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Abstract. We prove that every one-dimensional real Ambrosio-Kirchheim

normal current in a Polish (i.e. complete separable metric) space can be nat-
urally represented as an integral of simpler currents associated to Lipschitz

curves. As a consequence a representation of every such current with zero

boundary (i.e. a cycle) as an integral of so-called elementary solenoids (which
are, very roughly speaking, more or less the same as asymptotic cycles intro-

duced by S. Schwartzman) is obtained. The latter result on cycles is in fact a

generalization of the analogous result proven by S. Smirnov for classical Whit-
ney currents in a Euclidean space. The same results are true for every complete

metric space under suitable set-theoretic assumptions.

1. Introduction

In [10] it has been shown that every acyclic normal one-dimensional real current in
a complete metric space can be naturally decomposed in curves, the decomposition
preserving the mass and the boundary mass. Namely, roughly speaking, every such
current T can be represented as an integral

T =

∫
Θ(E)

[[θ]] dη(θ)

of simple rectifiable currents [[θ]] associated to injective Lipschitz curves θ : [0, 1]→ E
over some measure η defined on the latter set of curves Θ(E), the mass of the current
M(T ) being equal to the integral of the masses M([[θ]]) (in this particular case equal
to lengths `(θ)) of the respective curves,

M(T ) =

∫
Θ(E)

M([[θ]]) dη(θ) =

∫
Θ(E)

`(θ) dη(θ),

with η-a.e. θ ∈ Θ(E) belonging to the support of T , and a similar decomposition
being valid also for boundary masses. This is a direct generalization to metric
currents introduced first by E. De Giorgi and further studied by L. Ambrosio and
B. Kirchheim in [1] of the analogous result for Whitney currents in a Euclidean
space proven in [13].

The primary goal of this paper is to prove the analogous decomposition result for
all (not only acyclic) real one-dimensional metric currents. This is accomplished in
Corollary 3.3 based on Theorem 3.1 which fills the gap by providing an appropriate
decomposition of cycles, i.e. real one-dimensional metric currents without boundary.
It is curious to mention that the latter theorem is mainly based on the decomposition
of acyclic currents.

Once the primary goal is accomplished, it becomes natural to ask whether any
cycle can be decomposed as an integral of currents associated to closed curves.
Unfortunately, as shown in [13] this is not true even for the Euclidean space, but at
least in a Euclidean space every one-dimensional real Whitney currents with zero
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boundary (i.e. a cycle) can be decomposed in so-called elementary solenoids (called
also solenoidal vector charges in [13]). Such solenoids, i.e. the natural “elementary”
cycles, are strictly related to the asymptotic cycles introduced by S. Schwartzman
in [11] and further studied in [12] (in fact, roughly speaking, up to technical details,
and in particular up to the fact that Schwartzman asymptotic cycles are normally
defined as elements of the space of homology classes [7], one may identify the two
notions). It is worth remarking that these objects appear quite natural in the
problem of representation of homology classes of manifolds (see [7, 9, 8, 6]). The
decomposition of a one-dimensional cycle into such solenoids appeared to be quite
helpful in the study of Mather’s minimal measures [2, 5].

Here we prove the analogous result for Ambrosio-Kirchheim currents in an ar-
bitrary complete metric space. Namely, we introduce the notion of a solenoid as a
current S over a metric space E such that there exists a Lipschitz curve θ : R→ E
with Lip θ ≤ 1 with the property

S = lim
t→+∞

1

2t
[[θx[−t, t]]]

in the appropriately weak sense, while the trace θ(R) of the curve θ is in the support
of S, i.e. θ(R) ⊂ suppS. We show then that, roughly speaking, for every cycle T
with compact support there is a measure η concentrated over the set C of solenoids
of unit mass such that

T =

∫
C

S dη(S),

M(T ) =

∫
C

M(S) dη(S),

and a similar result holds also for arbitrary cycles (not necessarily with compact sup-
port). The result we provide for cycles with compact support in an arbitrary metric
space (Corollary 4.5) is the precise generalization of the result of [13] on decomposi-
tion of cycles in a Euclidean space restricted to cycles with compact support, since
for Ambrosio-Kirchheim normal currents in compact subset of a Euclidean space
the notion of mass coincides with that of the usual Whitney currents. The careful
reader would observe that the result we provide for the general case of currents with
possibly noncompact support (Theorem 4.4) is “almost like” the respective general
result in a Euclidean space setting from [13], the difference standing in the different
definitions of mass for metric currents and for Whitney currents in a Euclidean
space.

It is curious to note that although the technique used to prove Theorem 3.1 which
is the basis for all the results present in this paper resembles the basic idea of [13]
of extending the space E by an “extra dimension” and considering the appropriate
extension of the original current T , the main line of the proof is in a certain sense
opposite to that used in [13]. Namely, here we use the representation result for
acyclic currents from [10] as a starting point, while in [13] one does the contrary,
i.e. first proves the decomposition result for cycles and then deduces the respective
results for acyclic currents from the latter. Therefore, since the proofs in [10] do
not depend on the results of [13], we may consider also the results present in this
paper independent on that of [13] even in the Euclidean setting.

2. Notation and preliminaries

The metric spaces are always in the sequel assumed to be complete. The para-
metric length of a Lipschitz curve θ : [a, b]→ E will be denoted by `(θ). The space
of Lipschitz functions θ : [0, 1]→ E equipped with uniform distance and factorized
by reparameterization will be denoted by Θ(E) (see [10]). Every element of Θ(E)
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therefore represents an oriented rectifiable curve. For a finite Borel measure η over
Θ(E) we set η(i) := ei#η, where ei : Θ(E)→ E are defined by ei(θ) := θ(i), i = 0, 1.

In the sequel we will always assume that the mass measures of the currents we
are dealing with are all tight (in fact, Radon, since the underlying metric space is
complete). This is not restrictive because, as mentioned in [1], the theory of metric
currents remains valid under such a requirement. Thus, all our results hold in every
complete metric space E for normal currents T when its mass measure µT (and the
mass measure of its boundary µ∂T , if appropriate) is tight, and hence, in particular,
for normal currents in a Polish (i.e. complete separable metric) space. Equivalently,
one could assume that the density character (i.e. the minimum cardinality of a
dense subset) of every metric space is an Ulam number. This guarantees that every
finite positive Borel measure is tight (even Radon when the space is complete), is
concentrated on some σ-compact subset and the support of this measure is separable
(see, e.g., proposition 7.2.10 from [4]), and is consistent with the Zermelo-Fraenkel
set theory.

All the measures we will consider in the sequel are signed Borel measures with
finite total variation over some metric space E. The narrow topology on measures
is defined by duality with the space Cb(E) of continuous bounded functions. The
supremum norm over Cb(E) is denoted by ‖ · ‖∞.

For metric spaces X and Y we denote by Lip(X,Y ) (resp. Lipk(X,Y ) and
Lipb(X,Y )) the set of all Lipschitz maps (resp. all Lipschitz maps with Lipschitz
constant k, the set of bounded Lipschitz maps) f : X → Y . If Y = R we write just
Lip(X), Lipk(X), Lipb(X) respectively.

For the metric currents we use the notation from [10] which is almost completely
taken from [1], except mainly the notation for the mass measure. In particular,
Dk(E) = Lipb(E)× (Lip(E))k stands for the space of metric k-forms, its elements
(i.e. k-forms) being denoted by f dπ, where f ∈ Lipb(E), π ∈ (Lip(E))k, Mk(E)
stands for the space of k-dimensional metric currents, Nk(E) stands for the space of
k-dimensional normal metric currents, M(T ) stands for the mass of a current T , and
µT stands for the mass measure associated to this current. The one-dimensional
current associated to a Lipschitz curve θ : [a, b]→ E will be denoted by [[θ]], namely,

[[θ]](f dπ) :=

∫ b

a

f(θ(t)) dπ(θ(t))

for every f dπ ∈ D1(E). Recall that M([[θ]]) ≤ `(θ). The weak topology in Mk(E)
is defined by a family of seminorms {T 7→ |T (ω)| : ω ∈ Dk(E)}. It is clearly a
Hausdorff locally convex topology. The notation S ≤ T means that S is a subcurrent
of T in the sense that M(S) + M(T − S) = M(T ).

