the only flow on that arc. If P (i, j) = {q} instead, the delay

experienced by q was originally L/wij , which then becomes 2L/wij (r̄ij = rqij) plus the part

depending on rij . Hence, the “+1” in the last addendum of (26) has to be counted towards ∆θqij .

Let q be partitioned into q′ ∪ q′′, where q′ contains the arcs (i, j) that are “empty but for q”

(P (i, j) = {q}) and q′′ those that also contain other flows, and define the delay slack

δ̄q = δq − σq

rqmin
−∑(i,j)∈q l̄ij −

∑
(i,j)∈q′′

Lr̄ij
wijr

q
ij

(≥ 0) , (27)

i.e., the maximum extra delay that q can tolerate without violating the corresponding WCD

constraint. One can then ensure that the delay of all flows remains feasible by simply adding to

the model the linear admission control constraints

∑
(i,j)∈q

L
wijr

q
ij
rij +

∑
(i,j)∈q′

L
wij

xij ≤ δ̄q q ∈ Q . (28)

Thus, removing assumption (5) for SRP schedulers hardly changes the model, save for adding

as many linear constraints as the flows currently in the network. The overall SRP model with185

worst-case link latency just reads (14)–(20), (25), (28).

3.3. SRP with guaranteed rates in the end-to-end delay

So far we assumed that guaranteed rates only affect the link latency expression. However,

guaranteed rates are also involved in both the lower bound constraints (3) and the minimum rate

term in (4). Constraint (20) becomes

ρ r̄ij
wij − ρ

xij ≤ rij ≤ (wij − r̄ij)xij (i, j) ∈ A , (29)

obtained by just plugging (2) in (3). Note that the upper bound on rij is not affected, because

(1) is related to the reserved rate instead of the guaranteed one. As far as (4) is concerned, the

change is that t in (17) now has to represent 1/gminij instead of 1/rminij . Fortunately, one can

readily extend the approach of (22): just use (2) to get

1

gminij

=
1

min{ (wijrij)/(r̄ij + rij) : (i, j) ∈ p } = max

{
r̄ij + rij
wijrij

=
r̄ij

wijrij
+

1

wij
: (i, j) ∈ p

}
.

We can now exploit the fact that sij = 1/rij and simply replace (19) with

t ≥ (r̄ij/wij)sij + (1/wij)xij (i, j) ∈ A , (30)

irrespectively of the constraints on θij , i.e., of the choice of the scheduler.

However, (4) is not only relevant for (17): it is also the basis of the admission control con-

straints, which are needed when using worst-case formulæ. The impact is limited, though: in the
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delay slack (27), one has to separate the term “σq/rqmin” from the rest, since this now has to be

“σq/gqmin”. That is, one has to consider

δ̄q = δ̃q − σq/rqmin where δ̃q = δq −∑(i,j)∈q l̄ij −
∑

(i,j)∈q′′(Lr̄ij)/(wijr
q
ij) (≥ 0) . (31)

Indeed, since gqmin depends on all the other flows, comprised the new one currently being routed,

the term σq/gqmin is no longer independent of the variables of the problem. However, this can be

dealt with similarly to (30):

1

gqmin
= max

{
1

gqij
: (i, j) ∈ q

}
= max

{
r̄ij + rij
wijr

q
ij

: (i, j) ∈ q
}

.

Hence, introducing extra variables tq for all q ∈ Q, one can rewrite (28) as

∑
(i,j)∈q

L
wijr

q
ij
rij +

∑
(i,j)∈q′

L
wij

xij + tqσq ≤ δ̃q q ∈ Q (32)

(wijr
q
ij)t

q ≥ r̄ij + rij (i, j) ∈ q , q ∈ Q . (33)

In summary, the SRP model where guaranteed rates are used both in the link latency formulæ and190

in defining the end-to-end delay (and therefore the admission control constraints) reads (14)–(18),

(30), (29), (25), (32)–(33).

3.4. Group-based models

The extension of (14)–(21) for GSRP is straightforward when using the approximation (9). The

only non entirely trivial choice is whether to use the lower or the upper approximation of the delay.

However, whichever the choice, the modifications to the formulæ are trivial. In our computational

tests, we have used the lower approximation of the delay, which leads to just replacing (21) with

θij = 3Lsij + (2L/wij)xij . (34)

Clearly, this does not guarantee that the obtained solution is actually delay-feasible. Yet, as

our experiments will show, even this less conservative choice leads to significantly more costly195

solutions than the others, while its computational cost should reasonably be very comparable

to that of the more conservative approach. As already mentioned, no worst-case delay formulæ

of GSRP have been devised yet, and it is deemed very unlikely that they could be in a future.

