
Submitted to:
Science of Computing Programming

c© C. Bodei, V.D. Dinh, & G-L. Ferrari
This work is licensed under the
Creative Commons Attribution License.

Checking Global Usage of Resources
Handled with Local Policies ∗

Chiara Bodei, Viet Dung Dinh and Gian-Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy

{chiara,dinh,giangi}@di.unipi.it

We present a methodology to reason about resource usage (acquisition, release, revision,...) and, in
particular, to predict bad usage of resources. Keeping in mind the interplay between local and global
information that occur in application-resource interactions, we model resources as entities with local
policies and we study global properties that govern overall interactions. Formally, our model is
an extension of π-calculus with primitives to manage resources. To predict possible bad usage of
resources, we develop a Control Flow Analysis that computes a static over-approximation of process
behaviour.

1 Introduction

We live in a world where mobility and distribution are part of the standard everyday (digital) devices,
resources seem unlimited and always available. Scalable and elastic do not mean exactly this. Sooner
or later people experiment that the available resources are not sufficient or that their existence can arise
between their service requests and their satisfaction. One can add a 4 GB folder on her/his private data
repository (e.g. Dropbox) and realises that the synchronisation with the Dropbox servers takes too long,
especially for big amounts of data. The suggested solution is therefore to upload less big folders at a time,
because the upload time is lower than the download one. Another one, let us say in Europe, wants to
download some free software and suffers from the very slow downloading until realising that the chosen
web-site is in USA and at that time most of the people have just woken up and began to surf on the web.

When designing a web-based distributed application the first focus is on the way of rendering the re-
quired functionalities into suitable tasks. This phase often abstracts away from the other side of the coin,
i.e. the operational way of formalising the tasks and therefore of managing the assigned computational
resources. Resource awareness, instead, should be part of the game from the very beginning, without
being simply delegated to low-level supports. Standard programming metaphors consider resources as
entities geographically distributed (typically available over the Internet) and with their own states, costs
and access mechanisms. Furthermore, resources are not created nor destroyed by applications, but di-
rectly acquired on the fly when needed from suitable resource rental services, without investing in new
infrastructures. Clearly, resource acquisition is subject to availability and requires the agreement between
client requirements and service guarantees (Service Level Agreement – SLA).

The dynamic acquisition of resources increases the complexity of software since software capabili-
ties strictly depends on resource availability. Ubiquitous computing [1] and Cloud computing [26, 73, 4]
provide illustrative examples of applications where resources awareness is an essential concern. A fur-
ther step towards ubiquitous computing is when software pervades the objects of our everyday life,
e.g. webTV, cars, smartphones, ebook readers, etc. Often, these heterogeneous entities have a limited

∗Research supported by the European FET Project “ASCENS”, by the Italian MIUR project “Security Horizons” and by
project PRA 2016 64 “Through the fog”, funded by the University of Pisa.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80271301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Checking Global Usage of Resources handled with Local Policies

computational power, but are capable of connecting to the Internet, coordinating and interacting each
other, in the so-called “plug&play” fashion. The real objects, as well as others of virtual nature (pro-
grams, services, etc.), which are connected in this way, form the Internet of Things (IoT) [5]. Similarly,
cloud systems offer through the network a hardware and software infrastructure on which end-users
can run their programs on-demand. In addition, a rich variety of dynamic resources, such as networks,
servers, storage systems, applications and services are made available. The key point is that resources
are “virtualised” so that they appear to their users as fully dedicated to them, and potentially unlimited.

In our programming model processes and resources are distinguished entities. Resources are com-
putational entities with their own life cycle. They can range from computational infrastructures, storage
systems and data services to special-purpose devices. Processes are instead thin entities that can dynam-
ically acquire the required resources when available, but that cannot create any resource. This program-
ming model abstracts some of the features of the systems discussed above. Indeed, our challenge consists
in the metaphor of designing applications on top of heterogeneous sets of resources, by ensuring inter-
operability among them and providing transparency with respect to the actual resource implementation.
As an example, let us consider a cloud system offering computing resources. The available resources
are the CPU units of a given power and processes can only acquire the CPU time, when available, to run
some specialised code. Similar considerations apply to storage services, where client processes can only
acquire slots of the available storage. In our programming model, the deployed resources can be dynam-
ically reconfigured to deal with resource upgrade, resource unavailability, security intrusion and failures.
However, the reconfiguration steps that update the structure of the accessible resources are not under the
control of client processes. Therefore, clients establish SLAs for having the necessary guarantees on the
availability of the required resources.

This paper introduces the formal basis of our programming model. Specifically, we introduce the
G-Local π-calculus, a process calculus with explicit primitives for the distributed ownership of resources,
which can be either virtual or physical. In our calculus, resources are not statically granted to processes,
but they are dynamically acquired on the fly, when required. We start from the π-calculus [62] and we
extend it with primitives to represent resources and with the operations for acquiring and releasing re-
sources on demand. Central to our approach is the identification of an abstract notion of resource. In our
model, resources are stateful entities available in an active and dynamic environment, and processes con-
tinuously interact with them. A resource is described through the declaration of its interaction endpoint,
its local state and its global properties. Global properties establish and enforce the SLA to be satisfied
by any interaction the resource engages with its client processes. We do not address here the precise
nature of these properties. The definition of the global interaction properties may involve several kinds
of trade-offs. We assume that the global interaction properties can be expressed by means of a suitable
resource-aware logic in the style of [11], or contract-based logic as in [30, 13]. The interplay between
the local operations over the state and the global SLA enforcement that occur in the process-resource
interactions motivates the adjective G-Local given to our extension of the π-calculus.

Since we start from π-calculus, name-passing is the basic communication mechanism among pro-
cesses. Beyond exchanging channel names, processes can pass resource identifiers as well. Resource
acquisition is instead based on a different abstraction. To acquire the ownership of a certain resource,
a process issues a suitable request. Such request is routed in the network environment to the resource.
The resource is granted only if it is available. Conceptually, the process-resource interaction paradigm
adheres to the publish-subscribe model: resources act as publishers, while processes act as subscribers.
Actually, the publish-subscribe paradigm not only is a natural choice to represent distributed resources,
but it also emphasises the fact that resources have to be published by external parties and therefore have
to be available to everyone through appropriate requests. Notice that processes issue their requests with-

C. Bodei, V.D. Dinh, & G-L. Ferrari 3

out being aware of resource availability. When they have completed their task on the resource, acquired
in an exclusive but limited usage, they release it and make it available for new requests. Furthermore,
whenever the usage of the acquired resource does not respect the global SLA policy at hand, the release
operation is forced. We argue that this approach relaxes the inter-dependencies among computational
components thus achieving a high degree of loose coupling among processes and resources. Under this
regard, our model resembles coordination models based on the notion of tuple space [40] and seems to
be particularly suitable to manage distributed systems in which the set of published resources is subject
to frequent changes and dynamic reconfigurations.

In summary, our approach combines the basic features of π-calculus with the distributed acquisition
of stateful resources equipped with global SLA policies. This is our first contribution and also constitutes
an original feature of the proposal since it covers both aspects of process-resource interactions.

A second contribution consists in the development of a Control Flow Analysis (CFA) for our calculus.
The analysis computes a safe approximation of resource usage. Hence, it can be used to statically check
whether or not the global properties of resource usage are respected by process interactions. In particular,
it helps detecting possible bad usage of resources, due to policy violations. The analysis identifies the
sensible points in the code that need dynamic checks in order to avoid policy violations. Our analysis
also manages iterative behaviour of processes acting over resources. The analysis constructs a finite-
state model that approximates the executable behaviour of processes capable of performing unbounded
iterative actions over shared resources.

We adopt a top-down approach to present the G-Local π-calculus. We first informally discuss the
programming abstractions at the basis of our approach. The remaining part of the paper is devoted to
introduce the formal description of the calculus and the static analysis for predicting resource usage.
Finally, we discuss related work, and we conclude by presenting plans for further research. The proofs
can be found in Appendix.

This article is the full version of the extended abstract in [21]. The conference paper addressed
the problem of managing finite sequential processes only. We include here extended definitions and
explanations, and a simpler, yet more complete static analysis. In the paper we add several examples to
better illustrate our proposal. Finally, we include proofs for our key results.

2 Programming Abstractions for Resource-awareness

This section intuitively introduces the programming abstractions of the G-Local π-calculus with the help
of some simple, yet illustrative examples.

2.1 Resource Rental Service

In our first example, we consider a resource rental service making a number of identical computational
resources available over the Internet. Several distributed applications have this shape, especially those
that make resources accessible to a variety of external dynamic entities. Furthermore, a number of issues
gives support and advice to the development of applications, equipped with many copies of the same
kind of resources including high availability, load balancing and fault tolerance.

Here, we assume to provide a storage service as our resource. For simplicity, we suppose to have
many copies of this kind of resource, i.e. to have a resource pool containing a certain number of stor-
age resources. On a resource storage, clients can perform some access actions like opening, writing

4 Checking Global Usage of Resources handled with Local Policies

and releasing (open(storage), write(storage), and release(storage), respectively). The publication of a
storage resource in G-Local π-calculus is as follows:

(storage,ϕstorage,η){0}

The declaration introduces a stateful resource called storage, whose state information is stored in the
history variable η that collects the sequence of all the resource access actions. Furthermore, ϕstorage

describes the global policy (SLA) that any interaction with the storage has to satisfy. The declaration,
also, introduces an explicit resource boundary {} for representing the scope of availability of the resource
storage. In the initial configuration, the encapsulated behaviour, specified by the nil process 0, is null.
Finally, the resource pool is implemented as the parallel composition of the given storage resources.

Policies are modelled as regular safety properties of the traces that collect all the resource accesses,
hereafter called histories. In this simple example, the adopted policy ϕstorage expresses that the correct
way to operate over the storage resource is that the action open must occur before action write. Bad
prefixes in traces, which correspond to policy violations, can be easily detected by suitable kinds of run
time reference monitors such as security automata [63], subsequently extended to edit automata [53] and
usage automata [8], or to the guardians introduced in [35].

A client process may acquire the temporary ownership of the published resource storage, by means
of an explicit request, codified by the following primitive

req(storage){P}

Only if the required resource is available, i.e. if (storage,ϕstorage,η){0} occurs in the common pool,
a binding between the client and the resource can be established. More precisely, the process can enter
the corresponding resource boundary, where the encapsulated process becomes the code P, in the result-
ing process (storage,ϕstorage,η){P}. At this point, the client process can access the resource storage,
according to its code P, as long as its access actions on the resource do not violate the SLA policy at
hand. Therefore, in our framework, resources are dynamically allocated to the client on demand, but
their usage must adhere to explicit global policies.

Clients could also find the name of a resource through a discovery process, which relies on the
existence of a process acting as pool-front-end. The pool-front-end accepts process discovery actions of
clients and communicates the name of the copy of the resource of interest. The common pool can have
a further dimension of dynamics since the membership of the copy of the resource to the pool can be
dynamic as well. The pool-front-end taking care of the resource discovery can offer output actions in
pure π-calculus style, such as

d̄〈storage〉

The pool-front-end sends the identifier of the resource (in this case the storage resource) over the channel
d. The client process, connected with the pool-front-end, waits for the identifier of the resource on the
channel d before trying to acquire the resource indicated by the received identifier. We show below the
code describing the main of a possible client process, where “...” stands for further internal activities on
data performed by the process, not of interest here.

d(s).req(s){open(s).write(s).release(s)}

The client process receives the actual resource identifier, e.g. storage, and binds it with the local variable
s. Therefore, a request can initially include a resource variable s, provided that the request occurs after

C. Bodei, V.D. Dinh, & G-L. Ferrari 5

an input, where the variable gets its binding value. After the binding, the process can require the resource
storage, by becoming

req(storage){open(storage).write(storage).release(storage)}

Afterwards, if the required resource is available, it becomes

(storage,ϕ,η){open(storage).write(storage).release(storage)}

The state η is updated at each access action of the client process, by simply appending the action name.
For instance, here, after the release it amounts to η ′= η .open.write.release. After its usage, the resource
becomes available again:

(storage,ϕstorage,η
′){0}

but now its local state (η ′) stores the updated (log of) the activities performed during the process inter-
actions. Since the action open occurs before the action write, in the trace open.write.release, the client
process respects the policy ϕ on the resource storage. Instead, the client process

d(s).req(s){... .write(s).release(s)}

would not obey to the policy, because no action open occurs before the action write.
We can observe that the client process is organised in a loosely coupled fashion with respect to the

resource. Loose coupling has the main advantage that when the resource is upgraded or modified, the
impact on the client process is minimised.

This simple example illustrates a distinctive feature of our approach. Resources are entities available
in the digital environment that surrounds processes. For example, we may consider a fridge in the
so-called Internet of Things [5]. The fridge can be modelled as a suitable resource storage, ready to be
queried for its contents to discover perishable goods. Notice that our model abstracts from heterogeneous
communication facilities, i.e. we assume a programming interface for communicating with the available
resources. We argue that this is essential for the integration of distributed resources into the digital
environment.

2.2 Processes Coordination

We now consider a simple refinement of the setting presented above useful to show how the notion of
stateful resource allows the definition of coordination policies among processes. To this purpose, we
equip the storage resource with the Chinese Wall policy [24]. It is a classical security policy used in
commercial and corporate business services. In such scenarios, all the objects related to the same corpo-
ration are usually grouped together into a so-called company data set, e.g. bankA, bankB, insuranceA,
insuranceB, and so on. Furthermore, all the company data sets whose corporations are in competition
are grouped together. Each group represents a conflict of interest class, e.g. the Bank conflict class in-
cludes bankA and bankB and Insurance contains insuranceA and insuranceB. Intuitively, the Chinese
Wall policy imposes that access data cannot be performed on the wrong side of the wall. More precisely,
a resource can be obtained only in two cases: either the resource is in the same company data set of
the resources previously accessed, or the resource belongs to a different class of conflict of interest. To
clarify the Chinese-Wall policy with an example, let us consider the following trace,

read(insuranceA).read(bankA).read(insuranceB)

6 Checking Global Usage of Resources handled with Local Policies

P,P′ ::= processes ∈ Proc π,π ′ ::= action prefixes
0 empty process x̄y name output

| π.P prefix action | x̄z resource output
| (νx) P restriction | x(y) name input
| P+P′ choice | x(s) resource input
| P ‖ P′ parallel composition | α(z) access action
| (r,ϕ,η){P} resource joint point | rel(z) release action
| req(z){P} resource request point
| !P replication

Figure 1: The syntax of G-Local π-calculus.

It easy to see that the above trace violates the expressed policy, because reading an object in the data
set insuranceB is not permitted after having accessed insuranceA, which is in the same conflict class
Insurance.

In this paper, we will exploit static analysis techniques, specifically Control Flow Analysis, to verify
properties like those described above to guarantee that resources are requested and released, without
violating the stated policies.

3 The G-Local π-Calculus

In this section, we formally present the syntax of our calculus and we define its operational semantics.
We further motivate the constructs of our calculus via a simple running example.

3.1 Syntax

G-Local π-calculus is an extension of the monadic version of π-calculus [62], with primitives to declare,
access and dispose resources. The syntax is displayed in Figure 1, where we assume a countably infinite
set N of channel names (ranged over by a,b, t,x,y,w), a set R, composed by resource identifiers (ranged
over by r,r′, ...), and resource variables S (ranged over by s,s′, ...). We assume that these sets are
pairwise disjoint. For the sake of simplicity, we require that all the resource variables that initially occur
in a process are distinct.

Furthermore, we assume to have a set A of actions (ranged over by α,β) for accessing resources, a
distinguished action rel 6∈A that denotes releasing of the acquired resource, and a set Φ of policies over
A , ranged over by ϕ,ϕ ′. We use z,z′, ..., which we simply call resources, to range over both resource
identifiers and resource variables. We denote with (A ∪{rel})(r) the resource actions on the resource r.
From now on, for the sake of simplicity, we often omit the trailing 0.

The output prefixed process x̄y.P sends the name y along channel x and then continues as P. Analo-
gously, the resource output prefixed process x̄z.P sends the resource z along channel x and then continues
as P. The input prefixed process x(y).P (x(s).P, respectively) receives a channel name (a resource iden-
tifier, respectively) via the channel x, to which y (s, respectively) is bound, and then behaves like P. Note
that resource names can be communicated, however they cannot be used as private names or as chan-
nels; therefore they can be objects but not subjects of communications. The operator + describes non
deterministic choice, while the operator ‖ denotes parallel composition of processes. The operator (νx)
acts as a static binder for the name x in the prefixed process that makes x different from all the external
names.

C. Bodei, V.D. Dinh, & G-L. Ferrari 7

Our extension introduces the notion of resource and some resource-aware constructs. Resources are
stateful entities, equipped with policies that constrain their usage. More precisely, a resource is a triple
(r,ϕ,η), where r ∈R is a resource identifier, ϕ ∈Φ is the associated policy and η ∈ (A ∪{rel})∗ is the
history that represents the resource state (ε denotes the empty state).

The access prefix α(z)1, as in [9], models the invocation of the operation α ∈ A over the resource
z. Access labels specify the kind of access operation, e.g. rd for read, wr for write, and so on. In our
calculus, an action α that accesses a resource can be seen as an event observed by resource monitors and
the operation represents a basic component of the resource usage. The special action rel /∈ A denotes
the release of the acquired resource. A finite sequence η of juxtaposed access and release events in
A ∪{rel} is called history or trace (ε denotes the empty trace).

Policy Checking We discuss here our machinery for verifying whether a history is compliant with re-
spect to a policy ϕ on the resource r. Policies ϕ ∈ Φ, which specify the required properties of resource
usage, are modelled as regular safety properties [43] of histories that express that nothing bad will oc-
cur during a computation. A policy ϕ can be represented by the set of its bad prefixes, which can be
recognised by resorting to suitable finite state automata, such as the usage automata of [8, 11, 10]. Note
that this approach follows the so-called default-accept paradigm, where only the unwanted behaviour is
explicitly mentioned.

As a consequence, the language denoted by a policy ϕ is the set of unwanted traces and accepting
states are offending: entering in an accepting state corresponds to a policy violation. Let L(ϕ) denote the
language of ϕ . We write η |= ϕ if the history η does not lead to offending states in the corresponding
usage automaton. We are now ready to define the notion of policy compliance of a history.