3. Decomposition of normal currents in curves

The first important result of this paper is the following statement.

Theorem 3.1. Let T ∈M1(E) satisfy ∂T = 0. Then there is a finite positive Borel
measure η̄ over Θ(E) such that

T (ω) =

∫
Θ(E)

[[θ]](ω) dη̄(θ),

M(T ) =

∫
Θ(E)

M([[θ]]) dη̄(θ) =

∫
Θ(E)

`(θ) dη̄(θ),

for all ω ∈ D1(E), while η̄(0) = η̄(1) = µT and η̄-a.e. θ ∈ Θ(E) belongs to suppT
and has M([[θ]]) = `(θ) = 1.
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To prove this theorem we need some preliminary constructions. Equip the space
E × [0, 1] with the distance

d∞((u1, t1), (u2, t2)) := d(u1, u2) ∨ |t1 − t2|.
Let T ∈M1(E) satisfy ∂T = 0. Define

T ′ := T × µ[[[0,1]]] + µT × [[[0, 1]]] ∈ N1(E × [0, 1]).

Letting PE : (x, t) ∈ E × [0, 1] 7→ x ∈ E and P : (x, t) ∈ E × [0, 1] → t ∈ [0, 1], we
get

PE#T
′ = T, P#T

′ = M(T )[[[0, 1]]].

Further,
∂T ′ = µT ⊗ (δ1 − δ0)

and M(T ′) = M(T ) by Lemma A.9. At last, we have the following statement.

Lemma 3.2. T ′ is acyclic.

Proof. Let C ′ ≤ T ′ be a cycle, and let C := P#C
′. We have

M(P#T
′ − C) + M(C) = M(P#(T ′ − C ′)) + M(P#C

′)

≤M(T ′ − C ′) + M(C ′) = M(T ′) = M(P#T
′),

which means C ≤ P#T
′ = M(T )[[[0, 1]]], and hence C = 0. But M(C) = M(C ′),

since otherwise in the above relationship the inequality would be strict, which is
impossible. Hence, M(C ′) = 0, i.e. C ′ = 0. �

We are now ready to prove the announced result.

Proof of Theorem 3.1. By representation theorem for acyclic one-dimensional cur-
rents [10][theorem 5.1] one has

T ′(ω′) =

∫
Θ(E×[0,1])

[[θ]](ω) dη′(θ),

M(T ′) =

∫
Θ(E×[0,1])

`(θ) dη′(θ),

for some finite positive Borel measure η′ over Θ(E× [0, 1]) and for all ω′ ∈ D1(E×
[0, 1]), while η′-a.e. θ ∈ E × [0, 1] is an arc belonging to suppT ′, and

η′(0) = µT ⊗ δ0, η′(1) = µT ⊗ δ1.
Denoting η̄ := PE#η

′, we get

(3.1)

T (ω) = (PE#T
′)(ω) = T ′(ω ◦ PE) =

∫
Θ(E×[0,1])

[[θ]](ω ◦ PE) dη′(θ),

=

∫
Θ(E×[0,1])

[[PE(θ)]](ω) dη′(θ) =

∫
Θ(E)

[[θ]](ω) dη̄(θ).

This also implies

M(T ) ≤
∫

Θ(E)

M([[θ]]) dη̄(θ) ≤
∫

Θ(E)

`(θ) dη̄(θ),

On the other hand,

(3.2)

∫
Θ(E)

`(θ) dη̄(θ) =

∫
Θ(E×[0,1])

`(PE(θ)) dη′(θ)

≤
∫

Θ(E×[0,1])

`(θ) dη′(θ) = M(T ′) = M(T ),

and hence

(3.3) M(T ) =

∫
Θ(E)

M([[θ]]) dη̄(θ) =

∫
Θ(E)

`(θ) dη̄(θ).
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Further, in (3.2) the inequality is in fact an equality, and hence

`(PE(θ)) = `(θ) ≥ d∞(θ(0), θ(1)) ≥ 1

for η′-a.e. θ ∈ Θ(E × [0, 1]), the latter inequality being true because P (θ(0)) = 0
and P (θ(1)) = 1 for η′-a.e. θ ∈ Θ(E × [0, 1]). Thus `(θ) ≥ 1 for η̄-a.e. θ ∈ Θ(E).
But then from (3.3) one has M(T ) ≥ η̄(Θ(E)). Recall now that η̄(0) = η̄(1) = µT .
This implies M(T ) ≤ η̄(Θ(E)), and therefore M(T ) = η̄(Θ(E)). Thus `(θ) = 1 for
η̄-a.e. θ ∈ Θ(E).

The relationship (3.1) implies also

(∂T )(f) =

∫
Θ(E)

(f(θ(1))− f(θ(0))) dη̄(θ)

=

∫
E

f(x) dη̄(1)(x)−
∫
E

f(x) dη̄(0)(x) =

∫
E

f(x) d(η̄(1)− η̄(0))(x),

so that ∂T = η̄(1)− η̄(0), which gives η̄(0) = η̄(1). Finally, η̄-a.e. θ ∈ Θ(E) belongs
to suppPE#T

′ = suppT . �

The above theorem allows to formulate the following corollary on the structure
of all one-dimensional real metric currents.

Corollary 3.3. Let T ∈ N1(E). Then there is a finite positive Borel measure η̄
over Θ(E) with the total mass η̄(Θ(E)) ≤M(T ) + M(∂T ) such that

T (ω) =

∫
Θ(E)

[[θ]](ω) dη̄(θ),

M(T ) =

∫
Θ(E)

M([[θ]]) dη̄(θ) =

∫
Θ(E)

`(θ) dη̄(θ),

for all ω ∈ D1(E), with η̄-a.e. θ ∈ Θ(E) belonging to suppT .

Proof. Decompose (say, by proposition 3.8 from [10]) T = S+C with S ≤ T acyclic
and C ≤ T a cycle, i.e. ∂C = 0. Use theorem 5.1 from [10] to decompose S in curves
and the above Theorem 3.1 to do the same for C. This gives the result. �

As a toy application we mention here for purely illustrative purposes the following
immediate corollary on nonexistence of nontrivial normal currents in the space
without rectifiable curves.

Corollary 3.4. Let E be a metric space which has no nonconstant Lipschitz curves.
Then Nk(E) contains only the zero current for all k ≥ 1.

Proof. For k = 1 this follows from the Corollary 3.3. For general k proceed by
induction: suppose that the statement is true for k − 1, i.e. Nk−1(E) contains only
the zero current. Let T ∈ Nk(E), and consider an arbitrary πk ∈ Lip(E). Then
for every t ∈ R the slice 〈T, πk, t〉 ∈ Nk−1(E) and hence 〈T, πk, t〉 = 0 by induction
assumption, which by slicing theorem 5.6 from [1] gives Txdπk = 0. Consider now
an arbitrary f dπ ∈ Dk−1(E). Then minding the alternating property of currents
(theorem 3.5 from [1]), we get

|T (f dπ1 ∧ . . . ∧ dπk−1 ∧ dπk)| = |Txdπk(f dπ)| = 0,

so that T = 0. �

4. Decomposition of cycles in solenoids

This section is dedicated to another decomposition result for one-dimensional
real metric currents without boundaries (i.e. cycles). In fact, given the validity
of Theorem 3.1, it is natural to ask whether any cycle can be decomposed as an
integral of (currents associated to) closed curves. As it is shown in [13] this is
unfortunately not true even in the 3-dimensional Euclidean space R3 but at least in
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all Euclidean spaces there is a natural decomposition of cycles in so-called solenoids
(called also solenoidal vector charges in [13]). We will extend this result to generic
metric spaces.

We start with the following corollary of Theorem 3.1.

Corollary 4.1. Let T ∈ M1(E) satisfy ∂T = 0. There is a finite positive Borel
measure η̃ over X := C([0, 1];E) (with the topology of uniform convergence) con-
centrated over Lip1([0, 1];E) such that

T (ω) =

∫
X

[[θ]](ω) dη̃(θ),

M(T ) =

∫
X

`(θ) dη̃(θ) = η̃(X),

for all ω ∈ D1(E), while η̃-a.e. θ ∈ X belongs to suppT , and η̃(0) = η̃(1).