Hence, no worst-case versions of ADCSP for GSRP can be defined. As an advantage, no admission

control mechanism is required in this case, save for testing (1). One could consider employing the200

more accurate version (8) instead of (9), but this would significantly complicate the mathematical

model. In light of the obtained computational results (cf. §6) we have chosen not to pursue this

approach in this work.
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4. Weakly Rate Proportional Schedulers

We now study the latency models (6)/(11). Similarly to the previous Section, we start with205

the bound model (11), and then extend it to the worst-case one (6).

4.1. WRP with bound assumption

The extension of the base model is straightforward: just replace (21) with

θij = Lsij + (L/wij)|P (i, j)|xij . (35)

Because |P (i, j)| is a constant, this has no impact on the shape of the optimization model. However,

admission control is required, even for the bound case, because the delay of an existing flow q is

increased on all the arcs used by the new flow, i.e., where xij = 1, since |P (i, j)| increases there.

In order to tackle this, one just has to define the delay slack of q as

δ̄q = δq − σq

rqmin
−∑(i,j)∈q

(
L
rqij

+ (|P (i, j)| − 1) L
wij

+ lij + ni
)
. (36)

The term |P (i, j)| − 1 in (36) is due to the fact that “|P (i, j)|” in (11) does not count q, as it

represents the network state before routing it. When defining δ̄q, instead, flow q has already been

routed, hence q ∈ P (i, j) for all (i, j) ∈ q (which in particular means that |P (i, j)| − 1 ≥ 0). It is

now sufficient to add the simple admission control constraint

∑
(i,j)∈q(L/wij)xij ≤ δ̄q q ∈ Q , (37)

i.e., (28) with no need to distinguish between q′ and q′′. Once again admission control only comes

at the cost of one linear constraint for each existing flow. The bound WRP model simply reads

(14)–(20), (35), (37).210

4.2. WRP with guaranteed rates

Also for WRP schedulers, removing assumption (5) from the link latency formula leads to a

model hardly more complex: using (2) in (10) and sij = 1/rij yields

θij = (Lr̄ij/wij)sij + (L/wij)(|P (i, j)|+ 1)xij . (38)

Note that the coefficient of sij in (38) is zero when r̄ij is (i.e., (i, j) ∈ A′). Thus, some of the

auxiliary variables sij and the corresponding conic constraints (18) can actually be avoided.

As far as admission control is concerned, working as in (26), it is easy to see that the increase

in latency for an existing flow q due to the new flow traversing (i, j) ∈ q is

∆θqij = (L/wij)
(
rij/r

q
ij + 1

)
. (39)
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It is then only necessary to define the delay slack as

δ̄q = δq − σq

rqmin
−∑(i,j)∈q

[
L
wij

(
r̄ij
rqij

+ |P (i, j)| − 1
)

+ lij + ni

]
. (40)

Note that P (i, j) here contains q, while in (38) P (i, j) is intended as the set of existing flows in

(i, j) save q, which justifies for the apparently missing “+1” term. Then, the admission control

constraint is once again linear

∑
(i,j)∈q(L/wij)

(
rij/r

q
ij + xij

)
≤ δ̄q , (41)

and the WRP model with guaranteed rates in the link latency reads (14)–(20), (38), (41).

Fortunately, nothing more is required to include guaranteed rates too in the end-to-end delay:215

starting from (41) the same modifications as in §3.3 work, only provided that δ̃q is defined as in

(31) but using (40) as the basic definition instead of (27), i.e., by just removing the term “σq/gqmin”

from (40). Of course, the modified bound constraints (29) have to be used as well. Hence, the

WRP model where guaranteed rates appear in both the link- and the end-to-end delays—and

therefore in the admission control constraints—simply reads (14)–(18), (29)–(30), (38), (32)–(33).220

5. Frame-Based schedulers

The latency (12) of FB schedulers can be regarded as being composed of that of SRP ones, i.e.,

(6), plus the “simple” extra term (L/wij)|P (i, j)| found in (11), plus a further “complex” term.

Obviously, the analysis will then focus on the impact of the latter.

5.1. FB with bound assumption225

Under the bound assumption (5), the “complex” term (when xij = 1) is

L

wij

wij − rij
min{ rij , rminij } . (42)

It is easy to verify that (42) is not a jointly convex function in rij and all the rqij (rminij ). Luckily,

the latter are fixed in this setting and therefore so is rminij . This makes it convex in rij . To realize

this, drop the (i, j) index for notational convenience and consider the function

φ(r) =
w − r

min{ r , rmin } =





φ1(r) = w/r − 1 if r ≤ rmin

φ2(r) = (w − r)/rmin if r ≥ rmin
.