Definition 3.1 (Policy compliance) Given a history η , η is compliant with the policy ϕ , in symbols,
η � ϕ if and only if η /∈ L(ϕ).

For instance, the following automaton (where we remove release prefixes, for improving readability)
can abstractly represent the storage policy ϕstorage, discussed in the previous section, that requires that an
action open must occur before an action write.

q0start q1 q1
write open

∗

It is easy to see that open.write |= ϕstorage, while write 6|= ϕstorage and, also, write.open 6|= ϕstorage.
Policy checking can be mechanically implemented by resorting to standard automata-based model

checking techniques [69]. We refer to [8, 12, 10] for a more detailed discussion. Note, in passing,
that our notion of stateful resource behaves much like a reference monitor that acts as the manager of
the resource. The reference monitor also observes the operations carried over the resource and stops
execution if one of them violates the resource usage policy [34, 43].

Resource boundaries To cope with resource-awareness, we introduce two primitives that manage re-
source boundaries: resource joint point (r,ϕ,η){P} and resource request point req(z){P}. Instead of
considering resources as an extension of private names with a set of traces of access events like in [51],
we introduce a specific construct (r,ϕ,η) to represent a notion of resources with explicit boundaries.

1This notation recalls the functional style and is not to be confounded with the input notation, where, e.g., in a(s), s is still
a bound name, as will be illustrated next, but where a ∈ N represents the receiving channel, while in α(z), α ∈ A is the
access action. Names are Latin letters like a, b, c, while access actions names range over Greek letters, apart from the action
for releasing resources, which uses the special keyword ‘rel’.

8 Checking Global Usage of Resources handled with Local Policies

Unlike the dynamic scope of private names, where “private names” (i.e. resources) can be concurrently
accessed by processes, our resources can be accessed, in mutual exclusion, only by the processes in the
scope of the corresponding resource boundaries. Resource boundaries define indeed the portion of the
code where resources are visible and accessible. More in detail, a process (r,ϕ,η){P} behaves like P,
in the resource boundary (r,ϕ,η), where r can be accessed according to the policy ϕ . The state η is
updated at each access action. Intuitively, the process P when plugged inside the resource boundary
(r,ϕ,η){P} can fire actions that act over the resource r, provided that the policy that regulates its usage
is satisfied. Processes of the form (r,ϕ,η){0} represent available resources. These processes are idle:
they cannot perform any operation. Therefore, resources can only react to requests. A process req(z){P}
represents a process that asks the resource z. Note that z can be associated either to a resource identifier
or to a resource variable. In the second case, the process resource request point comes after an input
in which the variable can be instantiated, as in a process like a(s)...req(s){P}. Only if the request is
fulfilled, i.e. the required resource is available, the process P can enter the required resource boundary
(r,ϕ,η), and use r, according to the policy ϕ .

The notions of free names fn(), bound names bn(), and substitution {−/−} are defined as expected.
The set of names n(P) of a process P is defined as the union of fn(P) and bn(P). Similarly, we define
the notion of free resource identifiers fr(), bound resource identifiers br(), and resource identifiers r(), as
described in the table below.

Case fn() bn() fr() br()

0 /0 /0 /0 /0
x̄y.P {x,y}∪ fn(P) bn(P) fr(P) br(P)
x̄z.P {x}∪ fn(P) bn(P) {z}∪ fr(P) br(P)

x(y).P {x}∪ (fn(P)\{y}) {y}∪bn(P) fr(P) br(P)
x(s).P {x}∪ fn(P) bn(P) fr(P)\{s} {s}∪br(P)
α(z).P fn(P) bn(P) {z}∪ fr(P) br(P)
rel(z).P fn(P) bn(P) {z}∪ fr(P) br(P)
(νx)P fn(P)\{x} {x}∪bn(P) fr(P) br(P)
P|P′ fn(P)∪ fn(P′) bn(P)∪bn(P′) fr(P) br(P)

P+P′ fn(P)∪ fn(P′) bn(P)∪bn(P′) fr(P) br(P)
(r,φ ,η){P} fn(P) bn(P) {r}∪ fr(P) br(P)
req(z){P} fn(P) bn(P) {z}∪ fr(P) br(P)

!P fn(P) bn(P) fr(P) br(P)

Also resource substitution {r/s}R , which replaces each occurrence of the resource variable s with the
resource identifier r, is defined as expected. Note that the tag R distinguishes this substitution from the
standard one for channel names. We describe below its application.

C. Bodei, V.D. Dinh, & G-L. Ferrari 9

Case Application
0{r/s}R 0

(x̄y.P){r/s}R x̄y.P{r/s}R

(x̄s.P){r/s}R x̄r.P{r/s}R

(x̄z.P){r/s}R x̄z.P{r/s}R if z 6= s
(x(y).P){r/s}R x(y).P{r/s}R

(x(s′).P){r/s}R x(s′).P{r/s}R

(α(s).P){r/s}R α(r).P{r/s}R

(rel(s).P){r/s}R rel(r).P{r/s}R

((νx)P){r/s}R (νx)P{r/s}R

(P1 +P2){r/s}R P1{r/s}R +P2{r/s}R

(P1 ‖ P2){r/s}R P1{r/s}R ‖ P2{r/s}R

((r′,ϕ,η){P}){r/s}R (r′,ϕ,η){P{r/s}R}
(req(s){P}){r/s}R req(r){P{r/s}R}

(!P){r/s}R !(P{r/s}R)

A process is well-formed when all the constructs that involve a resource variable occur after an input,
where the variable gets its binding value. As a consequence, at run time, the corresponding actions are
closed with respect to resource identifiers. From now on, we only deal with well-formed processes.

Example 3.2 We consider a small example that represents a green cloud computing environment, where
computing the energy cost is crucial to save energy. In this scenario, we can associate an integer cost
cα to each access α(r) to a resource r and fix a threshold cost value vr that cannot be passed for each
resource r. We further suppose that rel(r) has null cost. Intuitively, policies are respected when the sum
of the costs of accesses do not pass the value fixed for each resource.

Suppose to have a couple of resources r1 and r2, with vr1 and vr2 as threshold values. Users receive
resources on channels xi (for i = 1, 2, 3) and y.

The initial configuration is given below. Resources (r1 and r2) are initially available and have empty
state. The access action α comes associated with the cost cα , and the action β with the cost cβ . Suppose,
for instance, that cα is quite expensive and that the threshold of r2 is not very high, while that of r1
is. Suppose, in particular, that 3 · cα < vr1 , while 3 · cα + cβ > vr1 and that cα + cβ > vr2 . To reflect
these constraints, the policy ϕ1 can be represented by the set of traces that begin with the bad prefix
α.rel.α.rel.α.rel.β , while ϕ2 by the set of traces that begin with the bad prefixes α.rel.β and β .rel.α ,
as shown in Figure 2, where we remove release prefixes, for improving readability.

Res ::= (r1,ϕ1,ε){0} ‖ (r1,ϕ1,ε){0} ‖ (r2,ϕ2,ε){0}
Users ::= x1(s1).req(s1){α(s1).rel(s1)} ‖ x2(s2).req(s2){α(s2).rel(s2)} ‖

x3(s3).req(s3){α(s3).rel(s3)} ‖ y(t).req(t){β (t).rel(t)}
Plan ::= x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0

System ::= Res ‖Users ‖ Plan

Note that, in particular, Users is a well-formed process, since all the resource requests and access
actions that refer to a resource variable occur after an input, where the variable can obtain its binding
identifier.

10 Checking Global Usage of Resources handled with Local Policies

q0 q1

q′1

q′′1

q′′′1

q2

q′2

q′′2

q′′′2

q3

q′3

q′′3

q′′′3

q4
α

β

α

α

α

α

β

α

α

α

α

β

β

α

α

α

q0 q1

q′1

q2
α

β

β

α

Figure 2: On the left: the policy φ1 on r1 expresses that a history composed by three actions α and one
action β is forbidden. On the right: the policy φ2 on r2 expresses that a history composed by an action α

followed by an action β , or composed by an action β followed by an action α is forbidden.

3.2 Operational semantics

The semantics of the calculus is given in terms of a transition system on well formed processes, defined
up to structural congruence. The transition relation defined in Table 1, extends the standard semantics of
π-calculus with suitable rules to deal with resource constructs.

We will use µ,µ ′ to indicate generic labels of transitions, τ for silent actions, x̄y for free name
output, x(y) for name input, x̄y for free output, x̄(y) for bound output, x̄r for free resource output, a(s)
for resource input, α(r), α?r and α(r) (rel(r) and rel?r, resp.) for closed, open, and faulty access (or
release actions) over resource r, respectively, and whose precise meaning will be clear in a while. As in
the standard π-calculus, the effect of bound output is to extrude the sent name from the initial scope to
the external environment. Again, we extend the definitions of free and bound names for labels, to deal
with resources identifiers, by introducing fr(µ),br(µ), and r(µ).

Label µ fn(µ) bn(µ) fr(µ) br(µ)

Silent action τ /0 /0 /0 /0
Free name output x̄y {x,y} /0 /0 /0

Free resource output x̄r {x} /0 {r} /0
Name Input and Bound output x(y), x̄(y) {x} {y} /0 /0

Resource Input x(s) {x} /0 /0 {s}
Resource Access {α(r),α?r,α(r)} /0 /0 {r} /0
Resource Release {rel(r),rel?r} /0 /0 {r} /0

The relation of structural congruence on processes, denoted by ≡, is defined as the least congruence
satisfying the clauses in Figure 3. This includes the standard laws of the π-calculus, such as the monoidal
laws for the parallel composition and the choice operator and the rules for restrictions and replication.
To simplify the definition of our CFA in Section 4, we replace the standard notion of alpha-conversion
with a notion of disciplined alpha-conversion that, without loss of generality, imposes a discipline in the
choice of fresh names. We postpone the explanation of this notion to the next section.

In addition to the standard equational laws, we introduce specific laws for managing the resource-
aware constructs. Resource request and resource joint points can be swapped with the restriction bound-
ary since restriction is not applied to resource identifiers but only to channel names. The last law is crucial
for managing the discharge of resources. This law allows rearrangements of available resources, e.g. an
available resource is allowed to enter or escape within a resource boundary. The intuition is that available

C. Bodei, V.D. Dinh, & G-L. Ferrari 11

• P≡ Q if P and Q are alpha-equivalent (in the disciplined sense explained in the text)
• (Proc/≡,+,0) and (Proc/≡,‖,0) are commutative monoids
• (νx)0≡ 0, (νx)(νy)P≡ (νy)(νx)P, (νx)(P ‖ Q)≡ P ‖ (νx)Q i f x 6∈ fn(P),
• !P≡ P ‖!P
• (νx)(r,ϕ,η){P} ≡ (r,ϕ,η){(νx)P}
• (νx)req(r){P} ≡ req(r){(νx)P}
• (r2,ϕ2,η2){0} ‖ (r1,ϕ1,η1){P} ≡ (r1,ϕ1,η1){(r2,ϕ2,η2){0} ‖ P}

Figure 3: Structural congruence.

resources can freely float in the digital environment. Note that if two processes P1 and P2 are equiva-
lent, also the resource boundaries that include them are equivalent, i.e. (r,ϕ,η){P1} ≡ (r,ϕ,η){P2} and
req(r){P1} ≡ req(r){P2}.

Finally, we need the following auxiliary function SubProc that, given a resource variable s and a
process P, returns the subprocess prefixed by an input on s. We recall that since the resource variables
are all distinct, there is at most one input prefix with s as a variable in a given process. The function is
inductively defined as follows.

SubProc(s,0) = 0
SubProc(s,x(s).P′) = P′

SubProc(s,π.P′) = SubProc(s,P′)
SubProc(s,(νx)P) = SubProc(s,P)

SubProc(s,P1 +P2) = SubProc(s,P1)∪SubProc(s,P2)
SubProc(s,P1 ‖ P2) = SubProc(s,P1)∪SubProc(s,P2)

SubProc(s,(r,ϕ,η){P}) = SubProc(s,P)
SubProc(s,req(r){P}) = SubProc(s,P)

SubProc(s, !P) = SubProc(s,P)

We now comment on the rules of the operational semantics. Rules (Act), (Par), (Res), (Comm),
(Cong), (Choice), (Open) and (Close), in Table 1, are the standard π-calculus ones. The rules in Act
describe actions of processes, e.g. the free input and the free output. Concretely, x̄y.P sends the name
y along the channel x and then behaves like P, while x(y).P receives a channel name via the channel x,
to which y is bound, and then behaves like P. Rules in (ActR) include the analogous output and input
axioms for resource identifiers: x̄r.P sends the resource identifier r and then behaves like P, while x(s).P
receives a resource identifier via the channel x, to which s is bound, and then behaves like P. Note that
our semantics adopts a late approach, e.g. variables are actually bound to values when communications
occur.

Rule (Par) expresses the parallel computation of processes, while the rule Choice represents a choice
among alternatives. Rule (Comm) is used to communicate free channel names. Rules (Res) and (Open)
are rules for restriction. The first ensures that an action of P is also an action of (νx)P, provided that the
restricted name x is not in the action. In the case of x in the action, the rule (Open) transforms a free
output action āx into a bound output action ā(x), which basically expresses opening scope of a bound
name. Rule (Close) describes communication of bound channel names, which also closes the scope of a
bound name in communication.

We are now ready to comment on the semantic rules that correspond to the treatment of resources. To
help the intuition, we illustrate the more distinctive rules in Figures 4 and 5. Besides the communication

12 Checking Global Usage of Resources handled with Local Policies

(Act)

{
x̄y.P

x̄y−→ P

x(y).P
x(y)−−→ P

(Cong)
P1 ≡ P′1 P′1

µ−→ P′2 P′2 ≡ P2

P1
µ−→ P2

(Par)
P1

µ−→ P′1
P1 ‖ P2

µ−→ P′1 ‖ P2

bn(µ)∩ fn(P2) = /0 (Choice)
P1

µ−→ P′1
P1 +P2

µ−→ P′1

(Res)
P

µ−→ P′

(νx)P
µ−→ (νx)P′

z 6∈ n(µ) (Open)
P

x̄y−→ P′

(νy)P
x̄(y)−−→ P′

y 6= x

(Comm)
P1

x̄y−→ P′1 P2
x(w)−−→ P′2

P1 ‖ P2
τ−→ P′1 ‖ P′2{y/w}

(Close)
P1

x̄(y)−−→ P′1 P2
x(w)−−→ P′2

P1 ‖ P2
τ−→ (νy)(P′1 ‖ P′2{y/w})

(ActR)


x̄r.P x̄r−→ P

x(s).P
x(s)−−→ P

α(r).P α?r−−→ P

rel(r).P rel?r−−→ P

(CommR)
P1

x̄r−→ P′1 P2
x(s)−−→ P′2

P1 ‖ P2
τ−→ P′1 ‖ P′2{r/s}R

r 6∈ fr(SubProc(s,P2))

(Acquire) req(r){P} ‖ (r,ϕ,η){0} τ−→ (r,ϕ,η){P} (Release)
P rel?r−−→ P′

(r,ϕ,η){P} rel(r)−−−→ (r,ϕ,η .rel){0} ‖ P′

(Policy1)
P α?r−−→ P′ η .α |= ϕ

(r,ϕ,η){P} α(r)−−→ (r,ϕ,η .α){P′}
(Policy2)

P α?r−−→ P′ η .α 6|= ϕ

(r,ϕ,η){P} α(r)−−→ (r,ϕ,η .α){0} ‖ P′

(Local)
P

µ−→ P′

(r,ϕ,η){P} µ−→ (r,ϕ,η){P′}
µ 6∈ (A ∪{rel})(r)

Table 1: Operational semantics.

rules, the rules in (ActR) model a process that tries to perform an action α (or rel, resp.) on the resource
r. This attempt is seen as an open action, denoted by the label α?r (rel?r, resp.). Intuitively, an access
action on r is successful only if fired inside the boundary of r, and the action α satisfies the related policy
(see (Policy1) and (Policy2) rules). Similarly, releasing a resource r succeeds only if performed inside
the boundary of r (see (Release)). Rule (CommR) explicitly models the communication of resource
identifiers between processes. The rule is similar to rule (Comm) (we use two rules to emphasise the
different nature of the exchanged data). The only differences are the input premise, which is derived by
the rules in (ActR), for the input of resource identifiers, and the side condition. Since resource identifiers
refer to concrete resources, renaming seems inadequate to avoid captures of identifiers. Nevertheless,
processes could require a resource r, inside a boundary on r, or before a resource boundary on r. As
a solution, we put a constraint on the use of resources, by preventing nested uses of resources with the
same identifier. More precisely, we require that the input prefix a(s), inside P2, willing to receive the
resource identifier r is (i) neither in the scope of a resource boundary devoted to r and still in use, (ii)

C. Bodei, V.D. Dinh, & G-L. Ferrari 13

nor it prefixes a process that include resource boundaries on r. To perform this check, we verify whether
r does not belong to the free resource identifiers of the subprocess of P2 prefixed by the input a(s),
subprocess which is returned by the function SubProc called on parameters s and P2.

A process P can acquire a resource r, when available, by entering the corresponding resource bound-
ary (r,ϕ,η), as stated by rule (Acquire) (see Figure 4). Symmetrically, according to rule (Release), the
process P can release an acquired resource r and update the state of its resources, by appending the label
rel to η (see Figure 4). In the resulting process (r,ϕ,η .rel){0} ‖ P, P is outside the resource boundary,
while the resource is available again.

Rules (Policy1) and (Policy2) (see Figure 5) check whether the execution of the action α on the
resource r does not violate the policy ϕ , i.e. whether the updated state η .α , obtained by appending
α to the current state η is compliant with respect to ϕ , written as η .α |= ϕ . If the policy is obeyed,
then the updated trace η .α is stored in the resource state according to the rule (Policy1) and the action
becomes closed. When this is not the case, i.e. when an invalid access α is tempted on r, the resource
is forcedly released according to rule (Policy2), the corresponding faulty action α(r) is fired, and the
updated trace η .α is recorded in the resource state. We assume here that A also includes faulty actions
such as α,β . Invalid accesses to resources are therefore identified by transitions of faulty actions. In the
continuation P′ of the process, all the actions over the resource r remain open and without any effect on
the resource. Rule (Policy2) has been introduced to manage the recovery from bad access to resources,
in case of policy violation. We recall that we can check the consistency of a trace, by resorting to suitable
automata, whose languages represent the set of unwanted traces.