Proof. Let h : Θ(E)→ X send every θ ∈ Θ(E) in its parameterization with constant
speed. It is enough to set then η̃ := h#η̄, where η̄ is provided by Theorem 3.1. �

Now we will prove the following extension statement.

Proposition 4.2. Let η̃ be a Borel measure over C([0, 1];E) satisfying the prop-
erties provided by Corollary 4.1. Then there is a Borel measure η̂ over C(R;E)
(equipped with the topology of uniform convergence over bounded intervals) concen-
trated over Lip1(R;E) such that

(a) π#η̂ = η̃, where π : C(R;E) → C([0, 1];E) is the map defined by π(θ) :=
θx[0, 1],

(b) g±#η̂ = η̂, where g± : C(R;E) → C(R;E) are the shift maps defined by

g±(θ)(t) := θ(t± 1),
(c) for η̂-a.e. θ ∈ C(R;E) one has θ(R) ⊂ suppT .

Remark 4.3. The measure η̂ provided by the above Proposition 4.2 satisfies

(m− n)T (ω) =

m−1∑
i=n

∫
C([0,1];E)

[[θ]](ω) dη̃(θ) =

m−1∑
i=n

∫
Lip1(R;E)

[[π(θ)]](ω) dη̂(θ)

=

m−1∑
i=n

∫
Lip1(R;E)

[[θx[0, 1]]](ω) dη̂(θ)

=

m−1∑
i=n

∫
Lip1(R;E)

[[θx[i, i+ 1]]](ω) dη̂(θ)

=

∫
Lip1(R;E)

[[θx[n,m]]](ω) dη̂(θ)

for all {m,n} ⊂ Z and ω ∈ D1(E). Analogously,

(m− n)M(T ) =

∫
Lip1(R;E)

M([[θx[n,m]]]) dη̂(θ).

Proof. The proof will be achieved in two steps.
Step 1. Without loss of generality we may assume η̃ to be a probability measure.

Let X := C([0, 1];E) be equipped with the usual uniform topology, and let et : X →
E be defined by et(θ) := θ(t). Consider the Borel probability measures η±x over X
defined by the disintegration formulae

η̃ = (e0#η̃)⊗ η+
x = η̃(0)⊗ η+

x ,

η̃ = (e1#η̃)⊗ η−x = η̃(1)⊗ η−x ,
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i.e.

η̃(e) =

∫
E

η+
x (e) dη̃(0)(x) =

∫
E

η−x (e) dη̃(1)(x)

for every Borel e ⊂ X. It is worth remarking that since η̃(0) = η̃(1), then η+
x = η−x ,

while both measures are defined for η̃(0) = η̃(1)-a.e. x ∈ E, so we may omit the
superscripts writing just ηx instead of η±x .

Define now inductively the measures ηk over Xk by setting for all k ∈ N and
Borel e ⊂ Xk,

η1 := η̃,

ηk(e) :=

∫
X

η+
θk−1(1)(e(θ1,...,θk−1)) dηk−1(θ1, . . . , θk−1),

where e(θ1,...,θk−1) := {θ ∈ X : (θ1, . . . , θk−1, θ) ∈ e}, so that in particular,

ηk(e1 × . . .× ek) =

∫
e1×...×ek−1

η+
θk−1(1)(ek) dηk−1(θ1, . . . , θk−1),

η2(e1 × e2) =

∫
e1

η+
θ1(1)(e2) dη1(θ1).

Let πk−1 : Xk = Xk−1×X → Xk−1 and πk−1 : Xk = X×Xk−1 → Xk−1 be defined
by

πk−1(x1, . . . , xk−1, xk) := (x1, . . . , xk−1),

πk−1(x1, x2, . . . , xk) := (x2, . . . , xk),

i.e. as in Lemma B.4. Note that

ηk(e×X) =

∫
e

η+
θk−1(1)(X) dηk−1(θ1, . . . , θk−1) =

∫
e

dηk−1(θ1, . . . , θk−1)

= ηk−1(e)

for every Borel e ⊂ Xk−1, which means πk−1#ηk = ηk−1 for all k ∈ N. On the
other hand,

η2(X × e2) =

∫
X×e2

η+
θ(1)(e2) dη(θ) =

∫
E

η+
x (e2) dη(1)(x) = η(e2) = η1(e2).

Assuming inductively that πk−1
# ηk = ηk−1 for some k ∈ N, k ≥ 2, we get

ηk+1(X × e2 × . . .× ek+1) =

∫
X×e2×...×ek+1

η+
θk(1)(ek+1) dηk(θ1, . . . , θk)

=

∫
e2×...×ek+1

η+
θk(1)(ek+1) dηk−1(θ2, . . . , θk)

= ηk(e2 × . . .× ek+1),

and hence by induction πk−1
# ηk = ηk−1 for all k ∈ N, k ≥ 2.

By Lemma B.4 there is a Borel measure η∗ over XZ such that for pj(x) := (x)j
one has

(4.1) η∗

 l⋂
j=k

p−1
j (ej)

 = ηl−k

 l∏
j=k

ej


for pj(x) = xj . In particular, one has

(i) η∗ is concentrated over (Lip1([0, 1];E))Z,
(ii) π̄#η∗ = η̃, where π̄ : XZ → XZ is the map defined by π̄(θ̄) := θ̄1,
(iii) η∗ is invariant with respect to the shift maps ḡ± : XZ → XZ defined by

(ḡ±(θ̄))k := θk±1,
(iv) for η∗-a.e. θ̄ = {θk}k∈Z one has θk(1) = θk+1(0) for all k ∈ Z,
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(v) for η∗-a.e. θ̄ = {θk}k∈Z one has θk ⊂ suppT for all k ∈ Z.

In fact, (ii) and (iii) are immediate from (4.1), (i) follows from the fact that η̃ is
concentrated over Lip1([0, 1];E), while to prove (iv) it is enough, in view of (iii), to
prove that

η2({(θ1, θ2) ∈ X2 : θ1(1) 6= θ2(0)}) = 0.

The latter equality follows by a simple calculation

η2({(θ1, θ2) ∈ X2 : θ1(1) 6= θ2(0)}) =

∫
X

η+
θ1(1)({θ2 ∈ X : θ1(1) 6= θ2(0)}) dη̃(θ1)

=

∫
E

η+
x ({θ2 ∈ X : x 6= θ2(0)}) dη̃(1)(x) = 0,

the final equality being due to the fact that η+
x is concentrated over e−1

0 (x). Finally,

η∗({θ̄ : θk 6∈ suppT}) = η∗({θ̄ : θ1 6∈ suppT}) by (iii)

= η̃({θ : θ 6∈ suppT}) by (ii)

= 0,

which proves (v).
Step 2. Define the map q : XZ → ER by setting

q(θ̄)(t) := θbtc({t}),

and set η̂ := q#η∗. Clearly, for η∗-a.e. θ̄ = {θk}k∈Z one has q(θ̄) ∈ C(R;E), since
for every k ∈ Z one has

lim
t→k−0

q(θ̄)(t) = θk−1(1) = θk(0), by (iv)

= lim
t→k+0

q(θ̄)(t),

and hence, by (i), q(θ̄) ∈ Lip1(R;E), so that η̂ is concentrated over Lip1(R;E).
Finally, (a) follows from (ii), (b) follows from (iii) and (c) follows from (v). �

We are now in a position to prove our main results regarding decomposition of
cycles in solenoids. Let E be a metric space with distance d and X ⊂ E be a
σ-compact set. Consider X̄ to be equipped with the distance d and consider the
new distance d̃ over X̄ provided by Lemma B.1 (with X̄ in place of E) and let X̃

stand for the completion of X̄ with respect to d̃ (equipped with d̃). We may write,

slightly abusing the notation, Lip(X̃) ⊂ Lip(X̄) identifying each u ∈ Lip(X̃) with

its restriction to X̄. Analogously, Cb(X̃) ⊂ Cb(X̄). Thus, Dk(X̃) ⊂ Dk(X̄), and

hence, Mk(X̄) ↪→Mk(X̃) with continuous immersion (namely, for every T ∈Mk(X̄)

one has that M̃(T ) ≤ M(T ), where M̃ stands for the mass norm in Mk(X̃)). We
start with the following general result.