Both φ1 and φ2 are convex, hence the only critical point is r = rmin. However, since w/rmin ≥ 1,

φ′1(r) = −w/r2 and φ′2(r) = −1/rmin, one has

φ′1(rmin) = − w

(rmin)2
= − 1

rmin

( w

rmin

)
≤ − 1

rmin
= φ′2(rmin) ,
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i.e., the derivative is globally non-decreasing, and therefore φ is convex. This would suggest using

the classical “variable splitting” approach to represent a convex piecewise function [22], but a

better representation can be obtained by just observing that not only φ1(rmin) = φ2(rmin), but

also φ1(w) = φ2(w)[ = 0]. It is then easy to verify that φ2(r) ≥ φ1(r) for all r ∈ [rminij , wij ],

whereas φ1(r) ≥ φ2(r) for r ∈ (0, rminij ]. Hence,

φ(r) = max{φ1(r) , φ2(r) } ∀r ∈ [ρ,w] . (43)

Thus, by introducing auxiliary variables vij , one can represent (42) as

θij = Lsij + vij + (L/wij)|P (i, j)|xij (i, j) ∈ A (44)

vij ≥ Lsij − L/wij , vij ≥ (L/rminij )xij − Lrij/(wijrminij ) , vij ≥ 0 (i, j) ∈ A (45)

where, as usual, we have exploited sij = 1/rij . Note that multiplying the constant term wij/r
min
ij

of φ2 by xij in (45) is necessary, because it allows vij to be 0 when rij = xij = 0.

Similarly, admission control constraints for FB schedulers are, basically, those of WRP except

for the term (42). That is, one can use the same definition of delay slack (36), since (42) depends

on the choices made for the new flow, and is therefore not constant. In other words, one can write

the admission control constraint as

∑

(i,j)∈q

L

wij

(
xij +

wij − rqij
min{ rij , rminij }

)
≤ δ̄q (46)

with the δ̄q of (36). Exploiting the already discussed property (42), the SOCP formulation

∑
(i,j)∈q(L/wij)

(
xij + (wij − rqij)zij

)
≤ δ̄q q ∈ Q (47)

zij ≥ 1/rminij , zij ≥ sij (i, j) ∈ q q ∈ Q (48)

is easily seen to properly implement (46). Note that the “1/rminij ” term cannot cause any problems

here: (i, j) ∈ q =⇒ (i, j) /∈ A′ =⇒ rminij > 0. It is also important to remark that neither the sij

nor the zij depend on the flow q. Hence, these can be defined just once for all arcs (i, j) ∈ A, and230

then used to define the admission control constraints for all the flows. Actually, the zij variables

only need to be defined for (i, j) ∈ A′′, i.e., the arcs upon which at least one existing flow is routed.

In summary, the FB bound model is (14)–(20), (44)–(45), (47)–(48).

5.2. FB with guaranteed rates

Removing assumption (5) for FB schedulers leads to formulæ similar to the bound case, al-

though with some differences. The FB formula (12) is the same as (38) plus the extra term

L

wij

r̄ij
min{ rij , rminij } , (49)
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only for (i, j) ∈ A′′; this is quite convenient, because r̄ij = rminij = 0 for (i, j) ∈ A′, making (49)

ill-defined. Note again that (49) depends on the reserved rates rij , even though elsewhere in (12)

the guaranteed rates gij appear. Dropping the (i, j) index, the relevant function is

φ(r) =
1

min{ r , rmin } =





φ1(r) = 1/r if r ≤ rmin

φ2(r) = 1/rmin if r ≥ rmin
.

Since φ′1(rmin) = −1/(rmin)2 < 0 = φ′2(rmin), then φ is convex. Furthermore, (43) holds. Thus,

introducing again the auxiliary variables vij , one can represent (12) by

θij =
L

wij
+

{
(Lr̄ij/wij)(sij + vij) + (L/wij)|P (i, j)|xij if (i, j) ∈ A′′
0 otherwise

(i, j) ∈ A (50)

vij ≥ sij , vij ≥ 1/rminij (i, j) ∈ A′′ (51)

where, again, the variables sij and vij need not be defined for (i, j) ∈ A′.235

Regarding admission control, the latency increase due to the new flow can be seen as being

composed of two terms: the one corresponding to the “WRP part” of the latency formula, and the

one corresponding to (49). The first gives the linear increment (39) of the delay, but the second

gives a nonlinear increment. We can deal with the latter in the usual way: define the delay slack

by (40), i.e., disregarding precisely the FB-specific term, and then add the term corresponding to

(49) for the flow q. All this leads to

∑

(i,j)∈q

L

wij

(
r̄−qij + rij

min{ rij , rminij } +
rij
rqij

+ xij

)
≤ δ̄q , (52)

where r̄−qij =
∑
h∈P (i,j)\{q} r

h
ij . Indeed, the denominator of (49) is r̄, which means “the sum of

all the other flows in the arc”, i.e., barring the one whose delay is being computed. The latter

is p in (49), but is q in (52): therefore, rij has to be included, but rqij has not. Conversely, the

denominator has to be the minimum of rhij for all h, including both p and q, so here rqij is counted

in rminij . Now, the analysis follows well-established steps: for

φ(r) =

{
φ1(r) = (r̄ + r)/r if r ≤ rmin
φ2(r) = (r̄ + r)/rmin if r ≥ rmin

one has r ≤ rmin =⇒ φ1 ≥ φ2, and therefore (43) holds. Hence, (52) can be expressed as