Finally, the side condition of rule (Local) expresses that actions that do not access or release the
resource r can bypass resource boundaries.

 0
Q

req(r)

Q

 r, φ,η
 r, φ,η

Acquire

 0
 Q

 r, φ,η.rel

rel((r).Q

 r, φ,η

Release

Figure 4: Rules (Acquire) and (Release)

Remark 3.3 Rule (Acquire) is not inductively given in the SOS style. We could rephrase it in the SOS
style by the following rules, where rule (ResReq) guesses the available resources, in an early style:

(ResReq) req(r){P} (r,ϕ,η)−−−−→ (r,ϕ,η){P} (ResJoin) (r,ϕ,η){0} (r,ϕ,η)−−−−→ 0

(Comm′R)
P1

(r,ϕ,η)−−−−→ P′1 P2
(r,ϕ,η)−−−−→ P′2

P1 ‖ P2
τ−→ P′1 ‖ P′2

14 Checking Global Usage of Resources handled with Local Policies

α(r).Q

 r,φ,η

If η.α does not satisfy φ

Q
 0

 r, φ,η.α

Policy2

 r, φ,η.α

α(r).Q

 r,φ,η

Q

If η.α satisfies φ

Policy1

Figure 5: Rules (Policy1) and (Policy2)

Example 3.4 Back to our running example (Example 3.2), where all the processes used here have been
defined, the following dynamic computation illustrates how the system works and a possible trace that
violates the policy. We recall that each access α(ri) to a resource ri has an integer cost cα and the policy
ϕi of each resource is obeyed if the resource threshold value vri is not passed.

At the beginning, the process Users instantiates a new user (a resource request point) when receiving
a resource identifier, e.g. r1:

System
≡ Res ‖Users′ ‖ x1(s1).req(s1){α(s1).rel(s1)} ‖ x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0
τ→ Res ‖Users′ ‖ Plan′ ‖ req(r1){α(r1).rel(r1)},

where Users′ ::= x2(s2).req(s2){α(s2).rel(s2)} ‖ x3(s3).req(s3){α(s3).rel(s3)} ‖ y(t).req(t){β (t).rel(t)}
and Plan′ ::= ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0.
The new user can acquire the resource and other resource identifiers are also available (on the channels
x2, x3, y). In the following, for the sake of simplicity, we only show the sub-processes involved in the
computation. Assume that the new user takes r1. In this case, we have the following transitions:

req(r1){α(r1).rel(r1)} ‖ (r1,ϕ1,ε){0}
τ→ (r1,ϕ1,ε){α(r1).rel(r1)}
α(r1)−−−→ (r1,ϕ1,α){rel(r1)}
rel(r1)−−−→ (r1,ϕ1,α.rel){0}

Now, the remaining three further users are similarly instantiated, triggered by the Plan′ outputs ȳ〈r2〉,
x̄2〈r2〉, and x̄3〈r1〉.

Users′|Plans′
τ→ x2(s2).req(s2){α(s2).rel(s2)} ‖ x3(s3).req(s3){α(s3).rel(s3)} ‖ req(r2){β (r2).rel(r2)} ‖ x̄2〈r2〉.x̄3〈r1〉
τ→ x3(s3).req(s3){α(s3).rel(s3)} ‖ req(r2){β (r2).rel(r2)} ‖ req(r2){α(r2).rel(r2)} ‖ x̄3〈r1〉
τ→ req(r2){β (r2).rel(r2)} ‖ req(r2){α(r2).rel(r2)} ‖ req(r1){α(r1).rel(r1)}

C. Bodei, V.D. Dinh, & G-L. Ferrari 15

In the current setting, the new three users make one request on the remaining resource r1 and two requests
on r2. Since we have only one copy of r2, requests should be done one at a time. Suppose to first satisfy
the requests of r1, as in the following transitions:

(r1,ϕ1,α.rel){α(r1).rel(r1)}
α(r1)−−−→ (r1,ϕ1,α.rel.α){rel(r1)}
rel(r1)−−−→ (r1,ϕ1,α.rel.α.rel){0}

As a result, the first resource is available again. Similarly, the second request proceeds as follows:

req(r2){β (r2).rel(r2)} ‖ (r2,ϕ2,ε){0}
τ→ (r2,ϕ2,ε){β (r2).rel(r2)}
β (r2)−−−→ (r2,ϕ2,β){rel(r2)}
rel(r2)−−−→ (r2,ϕ2,β .rel){0}

Note that, at this point, if the third request proceeded, then a forced release could occur. This happens
because the user would attempt to perform an α action on r2, on which a β action was previously
performed: since the trace β .rel.α belong to the bad prefixes identified by the policy ϕ2, this inconsistent
trace would represent a usage that leads to a policy violation.

req(r2){α(r2).rel(r2)} ‖ (r2,ϕ2,β .rel){0}
τ→ (r2,ϕ2,β .rel){α(r2).rel(r2)}
α(r2)−−−→ (r2,ϕ2,β .rel.α){0} ‖ rel(r2)

4 Control Flow Analysis

In this section, we present a control flow analysis for our calculus, extending the one for π-calculus [19].
This CFA is simpler than the one in [21], because it is not contextual, i.e. the analysis is insensitive to
the context. This facilitates its implementation. The CFA computes a safe over-approximation of all
the possible communications of resource identifiers and names on channels. Furthermore, it provides an
over-approximation of all the possible usage traces on the given resources, thus predicting possible cases
of bad usage.

Performed under the perspective of processes, the analysis tries to answer to questions like the fol-
lowing: “Are the resources initially granted sufficient to guarantee a correct usage?”. We assume that
a certain fixed amount of resources is given and we do not consider any dynamic reconfiguration. The
reconfiguration is up to the resource manager and is not addressed by our CFA.

For simplicity, we incrementally present our analysis. We first develop (in the next Sub-section 4.1)
the analysis for the subset of G-Local π-calculus in which the processes enclosed in resource boundaries
are sequential processes. The extension to general parallel processes, which requires some more complex
technical machinery, will be shown later, in Sub-section 4.2. Finally, in Sub-section 4.3, we will address
the static treatment of finite-state iterative processes.

As anticipated in the previous section, to simplify the definition of our Control Flow Analysis, as
usually done (see e.g. [19, 18]), we discipline the choice of fresh names, and therefore alpha-conversion.

16 Checking Global Usage of Resources handled with Local Policies

Indeed, the result of analysing a process P must still hold for all its derivative processes Q, including
all the processes obtained from Q by alpha-renaming. In particular, in the CFA, the names and the
variables that occur in P must keep a connection with the names possibly modified during the dynamic
evolution. To statically maintain the identity of values and variables, we partition all the names used
by a process into finitely many equivalence classes and we use the names of the equivalence classes
instead of the actual names. Names in the same equivalence class are assigned to a common canonical
name. Not to further overload our notation, we simply write n for the canonical name of the name n.
As a consequence, there are only finitely many canonical names in any execution of a given process.
The resulting disciplined alpha-renaming requires that two names can be alpha-renamed only when they
have the same canonical name. To have only finitely many canonical names in any execution of a given
process, we assign the same canonical name to all the names that can be generated by a restriction under
a replication [39].

4.1 CFA: Step 1

We first provide a CFA for finite processes in which the bodies of resource boundaries are sequential
processes, ranged over by Q,Q′. We let S,S′ to range over both processes and sequential processes.
Intuitively, a sequential process Q represents a single thread of execution in which one or more resources
can be used. This implies that only one single point for releasing each resource occurs in each non
deterministic branch of a process. We assume that, by construction, in every sequential branch located
in the scope of the resource r, there always exists a release action rel(r) coming after the last access
to the resource. The assumed constraint amounts to guaranteeing that resources are released after their
use. Note that the only parallel branching configuration we keep, (r,ϕ, η̃){0}�||Q, is needed for handling
release actions.

We further assume here, and in the extensions of the CFA, that the analysed processes are deadlock-
free. The deadlock detection problem is, in general, very difficult in loosely coupled distributed systems,
where information about the state of process and resources is not stored in a single central point. This
makes it challenging to gather global properties like deadlock freedom. This is the case of our pro-
gramming model. Deadlock freedom can be addressed either by dynamic or static techniques. Gossip-
based algorithms (also known under the name of epidemic algorithms), see e.g. [54, 55], have emerged
as an effective dynamic mechanism to gather global knowledge in a distributed peer-to-peer networks
(see e.g. [32, 48]). In these algorithms each component of the network is in charge of forwarding
state information to the other components of the network. Furthermore, there are static techniques
and tools (based on type systems) that have been proposed for deadlock detection in mobile calculi
(see [41, 60, 49, 72, 44], to cite only a few, and their discussion in Section 5). These techniques provide
the basis for developing deadlock detection in our setting. Since our focus here is on resource usage, we
assume to exploit either static or dynamic techniques to detect and prevent deadlocks, before performing
our CFA.

Here, we only analyse processes that have finite behaviour, i.e. processes without replication. Finally,
to facilitate our analysis, we consider a labelled version of the chosen subset of our calculus, described by
the syntax in Figure 6. Labels �,χ ∈L are associated with resource boundaries as follows: (r,ϕ, η̃){0}�,
(r,ϕ, η̃){Q}χ and req(r){Q}χ . Labels χ are supposed to be unique. As usual in static analysis, this is
merely a convenient way of indicating “program points” (here the sub-processes in resource scopes),
useful when developing our CFA. Note that these labels can be mechanically attached and do not affect
the dynamic semantics. Traces are accordingly extended, by collecting pairs (α,χ) or (rel,χ), where
resource actions are associated to the labels of the boundaries in which they are performed. Formally,

C. Bodei, V.D. Dinh, & G-L. Ferrari 17

extended traces η̃ are included in Â ∗, where Â = (A ∪{rel}×L).
In Table 2, we only present the semantic rules in which labels play a role. Original semantics can be

obtained by simply removing labels by actions and resource boundaries.

P,P′ ::= processes ∈ Proc
0 empty process

| π.P prefix action
| (νx) P restriction
| P+P′ choice
| P ‖ P′ parallel composition
| (r,ϕ, η̃){Q}χ resource joint point
| req(z){Q}χ resource request point

Q,Q′ ::= sequential processes ∈ SeqProc
0

| π.Q
| (r,ϕ, η̃){Q}χ

| (r,ϕ, η̃){0}�||Q
| req(z){Q}χ

Figure 6: Labelled syntax.

(Acquire) req(r){P}χ ‖ (r,ϕ, η̃){0}� τ−→ (r,ϕ, η̃){P}χ (Release)
P rel?r−−→ P′

(r,ϕ, η̃){P}χ
rel(r)−−−→ (r,ϕ, η̃ .(rel,χ)){0}� ‖ P′

(Policy1)
P α?r−−→ P′ η̃ .(α,χ) |= ϕ

(r,ϕ, η̃){P}χ
α(r)−−→ (r,ϕ, η̃ .(α,χ)){P′}χ

(Policy2)
P α?r−−→ P′ η̃ .(α,χ) 6|= ϕ

(r,ϕ, η̃){P}χ
α(r)−−→ (r,ϕ, η̃ .(α,χ)){0}� ‖ P′

(Local)
P

µ−→ P′

(r,ϕ, η̃){P}χ
µ−→ (r,ϕ, η̃){P′}χ

µ 6∈ (A ∪{rel})(r)

Table 2: Instrumented operational semantics.

We are now ready to introduce our CFA. The result of analysing a process P is a triple (ρ,κ,Γ),
called estimate of P, that provides a safe approximation of the process behavior, by capturing informa-
tion on the possible processes P may evolve into. As the CFA for the π-calculus [19], ours focus on the
use of channels and of resources. More precisely, ρ and κ offer an over-approximation of all the possible
values that the variables in the system may be bound to, and of the values that may flow on channels. Fur-
thermore, to statically check resource usage against the required policies, we have the further component
Γ, which provides a set of the possible traces of actions on each resource.

The analysis correctly captures the behaviour of P, i.e. the estimate (ρ,κ,Γ) is valid for all the
derivatives P′ of P. In particular, the analysis keeps track of the following approximations (our abstract
domains), each collecting a different kind of information (the first two components are treated as in [19]):

18 Checking Global Usage of Resources handled with Local Policies

• An approximation ρ : N ∪ (R ∪S)→℘(N ∪R) of names bindings. If a ∈ ρ(x) then the
channel variable x can assume the channel value a. Similarly, if r ∈ ρ(s) then the resource variable
s can assume the resource identifier r. Note that ρ(r) = {r} for each resource identifier r.

• An approximation κ : N →℘(N ∪R) of the values that can be sent on each channel. If b∈ κ(a),
then the channel value b can be sent on the channel a, while if r ∈ κ(a), then the resource identifier
r can be sent on the channel a.

• An approximation Γ : R →℘({(ϕ, η̃)| ϕ ∈ Φ, η̃ ∈ Â ∗}) of resource behavior. If (ϕ, η̃) ∈ Γ(r)
with η̃ = (α,χα).(rel,χα).(β ,χβ).(rel,χβ) then η̃ and all its prefixes are possible admissible
traces over the resource r (with policy ϕ) performed by the sequence of sub-processes labelled by
χα and χβ .

Our analysis relies on the following auxiliary function H that, given a resource r and a boundary
labelled by χ , extracts the sequence or extended trace of all the access and release actions on r. In a
sense, H returns the declared usage of r of the resource boundary, to be checked against the policy of the
required resource, once obtained it.

Definition 4.1 We inductively define the function H : R×SeqProc×L → Â ∗ as follows

H(r,0,χ) = ε

H(r,π.Q,χ) = H(r,Q,χ) if π is an input/output prefix
H(r,α(r).Q,χ) = (α,χ).H(r,Q,χ)
H(r,α(z).Q,χ) = H(r,Q,χ) if z 6= r

H(r,rel(r).Q,χ) = (rel,χ)
H(r,rel(z).Q,χ) = H(r,Q,χ) if z 6= r

H(r,(r′,ϕ ′, η̃ ′){Q′}χ ′ ,χ) = H(r,Q′,χ)
H(r,req(z){Q′}χ ′ ,χ) = H(r,Q′,χ) if z 6= r

H(r,((r′,ϕ ′, η̃ ′){0}� ‖ Q),χ) = H(r,Q,χ)

Example 4.2 In our running example, we can apply H to the boundary process obtained after the first
transition, where we add the label χ1

α (in blue in the pdf) to the boundary:

req(r1){α(r1).rel(r1)}χ1
α

we have that

H(r1,req(r1){α(r1).rel(r1)}χ1
α ,χ1

α) = H(r1,α(r1).rel(r1),χ
1
α) = (α,χ1

α).(rel,χ1
α)

At run time, the actual firing of the actions extracted by the function H depends on the history of
accesses on the resource, and on the required policy. If the required resource is obtained, all the actions
included in the extracted sequence are gradually appended to the current history of the resource, as long
as they do not violate the policy. In case of violation, only the actions that precede the violation and the
violation action itself are appended.

To statically mimic this incremental updating process of histories, the CFA relies on the further
auxiliary function Adm, whose application in the analysis will be explained in the next paragraph. Given
two traces η̃ , η̃ ′ and a policy ϕ , Adm returns the concatenation of η̃ with the maximum prefix of η̃ ′ that
can be appended to η̃ , without violating ϕ , followed by the first violation action, if any. We can have
two cases: (i) either the appended prefix coincides with the whole second trace η̃ ′, (ii) or the appended
prefix coincides only with the part of the second trace that precedes the violation and terminates with the
violation action.

C. Bodei, V.D. Dinh, & G-L. Ferrari 19

Definition 4.3 We inductively define the function Adm : Â ∗× Â ∗→ Â ∗ as follows

Adm(ϕ, η̃ , η̃ ′) =

{
η̃ .η̃ ′ if η̃ .η̃ ′ |= ϕ

η̃ .η̃ ′′.(α,χ) if η̃ .η̃ ′′ |= ϕ ∧ η̃ .η̃ ′′.(α,χ) 6|= ϕ where η̃ ′ = η̃ ′′.(α,χ).η̃ ′′′

Validation To validate the correctness of a proposed estimate (ρ,κ,Γ), we introduce a set of clauses
that operate upon judgments in the form (ρ,κ,Γ) |= P, specified in terms of Flow Logic [56]. The
judgement (ρ,κ,Γ) |= P expresses that the components ρ , κ , and Γ provide a valid analysis result for
the behaviour of P. Note that the validation process does not say how to compute the analysis result
itself. The judgments of the CFA, given in Tables 3 and 4, are defined inductively in the structure of
processes, by presenting a clause for each syntactic construct. Table 3 illustrates the clauses for the
π-calculus constructs, while in Table 4, we focus on the constructs that handle resources.

[Nilα] (ρ,κ,Γ) |= 0 iff true

[Outα] (ρ,κ,Γ) |= x̄y.S iff ∀a ∈ ρ(x) : ρ(y)⊆ κ(a) ∧ (ρ,κ,Γ) |= S

[Inα] (ρ,κ,Γ) |= x(y).S iff ∀a ∈ ρ(x) : κ(a)∩N ⊆ ρ(y) ∧ (ρ,κ,Γ) |= S

[Sumα] (ρ,κ,Γ) |= P1 +P2 iff (ρ,κ,Γ) |= P1∧ (ρ,κ,Γ) |= P2

[Parα] (ρ,κ,Γ) |= P1 ‖ P2 iff (ρ,κ,Γ) |= P1∧ (ρ,κ,Γ) |= P2

[Resα] (ρ,κ,Γ) |= (νx)P iff (ρ,κ,Γ) |= P∧ x ∈ ρ(x)

Table 3: CFA rules for the π-calculus part

We first comment the clauses in Table 3. All the clauses dealing with a compound process check
that the analysis also holds for its immediate sub-processes. In particular, the analysis of (νx)P is equal
to the one of P, in rule [Resα], while the analysis for P1 +P2 and P1 ‖ P2, in rules [Sumα] and [Parα]
are equal to the analysis of P1 and of P2. We comment on the main rules. Besides the validation of the
continuation process S (S can be a process or a sequential process), the rule for output [Outα] requires
that the set of names, which can be communicated along each element of ρ(x), includes the names to
which y can evaluate. Symmetrically, the rule for input [Inα] demands that the sets of names that can
pass along the name variable x are included in the sets of names to which y can evaluate, provided that
the passed names belong to N .