Theorem 4.4. For every T ∈ N1(E) having ∂T = 0 and supported over a σ-
compact set X ⊂ E there is a finite positive Borel measure η̂ over Lip1(R;E) such
that for η̂-a.e. θ there is a limit

(4.2) Sθ = lim
t→+∞

1

2t
[[θx[−t, t]]] ∈M1(X̃)

in the weak sense of currents in M1(X̃), while

(4.3)
T (ω) =

∫
Lip1(R;E)

Sθ(ω) dη̂(θ) for all ω ∈ D1(X̃),

M(T ) = η̂(Lip1(R;E))

and the trace θ(R) ⊂ suppT ,
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Proof. For every ω ∈ D1(E) and every θ ∈ Lip1(R;E) we define

fω(θ) := [[θx[0, 1]]](ω).

By Remark 4.3 (with m := 1, n := 0) one has that fω ∈ L1(C(R;E); η̂) (so that in
particular fω is finite on C(R;E) for η̂-a.e. θ ∈ C(R;E)). By the ergodic theorem
one has the existence for η̂-a.e. θ ∈ C(R;E) of a limit

(4.4)

f̄ω(θ) := lim
k→+∞

1

2k

k∑
j=−k

fω((g+)j(θ))

= lim
k→+∞,k∈N

1

2k
[[θx[−k, k]]](ω),

and the validity of the relationship

(4.5)

∫
C(R;E)

fω(θ) dη̂(θ) =

∫
C(R;E)

f̄ω(θ) dη̂(θ).

Let {ωj} ⊂ D1(X̃) be as in the proof of Lemma A.1, and let Cj ⊂ C(R;E) be
such a set of curves that (4.4) is valid for ω = ωj and all θ ∈ C(R;E) \ Cj , so that
η̂(Cj) = 0. Set C := ∪jCj . Minding that µ∂ 1

2k [[θx[−k,k]]](E) = 1/2k → 0 as k → ∞
and M

(
1
2k [[θx[−k, k]]]

)
≤ 1, for all θ ∈ Lip1(R;E), hence for η̂-a.e. θ, while the X̃ is

compact, we get that the sequence of currents { 1
2k [[θx[−k, k]]]} is precompact in the

weak topology of currents in M1(X̃). On the other hand, by the choice of C one
has that the latter sequence of currents is convergent in the distance dw, and thus,
by Lemma A.1, also in the weak sense of currents in M1(X̃) for all θ ∈ C(R;E)\C.

We have proven therefore the existence for η̂-a.e. θ ∈ C(R;E) of a limit

Sθ = lim
k→+∞,k∈N

1

2k
[[θx[−k, k]]]

in the weak sense of currents M1(X̃) with∫
C(R;E)

Sθ(ω) dη̂(θ) =

∫
C(R;E)

fω(θ) dη̂(θ) =

∫
C(R;E)

[[π(θ)]](ω) dη̂(θ)

=

∫
C([0,1];E)

[[σ]](ω) dη̃(σ) = T (ω)

for all ω ∈ D1(X̃). We show now that Sθ is in fact as in the statement being proven,
i.e.

Sθ = lim
k→+∞

1

2tk
[[θx[−tk, tk]]]

in the weak sense of currents for every sequence tk → +∞ as k → +∞, because

1

2tk
[[θx[−tk, tk]]]− 1

2btkc
[[θx[−btkc, btkc]]]

=
1

2tk
([[θx[−tk,−btkc]]] + [[θx[btkc, tk]]]) +

1

2btkc

(
1− btkc

tk

)
[[θx[−btkc, btkc]]],

which implies

M
(

1

2tk
[[θx[−tk, tk]]]− 1

2btkc
[[θx[−btkc, btkc]]]

)
≤ 2

2tk
+

(
1− btkc

tk

)
→ 0

as k →∞.
Minding that

M(T ) = η̂(C(R;E)),

and that η̂ is concentrated over Lip1(R;E), we conclude the proof. �

We may now formulate the following important corollaries to the above state-
ment.
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Corollary 4.5. Let E be a metric space. Then for every T ∈ N1(E) with compact
support having ∂T = 0 there is a finite positive Borel measure η over Lip1(R;E)
such that for η-a.e. θ there is a limit

Sθ = lim
t→+∞

1

2t
[[θx[−t, t]]] ∈M1(E)

in the weak sense of currents in M1(E), and the trace θ(R) ⊂ suppT , while

(4.6)

T =

∫
Lip1(R;E)

Sθ dη(θ),

M(T ) =

∫
Lip1(R;E)

M(Sθ) dη(θ) = η(Lip1(R;E)),

so that in particular, Sθ ⊂M1(E) has unit mass for η-a.e. θ ∈ Lip1(R;E). Finally,
we may assume θ(R) ⊂ suppSθ for η-a.e. θ.

Proof. Without loss of generality we assume E to be compact. We now repeat the
proof of Theorem 4.4 with the original space E instead of the compactification X̃,
getting the existence for η̂-a.e. θ of a limit

Sθ = lim
t→+∞

1

2t
[[θx[−t, t]]] ∈M1(E)

in the weak sense of currents in M1(E), such that

T (ω) =

∫
Lip1(R;E)

Sθ(ω) dη̂(θ)

for all ω ∈ D1(E), which implies

M(T ) ≤
∫
C(R;E)

M(Sθ) dη̂(θ) ≤ η̂(C(R;E)) = M(T ),

and hence in particular M(Sθ) = 1 for η̂-a.e. θ ∈ C(R;E).
The trace θ(R) ⊂ suppT for η̂-a.e. θ ∈ C(R;E) by Corollary 4.1. This gives all

the claims of the theorem being proven but the last one for η := η̂. Finally, to prove
the last claim, consider the set

Σ := {S ∈M1(E) : ∂S = 0,M(S) ≤ 1}.
Clearly Σ is a convex compact subset of M1(E), and Σ equipped with the weak
topology of currents is compact and metrizable by Lemma A.1. We claim now that
if S ∈ Σ is extremal, then S = Sθ for some θ ∈ Lip1(R;E). In fact, consider the
representation

(4.7)

S(ω) =

∫
C(R;E)

Sθ(ω) dη(θ),

M(S) =

∫
C(R;E)

M(Sθ) dη(θ) = η(C(R;E))

for all ω ∈ D1(E). Note that (4.7) implies that for every Borel e ⊂ C(R;E), defined

S1(ω) :=

∫
e

Sθ(ω) dη(θ),

for all ω ∈ D1(E), one has S1 ≤ S, because

(S − S1)(ω) :=

∫
C(R;E)\e

Sθ(ω) dη(θ),

and hence

M(S1) ≤ η(e)

M(S − S1) ≤ η(C(R;E) \ e),
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so that M(S1) + M(S − S1) ≤ η(C(R;E)) = M(S). Since S is extremal, then
S1 = λS for some λ ∈ [0, 1] and thus M(S1) = η(e) = λ, so that we can write

(4.8) S(ω) =
1

η(e)

∫
e

Sθ(ω) dη(θ).

If S 6= Sθ, then there are two different curves {θ1, θ2} ⊂ Lip1(R;E) such that

R1 := Sθ1 6= R2 := Sθ2 and for every ε > 0 one has η(B̂ε(Ri)) > 0, where B̂ε(Ri)
stands for the set of θ ∈ C(R;E) in the support of η such that Sθ ∈ Bε(Ri), the
notation Bε(Ri) standing for the ball of radius ε and center Ri in the space of
cycles (with respect to the distance dw provided by Lemma A.1), i = 1, 2. Choose
an ω ∈ D1(E) such that

α := |R1(ω)−R2(ω)| > 0,

and an ε > 0 such that

|R(ω)−Ri(ω)| < α

4
for all R ∈ Bε(Ri), i = 1, 2.