∑
(i,j)∈q(L/wij)

(
zij + rij/r

q
ij + xij

)
≤ δ̄q q ∈ Q (53)

zij ≥ (r̄ij + rij)/r
min
ij , zij ≥ r̄ijsij + 1 (i, j) ∈ q q ∈ Q (54)

Again, (53) is (41) plus the extra term necessary to deal with (49), which requires the new variables

zij . These are “shared” among all admission control constraints, and need only be defined for arcs

in A′′. This is necessary for (54) to work, in that for (i, j) ∈ A′ (54) would give zij ≥ 1 even if
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xij = 0 =⇒ rij = 0, whereas xij = 0 =⇒ zij = 0. The FB model with guaranteed rates in the link

latency then reads (14)–(19), (50)–(51), (53)–(54).240

As in the WRP case, extending the treatment to incorporate guaranteed rates in the end-to-

end delay only requires one to compose already developed pieces. Starting from (53)–(54), the

same modifications as in §3.3 work, only provided that δ̃q is defined as in (31) but using (40) as

the basic definition instead of (27) (i.e., by just removing the term “σq/gqmin” from (40)). Of

course, (29) have to be used. In summary, the FB model where guaranteed rates appear in both245

the link- and end-to-end delay—and therefore in the admission control constraints—simply reads

(14)–(18), (29)–(30), (50)–(51), (32)–(33).

6. Computational results

We have shown that a trade-off potentially exists between more accurate models of the different

scheduling algorithms and the size and complexity of the corresponding optimization models. The250

computational side of this trade-off is explored in this section, where we compare the efficiency—

and, partly, the effectiveness—of the different MI-SOCP formulations. All the experiments have

been performed on a 2.3 Ghz AMD Opteron 6376 with 16Gb RAM, running Ubuntu 12.4. The

models were solved by the state-of-the-art, off-the-shelf solver Cplex 12.6, called single-threaded

via the C API, which basically took all the running time. Unlike in [1], we have purposely255

refrained from developing ad-hoc approaches for these models, since the aim of this work is to

show that one can exploit the flexibility of general-purpose tools to solve many different variants

of the problem, and yet attain reasonable efficiency. Of course, either using different solvers (say,

targeting the natural nonlinear formulation of the problem rather than the MI-SOCP one) or

developing specialized approaches could further improve the solution times.260

6.1. Generating the instances

The test instances were generated as in [1], but we summarize the procedure here for ease of

reading. We used both real-world and synthetic topologies. Real-world ones are the GARR subset

[25] of the Internet Topology Zoo [26] and the SNDlib topologies [27]. Since these networks all have

less than 100 nodes, we also generated two larger random topologies according to the Waxman265

model [28], with n ∈ {100, 200} and density n/m = 0.4. Link capacities were chosen among

{1, 10, 40} Gbps, according to the link’s edge betweeness [29]. We set L = 1500 bytes at all links.

Node delays ni and link delays lij were set equal to L/wij . As for the flows, bursts σ were set to

3L, and rates ρ were taken from a lognormal distribution with µ = 0.8 Gbps and σ2 = 0.05 [29].

Finally, to define flow deadlines δ, we computed—using the bound latency formulæ of SRP—the270

least possible value δmin, under which no routing is possible, and the maximum possible value

δmax, over which the deadline constraint becomes redundant. Then, δ was chosen uniformly within
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the interval [ δmin , δmin+(δmax−δmin)β ] for a fixed parameter β. We set β = 0.2, which produces

tight deadlines.

We then performed network simulations—the details of which are described in [30]—to produce275

different ADCSP instances. In the simulations, flows are generated at exponential interarrival

times with rate λ, and, when admitted, last for an exponentially distributed time, with a mean

µ = 1. Hence, λ determines the network load: the values λ ∈ 0.1, 1, 10, 100 were used to achieve

different levels of network congestion. Flows have been routed assuming the bound FB schedulers

of §5.1 (with admission control), which have the most conservative latency model. Therefore, the280

corresponding network configurations are guaranteed to satisfy all admission control constraints

for the other latency models as well. We sliced the simulation time into 20 time slots, and

disregarded the first 10 to ensure that transitory effects were over. Then, the set of active flows

at the beginning of each of the subsequent 10 time slots were recorded. All simulations were ran 5

times with different seeds, yielding 50 instances per load value and a grand total of 200 instances285

per topology.