Intuitively, the estimate components take into account the possible dynamics of the process under
consideration. The clauses’ checks mimic the semantic evolution, by modelling the semantic precondi-
tions and the consequences of the possible synchronisations. In the rule for input [Inα], e.g., CFA checks
whether the precondition of a synchronisation is satisfied, i.e. whether there is a corresponding output
possibly sending a value that can be received by the analysed input. To give a valid prediction of the
analysed synchronisation action, the conclusion imposes that the variable y can be bound to that value.

Example 4.4 Consider the following process, where no resources are handled:

P = (ād + āb) ‖ a(w).c̄w

20 Checking Global Usage of Resources handled with Local Policies

[OutRα] (ρ,κ,Γ) |= x̄z.S iff ∀a ∈ ρ(x) : ρ(z)⊆ κ(a) ∧ (ρ,κ,Γ) |= S

[InRα] (ρ,κ,Γ) |= x(s).S iff ∀a ∈ ρ(x) : (κ(a)∩R)\R⊆ ρ(s)
∧ ∀r ∈ ρ(s) s.t. r 6∈ fr(P) : (ρ,κ,Γ) |= S{r/s}R

[Joint1
α] (ρ,κ,Γ) |= (r,ϕ, η̃){0}� iff (ρ,κ,Γ) |= 0 ∧ (ϕ, η̃) ∈ Γ(r)

[Joint2
α] (ρ,κ,Γ) |= (r,ϕ, η̃){0}� ‖ Q iff (ρ,κ,Γ) |= (r,ϕ, η̃){0}�∧ (ρ,κ,Γ) |= Q

[Joint3
α] (ρ,κ,Γ) |= (r,ϕ, η̃){Q}χ iff (ρ,κ,Γ) |= Q ∧ (ϕ,Adm(ϕ, η̃ , η̃ ′)) ∈ Γ(r)

where η̃ ′ = H(r,Q,χ)

[Reqα] (ρ,κ,Γ) |= req(r){Q}χ iff (ρ,κ,Γ) |= Q ∧
∀(ϕ, η̃) ∈ Γ(r).χ 6 E η̃ . (ϕ,Adm(ϕ, η̃ , η̃ ′)) ∈ Γ(r))
where η̃ ′ = H(r,Q,χ)

[Alphaα] (ρ,κ,Γ) |= α(r).Q iff (ρ,κ,Γ) |= Q

[Relα] (ρ,κ,Γ) |= rel(r).Q iff (ρ,κ,Γ) |= Q

Table 4: CFA rules for the resource treatment

A possible estimate is given by the following entries (Γ is empty, because there are no resources):

• ρ(w)⊇ {b,d},

• κ(a)⊇ {b,d}, and κ(c)⊇ {b,d}.

A simple check shows that the proposed estimate is valid. More in detail, by rules [Parα] and [Sumα],
(ρ,κ,Γ) |= P if and only if we have that (ρ,κ,Γ) |= ād, (ρ,κ,Γ) |= āb, and (ρ,κ,Γ) |= a(w).c̄w. The
checks in the rule [Outα] imply that b and d belong to κ(a), while the checks in rule [Inα] imply that
κ(a) ⊆ ρ(w) and therefore that b and d belong to ρ(w). Finally, the checks in the rule [Outα] for the
continuation c̄w imply that ρ(w)⊆ κ(c), and therefore that b and d belong to κ(c).

We can now focus on the rules for the management of resources of Table 4. The rules for input and
output of resource identifiers, [OutRα] and [InRα] are similar to the corresponding rules for names in
Table 3. Of course, in the input rule, the names that can be bound the resource variable must belong to
R and, to mimic the side condition of rule (CommR), r does not belong to the free resource identifiers
fr(P) of the continuation P. Furthermore, the rule requires performing, for every actual value r that can
be bound to s, a distinct check the corresponding possible continuations P{r/s}R, thus allowing us to
gain precision. As a consequence, in all the other rules, there are no open resource variables s.

The rule for the empty resource joint point [Joint1
α] amounts to checking that the inclusion of the

pair (ϕ, η̃) in the component Γ for r, while the rule [Joint2
α] for the composition between resource joint

point and another process Q simply amounts to the composition of their analyses.

C. Bodei, V.D. Dinh, & G-L. Ferrari 21

The rule [Joint3
α] for non-empty resource joint point (r,ϕ, η̃){Q}χ (where Q 6= /0 and χ 6= ε) deserves

more comments. The rule checks whether Γ(r) includes the right traces of usage of the resource r, due
to the process Q. More precisely,

• given the trace η̃ ′ syntactically computed by H(r,Q,χ), i.e. the trace of accesses that Q is willing
to perform on r,

• by exploiting the result of the function Adm, the rule checks whether the admissible part of the
trace η̃ ′ is recorded in Γ(r), appended to the current trace η̃ . More in detail, if the trace η̃ ′ never
violates the policy ϕ , the whole trace must be appended to η̃ , i.e. (ϕ, η̃ .η̃ ′) ∈ Γ(r). Otherwise
(ϕ, η̃ .η̃ ′′.α) ∈ Γ(r), where η̃ ′′ is the maximum prefix of η̃ ′, such that appended to η̃ ′′ respects the
policy ϕ , and α(r) is the first possible violation action of the policy.

• Finally, the rule includes the validation of the enclosed process Q.

Similarly, the rule for resource request point [Reqα], includes the validation of the enclosed process
Q and checks, for each trace in Γ(r) of previous accesses on r, its composition with the trace extracted
from H(r,Q,χ) against ϕ and checks whether the right part of traces are included in the component Γ for
r. The traces η̃ in Γ(r) that we compose must not include χ (in symbols χ 6 E η̃), i.e. we only consider
accesses made by processes different from the process labelled by χ .

The analysis of resource prefix actions [Alphaα] and [Relα] amounts to the simple validation of the
continuation process Q.

Example 4.5 We briefly apply the analysis to our running example, where the processes are enriched
with labels (in blue in the pdf). First, we associate labels with the resource boundaries as follows:

Res ::= (r1,ϕ1,ε){0}� ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}�

Users ::= x1(s1).req(s1){α(s1).rel(s1)}χ1
α |x2(s2).req(s2){α(s2).rel(s2)}χ2

α ‖
x3(s3).req(s3){α(s3).rel(s3)}χ3

α ‖ y(t).req(t){β (t).rel(t)}χβ

Plan ::= x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0
System ::= Res ‖Users ‖ Plan

To illustrate how the labels work, we recall one of the possible system transitions.

System
≡ Res ‖Users′ ‖ x1(s1).req(s1){α(s1).rel(s1)}χ1

α ‖ x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0
τ→ (r1,ϕ1,ε){0}� ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}� ‖Users′ ‖ Plan′ ‖ req(r1){α(r1).rel(r1)}χ1

α

Further possible transitions leads to

τ→ (r1,ϕ1,ε){α(r1).rel(r1)}χ1
α ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}� ‖Users′ ‖ Plan′

τ→ (r1,ϕ1,(α,χ1
α)){rel(r1)}χ1

α ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}� ‖Users′ ‖ Plan′
τ→ (r1,ϕ1,(α,χ1

α).(rel,χ1
α)){0}χ1

α ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}� ‖Users′ ‖ Plan′

≡ (r1,ϕ1,(α,χ1
α).(rel,χ1

α))){0}� ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}� ‖Users′ ‖ Plan′

The CFA entries include:

• ρ(s1)⊇ {r1}, ρ(s2)⊇ {r2}, ρ(s3)⊇ {r1}, ρ(t)⊇ {r2}; correspondingly:

• κ(x1)⊇ {r1}, ρ(x2)⊇ {r2}, ρ(x3)⊇ {r1}, ρ(y)⊇ {r2};

22 Checking Global Usage of Resources handled with Local Policies

• Γ(r1)⊇ {(ϕ1,ε),(ϕ1,(α,χ i
α).(rel,χ i

α)),(ϕ1,(α,χ j
α).(rel,χ j

α).(α,χ i
α).(rel,χ i

α)),
(ϕ1,(α,χ i

α).(rel,χ i
α).(α,χ j

α).(rel,χ j
α))} (with i, j ∈ {1,3} and i, j distinct);

• Γ(r2)⊇ {(ϕ2,ε),(ϕ2,(β ,χβ).(rel,χβ)),(ϕ2,(β ,χβ).(rel,χβ).(α,χ2
α)),

(ϕ2,(α,χ2
α).(rel,χ2

α)),(ϕ2,(α,χ2
α).(rel,χα).(β ,χβ))};

To illustrate our analysis, we show some successful CFA checks performed on the above results, where
Users′ ::= x2(s2).req(s2){α(s2).rel(s2)}χ2

α ‖x3(s3).req(s3){α(s3).rel(s3)}χ3
α ‖y(t).req(t){β (t).rel(t)}χβ

and Plan′ ::= ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0. Since, by rule [Parα], (ρ,κ,Γ) |= System if and only if we have that
(ρ,κ,Γ) |= Res, (ρ,κ,Γ) |=Users, and (ρ,κ,Γ) |= Plan, we have to perform the checks in the rules

• [Joint1
α] for the empty resource joint point, where checking (ρ,κ,Γ) |= (r1,ϕ1,ε){0}� implies that

(ρ,κ,Γ) |= {0}� and (ϕ1,ε) ∈ Γ(r1).

• [InRα] for input actions, where (ρ,κ,Γ) |= x1(s1).req(s1){α(s1).rel(s1)}χ1
α ‖Users′ implies that

r1 ∈ ρ(s1), and

• [Reqα] for resource requests, where (ρ,κ,Γ) |= req(r1){α(r1).rel(r1)}χ1
α implies that Γ(r1) in-

cludes (ϕ1,(α,χ1
α).(rel,χ1

α)). Given indeed H(r1,α(r1).rel(r1),χ
1
α) = (α,χ1

α).(rel,χ1
α), since

ϕ1 |= (α,χ1
α).(rel,χ1

α), we have that Adm(ϕ1,ε,(α,χ1
α).(rel,χ1

α)) = (α,χ1
α).(rel,χ1

α).

• [Outα] for output actions, as in (ρ,κ,Γ) |= x̄1〈r1〉.Plan′ that implies that r1 ∈ κ(x1) and that
(ρ,κ,Γ) |= Plan′.

Existence We presented a procedure for validating whether or not a proposed estimate (ρ,κ,Γ) is
acceptable. We now show that there always exists a least choice of (ρ,κ,Γ) that is acceptable for CFA
rules, and therefore there always exists a least estimate. With “least” we intend with respect to the partial
order defined on the estimates, by set inclusion, componentwise, as follows.

Definition 4.6 A set of proposed estimates is ordered by setting (ρ,κ,Γ)v (ρ ′,κ ′,Γ′) iff ∀w ∈N ∪R :
ρ(w)⊆ ρ ′(w), ∀a ∈N : κ(a)⊆ κ ′(a), ∀r ∈R : Γ(r)⊆ Γ′(r).

To prove the existence of a least estimate we rely on the fact that the set of proposed estimates is a
Moore family, i.e. it is a subset of a complete lattice closed under greatest lower bounds [57]. The formal
definition is the following.

Definition 4.7 A subset Y of a complete lattice L = (L,v) is a Moore family if and only if it contains
(uY ′) for all Y ′ ⊆ Y .

Theorem 4.8 (Existence of estimates) For all the processes P, the set {(ρ,κ,Γ)|(ρ,κ,Γ) |= P} is a
Moore family.

The above theorem guarantees that there always exists a least estimate to the specification in Tables 3
and 4, since the set {(ρ,κ,Γ)|(ρ,κ,Γ) |= P} is a subset of the Moore family and u{(ρ,κ,Γ)|(ρ,κ,Γ) |=
P} is still an estimate.

Our analysis can be implemented along the lines of the CFA for the π-calculus [19]. The only difference
is due to the rule for checking inputs of resource identifiers. As a matter of fact, checking for every actual
value r that can be bound to the variable s allows us to gain precision, since there is a distinct check for
each possible continuation P{r/s}R. These checks introduce an exponential factor in the complexity of
the algorithm, which can be reasonably kept low, by limiting the number of possible resources.

C. Bodei, V.D. Dinh, & G-L. Ferrari 23

Correctness The analysis provides us with an approximation of the overall behaviour of the analysed
process. Moreover, the analysis respects the operational semantics of G-Local π-calculus. To prove
the semantic correctness, we need the following auxiliary results. The first ones state that estimates are
resistant to substitution of closed terms for variables.

Fact 4.9 Given an estimate (ρ,κ,Γ) and v ∈ ρ(x), we have that ∀y ∈N : ρ(y({v/x}))⊆ ρ(y)

Lemma 4.10 (Substitution) If (ρ,κ,Γ) |= P then (ρ,κ,Γ) |= P{v/x}, provided that v ∈ ρ(x).

The following lemma says that an estimate for a process P is also a valid estimate for every process
congruent to P.

Lemma 4.11 (Congruence) If (ρ,κ,Γ) |= P and P≡ Q, then (ρ,κ,Γ) |= Q.

We are now ready to state the subject reduction result that proves the semantics correctness of the
given analysis. First, we prove its correctness for its immediate derivatives, where a derivative is a
single-step evolution of the process P.

Theorem 4.12 (Subject reduction) If P
µ−→ P′, and (ρ,κ,Γ) |= P, then (ρ,κ,Γ) |= P′.

The correctness for all the derivatives of P immediately follows from the above theorem.

Corollary 4.13 (ρ,κ,Γ) |= P and P
µ−→
∗

P′, then (ρ,κ,Γ) |= P′.

Policy compliance Our analysis computes information on the resource usage and correctly predicts
possible cases of bad usage. In particular, this information can be statically exploited to check whether a
process complies with a given policy.

We first give a dynamic characterisation of what we mean with a process P to comply with a given
policy ϕ over the resource r. A process enjoys this property if neither it nor any of its derivatives can
perform an invalid access according to ϕ . Formally, we have the following definition, where

µ−→
∗

denotes
the reflexive and transitive closure of

µ−→.

Definition 4.14 The process P, where r is declared with policy ϕ , complies with ϕ for r, if and only if

P
µ−→
∗

P′ implies that there is no P′′ such that P′
α(r)→ P′′.

The information included in the component Γ allows us to define a static notion that corresponds to
the above dynamic property. We first observe that the component Γ of our CFA is in charge of recording
all the possible usage traces on each resource r. Actually, given r, Γ(r) is composed of pairs (ϕ, η̃),
where the trace η̃ records every action on r. Traces can also include pairs (α,χ) that refer to actions
α that correspond to possible “violations”. More precisely, the presence of a pair (α,χ) indicates that
the sub-process labelled by χ may be forced to release the resource r, when trying to perform the non-
allowed action α on r. We call faulty traces the traces that include violation actions.

Definition 4.15 A static trace η̃ ∈ Â ∗ is faulty if it includes (α,χ) for some α ∈A and for some χ ∈L .

On the static side a process respects a policy for a resource r, when we cannot find any faulty trace
in the traces included in the component Γ.

Definition 4.16 A process P, where r is declared with policy ϕ , is said to respect ϕ for r, if and only if

∃(ρ,κ,Γ).(ρ,κ,Γ) |= P and ∀(ϕ, η̃) ∈ Γ(r).η̃ is not faulty.

24 Checking Global Usage of Resources handled with Local Policies

By suitably handling the safe over-approximation the CFA introduces, we can predict at static time
whether a process complies with its policy. Because of the over-approximation, the analysis can give
false positives (what the analysis includes corresponds to something that can happen), but it can never
give false negatives (what the analysis does not include cannot happen). As far as policy compliance is
concerned, this means that if all the traces are not faulty, then we can prove that policy violations cannot
occur at run time, and therefore that the process correctly uses its resources. As a consequence, the
absence of faulty traces in the analysis results is a sufficient condition for the checked process to comply
with its policy.

Theorem 4.17 If P respects the policy ϕ for r then P complies with ϕ .

Instead, if the analysis contains faulty traces, then there is the possibility of policy violations, as
discussed in the following example.

Example 4.18 Back to our running example, and to its analysis result, it is easy to see that there are at
least two possible policy violations, which are captured by our CFA in the component Γ(r2). The first
faulty trace, given by the entry:

(ϕ2,(β ,χβ).(rel,χβ).(α,χα))

corresponds to the dynamic computation, developed in the previous section, where the resource r2 is
forcedly released, when one of the user attempts to perform an α action on r2, after an action β . The
corresponding trace (β ,χβ).(rel,χβ).(α,χα) records indeed the tentative violation of the policy ϕ2 on
the resource r2. Analogously, the second faulty trace, given by the entry

(ϕ2,(α,χ2
α).(rel,χα).(β ,χβ))

represents a similar violation of the policy ϕ2 on the resource r2. In these particular cases, both traces
reflect the dynamic behaviour, where the accesses to the resource r2 of both sub-processes lead to sure
run time violations. If the whole system offered a further copy of the resource r2, as in

Res′ = (r1,ϕ1,ε){0}� ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}� ‖ (r2,ϕ2,ε){0}�

then we would have at least some computations without violation but, still, the whole system would not
comply with the policy ϕ2. Consider instead the slightly modified version of the system in the running
example.

Res1 ::= (r1,ϕ1,ε){0}� ‖ (r1,ϕ1,ε){0}� ‖ (r2,ϕ2,ε){0}�

Users1 ::= x1(s1).req(s1){α(s1).rel(s1)}χ1
α |(x̄2〈r2〉.x2(s2)).req(s2){α(s2).rel(s2)}χ2

α ‖
x3(s3).req(s3){α(s3).rel(s3)}χ3

α ‖ y(t).req(t){β (t).rel(t)}χβ

Plan1 ::= x̄1〈r1〉.ȳ〈r2〉.x̄3〈r1〉.0
System1 ::= Res ‖Users1 ‖ Plan1

where the output prefix x̄2〈r2〉 is now put before the corresponding input x2(s2). Since the two prefixes
are placed in sequence they cannot synchronise. Nevertheless, because of the over-approximation, the
analysis still counts r2 among the possible values in ρ(s2). As a result, we still have faulty traces, but
System1 dynamically complies with ϕ2 for r2.

C. Bodei, V.D. Dinh, & G-L. Ferrari 25

P,P′ ::= processes ∈ Proc
| (r,ϕ, η̌){F}χ resource joint point
| req(z){F}χ resource request point

F,F ′ ::= f lat parallel processes ∈ FlProc
0

| αλ (z).Q
| relλ (z).Q
| π.Q
| Πn

i=0Fi

| (r,ϕ, η̌){F}χ

| (r,ϕ, η̌){0}�||F
| req(z){F}χ

Figure 7: Labelled syntax for parallel threads.