Then∣∣∣ 1

η(B̂ε(Ri))

∫
B̂ε(Ri)

Sθ(ω) dη(θ)−Ri(ω)
∣∣∣

≤ 1

η(B̂ε(Ri))

∫
B̂ε(Ri)

|Sθ(ω)−Ri(ω)| dη(θ) <
α

4
, i = 1, 2,

so that∣∣∣ 1

η(B̂ε(R1))

∫
B̂ε(R1)

Sθ(ω) dη(θ)− 1

η(B̂ε(R2))

∫
B̂ε(R2)

Sθ(ω) dη(θ)
∣∣∣ ≥ α

2
.

This contradicts the equality

1

η(B̂ε(R1))

∫
B̂ε(R1)

Sθ(ω) dη(θ) =
1

η(B̂ε(R2))

∫
B̂ε(R2)

Sθ(ω) dη(θ) = S(ω)

valid in view of (4.8), and thus shows the claim.
Clearly also for every extremal point S of Σ one has M(S) = 1, hence

η(C(R;E)) = M(S) = 1,

and therefore we have proven that for such S one has the representation (4.7) with
S = Sθ for η-a.e. θ ∈ C(R;E). Since it has already been proven that one may assume
in (4.7) that θ(R) ⊂ suppS for η-a.e. θ ∈ C(R;E), then one has θ(R) ⊂ suppSθ. It
remains now to refer to Choquet theorem [3, theorem 4.2] to show the existence of
a representation (3.2) with θ(R) ⊂ suppSθ for η-a.e. θ ∈ Lip1(R;E). �

Another corollary refers to the noncompact case.

Corollary 4.6. For every T ∈ N1(E) having ∂T = 0 and supported over a σ-

compact set X ⊂ E there is a finite positive Borel measure η over Lip1(R; X̃) such
that for η-a.e. θ there is a limit

Sθ = lim
t→+∞

1

2t
[[θx[−t, t]]] ∈M1(X̃)

in the weak sense of currents in M1(X̃), and the trace θ(R) ⊂ suppT , while

(4.9)

T =

∫
Lip1(R;X̃)

Sθ dη(θ),

M̃(T ) =

∫
Lip1(R;X̃)

M̃(Sθ) dη(θ) = η(Lip1(R; X̃)),

so that in particular, Sθ ⊂M1(X̃) has unit mass for η-a.e. θ ∈ Lip1(R; X̃). Finally,
µSθ are concentrated over θ(R) for η-a.e. θ.
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Proof. It is enough to apply Corollary 4.5 with X̃ instead of E. �

Appendix A. Some statements regarding currents

Here we collect some statements regarding currents which are used in this paper.
We start with the following statement regarding metrizability of the weak topology
of currents.

Lemma A.1. Let X ⊂ E be a σ-compact set. Then there is a distance dw over
Mk(X̄) which generates a topology coarser than the weak topology of currents, such
that for every Σ ⊂ Mk(X̄) weakly sequentially precompact, the topology generated
by dw over Σ coincides with the weak one.

In particular, if Σ ⊂Mk(E) is such that the family of measures {µT + µ∂T }T∈Σ

is uniformly tight and there is a C > 0 such that M(T ) +M(∂T ) ≤ C for all T ∈ Σ,
then weak topology of currents is metrizable over Σ.

Proof. Let {Kν} be an increasing sequence of compact subsets of E such that
X = ∪νKν . Notice that Lipm(Kν) is separable with respect to the norm ‖ · ‖∞.
Recall that every function in Lipm(X) can be uniquely extended to a function in
Lipm(X̄). Hence it is possible to endow Lipm(X̄) with a separable metric inducing
uniform convergence on each Kν . Let Zm ⊂ Lipm(X̄) and

Zm,nb ⊂ {u ∈ Lipm(X̄) : ‖u‖∞ ≤ n}

be countable dense subsets with respect to this metric. Set Z := ∪∞m=1Z
m and

Zb := ∪∞m=1,n=1Z
m,n
b . We let then

dw(T, T ′) :=

∞∑
j=1

2−j(|T (ωj)− T ′(ωj)| ∧ 1),

where {ωj} = Zb × (Z)k ⊂ Dk(X̄), i.e. ωj = f j dπj1 ∧ . . . ∧ dπ
j
k with f j ∈ Zb,

πji ∈ Z for all j ∈ N and all i = 1, . . . , k. To show that this is a distance, assume
dw(T, T ′) = 0 for some T ∈ Nk(X̄), T ′ ∈ Nk(X̄). This means T (ωj) = T ′(ωj) for
all ωj . But for any ω = f dπ1 ∧ . . . ∧ dπk ∈ Dk(X̄), letting m ∈ Z be such that

Lipπi ≤ m, Lipf ≤ m, we may find a sequence of ωj = f j dπj1∧. . .∧dπ
j
k ∈ Zb×(Z)k

with f j → f , πji → πi, i = 1, . . . , k, pointwise over X (in fact, even uniformly over

each Kν) as j → ∞ and Lipπji ≤ m, Lipf j ≤ m for all j ∈ N and i = 1, . . . , k.
Then for every x̄ ∈ X̄ and and arbitrary x ∈ X one has

|πji (x̄)− πi(x̄)| ≤ |πji (x̄)− πji (x)|+ |πji (x)− πi(x)|+ |πi(x̄)− πi(x)|

≤ 2md(x̄, x) + |πji (x)− πi(x)|,

which, minding the convergence πji (x)→ πi(x), gives the convergence πji (x̄)→ πi(x̄)

as j → ∞. Hence, πji → πi, i = 1, . . . , k (and analogously f j → f) pointwise over
X̄, and thus by the continuity property of currents we get T (ω) = T ′(ω) for all
ω ∈ Dk(X̄), which means T = T ′. Clearly, the topology induced by dw is coarser
than the weak topology of currents.

Let now Tν ∈ Σ, where Σ be as in the statement of the lemma being proven, and
assume that dw(Tν , T̄ )→ 0 for some T̄ ∈Mk(X̄), so that Tν(ωj)→ T̄ (ωj) for each
ωj ∈ Zb × (Z)k as ν → ∞. Under the assumptions on Σ, every subsequence of Tν
has a further subsequence (all subsequences not relabeled) such that Tν ⇀ T in the
weak sense of currents, hence also dw(Tν , T ) → 0 as ν → ∞. Hence dw(T̄ , T ) = 0,
i.e. T̄ = T , and therefore the whole sequence {Tν} converges to T in the weak sense
of currents.

In the particular case indicated in the statement we let {Kν} be an increasing
sequence of compact subsets of E such that µT (Kν) +µ∂T (Kν) ≤ 1/ν, X := ∪νKν ,
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and refer to the fact that Σ is sequentially precompact in the weak topology of
currents by theorem 5.2 from [1]. �

Remark A.2. In the above Lemma A.1 it is possible to choose the distance dw over
Mk(X̄) so as to have additionally the semicontinuity property for masses

(1.1) M(TxU) ≤ lim inf
ν

M(TνxU)

for every open U ⊂ X̄, and in particular

M(T ) ≤ lim inf
ν

M(Tν)

whenever dw(Tν , T )→ 0. In fact, for this purpose let {xi} ⊂ X̄ stand for a count-
able dense subset of X̄, and consider the countable family of open sets F = {Uj}
consisting of all finite unions of open balls Brj (xi), where {rj} = Q is the enumer-

ation of rational numbers. Let also pk stand for the projection map from Rk to
the Euclidean unit ball B1(0) ⊂ Rk. Now, in the proof of the above Lemma A.3

when constructing Zb one should first add to Z̃b := ∪∞m=1,n=1Z
m,n
b to each k-uple

of functions (f1, . . . , fk) ⊂ Z̃b also the function pk(f1(·), . . . , fk(·)), and then add to
the obtained set of functions (let us call it Z ′b) all functions of the form u1Uj for all
u ∈ Z ′b and Uj ∈ F thus forming the set Zb. Now, to prove (1.1) it is enough to
prove

(1.2)

k∑
i=1

T (fi dπi) ≤ lim inf
ν

M(TνxU)

whenever
∑k
i=1 fi ≤ 1U and Lipπi ≤ 1. One can then find sequences {f ji }∞j=1 ⊂ Zb

and {πνi }∞j=1 ⊂ Z such that
∑k
i=1 f

j
i ≤ 1U , Lipπji ≤ 1 and

f ji → fi, πji → πi

pointwise as j →∞. Then

lim inf
ν

M(TνxU) ≥ lim inf
ν

k∑
i=1

Tν(f ji dπ
j
i )

≥
k∑
i=1

lim inf
ν

Tν(f ji dπ
j
i ) =

k∑
i=1

T (f ji dπ
j
i ),

and taking a limit in the above inequality as j →∞ we get (1.2), and hence (1.1).