6.2. Computational results

The first set of results we report concerns the impact on the computational cost and the usage of

network resources (i.e., the reserved rates) of the different representations of delay, i.e., employing

or not the bound assumption (5). We tested three possible modeling variants:290

• bound (B) models where the assumption (5) is uniformly used;

• semi-worst-case (S) models where worst-case latency formulæ are used, but reserved rates

are kept in the WCD constraint (cf. e.g. §3.2);

• worst-case (W) models where guaranteed rates are uniformly used.

Results are reported in Tables 1, 2, and 3. Each row corresponds to the average results of 600295

instances, corresponding to 50 samples, 4 loads, and the 3 scheduler classes SRP, WRP and FB.

The columns are divided into three groups, one for each of B, S and W models. In each group

of columns, “time” and “nodes” report the average (of the average and maximum, respectively)

solution time and branch-and-bound nodes required to solve each instance. Column “fail” reports

the average ratio between the number of “failed” flows, i.e., those that were not admitted (the300

corresponding ADCSP instance was unfeasible) for the given model and the maximum number of

failed flows amongst all other models. Similarly, column “rate” is the average of the ratio between

the allocated rate, for a given instance, for that model and the maximum allocated rate, for that

same instance, amongst all other models. Both figures provide some indication about how efficient

a given model is in terms of network resources usage. Indeed, a more accurate representation of305

the delay allows the same WCD guarantee to be met with smaller allocated rates, which leaves
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more headway for subsequent flows to be routed. Similarly, a lower failure rate means that, in

a given state, a more accurate representation of the delay allows a feasible routing to be found,

whereas this is not possible if less accurate representations are used. Since we can compute the

allocated rate only for non-failed flows, we assigned a relative rate of 1—corresponding to the310

maximum rate among non-failed flows—to failed ones. We found that not doing so would unduly

skew the results towards schedulers that fail more often.

We remark that aggregating across different scheduler classes is not an obvious choice: in

principle, they can be expected to—and they do in practice—attain different results in terms of

allocated rates, and therefore failures and times. However, the results for the different latency315

classes were similar enough that aggregating them was still possible. This trades a little accuracy

for a lot of table space, making results more readable. Furthermore, more detailed results are

provided later on to discuss the finer nuances of the different schedulers’ behaviour. For this

reason we did not consider GSRP schedulers at this stage: they are defined only for one of the

model classes (B), and since their results are (as we shall see) much worse than the others, they320

would have considerably skewed the aggregated results.

Table 1: Performance of the models on Garr instances

B W S

name time nodes fail rate time nodes fail rate time nodes fail rate

avg max avg max avg max avg max avg max avg max

199901 0.01 0.03 0.02 0.55 0.25 0.87 0.00 0.02 0.03 0.63 0.12 0.31 0.00 0.02 0.01 0.37 0.13 0.18

199904 0.01 0.04 0.01 0.58 0.14 0.73 0.00 0.02 0.00 0.14 0.12 0.52 0.00 0.02 0.00 0.11 0.12 0.12

199905 0.01 0.05 0.01 0.98 0.16 0.74 0.00 0.02 0.00 0.24 0.13 0.53 0.00 0.02 0.00 0.15 0.13 0.13

200109 0.01 0.04 0.01 0.58 0.17 0.72 0.00 0.02 0.00 0.24 0.15 0.51 0.00 0.02 0.00 0.18 0.15 0.14

200112 0.01 0.05 0.00 0.49 0.16 0.73 0.00 0.02 0.00 0.02 0.14 0.52 0.00 0.02 0.00 0.21 0.14 0.14

200404 0.01 0.04 0.01 0.73 0.13 0.74 0.00 0.02 0.00 0.13 0.12 0.54 0.00 0.02 0.00 0.07 0.12 0.12

200908 0.05 0.44 0.13 9.78 0.08 0.70 0.00 0.02 0.00 0.98 0.02 0.31 0.00 0.02 0.00 1.16 0.03 0.03

200909 0.05 0.39 0.18 16.15 0.08 0.70 0.00 0.02 0.00 1.12 0.03 0.30 0.00 0.02 0.00 1.28 0.03 0.03

200912 0.05 0.40 0.17 12.31 0.10 0.70 0.00 0.02 0.00 1.27 0.02 0.30 0.00 0.02 0.00 1.64 0.03 0.03

201001 0.05 0.39 0.18 16.18 0.09 0.70 0.00 0.02 0.00 1.25 0.02 0.30 0.00 0.02 0.00 1.60 0.03 0.03

Tables 1 and 2 show that all instances corresponding to real-life topologies can be solved in

split seconds with all the three models. As one would expect, failures and rates are higher for

the B models, these being the most conservative ones. Interestingly, and somewhat unexpectedly,

the running times of the B models are also visibly higher (although still fairly small) than those325

of the other classes. Despite the fact that S and W models have more constraints and variables,

they are easier to solve in practice. This may be due to the fact that they are, in a different sense,

less constrained: it is easier to find solutions for them than for B. Indeed, the failure ratio for

both S and W models is often visibly smaller than that of the B model, meaning that using the
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Table 2: Performance of the models on SNDlib instances