4.2 CFA: step 2

We now introduce the necessary extensions to apply our Control Flow Analysis to the case of parallel
threads. As done above, to make the control flow analysis tractable we assume that our static machinery
applies to deadlock-free systems.

Furthermore, for the sake of simplicity, we suppose to have a flat structure of parallel processes, as
established by the syntax in Figure 7, where we use the indexed product as n-ary parallel constructor.
The general case can be similarly handled, at the cost of some slightly more involved notational exten-
sions. For an example, see next section, where we introduce suitable forms of unbounded iterators over
resources.

Differently from the previous case, a group of sequential processes can now concurrently access and
use the same resource r. As a consequence the usage traces of r are obtained by interleaving the single
contributions of each process.

To statically obtain the corresponding new usage traces, we need to extract (from the resource bound-
aries) the single sequences of the access and release actions on r and then merging or shuffling the
obtained traces, without altering the order of access events inside the single starting traces.

Before introducing the shuffling function Shfl for merging traces, we need some auxiliary definitions.
We first need to distinguish actions with the same name, but performed in different moments by different
processes. To this aim, we associate a further label λ ∈ Λ, different in each point, with every action α ,
i.e. actions are in the form αλ (r) and relλ (r). The traces are extended accordingly and are composed by
triples like (α,χ,λ). The new traces, called η̌ , are included indeed in ˇA ∗, where ˇA = (A ∪{rel}×
L ×Λ). Again these labels can be easily forgotten and removed to obtain the original semantics.

Then, we need a way to preserve the order of access events inside the single starting traces in the
resulting shuffled traces. This requires establishing an order between the components of the same trace,
based on the order in which they occur. Trace components are obtained by applying an auxiliary function
L that, given an extended trace η̌ , returns the union of all of its components (α,χ,λ).

Definition 4.19 Given a sequence η̌ ∈ (A ∪{rel})×L ×Λ)∗, we define L(η̌) as follows:

L(ε) = /0
L((α,χ,λ).η̌) = {(α,χ,λ)}∪L(η̌)

26 Checking Global Usage of Resources handled with Local Policies

Given a sequence η̌ ∈ (A ∪{rel})×L ×Λ)∗ and two components (α,χ,λ), (β ,χ ′,µ) in η̌ , we say
that (α,χ,λ) occurs before (β ,χ ′,µ) in η̌ , written as

(α,χ,λ)<η̌ (β ,χ ′,µ)

if and only if η̌ = η̌ ′.(α,χ,λ).η̌ ′′.(β ,χ ′,µ).η̌ ′′′, where η̌ ′.η̌ ′′, η̌ ′′′ ∈ ((A ∪{rel})×L ×Λ))∗.
Given sequences η̌0, η̌1, ...η̌k ∈ ((A ∪{rel})×L ×Λ))∗, we define

Shfl(η̌0, ..., η̌k) = {η̌ ∈ L(η̌0)∪ ...∪L(η̌k)|∀i ∈ [0,k],∀(α,χ,λ),(β ,χ ′,µ) ∈ η̌i :

(α,χ,λ)<η̌i (β ,χ
′,µ)⇒ (α,χ,λ)<η̌ (β ,χ ′,µ)}

At this point, we can introduce the function SH that, given a flat process F , a resource boundary
labelled by χ and a resource r, computes the shuffling of all the traces due to every sequential sub-
processes of F , computed by exploiting an auxiliary function H ′ that extends H to the new traces.

Definition 4.20 We inductively define the function SH : F ×FlProc×L → ˇA ∗ as follows

SH(r,F0 ‖ ... ‖ Fn,χ) = Shfl(H ′(r,F0,χ), ...,H ′(r,Fn,χ))
SH(r,0,χ) = /0
SH(r,F,χ) = {H ′(r,F,χ)}

where the function H ′ : R×FlProc×L → ˇA ∗ is defined as follows

H ′(r,0,χ) = ε

H ′(r,π.F,χ) = H ′(r,F,χ) if π is an input/output prefix
H ′(r,αλ (r).F,χ) = (α,χ,λ).H ′(r,F,χ)
H ′(r,αλ (z).F,χ) = H ′(r,F,χ) if z 6= r
H(r,relλ (r).F,χ) = (rel,χ,λ)
H(r,relλ (z).F,χ) = H ′(r,F,χ) if z 6= r

H ′(r,(r′,ϕ ′, η̌ ′){F ′}χ ′ ,χ) = H ′(r,F ′,χ)
H ′(r,req(z){F ′}χ ′ ,χ) = H ′(r,F ′,χ) if z 6= r

H ′(r,((r′,ϕ ′, η̌ ′){0}� ‖ F),χ) = H ′(r,F,χ)

Example 4.21 If we apply the function SH to the following process F, where we put in blue (in the pdf)
the second flat parallel process and its contributions

F = req(r){αλ1(r).β (r)λ ′1 .relλ ′′1 (r) ‖ γ
λ2(r).αλ ′2(r).relλ ′′2 (r)}χ

we obtain

SH(r,F,χ) = Shfl(H ′(r,αλ1(r).β (r)λ ′1 .relλ ′′1 (r),χ),(H ′(r,γλ2(r).αλ ′2(r).relλ ′′2 (r),χ))

Now, since
H ′(r,αλ1(r).β (r)λ ′1 .relλ ′′1 (r),χ) = (α,χ,λ1).(β ,χ,λ

′
1).(rel,χ,λ ′′1)

H ′(r,γλ2(r).αλ ′2(r).relλ ′′2 (r),χ) = (γ,χ,λ2).(α,χ,λ ′2).(rel,χ,λ ′′2)

we have that SH(F) includes all the possible shuffles, e.g. the following ones:

(α,χ,λ1).(β ,χ,λ
′
1).(rel,χ,λ ′′1).(γ,χ,λ

′
2).(α,χ,λ ′2).(rel,χ,λ ′′2)

(α,χ,λ1).(γ,χ,λ
′
2).(β ,χ,λ

′
1).(γ,χ,λ

′
2).(rel,χ,λ ′′1).(rel,χ,λ ′′2)

(α,χ,λ1).(γ,χ,λ
′
2).(γ,χ,λ

′
2).(β ,χ,λ

′
1).(rel,χ,λ ′′1).(rel,χ,λ ′′2)

(γ,χ,λ ′2).(α,χ,λ ′2).(rel,χ,λ ′′2).(α,χ,λ1).(β ,χ,λ
′
1).(rel,χ,λ ′′1)

C. Bodei, V.D. Dinh, & G-L. Ferrari 27

[Joint23
α] (ρ,κ,Γ) |= (r,ϕ, η̌){F}χ iff (ρ,κ,Γ) |= F ∧ ∀η̌ ′ ∈ SH(r,F,χ).(ϕ,Adm(ϕ, η̌ , η̌ ′) ∈ Γ(r))

[Req2α] (ρ,κ,Γ) |= req(r){F}χ iff (ρ,κ,Γ) |= F ∧ ∀(ϕ, η̌) ∈ Γ(r).χ 6 E η̌ ∧ ∀η̌ ′ ∈ SH(r,F,χ).
(ϕ,Adm(ϕ, η̌ , η̌ ′)) ∈ Γ(r)

Table 5: CFA rules for parallel threads: the most interesting cases

Similarly, we extend the function Adm to treat the new traces, by introducing the function Adm′.

Definition 4.22 We inductively define the function Adm′ : ˇA ∗× ˇA ∗→ ˇA ∗ as follows

Adm′(ϕ, η̌ , η̌ ′) =

{
η̌ .η̌ ′ if η̌ .η̌ ′ |= ϕ

η̌ .η̌ ′′.(α,χ,λ) if η̌ .η̌ ′′ |= ϕ ∧ η̌ .η̌ ′′.(α,χ,λ) 6|= ϕ where η̌ ′ = η̌ ′′.(α,χ,λ).η̌ ′′′

The extended CFA changes only in the clauses for resource scopes [Joint23
α] and [Req3

α], described
in Table 5, because now the parts of the traces appended to the starting one come from the set of all the
possible shuffles of the traces of the sequential sub-processes in F . The rule [Joint23

α] checks whether
Γ(r) includes the right traces of usage of the resource r, due to all the sequential sub-processes in F .
Formally the clauses check whether (ϕ,Adm(ϕ, η̌ , η̌ ′)) ∈ Γ(r) for each η̌ ′ in the shuffles returned by
SH(r,F,χ). Similarly, the rule [Req2α], includes the validation of the enclosed process F and, for each
trace in Γ(r) of previous accesses on r, checks its composition with the trace η̌ ′ extracted from SH(r,F,χ)
against the policy ϕ , by verifying if the compliant part of the resulting trace is included in Γ(r), together
with the first violating action, if any. Also here, the traces η̌ in Γ(r) that we compose must not include χ

(in symbols χ 6 E η̌). The other CFA clauses are similar to the ones in Tables 3 and 4. The only difference
consists in the use of extended traces η̌ in place of the standard traces η .

Also for this extended analysis, there is a subject reduction theorem that states the correctness of the
analysis, as well as an existence result as that in Theorem 4.8. Furthermore, we have a similar version of
Theorem 4.17 to state that the absence of faulty traces in the analysis results is sufficient for the checked
process to comply with its policy. For the sake of brevity, we only state the correctness result.

Theorem 4.23 (Subject reduction) If P
µ−→ P′, and (ρ,κ,Γ) |= P, then (ρ,κ,Γ) |= P′.

4.3 CFA: Step 3

In the previous sub-sections, to keep the analyses simple, we restricted our attention only to processes that
have finite behaviour. The analysis can be extended and enriched to deal with possibly infinite behaviour,
as well. For the sake of simplicity, we focus on the behaviour of finite state processes, obtained by
including suitable forms of unbounded iterators over resources in our calculus.

Our first step consists in extending the syntax of sequential processes, as presented in Figure 8. We
reintroduce the bang replication construct !req(r){R}χ! intended only for the repeated use and request of
the same resource r, provided it is available. We assume that inside the boundary there are just simple
sequential processes R, composed by only sequences of prefixes. To deal with the new construct, called
unrestricted resource request point, we embed the structural congruence rule of replication inside the
rule for resource acquisition, as follows.

28 Checking Global Usage of Resources handled with Local Policies

P,P′ ::= processes ∈ Proc
...

| (r,ϕ, η̂){Q}χ resource joint point
| req(z){Q}χ resource request point
| !req(z){R}χ! unrestricted resource request point
| (r,ϕ, η̂){R}χ! single-iteration resource joint point
| (r,ϕ, η̂){0}�||R

Q,Q′ ::= sequential processes ∈ SeqProc
| 0
| π.Q
| [π̂]∗.R regexp prefix action
| (r,ϕ, η̂){Q}χ

| (r,ϕ, η̂){0}�||Q
| req(z){Q}χ restricted resource request point

R,R′ ::= simple sequential processes ∈ SeqProc
| 0
| π.R

π̂, π̂ ′ ::= action sequences
| π standard action
| π.π̂ regular expression sequence of actions

Figure 8: Labelled syntax.

(Repeated Acquire) !req(r){R}χ! ‖ (r,ϕ, η̂){0}� τ−→!req(r){R}χ! ‖ (r,ϕ, η̂){R}χ!

The primitive !req(r){R}χ! enables sequential process R to access the resource r an unlimited amount
of times, by decoupling the request !req(r){R}χ! from the actual usage (r,ϕ,η){R}χ! , where the label χ!

recalls that this usage derives from the unfolding of a replication. Note that repeated labels are generated
by structural congruence in the replication case.

Example 4.24 To better understand this new construct, consider a process !req(r){R}χ! , where R =
α(r).β (r).rel(r), that repeatedly requires an available resource r:

!req(r){α(r).β (r).rel(r)}χ! ||(r,ϕ, η̂){0}�

Since the contribution of R to the usage of resource r is in the form [(α,χ!).(β ,χ!).(rel,χ!)], the whole in-
tended usage of the resource r is given by an unlimited number of repetitions of [(α,χ!).(β ,χ!).(rel,χ!)].

To concisely represent these kinds of traces, we can resort to the operators used for regular lan-
guages. As a consequence, the intended usage of the resource can be represented as the repeated trace
[(α,χ!).(β ,χ!).(relχ!)]

∗, where the Kleene star ∗ reflects the potentially infinite iteration of that portion
of trace. This trace has to be checked against the policy ϕ . To perform this check, we can resort to
standard techniques of model checking, like the ones based on automata (see e.g. [6]).

C. Bodei, V.D. Dinh, & G-L. Ferrari 29

As a further extension, we introduce the possibility of describing unrestricted repeated sequences of
actions, in the form of regular expressions [π̂]∗, to be used inside a resource boundary, whose semantic
treatment, reminiscent of some suitable form of the sequential bang, can be provided by the following
structural congruence rule

[π̂]∗.R≡ π̂.[π̂]∗.R+R

where, for the sake of simplicity, we assume that after [π̂]∗ in [π̂]∗.R there are no further repeated se-
quences of actions. As an example, let us consider a process that requires a resource r that repeatedly
performs some access operations.

req(r){α(r).[β (r).γ(r)]∗.rel(r)}χ ||(r,ϕ, η̃){0}�

The trace that represents this intended usage of r should be in the form

(α,χ).[(β ,χ).(γ,χ)]∗.(rel,χ)

To treat these sequences, we just need the following new case in the function H ′′, natural extension of H
to the extended traces η̂ (all the other cases are similar to the ones in the definition H).

H ′′(r, [π̂]∗,χ!) = [H(r, π̂,χ!)]
∗

To deal with the new constructs, also traces and their handling have to be extended accordingly. First
of all, we need labels in the form χ! , to distinguish unrestricted iteration usage from standard resource
usage. The set of traces is therefore ˆA ∗, where ˆA = (A ∪{rel}× (L ∪L!)), L! is ranged over by χ!

and (L ∪L!) is ranged over by χω .
To capture replicated behaviour, such as the one presented in the previous example, we need to have

standard regular expressions η̂ over the alphabet ˆA . Again these labels can be easily forgotten and
removed to obtain the original semantics.

Similarly, we accordingly extend the function Adm to treat the new traces, by introducing the func-
tion Adm′′.

Definition 4.25 We inductively define the function Adm′′ : ˆA ∗× ˆA ∗→ ˆA ∗ as follows

Adm′′(ϕ, η̂ , η̂ ′) =

{
η̂ .η̂ ′ if η̂ .η̂ ′ |= ϕ

η̂ .η̂ ′′.(α,χω) if η̂ .η̂ ′′ |= ϕ ∧ η̂ .η̂ ′′.(α,χω) 6|= ϕ where η̂ ′ = η̂ ′′.(α,χω).η̂
′′′

To complete the formal development of the new analysis, we have to show the way the contribu-
tions of every iterative context can be combined among them and with the contributions of non-iterative
contexts. Since these kinds of combinations are non trivial, we resort to some illustrative examples,
presented in an incremental fashion.

Example 4.26 Consider two processes that repeatedly require the resource r in parallel with the resource r.

!(req(r){α(r).β (r).rel(r)}χ!)||!(req(r){γ(r).α(r).rel(r)}χ ′
!)||(r,ϕ, η̂){0}�

• The contribution of the first process to the usage of resource r is in the form [(α,χ!).(β ,χ!).(rel,χ!)]
at each iteration, while the contribution of the second one is [(γ,χ ′

!
).(α,χ ′

!
)).(rel,χ ′

!
)].

• At run time, the two processes alternate their actions on the resource. Consequently, the two
contributions can be interleaved or shuffled in every possible way.

30 Checking Global Usage of Resources handled with Local Policies

[Joint3α] (ρ,κ,Γ,∆ω) |= (r,ϕ, η̂){Q}χ iff (ρ,κ,Γ,∆ω) |= Q ∧ [H(r,Q,χ)] ∈ ∆ω(r) ∧

∀η̂ ′ ∈Mix(∆ω(r))(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r)

[Joint4α] (ρ,κ,Γ,∆ω) |= (r,ϕ, η̂){R}χ! iff (ρ,κ,Γ,∆ω) |= R ∧ [H(r,R,χ!)] ∈ ∆ω(r) ∧

∀η̂ ′ ∈Mix(∆ω(r))(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r)

[Reqα] (ρ,κ,Γ,∆ω) |= req(r){Q}χ iff (ρ,κ,Γ,∆ω) |= Q ∧ [H(r,Q,χ)] ∈ ∆ω(r) ∧

∀(ϕ, η̂) ∈ Γ(r).χ 6 E η̂ .∀η̂ ′ ∈Mix(∆ω(r))

(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r)

[!Reqα] (ρ,κ,Γ,∆ω) |= !req(r){R}χ! iff (ρ,κ,Γ,∆ω) |= R ∧ [H(r,R,χ!)] ∈ ∆ω(r) ∧

∀(ϕ, η̂) ∈ Γ(r).∀η̂ ′ ∈Mix(∆ω(r))

(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r)

Table 6: CFA rules for unbounded iterators: the most interesting cases

• Shuffle can be rendered with the operator + that represent the standard union of regular lan-
guages. The required traces are then given by the regular expression η̂ .[(α,χ!).(β ,χ!).(rel,χ!)+
(γ,χ!).(α,χ!).(rel,χ!)]

∗. Intuitively, each time the resource is available, one of the two requests in
the two iterative contexts can obtain the resource, use and release it.

Accordingly, the extension to the case of requests inside many iterative contexts leads to the summation
of several contributes.

As before, we can also have non-iterative processes requiring a resource. This implies yet another
step in the combination of contributions, as shown in the following example.

Example 4.27 Consider now two processes that repeatedly require the resource r, and one non repetitive
process that require r just once, in parallel with the resource r.

!(req(r){α(r).β (r).rel(r)}χ!)||!(req(r){γ(r).α(r).rel(r)}χ ′
!)||

req(r){α(r).α(r).rel(r).X}χ ′′ ||(r,ϕ, η̂){0}�

• Again, the contribution of the first process to the usage of resource r is [(α,χ!).(β ,χ!).(rel,χ!)] at
each replication, the contribution of the second one is in the form [(γ,χ ′

!
).(α,χ ′

!
).(rel, ,χ ′

!
)], while

the contribution of the third one is [(α,χ ′′).(α,χ ′′).(rel,χ ′′)].