Lemma A.3. If Tν ∈ Mk(E) and T ∈ Mk(E) be such that Tν ⇀ T in the weak
sense of currents and M(Tν) → M(T ) as ν → ∞, then µTν ⇀ µT in the narrow
sense of measures.

Proof. One has µTν (E)→ µ(E) and

µT (U) ≤ lim inf
ν

µTν (U)

for every open U ⊂ E, and therefore µTν ⇀ µT in the narrow sense of measures by
theorem 8.2.3 from [4]. �

Remark A.4. It is easy to observe that the result of the above Lemma A.3 re-
mains true if the condition Tj ⇀ T in the weak sense of currents is substituted
by the weaker one dw(Tj , T ) → 0 once the distance dw satisfies the semicontinuity
property (1.1) (the proof is word-to-word identical to the above one).

The following lemma allows to pass to diagonal subsequences in the weak con-
vergence of currents.
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Lemma A.5. Let E be a metric space, T ∈ Nk(E), Tj ∈ Nk(E) and Tmj ∈ Nk(E)
be such that

Tj ⇀ T as j →∞,
Tmj ⇀ Tj as m→∞,

in the weak sense of currents, and

M(Tj)→M(T ), M(∂Tj)→M(∂T ) as j →∞,
M(Tmj )→M(Tj), M(∂Tmj )→M(∂Tj) as k →∞.

Then there is a subsequence of m = m(j) such that T
m(j)
j ⇀ T in the weak sense

of currents, µ
T
m(j)
j

⇀ µT and µ
∂T

m(j)
j

⇀ µ∂T in the narrow sense of measures as

j →∞.

Proof. Note that under the conditions of the statement being proven

µTj ⇀ µT , µ∂Tj ⇀ µ∂T as j →∞,
µTmj ⇀ µTj , µ∂Tmj ⇀ µ∂Tj as m→∞,

in the narrow sense of measures by Lemma A.3.
Let Kν ⊂ E and Kj

ν ⊂ E be such compact sets that

µTj (K
c
ν) + µ∂Tj (K

c
ν) ≤ 1/ν for all j ∈ N,

µTmj ((Kj
ν)c) + µ∂Tmj ((Kj

ν)c) ≤ 1/ν, for all m ∈ N.

Note that setting

X :=
⋃
j,ν

Kj
ν ∪

⋃
ν

Kν ,

we have that all Tj , T
m
j and T are concentrated over X̄. Let dw stand for the

distance over Nk(X̄) provided by Lemma A.1, and denote by ‖·‖0 the Kantorovich-
Rubinstein norm metrizing the narrow topology on positive finite Borel measures
over X̄ (see [4][theorem 8.3.2]). For every n ∈ N choose a j = j(n) and m = m(n)
such that

dw(Tj , T ) ≤ 1

n
, dw(Tmj , Tj) ≤

1

n
,∥∥µTj − µT∥∥0

≤ 1

n
,
∥∥µ∂Tj − µ∂T∥∥0

≤ 1

n
,∥∥∥µTmj − µTj∥∥∥0

≤ 1

n
,
∥∥∥µ∂Tmj − µ∂Tj∥∥∥0

≤ 1

n
.

Clearly, with this construction

(1.3) T = lim
j→∞

Tj = lim
j→∞

T
m(j)
j

in distance dw. But the sequences {µ
T
m(j)
j
} and {µ

∂T
m(j)
j
} converge in the norm

‖·‖0 (hence also in the narrow sense of measures), and therefore, they are uniformly
tight by the Prokhorov theorem for nonnegative measures (theorem 8.6.4 from [4]).
Thus, by Lemma A.1, the convergence in (1.3) is also in the weak topology of
currents. �

The following lemma is in fact implicitly contained in [10] in the sense that its
arguments are widely used in that paper. We make it explicit here for the readers’
convenience.

Lemma A.6. Let E be a Banach space with metric approximation property, T ∈
Nk(E) with µT and µ∂T concentrated over a σ-compact set. Then there is a sequence
of currents Tn ∈ Nk(En) supported over some finite dimensional subspaces En ⊂ E,
such that Tn ⇀ T weakly as currents in Mk(E), µTn ⇀ µT and µ∂Tn ⇀ µ∂T in the
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narrow sense of measures as n → ∞. In particular, if k = 1, then identifying the
zero-dimensional currents with measures one has (∂Tn)± ⇀ (∂T )± in the narrow
sense of measures as n→∞.

Remark A.7. From the proof of the above Lemma it is clear that when T is a cycle
(i.e. ∂T = 0) with bounded support, then Tn are cycles as well.

Proof. Let {Kν} be an increasing sequence of compact subsets of E such that µT
and µ∂T are concentrated on ∪νKν , and let Pν be a finite rank projection of norm
one such that ‖Pνx − x‖ ≤ 1/ν for all x ∈ Kν . Thus Pνx → x as ν → ∞ for all
x ∈ ∪νKν .

Consider first the case when suppT is bounded. Let Tn := Pn#T . Then Tn ⇀ T
in the weak sense of currents. In fact, for every f dπ ∈ Dk(E) with Lipπi ≤ 1 for
all i = 1, . . . , k we have

|T (f ◦ Pn dπ ◦ Pn)− T (f dπ)| ≤ |T (f ◦ Pn dπ ◦ Pn)− T (f ◦ Pn dπ)|+
|T (f ◦ Pn dπ)− T (f dπ)|

≤
k∑
i=1

∫
E

|f ◦ Pn| · |πi ◦ Pn − πi| dµ∂T+

Lip f

k∑
i=1

∫
E

|πi ◦ Pn − πi| dµT+

|T (f ◦ Pn dπ)− T (f dπ)| by proposition 5.1 of [1]

≤ (‖f‖∞ + Lip f)k

∫
E

‖Pnx− x‖ d(µ∂T + µT )+

|T (f ◦ Pn dπ)− T (f dπ)|,

all the terms in the right-hand side tending to zero as n → ∞ by the choice of Pn
(the first one by Lebesgue theorem, recalling that ‖Pnx−x‖ ≤ 2‖x‖ and the support
of T , and hence of ∂T , is bounded, while the last term because f(Pn(x)) → f(x)
for µT -a.e. x ∈ E).

Further, we have M(Tn) ≤ M(T ) which together with lower semicontinuity of
the mass with respect to weak convergence gives M(Tn) → M(T ), and the latter
implies µTn ⇀ µT in the narrow sense of measures as n→∞. In the same way one
shows that µ∂Tn ⇀ µ∂T .

For the general case of a current T with possibly unbounded support, we approx-
imate T by a sequence {Tν} ⊂Mk(E), such that each Tν has bounded support and
M(Tν − T ) + M(∂Tν − ∂T ) → 0 as ν → ∞ (for this purpose just take Tν := Txgν
for a gν ∈ Lip1(E) with bounded support having 0 ≤ gν ≤ 1 and gν = 1 on Bν(0)).
Approximating now each Tν by the currents Tnν as above, and choosing a diagonal
subsequence provided by Lemma A.5, we get the result. �

Lemma A.8. Let E be a finite-dimensional normed space endowed with the norm
‖ · ‖, and T ∈M1(E). Then

(1.4) T (f dπ) =

∫
E

f(x)(∇π(x), l(x)) dµT (x),

when π ∈ C1(E), for some Borel measurable vector field l : E → E satisfying
‖l(x)‖ = 1 for µT -a.e. x ∈ Σ, where (·, ·) stands for the scalar product of vec-
tors.