B W S

name time nodes fail rate time nodes fail rate time nodes fail rate

avg max avg max avg max avg max avg max avg max

abilene 0.00 0.01 0.00 0.08 0.23 0.78 0.00 0.01 0.00 0.00 0.07 0.46 0.00 0.01 0.00 0.00 0.06 0.16

atlanta 0.00 0.01 0.01 0.49 0.18 0.82 0.00 0.01 0.00 0.03 0.05 0.34 0.00 0.01 0.00 0.04 0.04 0.07

cost266 0.00 0.03 0.01 0.82 0.10 0.80 0.00 0.01 0.00 0.03 0.02 0.39 0.00 0.01 0.00 0.01 0.02 0.03

dfn-bwin 0.00 0.01 0.00 0.00 0.17 0.92 0.00 0.01 0.00 0.00 0.00 0.81 0.00 0.01 0.00 0.00 0.00 0.00

dfn-gwin 0.00 0.01 0.00 0.00 0.21 0.91 0.00 0.01 0.00 0.00 0.02 0.66 0.00 0.01 0.00 0.00 0.02 0.02

di-yuan 0.01 0.06 0.53 15.46 0.33 0.84 0.00 0.01 0.00 0.22 0.04 0.41 0.00 0.01 0.01 0.20 0.17 0.18

france 0.00 0.02 0.01 0.40 0.19 0.84 0.00 0.01 0.00 0.00 0.03 0.35 0.00 0.01 0.00 0.01 0.02 0.04

geant 0.00 0.02 0.02 0.67 0.18 0.84 0.00 0.01 0.00 0.09 0.05 0.41 0.00 0.01 0.00 0.06 0.05 0.07

germany50 0.01 0.09 0.07 4.60 0.16 0.84 0.00 0.01 0.00 0.23 0.04 0.37 0.00 0.01 0.00 0.02 0.04 0.06

giul39 0.07 0.78 0.66 36.50 0.24 0.87 0.01 0.03 0.00 1.32 0.00 0.15 0.01 0.04 0.00 0.93 0.00 0.01

india35 0.01 0.06 0.02 1.33 0.19 0.85 0.00 0.01 0.00 0.31 0.04 0.35 0.00 0.01 0.00 0.02 0.04 0.07

janos-us 0.04 0.31 0.29 11.56 0.17 0.81 0.00 0.03 0.03 2.96 0.01 0.17 0.00 0.03 0.01 1.83 0.02 0.02

janos-us-ca 0.07 0.59 0.66 17.72 0.19 0.83 0.00 0.04 0.02 3.28 0.01 0.17 0.01 0.05 0.01 1.99 0.01 0.02

newyork 0.00 0.02 0.02 0.96 0.23 0.88 0.00 0.01 0.00 0.20 0.08 0.42 0.00 0.01 0.00 0.05 0.08 0.12

nobel-eu 0.00 0.04 0.04 1.85 0.18 0.83 0.00 0.01 0.01 0.28 0.06 0.39 0.00 0.01 0.00 0.00 0.07 0.10

nobel-ger 0.00 0.02 0.01 0.45 0.20 0.80 0.00 0.01 0.00 0.00 0.05 0.45 0.00 0.01 0.00 0.00 0.04 0.07

nobel-us 0.00 0.01 0.00 0.00 0.08 0.75 0.00 0.01 0.00 0.02 0.00 0.47 0.00 0.01 0.00 0.01 0.00 0.01

norway 0.01 0.10 0.12 4.24 0.27 0.74 0.00 0.02 0.02 1.22 0.05 0.22 0.00 0.02 0.01 0.64 0.06 0.08

pdh 0.01 0.04 0.28 4.06 0.26 0.74 0.00 0.01 0.05 1.78 0.08 0.28 0.00 0.01 0.01 0.37 0.11 0.11

Table 3: Performance of the models on Waxman instances

B W S

name time nodes fail rate time nodes fail rate time nodes fail rate

avg max avg max avg max avg max avg max avg max

w1-100 0.27 4.85 2.16 35.35 0.28 0.78 0.01 0.04 0.00 0.37 0.00 0.11 0.01 0.07 0.00 0.17 0.00 0.00

w1-200 4.66 95.66 14.27 224.06 0.23 0.79 0.02 0.07 0.00 0.07 0.00 0.12 0.04 0.45 0.01 4.25 0.00 0.00

more accurate representation of the delay has a significant impact on the quality of the obtained330

solutions. In general, failure rates are very similar between the S and W models. However, in a

few cases W models attain higher failure counts, due to a very limited number of cases in which