• The required traces are like the ones in the previous example, except that they contain just one
occurrence of [(α,χ ′′).(α,χ ′′).(rel,χ ′′)], i.e.

η̂ .η̂! .[(α,χ ′′).(α,χ ′′).(rel,χ ′′)].η̂!

with η̂! = [(α,χ!).(β ,χ!).(rel,χ!)+(γ,χ!).(α,χ!).(rel,χ!)]
∗.

Even more complicated, the case in which there are more finite contributions to place just once, as in:

!(req(r){α(r).β (r).rel(r)}χ!)||!(req(r){γ(r).α(r).rel(r)}χ ′
!)||

req(r){α(r).α(r).rel(r).X}χ ′′ ||req(r){β (r).α(r).rel(r).X}χ ′′′(r,ϕ, η̂){0}�

C. Bodei, V.D. Dinh, & G-L. Ferrari 31

where we would obtain

η̂ .η̂! .[(α,χ ′′).(α,χ ′′).(rel,χ ′′)].η̂! .[(β ,χ
′′′).(α,χ ′′′).(rel,χ ′′′)].η̂!+

η̂ .η̂! .[(α,χ ′′).(α,χ ′′).(rel,χ ′′)]η̂! .[(α,χ ′′).(α,χ ′′).(rel,χ ′′)].η̂!

Therefore, we can have all the traces obtained by interleaving the contributions of non-iterative contexts
(in every possible order) with Kleene closure of the summation of all the contributions of every iterative
context. Note that, again, we remain inside regular languages.

To formally deal with these kinds of traces, we introduce a further analysis component ∆ω that,
given a resource r, collects the individual intended contributions on r of all replicated and non-replicated
contexts, respectively. It is convenient, in ∆ω , to distinguish between the parts:

• ∆!(r), which collects the repetitive contributions, i.e. the ones in the form

η̂! ∈ (A ∪{rel}×L!)
∗

• and ∆(r), which collects the non-repetitive contributions, i.e. the ones in the form

η̂ ∈ (A ∪{rel}×L)∗

The combinations of all the contributions on r can be obtained starting from ∆ω in the following way.
Let Mix be the function able to compute all the needed combinations, by suitably interleaving the contri-
butions in ∆ω . Finite contributions can appear in every point, but just once. Its definition follows.

Mix(∆ω(r))= {η̂ ′= [∑
η̂ i

!
∈∆!

η̂
i
!
]∗ η̂

1[∑
η̂ i

!
∈∆!

η̂
i
!
]∗...η̂k[∑

η̂ i
!
∈∆!

η̂
i
!
]∗ | for all permutations η̂

1...η̂k with η̂
i ∈∆(r)}

where a permutation is intended as a one-to-one correspondence of a set with itself, which carries each
element of the set into the one that occupies the same position after the permutation is applied.

Also for this extension, the CFA changes only in the clauses for resource scopes described in Ta-
ble 6. More in detail, the rules check whether Γ(r) includes the right traces of usage of the resource
r, due to all the contributions η̂ ′ in Mix(∆ω(r)), checked against ϕ . Formally they check whether
(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r) for each η̂ ′ in Mix(∆ω(r)). The remaining CFA clauses are similar to the
ones in Tables 3 and 4. The only difference consists in the use of extended traces η̂ in place of standard
traces η .

Also in this case, there is a subject reduction theorem that states the correctness of the analysis, as
well as an existence result as that in Theorem 4.8. Furthermore, we have a similar version of Theo-
rem 4.17 to state that the absence of faulty traces in the analysis results is sufficient for the checked
process to comply with its policy. For the sake of brevity, we only state the correctness result.

Theorem 4.28 (Subject reduction) If P
µ−→ P′, and (ρ,κ,Γ,∆ω) |= P, then (ρ,κ,Γ,∆ω) |= P′.

5 Concluding remarks and discussions

We have presented a model for the management of resources in distributed applications. Our model takes
the form of an extension of π-calculus with suitable primitives to manage resources. The novel feature
of our proposal relies on the adoption of the publish-subscribe paradigm to handle resource acquisition.
We argued that our calculus supports the design of modular applications that are loosely coupled with

32 Checking Global Usage of Resources handled with Local Policies

respect to resources. Furthermore, the definition of coordination policies on processes that act on the
same resources is naturally supported. Finally, we developed a Control Flow Analysis that computes a
static approximation of resource usages of applications.

Understanding the foundations of the distributed management of resources is a challenging research
line that may extend state-of-the-art advances of programming language constructs, algorithms and rea-
soning techniques for resource-aware programming of distributed applications. In the last few years,
the problem of providing the mathematical basis for the mechanisms that support resource usage has
received a major attention. A number of models has been proposed (see e.g. [11, 25, 51, 31, 46], to cite
only a few) for resource management. These are characterised by different motivations, design choices
and technical solutions.

The G-Local π-calculus design. We started the design of our calculus by adopting the so-called
history-based approach, which has been studied in [7, 36, 64, 6]. The history-dependent framework
overcomes the weaknesses of stack-based approaches [37] that record only a fragment of the trace in-
stead of the whole trace (called history). In [11], the authors propose an extension of the λ -calculus
to statically verify resource usage. The work combines local checks of program points, where critical
resources can be accessed, with global policies, which enforce a global invariant to hold at any program
point. Our work is inspired and extends in several places these works, by borrowing ideas from service
oriented computing (SOC) [61]. A key theme of SOC is the design of a general theory of services, often
based on mobile calculi, for formalising service-oriented applications [70, 23] and for developing suit-
able verification techniques [27, 42, 52]. Although our model is based on mobile calculi, we specifically
focus on the orthogonal issue of the correctness of resource usage.

The novel feature of our proposal relies on the interaction patterns between resources and computa-
tional processes. These interactions are established through a sort of publish-subscribe paradigm. Notice
that these features have been exploited in service oriented computing. The emphasis on design of service
orientation so far has been on the description of interactions and on the development of related con-
cepts, like context-awareness or service sessions. Invocation of “services” establishes a session, whose
interactions follow a certain protocol through the standard mechanism of communication, provided by
mobile calculi. Under this regard, services could be considered as resources at a high level point of view.
Resources in our approach are represented by structures with states and usage polices. Usage policies
related to individual resources provide indeed a flexible way to define fine-grain access control on re-
sources. This emphasises that the focus of our approach is on the correct usage of resources rather than
on the discipline of interactions like in SOC.

Resources in the G-Local π-calculus have scopes that can be thought as resource administrative
domains, similar to the scope of locations in Mobile Ambients (MA) [29]. Closer to ours is the work
in [35], where an ambient is considered as a unit for monitoring and coordinating activities. More
precisely, each ambient is equipped with a guardian, which monitors the activities of sub-components
(i.e. processes and sub-ambients). Unlike MA, the scopes of resources are more restricted since the
scopes cannot be opened. Placing restriction on the scope of resources is a design decision that makes
the control of resource management easier. While the scopes of locations in MA are managed by explicit
actions of processes, configurations of resources in our approach are not under the control of processes
and resources have no control over other resources. This assumption is justified in terms of loosely
coupling design, which is typical of modular distributed applications.

C. Bodei, V.D. Dinh, & G-L. Ferrari 33

Models of resources. The simplest model of resources in process calculi is given by the notion of
names. In name-passing process calculi, names can be communicated and exchanged, while in ambient-
like calculi, names assume the role of locations. Thus, it is natural to treat names as resources in many
process-calculus approaches to resource management [71, 50, 67, 68]. In [50], resource usage is simply
bound to the number of communications in channels. The work in [68] focuses on the ownership and
publicity of names. The proposals in [71, 67] are centred on allocation/deallocation of resources. In
the first, reconfiguration steps are internalised inside processes via the operations for allocating and de-
allocating channels. A similar idea is found in [67], where the authors introduce closer explicit transition
rules for eliminating dead processes through different garbage-collectable relations on processes. The
drawback of these works is that properties of resources are quite limited. In [45], more advanced prop-
erties of names are introduced and studied with a logic for express the relations between processes and
resources. In our approach resources are structured to allow reasoning on the actual states of resources.

The π-calculus dialect of [51] provides a framework for checking resource usage in distributed sys-
tems. The treatment of resources in this approach is closer to ours in terms of properties of resources.
Indeed, private names are extended to resources, i.e. names with a set of traces to define control over
resources. Also resource request and resource release are simulated through communication of private
names. This provides a shared semantics of resources, i.e. several processes can have a concurrent ac-
cess to resources (by communicating private names). Resources in our approach may be considered as
names with additional structures, however they cannot be private. Unlike private names with the dynamic
boundaries through the scope extrusion, they have a fixed boundary. Also, our semantics of resources
differs from the one in [51]: when a process obtains a resource, it has an exclusive access to it.

The works in [31, 25] consider an explicit notion of resources, different from ours. In particular,
in [31], the authors propose a process calculus with an explicit representation of resources, in which the
evolution of processes and resources follows a synchronous SCCS style. More precisely, resources form
a monoid, i.e. a set of elements with a binary operator. Thus, a resource can be non-deterministically split
into smaller pieces (by the binary operator defined in the monoid) to be distributed among processes. In
this way, the notion of resources is closely related to the sharing interpretation of the BI-family logics
(see [58] for details). Also, a modal logic, based on the BI-family logics, is developed to specify resource
properties. The drawback of this approach is the co-evolution of processes and resources. It requires
a pre-defined model of resources, which is sometimes difficult to define. In our approach, resources
are independent stateful entities, thus subject to be requested, and are equipped with their own global
interaction usage policy, defined as a set of traces. Therefore, LTL formulas or equivalent formalisms can
be used to specify temporal properties of resources. It is worthwhile noting that this approach promotes
a tightly coupled paradigm where resources and processes run with high degrees of dependency, while
our approach fosters a loosely-coupled view of the resource-consumer interactions.

The work presented in [25] mainly focuses on specifying SLA by describing resources as suitable soft
constraints. In this proposal, c-semirings [14] act as models of resources. The shared store of constraints
on resources represents SLA contracts established through allocation and deallocation of resources. C-
semirings allow for expressing soft constraints, i.e. constraints that give informative values instead of
just true or false. Similar to ours, available resources are obtained through suitable requests. It is easy to
see that we might exploit constraints to express global resource usage as well.

Static Approach to resource usage. We equip our calculus with a static machinery for managing
resource usage, based on Control Flow Analysis. The CFA computes a safe over-approximation of
communication-based and finite resource-based behaviour. First, resource-based behaviour is described

34 Checking Global Usage of Resources handled with Local Policies

with their possible traces and configurations (i.e. the resource contexts). Our CFA extends the one for
the π-calculus in [19], with some insights coming from [15] and from [16]. The extension is needed
to handle resources and to have the suitable information in the analysis results, to statically check some
reachability properties of resources. The novelty of our CFA consists in applying flow logic [56] to
manage the asynchrony of the publish-subscribe paradigm. A first contribution in this direction can be
found in [22].

Other approaches have addressed resource usage issues by exploiting types. A resource-aware type
system for the π-calculus has been introduced in [50]. Resources are channels and linear types are
employed to derive static information about process interactions over channels: e.g. two processes com-
municating over a linear channel cannot interfere with other communicating processes. The linear type
systems for the πI-calculus in [72, 44] control and limit channel reuse in order to statically avoid the oc-
currence of deadlocks. Other static techniques, based on type systems, have been proposed for deadlock
detection in mobile calculi, e.g. [41, 60], also mentioned in Subsection 4.1. In [41], the authors present
a new deadlock detection technique for the value-passing CCS (and for the π-calculus) that enables the
analysis of networks with arbitrary numbers of nodes. Padovani, in [60], studies two refinements of the
linear π-calculus that ensure both deadlock freedom and lock freedom. There are also tools for dead-
lock detection, such as TyPiCal [49], a quite powerful analyser for π-calculus, developed by Kobayashi.
Teller [67] introduces a variant of the π-calculus where specialised processes, called finalisers, run to
de-allocate channel resources and where a type system provides bounds on resources usage. In [38]
π-calculus channels are viewed as resources that must explicitly be allocated before their use and can be
deallocated when no longer needed. A suitable type system supports the development of proof techniques
for comparing resource usage. A behavioural type system for statically checking spatial properties, us-
ing a fragment of spatial logics [28], has been developed in [2]. Our proposal differs from these static
approaches in the notion of resource. We assume that the resource-consumer relationship is governed
by suitable usage policies. Moreover, our focus is on the global coordination that manages the way re-
sources, aggregated from multiple sources, are used. A more detailed discussion on the relationships with
type systems can be found in [33], together with a type system for our calculus, based on behavioural
types. There, types abstract two kinds of behavioural information: communication-based and resource-
based. Essentially, while CFA allows us to address reachability and safety property, behavioural types
allow us instead to address different kinds of properties, such as linear temporal properties, including
liveness properties.

Programming abstractions for resource awareness. In programming languages, abstraction mech-
anisms, like objects, classes or abstract data types, aim at helping developers to focus on the software
design. Indeed, focussing on business logic of software systems allows for freeing developers from
implementation details. For example, the try-with-resources statement has recently been introduced
in JDK7 [59] to support developers in ensuring proper termination over resources. The separation of
concerns between business logic and operation logic is indeed the main focus of our work. The term
operation logic, coined in [47], refers to resource management in distributed settings, where applications
are capable of accessing a variety of resources. Our work is a first step on the way of providing a foun-
dational basis for resource-aware programming abstractions. We illustrate, in Section 2, an example of
resource-aware programming abstractions, suggested by our approach.

Closest to our idea of resource-aware programming are the proposals presented in [3, 66]. The first
one introduces a typesafe-oriented programming language by extending the object paradigm with object
states. Objects are modelled in terms of changing states, rather than classes. The development of the

C. Bodei, V.D. Dinh, & G-L. Ferrari 35

resource-aware programming Plaid, introduced in [66], follows the idea outlined above. Typesafe pro-
gramming, originally introduced in [65], expresses that each state of an object has its own representation
and methods (only these methods are available for the object in this state) may lead the object into a new
state. The dynamics of states allows developers to control program behaviour. Under this regard, we
could consider objects as linked to a security policy, thus restricting the transitions of objects from one
state to another. In a broader view of resources, objects can be considered as resources, and therefore can
be assimilated to our notion of resources. The essential difference between the typesafe approach and
ours is that for us resources are independent entities and that we rely on loose coupling design to separate
fragments of code that use resources, from resources themselves, rather than scattering fixed operations
through a set of states of objects. More precisely, access control over resources in the programming
language in [66] is more fine-grained than ours: the adopted access control includes shared, immutable
and exclusive accesses. Our approach, instead, supports only exclusive resource accesses.

Future work. Several extensions are possible. Here, we outline some of them devoted to future work.

• Model of resources. Our model relaxes model privacy of resources, i.e. all resources are public
entities, hence every process knowing resource names may potentially access them. Instead of
taking private names as resources, we could extend resources with privacy, i.e. considering r as a
private name, as in the following example:

P ::= (νr)((r,ϕ,η){0} ‖ (r,ϕ,η){0} ‖ Q)

where two identical resources are available under a private name r for being used only by the
processes that know r (Q in this case). The nature of private names with notion of group is not
new, however, the novel treatment of resource privacy could give a closer view of resource usage,
which can be potentially further divided in:

i) an internal view, which only focuses on the states of resources;
ii) an external view, which focuses on external information by processes that request resources.

• Dynamic reconfiguration. Resource entities could be dynamically reconfigured via resource
movements. Besides the structural rules, we could have included the following transition rules
(Appear) and (Disappear):

(Appear) P τ−→ P ‖ (r,ϕ,η){0} (Disappear) (r,ϕ,η){P} τ−→ 0

which describe the abstract behaviour of the resource manager, by performing asynchronous re-
source reconfigurations. Asynchronous dynamic reconfiguration would offer a higher degree of
loose coupling among processes and resources. Furthermore, it would be a feature not present in
other proposals, such as the ones in [51, 50, 67]. A preliminary discussion on this extension can
be found in [33].

• Elasticity of resources vs replication. Note that (Appear) and (Disappear) can offer a way
to address the so-called elasticity of cloud resources. In the same line, we could propose the
following structural rules for replication that work, provided that resource instances exactly match
their syntax. This is only true for a resource, whose instances have the same state. In general, it
could not be used for resource instances with different states.

(Rep1) !(r,φ ,η){0} τ−→ (r,φ ,η){0} ‖ (r,ϕ,η){0}
(Rep2) (r,φ ,η){0} ‖ (r,ϕ,η){0} τ−→!(r,φ ,η){0}

36 Checking Global Usage of Resources handled with Local Policies

• Polyadic requests. Since obtaining a bunch of resources is often required in a cloud-computing
scenario, having polyadic requests would be desirable. Unlike polyadic input/outputs, where syn-
chronisation involves only two parties, polyadic resource requests make transition rules more com-
plicated as they involve multiple parties. This requires having multi-party interaction primitives in
our calculus, as the ones in [17].

• Resource movement. The present structural rule for resource management is unconditional.
Nevertheless, we could instead specify some conditions to restrict the movement of resources
as in [20], by using a structural rule like the following:

(r2,ϕ2,η2){0} ‖ (r1,ϕ1,η1){P} ≡ (r1,ϕ1,η1){(r2,ϕ2,η2){0} ‖ P} if cond(η1,η2)

where cond(η1,η2) is a condition function on the current states of the two resources.

• Semantic-based resource requests The present formulation of the calculus ensures that any op-
eration on a granted resource always respects the policy required over the resource. However, one
would like to acquire a specific resource under certain additional parameters that specify further
requirements on the resource. To describe this kind of semantic matching of the resource requests,
we could extend our calculus, by allowing resource requests in the form req(R,ψ ′), where R rep-
resents a set of resources that provide the same service, under different conditions, while ψ ′ ∈ Ψ

specifies the required conditions or parameters. The resource joint point can be modified accord-
ingly as (r,ψ,ϕ, η̃){P}, where ψ ∈ Ψ represents the set of chosen parameters. We would also
need a new rule for resource acquisition, where a suitable function comp is used to assert the
compatibility of parameters required for the semantic matching:

req(R,ψ ′){P} ‖ (r,ψ,ϕ, η̃){0} τ−→ (r,ψ,ϕ, η̃){P{r/R}} provided that r ∈ R∧ comp(ψ,ψ ′)

The operations on resources, in the form α(R) and release(R), could become α(r) and release(r),
once established the binding on r. Clearly, we would modify the CFA accordingly.