Proof. The representation of T in the form (1.4) with l ∈ L∞(E;µT ) is due to
theorem 1.3 from [16] when µT � Ln; the general case follows by approximating T
by a sequence of Tk ∈M1(E) with Tk ⇀ T , µTk ⇀ µT as k → +∞, and µTk � Ln
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for all k ∈ N. Further, minding that ‖∇π(x)‖′ ≤ Lipπ for all x ∈ E, where ‖ · ‖′
stands for the norm in the space E′ dual to E, the representation (1.4) implies

|T (f dπ)| ≤
∫
E

f(x)‖∇π(x)‖′ · ‖l(x)‖ dµT (x) ≤ Lipπ

∫
E

f(x)‖l(x)‖ dµT (x),

so that, by the definition of the mass measure of a metric current one has µT ≤
‖l‖µT . This implies ‖l(x)‖ ≥ 1 for µT -a.e. x ∈ Σ. To prove the opposite inequality,
let a : Rn → Rn be a Borel measurable vector field with ‖a(x)‖′ = 1 such that
(a(x), l(x)) = ‖l(x)‖ (such a vector field exists, say, in view of corollary A.2.1
of [15]). Denote for the sake of brevity µ := ‖l‖µT . For a given ε > 0, we choose a
finite δ-net {ci}ki=1 of the unit sphere {‖x‖′ = 1}, where δ = ε/µ(E), and set

Ei := {‖a(x)− ci‖′ ≤ δ}
D1 := E1, Di := Ei \ ∪i−1

j=1Di,

so that for aε :=
∑k
i=1 1Dici one has∫

E

‖a(x)− aε(x)‖ dµ =

k∑
i=1

∫
Di

‖a(x)− ci‖ dµ

≤ δ
k∑
i=1

µ(Di) = δµ(E) ≤ ε.

Letting πi : E → R be a Lipschitz function with Lipπi = 1 and ∇πi = ci, one gets

µT ({l > 1 + α}) ≥
k∑
i=1

T
(
1{l>1+α}1Di dπi

)
=

∫
{l>1+α}

(aε, l(x)) dµT (x)

≥
∫
{l>1+α}

(a, l(x)) dµT (x)−
∫
E

‖a− aε‖′ · ‖l(x)‖ dµT (x)

≥ (1 + α)µT ({l > 1 + α})− ε.

Sending ε → 0+, we get µT ({l > 1 + α}) ≥ (1 + α)µT ({l > 1 + α}), which can be
only true when µT ({l > 1 + α}) = 0. Since α > 0 can be taken arbitrary, we get
‖l‖ ≤ 1 which concludes the proof. �

Now we consider another construction which is used in the paper. Let (Ei, di)
be metric spaces, i = 1, 2, T1 ∈ M1(E1) and µ2 ∈ M0(E2). We define the current
T1 × µ2 ∈M1(E1 × E2) by setting

(1.5) (T1 × µ2)(ω) :=

∫
E2

T1(ω(·, x2)) dµ2(x2)

for every ω = f dπ ∈ D1(E1 × E2). Analogously we define µ1 × T2 ∈M1(E1 × E2)
for T2 ∈M1(E2) and µ1 ∈M0(E1).

Lemma A.9. Let (Ei, di) be complete spaces, Ti ∈ N1(Ei), i = 1, 2, and

T := T1 × µT2
+ µT1

× T2 ∈ N1(E1 × E2).

Then M(T ) = M(T1)M(T2), if the distance d in E1 × E2 is defined by

d((x1, x2), (x′1, x
′
2)) := d1(x1, x

′
1) ∨ d2(x2, x

′
2).

Proof. Let us first observe that it is enough to show

(1.6) M(T ) ≤M(T1)M(T2).
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In fact, denoting by P1 : E1 × E2 → E1 the projection map P1(x1, x2) := x1, we
have

P1#(T1 × µT2) = M(T2)T1, P1#(µT1 × T2) = 0,

so that

M(T ) ≥M(P1#T ) = M(T1)M(T2).

We divide the proof of the remaining claim (1.6) in three steps.
Step 1. Consider the case when Ei are finite-dimensional normed spaces with

norms ‖ · ‖i. Then E1 ×E2 is equipped with the norm ‖(x1, x2)‖ := ‖x1‖1 ∨ ‖x2‖2.
By Lemma A.8 we may assume

Ti(fi dπi) =

∫
Ei

fi(xi)(∇πi(xi), li) dµTi(xi), ‖li‖Ei = 1,

for every fi dπi ∈ D1(Ei). Then, for f dπ ∈ D1(E1 × E2) one has

T (f dπ) =

∫
E2

(∫
E1

f(x1, x2)(∇π(x1, x2), l1) dµT1
(x1)

)
dµT2

(x2)

+

∫
E1

(∫
E2

f(x1, x2)(∇π(x1, x2), l2) dµT2(x2)

)
dµT1(x1)

=

∫
E1×E2

f(x1, x2)(∇π(x1, x2), l) dµT1 ⊗ µT2(x1, x2),

where l := (l1, 0)+(0, l2) = (l1, l2) ∈ E1×E2. Since ‖l‖ = 1, we have by Lemma A.8
that µT = µT1 ⊗ µT2 , so that in particular M(T ) = M(T1)M(T2).

Step 2. We now show this result for the case when both Ei are Banach spaces with
metric approximation property. Let Tni ∈ M1(Ei) be normal currents supported
over some finite-dimensional subspaces of Ei such that Tni ⇀ Ti in the weak sense
of currents, while µT in ⇀ µTi as n → ∞ (such sequences of currents exist due to

Lemma A.6, with T in := Pn#Ti in the notation of its proof). We claim that for

Tn := Tn1 × µTn2 + µTn1 × T
n
2 ∈ N1(E1 × E2)

one has Tn ⇀ T in the weak sense of currents as n→∞. This would complete the
proof of this step since then

M(T ) ≤ lim inf
n

M(Tn)

= lim inf
n

M(Tn1 )M(Tn2 ) (by Step 1)

= lim
n

M(Tn1 ) lim
n

M(Tn2 ) = M(T1)M(T2).

To show the claim consider an arbitrary ω = f dπ ∈ D1(E1 × E2). One has

(1.7)

∫
E2

Tn1 (ω(·, x2)) dµTn2 (x2) =

∫
E2

(Tn1 − T1)(ω(·, x2)) dµTn2 (x2)

+

∫
E2

T1(ω(·, x2)) dµTn2 (x2).

But (Tn1 − T1)(ω(·, x2)) → 0 since Tn1 → T1, and moreover, the above conver-
gence is uniform over compact subsets of E2. In fact, xn2 → x2 in E2 implies
f(Pn(·), xn2 ) → f(·, x2), pointwise, and hence also in µT1

(because ‖f(·, xn2 )‖∞ ≤
‖f‖∞), and π(·, xn2 )→ π(·, x2), pointwise with Lipπ(·, xn2 ) ≤ Lipπ, so that

Tn1 (ω(·, xn2 )) = T1(ω(Pn(·), xn2 ))→ T1(ω(·, x2))
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as n→∞. Therefore,∣∣∣∣∫
E2

(Tn1 − T1)(ω(·, x2)) dµTn2 (x2)

∣∣∣∣ ≤ ∫
E2

|(Tn1 − T1)(ω(·, x2))| d(Pn#µT2)(x2)

=

∫
E2

|(Tn1 − T1)(ω(·, Pn(x2)))| dµT2(x2)→ 0

as n→ +∞ by Lebesgue dominated convergence theorem, minding that

|(Tn1 − T1)(ω(·, Pn(x2)))| ≤ (M(Tn1 ) + M(T1))‖f‖∞Lipπ ≤ 3M(T1)‖f‖∞Lipπ

when n is sufficiently large. On the other hand, the map x2 ⊂ E2 7→ T1(ω(·, x2))
is bounded by M(T1)‖f‖∞Lipπ and continuous by the basic properties of currents,
because, as just shown, xk2 → x2 in E2 implies f(·, xk2) → f(·, x2) in µT1

and
π(·, xk2) → π(·, x2) pointwise with uniformly bounded Lipschitz constants. There-
fore, ∫

E2

T1(ω(·, x2)) dµTn2 (x2)→
∫
E2

T1(ω(·, x2)) dµT2
(x2),

since µT 2
n
⇀ µT2

as n→∞. Thus, from (1.7) we get∫
E2

Tn1 (ω(·, x2)) dµTn2 (x2)→
∫
E2

T1(ω(·, x2)) dµT2(x2).