W models experience numerical issues. Even in the few cases where this is visible (di-yuan and

pdh), the number of flows that fail due to these problems is small, the large difference in ratio

being due to the fact that the overall number of failures is small as well. In fact, conversely, S335

always allocates visibly higher rates than W, as the theory dictates. Hence, solving ADCSP using

W models should, in real-world usage, translate into fewer failures than these of S models (and,

a fortiori, of the B ones), i.e., in better network utilization, due to the fact that lower allocated

rates should allow more other flows to be accepted. Validating such a claim will require extensive

simulations, that are outside the scope of the present work; an initial set of results have already340
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been obtained [30], but more study is necessary. From the running time viewpoint, W occasionally

has larger cost—but only slightly so—than S, which could be expected.

All the above observations are confirmed in the much larger Waxman topologies (Table 3). Here

running times are remarkably and unexpectedly different: the mean running time of B models is

over two orders of magnitude larger than that of S or W ones, and the maximum is well over one345

order of magnitude larger. W models are on average twice as costly as S ones, and their maximum

running time is well over one order of magnitude larger than that of S models. However, unlike

what was found in [1], the average running time is compatible with real-time usage. This is

promising, especially considering that no attempt has been done to reduce running times: the

solver was run with all default parameters, and single-threaded.350

A more detailed recount of the results is given in Table 4 for three specific instances (each taken

from a different set). In the Table, the same statistics are reported, this time with the details of

each scheduler class for the same class of models.

Table 4: Performance of the models and schedulers on individual instances

w1-200 atlanta 199904

model time nodes fail rate time nodes fail rate time nodes fail rate

avg max avg max avg max avg max avg max avg max

B

SRP 3.65 110.99 12.02 161.99 0.00 0.80 0.00 0.01 0.00 0.01 0.05 0.85 0.01 0.03 0.00 0.00 0.12 0.98

GSRP 4.46 83.81 7.84 233.32 0.84 1.00 0.00 0.01 0.00 0.00 0.97 1.00 0.01 0.03 0.00 0.00 1.00 1.00

WRP 6.06 110.28 18.86 262.87 0.00 0.64 0.00 0.02 0.02 0.90 0.04 0.73 0.01 0.03 0.00 0.14 0.12 0.55

FB 4.26 65.72 11.94 247.31 0.69 0.93 0.00 0.01 0.01 0.55 0.43 0.89 0.01 0.07 0.03 1.60 0.17 0.66

S

SRP 0.02 0.07 0.00 0.08 0.00 0.12 0.00 0.01 0.00 0.04 0.04 0.33 0.00 0.01 0.00 0.11 0.12 0.52

WRP 0.02 0.07 0.00 0.08 0.00 0.12 0.00 0.01 0.00 0.04 0.04 0.33 0.00 0.01 0.00 0.11 0.12 0.52

FB 0.02 0.08 0.00 0.06 0.00 0.12 0.00 0.01 0.00 0.01 0.07 0.35 0.00 0.02 0.00 0.20 0.12 0.52

W

SRP 0.04 0.44 0.01 4.35 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.06 0.00 0.02 0.00 0.12 0.12 0.12

WRP 0.04 0.45 0.01 4.35 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.06 0.00 0.02 0.00 0.12 0.12 0.12

FB 0.04 0.47 0.01 4.07 0.00 0.00 0.00 0.01 0.00 0.04 0.06 0.08 0.00 0.02 0.00 0.10 0.12 0.12

The Table shows that GSRP (of which only the B version exists) has the highest failure and

reserved rates. This is clearly due to the extra factor of three in the rate-dependent term. Note355

that we have chosen a lower bound approximation on purpose, so as to discount the hypothesis

that GSRP’s poor performance were due to a pessimistic upper-bound approximation. Despite

this, GSRP always needs to reserve the largest amounts on the arcs to obtain the required level

of WCD, and therefore has by far the worst failure ratio. This is also the reason why it is not

the one with the largest running time: usually, unfeasible instances are solved faster than feasible360

ones. FB is typically the second-worst after GSRP, in terms of both failures and reserved rates.

This is also expected, due to its latency formula having one more term than WRP’s, which in turn

has one more term than SRP’s. In other words, all other things being equal, FB requires larger
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rates to achieve the same WCD. However, there are rare exceptions where B-FB allocates less rate

than B-SRP, as shown in the Garr instance. This can be explained as follows: the FB and WRP365

formulæ contain the term “|P (i, j)|L/wij” where the SRP one has “L/wij”. The FB/WRP term

is therefore typically larger, except in the case where there are no other flows passing through

(i, j) (i.e., (i, j) ∈ A′), in which case it is smaller. Hence, there are cases in which this may lead