As an illustrative scenario, suppose that a European user needs computational power for business
reasons, at the lowest price. Also suppose that there are resources available over the Internet, both
in Europe and in the USA, with different fees depending on the chosen time slots. Since, usually
costs are lower during the night, one could have the following specification

Users ::= UDay ‖UNight
UDay ::= req(C,USA){Pd}

UNight ::= req(C,EU){Pn}

where synchronisation with provided services could be in the form (c, location,ϕ, η̃){0}, where
c ∈C and the function comp checks whether the locations match.

References

[1] G. Abowd & E.D. Mynatt (2000): Charting past, present, and future research in ubiquitous computing. ACM
Transactions on Computer-Human Interaction 7, pp. 29–58.

[2] L. Acciai & M. Boreale (2010): Spatial and behavioral types in the pi-calculus. Inf. Comput. 208(10), pp.
1118–1153.

C. Bodei, V.D. Dinh, & G-L. Ferrari 37

[3] J. Aldrich, J. Sunshine, D. Saini & Z. Sparks (2009): Typestate-oriented programming. In: Proc. of the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2009 (Companion), ACM, pp. 1015–1022.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica & M. Zaharia (2009): Above the Clouds: A Berkeley View of Cloud Computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley.

[5] L. Atzori, A. Iera & G. Morabito (2010): The internet of things: a survey. Computer Networks 54(15), pp.
2787–2805.

[6] C. Baier & J.P. Katoen (2008): Principles of model checking. MIT Press.

[7] A. Banerjee & D.A. Naumann (2005): History-Based Access Control and Secure Information Flow. In:
Proc. of Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, International Workshop
(CASSIS’04), Lecture Notes in Computer Science 3362, Springer, pp. 27–48.

[8] M. Bartoletti (2009): Usage Automata. In: Proc. of Foundations and Applications of Security Analysis, Joint
Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security
(ARSPA-WITS’09), Lecture Notes in Computer Science 5511, Springer, pp. 52–69.

[9] M. Bartoletti, P. Degano & G. Ferrari (2005): History-Based Access Control with Local Policies. In: Proc. of
Foundations of Software Science and Computation Structures (FoSSaCS’05), Lecture Notes in Computer
Science 3441, Springer, pp. 316–332.

[10] M. Bartoletti, P. Degano, G. Ferrari & R. Zunino (2015): Model checking usage policies. Mathematical
Structures in Computer Science 25(3), pp. 710–763.

[11] M. Bartoletti, P. Degano, G.L. Ferrari & R. Zunino (2009): Local Policies for Resource Usage Analysis.
ACM Transactions on Programming Languages and Systems 31(6).

[12] M. Bartoletti & R. Zunino (2008): LocUsT: a tool for checking usage policies. Technical Report TR-08-07,
Dip. Informatica, Univ. Pisa.

[13] M. Bartoletti & R. Zunino (2010): A Calculus of Contracting Processes. In: Proc. of Logic in Computer
Science (LICS’10), IEEE Computer Society, pp. 332–341.

[14] S. Bistarelli, U. Montanari & F. Rossi (1997): Semiring-based Constraint Satisfaction and Optimization.
Journal of the ACM 44, pp. 201–236.

[15] C. Bodei (2009): A Control Flow Analysis for Beta-binders with and without static compartments. Theoreti-
cal Computer Science 410(33-34), pp. 3110–3127.

[16] C. Bodei, L. Brodo & R. Bruni (2009): Static Detection of Logic Flaws in Service-Oriented Applications.
In: Proc. of Foundations and Applications of Security Analysis, Joint Workshop on Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of Security (ARSPA-WITS 2009), Lecture Notes in
Computer Science 5511, Springer, pp. 70–87.

[17] C. Bodei, L. Brodo & R. Bruni (2012): Open Multiparty Interaction. In: Recent Trends in Algebraic Devel-
opment Techniques, 21st International Workshop, (WADT 2012), Lecture Notes in Computer Science 7841,
Springer, pp. 1–23.

[18] C. Bodei, M. Buchholtz, P. Degano, F. Nielson & H. Riis Nielson (2005): Static validation of security
protocols. Journal of Computer Security 13(3), pp. 347–390.

[19] C. Bodei, P. Degano, F. Nielson & H. Nielson (2001): Static Analysis for the Pi-Calculus with Applications
to Security. Information and Computation 168(1), pp. 68–92.

[20] C. Bodei, V. D. Dinh & G. L. Ferrari (2011): A G-Local π-calculus. In: Proc. of Programming Language
Approaches to Concurrency and Communication-cEntric Software (PLACES’11). Available at http://
places11.di.fc.ul.pt/proceedings.pdf/view.

[21] C. Bodei, V. D. Dinh & G. L. Ferrari (2011): Predicting global usages of resources endowed with local poli-
cies. In: Proc. of the Workshop on the Foundations of Coordination Languages and Software Architectures
(FOCLASA’11), Electronic Proceedings in Theoretical Computer Science 58, pp. 49–64.

http://places11.di.fc.ul.pt/proceedings.pdf/view
http://places11.di.fc.ul.pt/proceedings.pdf/view

38 Checking Global Usage of Resources handled with Local Policies

[22] C. Bodei & G. L. Ferrari (2009): Choreography Rehearsal. In: Proc. of Web Services and Formal Methods,
6th International Workshop, (WS-FM 2009), Lecture Notes in Computer Science 6194, pp. 29–45.

[23] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara,
D. Sangiorgi, V. Thudichum Vasconcelos & G. Zavattaro (2006): SCC: A Service Centered Calculus. In:
Proc. of Web Services and Formal Methods, Third International Workshop (WS-FM’06), Lecture Notes in
Computer Science 4184, Springer, pp. 38–57.

[24] D.F.C. Brewer & M.J. Nash (1989): The chinese wall security policy. In: Proc. of IEEE Symposium on
Security and Privacy, pp. 206–214.

[25] M. G. Buscemi & U. Montanari (2007): CC-pi: A Constraint-based Language for Specifying Service Level
Agreements. In: Proc. of European Symposium on Programming (ESOP’07), Lecture Notes in Computer
Science 4421, Springer, pp. 18–32.

[26] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg & I. Brandic (2009): Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer
Systems 25, pp. 599–616.

[27] L. Caires (2007): Spatial-Behavioral Types, Distributed Services, and Resources. In: Proc. of Trustworthy
Global Computing, Second Symposium (TGC 2006), Lecture Notes in Computer Science 4661, Springer,
pp. 98–115.

[28] L. Caires & L. Cardelli (2003): A spatial logic for concurrency (part I). Inf. Comput. 186(2), pp. 194–235.

[29] L. Cardelli & A. D. Gordon (2000): Mobile ambients. Theoretical Computer Science 240(1), pp. 177–213.

[30] G. Castagna, N. Gesbert & L. Padovani (2009): A theory of Contracts for Web services. ACM Transactions
on Programming Languages and Systems 31(5).

[31] M. Collinson & D.J. Pym (2010): Algebra and Logic for Access Control. Formal Aspects of Computing
22(3-4), pp. 483–484.

[32] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. E. Sturgis, D. C. Swinehart
& D. B. Terry (1987): Epidemic Algorithms for Replicated Database Maintenance. In: Proc. of the Sixth
Annual ACM Symposium on Principles of Distributed Computing 1987, pp. 1–12.

[33] V. D. Dinh (2011): A Language-based Approach to Distributed Resources. Ph.D. thesis, PhD in Computer
Science, University of Pisa.

[34] U. Erlingsson & F. B. Schneider (1999): SASI enforcement of security policies: a retrospective. In: Proc. of
the 1999 Workshop on New Security Paradigms, pp. 87–95.

[35] G. L. Ferrari, E. Moggi & R. Pugliese (2002): Guardians for Ambient-based Monitoring. Electronic Notes
Theoretical Computer Science 66(3), pp. 52–75.

[36] P. W. L. Fong (2004): Access Control By Tracking Shallow Execution History. In: Proc. of IEEE Symposium
on Security and Privacy, pp. 43–55.

[37] C. Fournet & A. Gordon (2003): Stack inspection: Theory and variants. ACM Transactions on Programming
Languages and Systems 25, pp. 360–399.

[38] A. Francalanza, E. de Vries & M. Hennessy (2012): Compositional Reasoning for Channel-Based Concur-
rent Resource Management. Technical Report CS2012-02, Department of Computer Science, Malta Univer-
sity.

[39] H. Gao, C. Bodei, P. Degano & H. Riis Nielson (2007): A Formal Analysis for Capturing Replay Attacks
in Cryptographic Protocols. In: Proc. of Advances in Computer Science (ASIAN’07), Lecture Notes in
Computer Science 4846, Springer, pp. 150–165.

[40] D. Gelernter (1985): Generative communication in Linda. ACM Transactions on Programming Languages
and Systems 7(1), pp. 80–112.

[41] E. Giachino, N. Kobayashi & C. Laneve (2014): Deadlock Analysis of Unbounded Process Networks. In:
Proc. of Concurrency Theory (CONCUR 2014), Lecture Notes in Computer Science 8704, Springer, pp.
63–77.

C. Bodei, V.D. Dinh, & G-L. Ferrari 39

[42] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi & G. Zavattaro (2006): SOCK: A Calculus for Service Oriented
Computing. In: Proc. of Service-Oriented Computing (ICSOC’06), Lecture Notes in Computer Science 4294,
Springer, pp. 327–338.

[43] K. W. Hamlen, J. G. Morrisett & F. B. Schneider (2006): Computability classes for enforcement mechanisms.
ACM Trans. on Programming Languages and Systems 28(1), pp. 175–205.

[44] K. Honda (2004): From process logic to program logic. In: Proc. of the Ninth ACM SIGPLAN International
Conference on Functional Programming (ICFP 2004), ACM, pp. 163–174.

[45] A. Igarashi & N. Kobayashi (2001): A generic type system for the Pi-calculus. SIGPLAN Notices 36, pp.
128–141.

[46] A. Igarashi & N. Kobayashi (2005): Resource usage analysis. ACM Transactions on Programming Lan-
guages and Systems 27, pp. 264–313.

[47] A.D.Gordon K. Bhargavan (2008): Getting operations logic right: Types, serviceorientation, and static anal-
ysis. In: Proc. of the Workshop on “The Rise and Rise of the Declarative Datacentre”, Microsoft Research.

[48] D. Kempe, A. Dobra & J. Gehrke (2003): Gossip-Based Computation of Aggregate Information. In: Proc. of
the 44th Symposium on Foundations of Computer Science (FOCS 2003), pp. 482–491.

[49] N. Kobayashi (2007): TyPiCal. Available at http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/.

[50] N. Kobayashi & D.N. Turner B.C. Pierce (1999): Linearity and the pi-calculus. ACM Transactions on
Programming Languages and Systems 21, pp. 914–947.

[51] N. Kobayashi, K. Suenaga & L. Wischik (2006): Resource Usage Analysis for the Pi-Calculus. Logical
Methods in Computer Science 2(3), pp. 1–42.

[52] A. Lapadula, R. Pugliese & F. Tiezzi (2007): A Calculus for Orchestration of Web Services. In: Proc. of
European Symposium on Programming (ESOP’07), Lecture Notes in Computer Science 4421, Springer, pp.
33–47.

[53] J. Ligatti, L. Bauer & D. Walker (2005): Edit automata: Enforcement mechanisms for run-time security
policies. International Journal of Information Security 4, pp. 2–16.

[54] J. Lim, T. Suh & H. Yu (2013): A Deadlock Detection Algorithm Using Gossip in Cloud Computing Environ-
ments. In: Ubiquitous Information Technologies and Applications, Lecture Notes in Electrical Engineering
214, Springer Netherlands, pp. 781–789.

[55] J. Lim, T. Suh & H. Yu (2014): Unstructured deadlock detection technique with scalability and complexity-
efficiency in clouds. International Journal of Communication Systems 27(6).

[56] H. Riis Nielson & F. Nielson (2002): Flow logic: a multi-paradigmatic approach to static analysis. In: The
essence of computation, Lecture Notes in Computer Science 2566, Springer-Verlag, pp. 223–244.

[57] H. Riis Nielson, F. Nielson & H. Pilegaard (2012): Flow Logic for Process Calculi. ACM Comput. Surv.
44(1), p. 3.

[58] P. W. O’Hearn & D. J. Pym (1999): The Logic of Bunched Implications. BULLETIN OF SYMBOLIC
LOGIC 5(2), pp. 215–244.

[59] Oracle-Corporation (2011): The try-with-resources statement. Available at https://docs.oracle.com/
javase/tutorial/essential/exceptions/tryResourceClose.html.

[60] L. Padovani (2014): Deadlock and lock freedom in the linear π-calculus. In: Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (CSL-LICS 2014), ACM, pp. 72:1–72:10.

[61] M. P. Papazoglou, P. Traverso, S.m Dustdar & F. Leymann (2007): Service-Oriented Computing: State of the
Art and Research Challenges. IEEE Computer 40(11), pp. 38–45.

[62] D. Sangiorgi & D. Walker (2001): Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press.

[63] F.B. Schneider (2000): Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), pp. 30–50.

http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

40 Checking Global Usage of Resources handled with Local Policies

[64] C. Skalka & S. F. Smith (2004): History Effects and Verification. In: Proc. of ASIAN Symposium on
Programming Languages and Systems (APLAS’04), Lecture Notes in Computer Science 3302, Springer, pp.
107–128.

[65] R. E. Strom & S. Yemini (1986): Typestate: A Programming Language Concept for Enhancing Software
Reliability. IEEE Transactions on Software Engineering 12(1), pp. 157–171.

[66] J. Sunshine, K. Naden, S. Stork, J. Aldrich & É. Tanter (2011): First-class state change in plaid. In: Proc. of
the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, ACM, pp. 713–732.

[67] D. Teller (2004): Recovering resources in the pi-calculus. In: Proc. of Exploring New Frontiers of Theoretical
Informatics (IFIP TCS’04), Kluwer, pp. 605–618.

[68] A. Turon & M. Wand (2011): A Resource Analysis of the π-calculus. Electronic Notes in Theoretical Com-
puter Science 276, pp. 313–334.

[69] M. Y. Vardi & P. Wolper (1986): An Automata-Theoretic Approach to Automatic Program Verification (Pre-
liminary Report). In: Proc. of Logic in Computer Science (LICS’86), pp. 332–344.

[70] H. T. Vieira, L. Caires & J. Costa Seco (2008): The Conversation Calculus: A Model of Service-Oriented
Computation. In: Proc. of European Symposium on Programming (ESOP’08), Lecture Notes in Computer
Science 4960, Springer, pp. 269–283.

[71] E. D. Vries, A. Francalanza & M. Hennessy (2009): Uniqueness Typing for Resource Management in
Message-Passing Concurrency. In: Proc. of LINEARITY’09, Electronic Proceedings in Theoretical Com-
puter Science 22, pp. 26–37.

[72] N. Yoshida, K. Honda & M. Berger (2007): Linearity and bisimulation. J. Log. Algebr. Program. 72(2), pp.
207–238.

[73] L. Youseff, M. Butrico & D. Da Silva (2008): Toward a Unified Ontology of Cloud Computing. In: Proc. of
Grid Computing Environments Workshop (GCE ’08), pp. 1–10.

6 Appendix

Proofs of the main results of CFA, step 1

We recall Theorem 4.8 (the original appears on p. 22).

Theorem 4.8 (Existence of estimates) For all the processes P, the set {(ρ,κ,Γ)|(ρ,κ,Γ) |= P} is a
Moore family.

PROOF. We proceed by structural induction on P.

J ⊆ {(ρ,κ,Γ)|(ρ,κ,Γ) |= P}

and let J and (ρ j,κ j,Γ j) such that J = {(ρ j,κ j,Γ j)| j ∈ J} Next define

(ρ ′,κ ′,Γ′) = uJ = u{(ρ j,κ j,Γ j)| j ∈ J}

and recall that the greatest lower bound is defined pointwise. The proof of the theorem amounts to checking
(ρ ′,κ ′,Γ′) |= P. For this we proceed by cases on P making use of the induction hypothesis. Most cases are
straightforward and here we only consider some the more interesting ones.
The case x(y).P. Since ∀ j ∈ J : (ρ j,κ j,Γ j) |= x(y).P, we have

∀ j ∈ J : (ρ j,κ j,Γ j) |= P∧∀a ∈ ρ j(x) : κ j(a)∩N ⊆ ρ j(y)

C. Bodei, V.D. Dinh, & G-L. Ferrari 41

Using the induction hypothesis and the fact that (ρ ′,κ ′,Γ′) is obtained in a pointwise manner, we then obtain

(ρ ′,κ ′,Γ′) |= P∧∀a ∈ ρ ′(x) : κ ′(a)∩N ⊆ ρ ′(y)

thus establishing the desired (ρ ′,κ ′,Γ′) |= x(y).P.
The case (r,ϕ,η){Q}χ . Since ∀ j ∈ J : (ρ j,κ j,Γ j) |= (r,ϕ,η){Q}χ we have

• (ρ j,κ j,Γ j) |= Q and

• (cond 1), where (cond 1) is (ϕ,Adm(ϕ, η̃ , η̃ ′)) ∈ Γ(r) where η̃ ′ = H(r,Q,χ).

Using the induction hypothesis and the fact that (ρ ′,κ ′,Γ′) is obtained in a pointwise manner, we then obtain

• (ρ ′,κ ′,Γ′) |= Q and

• (cond′ 1), where (cond′ 1) is (ϕ,Adm(ϕ, η̃ , η̃ ′)) ∈ Γ′(r) where η̃ ′ = H(r,Q,χ).

�

We recall Fact 4.9 (the original appears on p. 23).

Fact 4.9 Given an estimate (ρ,κ,Γ) and v ∈ ρ(x), we have that ∀y ∈N : ρ(y({v/x}))⊆ ρ(y)

PROOF. If y 6= x then ρ(y({v/x})) = ρ(y). Instead, if y = x then ρ(y({v/x})) = ρ(v). Since ρ(v) = {v}, v ∈ ρ(x)
and x = y, it follows that v ∈ ρ(y). Therefore ρ(v)⊆ ρ(y). �

We recall Lemma 4.10 (the original appears on p. 23).

Lemma 4.10 (Substitution) If (ρ,κ,Γ) |= P then (ρ,κ,Γ) |= P{v/x}, provided that v ∈ ρ(x).