Analogously we obtain∫
E1

Tn2 (ω(x1, ·)) dµTn1 (x1)→
∫
E1

T2(ω(x1, ·)) dµT1
(x2),

and hence the claim.
Step 3. In view of lemma 5.5 from [10] and of the previous step of the proof the

result is proven in the case E1 = E2 = `∞. If Ei are arbitrary complete metric
spaces, we may assume without loss of generality that they be Polish (otherwise
just take suppTi in place of Ei). Denoting then by ji : Ei → `∞ the isometric
imbeddings, and minding that µji#Ti = ji#µTi , we get that

j1#T1 × µj2#T2 + µj1#T1 × j2#T2 = (j1, j2)#T.

But then M((j1, j2)#T ) ≤ M(j1#T1)M(j2#T2) = M(T1)M(T2), but since the map
(j1, j2) : E1 × E2 → `∞ × `∞ is an isometry, then M(T ) = M((j1, j2)#T ), and the
proof is completed. �

Appendix B. Auxiliary lemmata from probability theory

Here we collect some more or less folkloric statements (or something “around”
mathematical folklore) from abstract probability theory which are used in the paper.
We start with the following compactification result which is a variation on the theme
of lemma 3.1.4 from [14].

Lemma B.1. Let (E, d) be a separable metric space. Then there is a new distance

d̃ ≤ d over E topologically equivalent to d such that (E, d̃) is totally bounded. In

particular, denoting by Ẽ the completion of E with respect to d̃ we have that Ẽ
is compact, while the space C(Ẽ) = Cb(Ẽ) is separable. Thus, letting Cu(E, d̃) to
stand for the set of bounded functions uniformly continuous over E with respect to
d̃, we get the existence of a countable set {fk} ⊂ Cu(E, d̃) dense in Cu(E, d̃) in the
uniform norm ‖ · ‖∞.

Proof. Let {xk} ⊂ E stand for a countable dense set in E, and consider the map
g : E → [0, 1]N defined by

gn(x) :=
d(x, xn)

1 + d(x, xn)
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for all x ∈ E. Note that [0, 1]N is compact when equipped with the product topology,
while the latter may be metrized, say, by the distance

d̂(x, y) :=

∞∑
k=1

|xk − yk|
2k

.

Thus, defining

d̃(x, y) := d̂(g(x), g(y))

for all {x, y} ⊂ E × E, we get that (E, d̃) is totally bounded.
Now, clearly,

d̃(x, y) =

∞∑
k=1

1

2k

∣∣∣∣ d(x, xk)

1 + d(x, xk)
− d(y, xk)

1 + d(y, xk)

∣∣∣∣
≤
∞∑
k=1

1

2k
|d(x, xk)− d(y, xk)| ≤

∞∑
k=1

1

2k
d(x, y) = d(x, y).

Vice versa, d̃(yj , y) → 0 for some y ∈ E implies gn(yj) → gn(y), and hence
d(yj , xn)→ d(y, xn) for all n ∈ N as j →∞. Then

d(yj , y) ≤ d(yj , xn) + d(y, xn)→ 2d(y, xn),

and hence, since xn is an arbitrary element of a dense set in E, we get d(yj , y)→ 0
as j →∞.

Hence, denoting by Ẽ the completion of E with respect to d̃ we have that Ẽ
is compact, and therefore the space C(Ẽ) = Cb(Ẽ) is separable. Further, every

f ∈ Cb(Ẽ) is clearly uniformly continuous. Vice versa, if f ∈ Cu(E, d̃), then for
every fundamental sequence {yj} ⊂ E one has that {f(yj)} ⊂ R is fundamental,

and hence f can be extended by continuity to a function from C(Ẽ). Thus we may

identify Cu(E, d̃) with C(Ẽ), so that the last claim of the lemma being proven is

just separability of C(Ẽ). �

Remark B.2. For the case of a Euclidean space E := Rn (or, more generally, for a
space with Heine-Borel property, i.e. a space where closed balls are compact) the
above Lemma B.1 gives just the ordinary Alexandrov one-point compactification
Ẽ. In fact, if a sequence {yk} ⊂ E is fundamental with respect to the new distance

d̃, then so is the sequence {d(yk, xn)/(1 + d(yk, xn))} ⊂ R for each n ∈ N. Then
either of the following two separate cases may happen.

(i) d(yk, xn)/(1 + d(yk, xn))→ 1, which means d(yk, xn)→∞ for some n ∈ N,
which happens if and only if yk → ∞ (i.e. d(yk, y) → ∞ for all y ∈ E) as

k →∞. This is the case when the {yk} determines the point ∞ ∈ Ẽ.
(ii) The sequence {yk} is uniformly bounded (note that the case of yk →∞ as

k →∞ only for a subsequence of {yk} is excluded since otherwise one would
have d(yk, xn)/(1+d(yk, xn))→ 1 along this subsequence, and hence for the
whole sequence, since the latter sequence of numbers is fundamental). Then
up to a subsequence (not relabeled) yk → y ∈ E, hence d(yk, xn)→ d(y, xn),
and therefore also d(yk, xn)/(1 + d(yk, xn)) → d(y, xn)/(1 + d(y, xn)) for
all n ∈ N as k → ∞. Again, the latter convergence must be now valid
for the whole original sequence, which means that the same must be true
also for convergence d(yk, xn) → d(y, xn). Now, for any other convergent
subsequence of {yk} (again not relabeled), say, yk → z ∈ E, one would have
d(yk, xn) → d(z, xn), which implies d(y, xn) = d(z, xn) for all n ∈ N. This
means y = z and hence the whole sequence {yk} is convergent to y ∈ E.

Summing up, we have Ẽ = E ∪ {∞}. Therefore, Cu(E, d̃) consists of continuous
(with respect to d) functions having (finite) limits at infinity.
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Remark B.3. In the case of a Euclidean space E := Rn for every compact K ⊂ E
there is a C > 0 such that

d(y, z) ≤ Cd̃(y, z) for all (y, z) ∈ K ×K.

To show this suppose the contrary, i.e. the existence of {(yk, zk)} ⊂ K × K such
that

lim
k

d̃(yk, zk)

d(yk, zk)
→ 0,

and thus

lim
k

∣∣∣∣ d(yk, xn)

1 + d(yk, xn)
− d(zk, xn)

1 + d(zk, xn)

∣∣∣∣ 1

d(yk, zk)
= 0,

for all n ∈ N, which is only possible when

(2.1) lim
k

|d(yk, xn)− d(zk, xn)|
d(yk, zk)

= 0,

for all n ∈ N. Since by compactness of K we may assume without loss of generality
that zk → z and yk → y as k → ∞, then the above equality is only possible once
and in particular y = z. But for xn 6= y the relationship

d(yk, xn)− d(zk, xn)

d(yk, zk)
=

y − xn
|y − xn|

· yk − zk
|yk − zk|

+ o(1)

for k →∞ holds. Since up to a subsequence (not relabeled) (yk− zk)/|yk− zk| → e
as k →∞ for some unit vector e, then choosing an n ∈ N such that

y − xn
|y − xn|

· e > 0,

we get a contradiction with (2.1).

We also use in the paper the following easy consequence of corollary 7.7.2 from [4]
(i.e. of the Kolmogorov extension theorem).

Lemma B.4. Let (X,Σ) be a measure space (X being a metric space and Σ being
its Borel σ-algebra) and ηk be (Borel) tight probability measures over Xk satisfying
the following compatibility conditions:

πk−1#ηk = ηk−1,

πk−1
# ηk = ηk−1,

where πk−1 : Xk = Xk−1 × X → Xk−1 and πk−1 : Xk = X × Xk−1 → Xk−1 are
defined by

πk−1(x1, . . . , xk−1, xk) := (x1, . . . , xk−1),

πk−1(x1, x2, . . . , xk) := (x2, . . . , xk).

Then there is a probability measure η∗ over XZ such that

η∗

 l⋂
j=k

p−1
j (ej)

 = ηl−k

 l∏
j=k

ej

 , ej ∈ Σ,

where pj : XZ → X is defined by pj(x) := (x)j.
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