SRP to allocate higher rates than FB. Conversely, WRP is never worse than FB, and it can be

better than SRP for the same reason. Indeed, this phenomenon shows up in both the w1-200 and370

the atlanta instances. Remarkably, this does not reflect the actual behavior of the scheduler,

but it is an artifact due to the bound assumption (5). In fact, this only happens in B models:

for S and W ones the artifact disappears, and the natural ordering is always observed where SRP

allocates the least, followed by WRP and FB. In our experiments, the allocations of the different

schedulers for S and W models were almost always identical, with minor differences between FB375

and the other two. The dominating factor in determining allocations is the choice between the B,

S and W model, with the choice of the scheduler playing a very minor role. The same happens for

running times: apart from the B model, the expected behavior consistently shows up where SRP

is the fastest, followed by WRP and then by FB. This is only visible in the w1-200 topology for

the W model, which have longer running times, but even there the difference is negligible.380

In summary, these results indicate that modeling other classes of GPS-derived schedulers than

SRP ones, while complicating the models, does not make the ADCSP problem significantly more

difficult to solve, at least on real-world sized instances. Neither does using more accurate models of

the latency and delay formulæ, i.e., modeling the difference between reserved rates and guaranteed

ones. Surprisingly, this most often results in both better performance in terms of failures and385

allocated rates, and in (sometimes considerably) shorter running times. Hence, the modeling power

allowed by MI-SOCP formulations, combined with the effectiveness of state-of-the-art solvers,

allows one to do away with the bound assumption (5) that has invariably been employed so far.

We believe this paves the way to interesting research developments, as discussed in the next section.

7. Conclusions and future research390

In this paper, we have extended the set of available models for the delay-constrained routing

problem. The extension is threefold:

1. we have shown how to account for the latency formulæ corresponding to the most relevant

classes of GPS-derived schedulers from the literature;

2. we have explicitly introduced the concept of admission control constraints, and shown how395

to implement them for all classes of schedulers;
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3. we have shown how to model the difference between reserved and guaranteed rates, in both

the latency and the delay formulæ, taking into account admission control.

In all these cases, the model remains a MI-SOCP. Provided that the right modeling choices are

made, this allows one to solve the problem for instances of realistic size, and also for larger400

randomly generated ones, in time compatible with the constraints of a real operating environment.

Our results can therefore be of interest for the actual on-line management of a communication

network. First and foremost, they seem to indicate that indeed a nontrivial trade-off exists between

using lower-complexity schedulers, such as GSRP, and the network performance. Characterizing

this trade-off will, however, requires actual network simulations. We have not included them405

in this paper because the focus here was on the relative performance of the different models in

solving the same instances of ADCSP, which is something that would seldom (if ever) happen

during a simulation. Some initial results in this direction have already been obtained [30], but

only limited to a subset of the models. In particular, the results there seem to confirm that the

choice of whether or not to employ the bound assumption (5) (i.e., between models B, S and W,410

where allowed—which is not for GSRP) may be far more relevant than the choice of the scheduler.

However, a nontrivial work is still required to confirm this trend experimentally.

Having established that the basic ADCSP problem is efficiently solvable for realistic instances

also allows to start investigating more complex issues. In particular, all models so far—comprised

the ones developed here—assume that a flow can only be admitted if doing so does not disrupt415

the existing ones, in particular by making them violate their WCD constraints with their current

choice of the path and reserved rates. It might be conceivable, however, that alternative approaches

exist where one path may still be admitted provided that a limited set of changes is allowed on the

existing ones. Alternatively, it may be interesting to explore scenarios in which—say, from time

to time—a global re-routing phase is enacted where a multi-flow problem is solved in order to420

find solutions not affected by the sequence of myopic choices made during the successive routing

of individual flows. Doing this might require to define some more sophisticated notions of the

“fitness” of a global solution, in terms of its capacity to support a set of yet-unknown future flow

requests, than what has been used so far (i.e., just the sum of all the reserved rates across all the

arcs and flows). The need of such a notion seems in fact to emerge from the initial results of [30].425

Any of these possible improvements is very likely to result in much more challenging models due

to either a much larger size, or the fact that our formulations being MI-SOCP often hinged on

the circumstance that all but few of the decisions (paths, rates) were fixed, or both. Hence, it is

likely that such versions of the problem would not be solvable by general-purpose tools, and would

require specific algorithmic developments.430

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgements

The first and second authors gratefully acknowledge the contribution of the project of the

University of Pisa “Mathematical models and computational methods for complex networks”. The

second author has been funded by the FIRB 2013 project RBFR13ZYQL of the Italian Science

and Education Ministry. This research has also been partly undertaken under the auspices of the435

PRIN 2012 Project “Mixed-Integer Nonlinear Optimization: Approaches and Applications” of the

Italian Science and Education Ministry. All the authors gratefully acknowledge the contribution of

the three anonymous referees and of the associate editor of the journal in significantly improving

the presentation of this work.

References440
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