PROOF. The proof of the thesis proceeds by structural induction on P. Most cases are straightforward, using
Fact 4.9. We consider here only one of the most interesting ones.

The Case of P≡ a(y).P′, where we may assume w.l.o.g. that y 6= v,x.

• sub-case a 6= x: (ρ,κ,Γ) |= P amounts to checking that

– (ρ,κ,Γ) |= P′ and
– ∀b ∈ ρ(a) : κ(b)∩N ⊆ ρ(y) (1).

By induction hypothesis and the fact stated above, we have that (ρ,κ,Γ) |= P′{v/x}. Since a 6= x, then from
ρ(a({v/x})) = ρ(a), (1) holds and then (ρ,κ,Γ) |= P{v/x}.

• sub-case a = x: again (ρ,κ,Γ) |= P amounts to checking that

– (ρ,κ,Γ) |= P′ and
– ∀b ∈ ρ(a) : κ(b)∩N ⊆ ρ(y) (1).

By induction hypothesis and by the fact stated above, we have that (ρ,κ,Γ) |= P′{v/x}. Since a = x, then,
from the inclusion ρ(a({v/x})) ⊆ ρ(a), (1) implies that ∀b ∈ ρ(a({v/x})) : κ(b)∩N ⊆ ρ(y) and this is
equivalent to have that (ρ,κ,Γ) |= P{v/x}.

�

We recall Lemma 4.11 (the original appears on p. 23).

Lemma 4.11 (Congruence) If (ρ,κ,Γ) |= P and P≡ Q, then (ρ,κ,Γ) |= Q.

42 Checking Global Usage of Resources handled with Local Policies

PROOF. The proof is by induction on the construction of P≡ Q. Here we consider the most interesting cases.
The Case of P is alpha-conversion of Q: since we exploit canonical names to maintain the identity of bound
names, changes of bound names do not affect the results of CFA analysis. We have that ρ(a) = ρ(a′) = ρ(bac)
and κ(a) = κ(a′) = κ(bac), where a, a′ are names in the equivalent class bac.
The Case of (r1,ϕ1, η̃1){(r2,ϕ2, η̃2){0}� ‖Q}χ1 ≡ (r2,ϕ2, η̃2){0}� ‖ (r1,ϕ1, η̃1){Q}χ1 : Note that χ1 and � are the
labels of the sub-processes that use resource identifiers r1 and r2, respectively. We have that

(ρ,κ,Γ) |= (r1,ϕ1, η̃1){(r2,ϕ2, η̃2){0}� ‖ Q}χ1

iff
(ρ,κ,Γ) |= ((r2,ϕ2, η̃2){0}� ‖ Q)∧ (1)

iff
(ρ,κ,Γ) |= (r2,ϕ2, η̃2){0}�∧ ((ρ,κ,Γ) |= Q∧ (1))

iff
(ρ,κ,Γ) |= (r2,ϕ2, η̃2){0}�∧ (ρ,κ,Γ) |= (r1,ϕ1, η̃1){Q}χ1

iff
(ρ,κ,Γ) |= (r2,ϕ2, η̃2){0}� ‖ (r1,ϕ1, η̃1){Q}χ1

where the condition (1) amounts to Adm(ϕ, η̃1, η̃
′
1)∈Γ(r1) where η̃ ′1 =H(r1,((r2,ϕ2, η̃2){0}ε ‖Q),χ1)=H(r1,Q,χ1).

�

We recall Theorem 4.12 (the original appears on p. 23).

Theorem 4.12 (Subject reduction) If P
µ−→ P′, and (ρ,κ,Γ) |= P, then (ρ,κ,Γ) |= P′.

PROOF. The proof is by induction on the way P
µ−→ P′ is obtained using the axioms and the rules in Table 1.

The case (µ = τ). In the case of (Act), with label τ it is immediate. Clearly the other cases of the axioms (Act), and
the rules (Open), (Policy1), (Policy2), and (Release) do not apply. By Congruence Lemma 4.11 and the induction
hypothesis, the property is preserved by the rules (Choice), (Par), (Res), (Cong), (Local). The remaining cases
are (Comm), (CommR), (Close), and (Acquire).

• (Comm): We may assume that P ≡ P1 ‖ P2 for suitable P1 and P2 such that P1
āb−→ P′1 and P2

a(y)−−→ P′2, with
b ∈N . By Congruence Lemma 4.11, we have that (ρ,κ,Γ) |= P if only if (ρ,κ,Γ) |= P1||P2, and therefore
(ρ,κ,Γ) |= P1 and (ρ,κ,Γ) |= P2. The induction hypothesis and the clauses in Table 3, ensure that

b ∈ κ(a) ∧ (ρ,κ,Γ) |= P′1
κ(a)∩N ⊆ ρ(y) ∧ (ρ,κ,Γ) |= P′2

By Substitution Lemma 4.10, since b ∈ N and b ∈ ρ(y), we have (ρ,κ,Γ) |= P′2{b/y} and therefore
(ρ,κ,Γ) |= P′1 ‖ P′2{b/y}, which is equivalent to (ρ,κ,Γ) |= P′.

• (CommR): by a similar argument. We may assume that P≡ P1 ‖ P2 such that P1
ār−→ P′1 and P2

a(s)−−→ P′2, with
r ∈R. By Congruence Lemma 4.11, we have that (ρ,κ,Γ) |= P if only if (ρ,κ,Γ) |= P1||P2, and therefore
(ρ,κ,Γ) |= P1 and (ρ,κ,Γ) |= P2. The induction hypothesis and the clauses in Table 4, ensure that

r ∈ κ(a) ∧ (ρ,κ,Γ) |= P′1
κ(a)∩R ⊆ ρ(s)
∀r ∈ ρ(s) s.t. r 6∈ fr(P) : (ρ,κ,Γ) |= S{r/s}(ρ,κ,Γ) |= P′2{r/s}R

This directly establishes (ρ,κ,Γ) |= P′1 ‖ P′2{r/s}R, which is equivalent to (ρ,κ,Γ) |= P′.

• (Close): by a similar argument. We may assume that P ≡ P1 ‖ P2 for suitable P1 and P2 such that P1
ā(b)−−→

P′1 and P2
a(y)−−→ P′2, with b ∈ N . By Congruence Lemma 4.11, we have that (ρ,κ,Γ) |= P if only if

C. Bodei, V.D. Dinh, & G-L. Ferrari 43

(ρ,κ,Γ) |= P1||P2, and therefore (ρ,κ,Γ) |= P1 and (ρ,κ,Γ) |= P2. The induction hypothesis and the clauses
in Table 3, ensure that

b ∈ κ(a) ∧ (ρ,κ,Γ) |= P′1
κ(a)∩N ⊆ ρ(y) ∧ (ρ,κ,Γ) |= P′2

By Substitution Lemma 4.10, since b ∈ ρ(y), we have (ρ,κ,Γ) |= P′2{b/y} and thus we also have that
(ρ,κ,Γ) |= (νb)(P′1 ‖ P′2{b/y}), which is equivalent to (ρ,κ,Γ) |= P′.

• (Acquire): P is in the form (r,ϕ, η̃){0}� ‖ req(r){Q}χ . We know that (ρ,κ,Γ) |= (r,ϕ, η̃){0}� ‖ req(r){Q}χ ,
and therefore that (ρ,κ,Γ) |= (r,ϕ, η̃){0}� and (ρ,κ,Γ) |= req(r){Q}χ . The clauses in Table 4, ensure that

(ρ,κ,Γ) |= 0 ∧ (ϕ, η̃) ∈ Γ(r)
(ρ,κ,Γ) |= Q ∧ (cond 1)

where (cond 1) is
∀(ϕ, η̃) ∈ Γ(r).χ 6 E η̃ .(ϕ,Adm(ϕ, η̃ , η̃ ′)) ∈ Γ(r) where η̃ ′ = H(r,Q,χ).
What we need to prove is that (ρ,κ,Γ) |= (r,ϕ, η̃){Q}χ . Since (ϕ, η̃) ∈ Γ(r), the required results is then
established. More precisely, we have that

(ρ,κ,Γ) |= Q ∧ (cond′ 1)

where (cond′ 1) is (ϕ,Adm(ϕ, η̃ , η̃ ′)) ∈ Γ(r) where η̃ ′ = H(r,Q,χ).
and therefore, we can conclude that (ρ,κ,Γ) |= (r,ϕ, η̃){Q}χ .

The case (µ = āb). In the output case of (Act), it is immediate. We have that P = µ.P′. The clauses in Table 3
directly ensure that (ρ,κ,Γ) |= P′ The other axioms do not apply, as well as the rules (Open), (Close), (Comm),
and (CommR), while the property is preserved by the remaining rules, thanks to the Congruence Lemma 4.11 and
the induction hypothesis.
The case (µ = ār). In the output case of (ActR), it is immediate. We have that P = µ.P′. The clauses in Table 4
directly ensure that (ρ,κ,Γ) |= P′ The other axioms do not apply, as well as the rules (Open), (Close), (Comm),
and (CommR), while the property is preserved by the remaining rules, thanks to the Congruence Lemma 4.11 and
the induction hypothesis.
The case (µ = ā(y)). In the case of rule (Open), it follows from the clauses in Table 3 that y ∈ κ(a) and that
(ρ,κ,Γ) |= P′. The axioms and the rules do not apply, as well as the rules (Close), (Comm), and (CommR),
while the property is preserved by the remaining rules, thanks to the Congruence Lemma 4.11 and the induction
hypothesis.
The case (µ = a(y)). In the input case of rule (Act), it is immediate. We have that P = µ.P′. The clauses in Table 3
directly ensure that (ρ,κ,Γ) |= P′ The other axioms do not apply, as well as the rules (Open), (Close), (Comm),
and (CommR), while the property is preserved by the remaining rules, thanks to the Congruence Lemma 4.11 and
the induction hypothesis.
The case (µ = a(s)). In the input case of rule (ActR) it follows from the clauses in Table 4 that (ρ,κ,Γ) |= P′

and that for each b ∈ κ(a)∩R, we have that r ∈ ρ(s) and ∀r ∈ ρ(s).(ρ,κ,Γ) |= P′{r/s}R The other axioms do
not apply, as well as the rules (Open), (Close), (Comm), and (CommR), while the property is preserved by the
remaining rules, thanks to the Congruence Lemma 4.11 and the induction hypothesis.
The cases (µ = α?r) and (µ = rel?r). In the case of (ActR), with label µ = α?r or µ = rel?r it is immediate.
We have that P = µ.P′. The clauses in Table 4 directly ensure that (ρ,κ,Γ) |= P′ The other axioms and the
rules (Open), (Policy1), (Policy2), and (Release) do not apply. By Congruence Lemma 4.11 and the induction
hypothesis, the property is preserved by the rules (Choice), (Par), (Res), (Cong), (Local).
The case (µ = α(r)). The axioms and the rules (Open), (Close), (Comm), (CommR), (Acquire), (Release) and
(Policy2) do not apply. By Congruence Lemma 4.11 and the induction hypothesis, the property is preserved by
the rules (Choice), (Par), (Res), (Cong), (Local). The only case to be considered is that of (Policy1). We may
assume that P ≡ (r,ϕ, η̃){α(r).Q}χ for suitable Q and η̃ .(α,χ) |= ϕ . From the clauses in Table 4, we have
that (ρ,κ,Γ) |= α(r).Q (and in turn that (ρ,κ,Γ) |= Q), and that η̃ .(α,χ).η̃ ′ ∈ Γ(r), where H(r,α(r).Q,χ) =
(α,χ).η̃ ′.η̃ ′′ is included in H(r,P,χ). We have that η̃ .(α,χ).η̃ ′ |= ϕ (where η̃ ′′ is possibly empty). Since

44 Checking Global Usage of Resources handled with Local Policies

(α,χ).H(r,Q,χ) = H(r,α(r).Q,χ), we have that (ρ,κ,Γ) |= (r,ϕ, η̃ .(α,χ)){Q}χ . We can therefore conclude
that (ρ,κ,Γ) |= P′.
The case (µ = α(r)). The axioms and the rules (Open), (Close), (Comm), (CommR), (Acquire), (Release) and
(Policy1) do not apply. By Congruence Lemma 4.11 and the induction hypothesis, the property is preserved by the
rules (Choice), (Par), (Res), (Cong), (Local). The only case to be considered is that of (Policy1). We may assume
that P ≡ (r,ϕ, η̃){α(r).Q}χ for suitable Q and that η̃ .(α,χ) 6|= ϕ . From the clauses in Table 4, we have that
(ρ,κ,Γ) |= α(r).Q (and in turn that (ρ,κ,Γ) |= Q), and η̃ .(α,χ) ∈ Γ(r), where H(r,α(r).Q,χ) = (α,χ).η̃ ′ for
some η̃ ′. These conditions suffice to obtain that (ρ,κ,Γ) |= (r,ϕ, η̃ .(α,χ)){0}�||Q, from which we can conclude
that (ρ,κ,Γ) |= P′.
The case (µ = rel(r)). The axioms and the rules (Open), (Close), (Comm), (CommR), (Acquire), (Policy1) and
(Policy2) do not apply. By Congruence Lemma 4.11 and the induction hypothesis, the property is preserved by
the rules (Choice), (Par), (Res), (Cong), (Local). The only case to be considered is that of (Release). We may
assume that P≡ (r,ϕ, η̃){rel(r).Q}χ , for suitable Q, such that Q does not include any further access operation on
r. From the clauses in Table 4, we have that (ρ,κ,Γ) |= rel(r).Q (and in turn that (ρ,κ,Γ) |= Q), and η̃ .(rel,χ) ∈
Γ(r). These conditions suffice to obtain that (ρ,κ,Γ) |= (r,ϕ, η̃ .(rel,χ)){0}�||Q, from which we can conclude
that (ρ,κ,Γ) |= P′.

�

We recall Theorem 4.17 (the original appears on p. 24).

Theorem 4.17 If P respects the policy ϕ for r then P complies with ϕ .

PROOF. By contraposition, we suppose that P does not comply with ϕ , e.g. that there exist P′,P′′ such that

P
µ→
∗
P′

α(r)→ P′′, where α(r) is the first violation action occurred in the sequence of transitions. The proof of the
theorem amounts to checking that P does not respect ϕ for r.
For this we proceed by cases on P′ making use of the induction hypothesis. By the Corollary 4.13 of the Subject
Reduction Theorem, we know that (ρ,κ,Γ) |= P implies (ρ,κ,Γ) |= P′′.

The axioms and the rules (Open), (Close), (Comm), (CommR), (Acquire), (Release) and (Policy1) do not
apply. By Congruence Lemma 4.11 and the induction hypothesis, the property is preserved by the rules (Choice),
(Par), (Res), (Cong), (Local). The only case to be considered is that of (Policy2). We may assume that P ≡
(r,ϕ, η̃){α(r).Q}χ for suitable Q and that η̃ .(α,χ) 6|= ϕ . (α,χ) is the first pair obtained by computing H(r,Q,χ),
i.e. H(r,Q,χ) = (α,χ).η̃ ′, for some η̃ ′. From the clauses in Table 4, we therefore obtain the inclusion of the faulty
trace (ϕ, η̃ .(α,χ)) in Γ(r), which suffices to prove that P does not respect ϕ on r.

�

Proofs of the main results of CFA, step 2 and 3

We recall Theorem 4.23 (the original appears on p. 27).

Theorem 4.23 (Subject reduction) If P
µ−→ P′, and (ρ,κ,Γ) |= P, then (ρ,κ,Γ) |= P′.

PROOF. The proof is by induction on the way P
µ−→ P′ is obtained using the axioms and the rules in Table 1. We

only consider the most interesting cases. The others are similar to the ones in the proof of Theorem 4.12.
The case (µ = τ) with the rule (Acquire), where P is in the form (r,ϕ, η̌){0}� ‖ req(r){F}χ . We know that
(ρ,κ,Γ) |= (r,ϕ, η̌){0}� ‖ req(r){F}χ , and therefore that (ρ,κ,Γ) |= (r,ϕ, η̌){0}� and (ρ,κ,Γ) |= req(r){F}χ .
The clauses in Table 4, suitably modified with the ones in Table 5, ensure that

(ρ,κ,Γ) |= 0 ∧ (ϕ, η̌) ∈ Γ(r)
(ρ,κ,Γ) |= F ∧ (cond 1)

C. Bodei, V.D. Dinh, & G-L. Ferrari 45

where (cond 1) is
∀(ϕ, η̌) ∈ Γ(r).χ 6 E η̃ ∧ ∀η̌ ′ ∈ SH(r,F,χ)
(ϕ,Adm(ϕ, η̌ , η̌ ′) ∈ Γ(r)

What we need to prove is that (ρ,κ,Γ) |= (r,ϕ, η̌){F}χ . Since (ϕ, η̌) ∈ Γ(r), the required results is then estab-
lished. More precisely, we have that

(ρ,κ,Γ) |= F ∧ (cond′ 1)

where (cond′ 1) is
∀η̌ ′ ∈ SH(r,F,χ)
(ϕ,Adm(ϕ, η̌ , η̌ ′) ∈ Γ(r)

and therefore, we can conclude that (ρ,κ,Γ) |= (r,ϕ, η̃){F}χ .
The case (µ = αλ (r)). The axioms and the rules (Open), (Close), (Comm), (CommR), (Acquire), (Release) and
(Policy2) do not apply. By Congruence Lemma 4.11 and the induction hypothesis, the property is preserved by the
rules (Choice), (Par), (Res), (Cong), (Local). The only case to be considered is that of (Policy1). We may assume
that P ≡ (r,ϕ, η̌){F}χ for suitable F , such that the prefix α(r) is at top-level in F , i.e. F = Πn

i=0Fi and there is
an index i such that Fi = αλ (r).F ′. We also assume that η̌ .(α,χ,λ) |= ϕ . From the clauses in Table 4, suitably
modified with the ones in Table 5, we have that (ρ,κ,Γ) |= αλ (r).R (and in turn that (ρ,κ,Γ) |= R), and that
H ′(r,αλ (r).Fi,χ) = (α,χ,λ).η̌ ′.η̌ ′′ belongs to SH(r,F,χ), and therefore to SH(r,P,χ). Since η̌ .(α,χ,λ).η̌ ′ |= ϕ

(with η̌ ′′ possibly empty), we have that η̌ .(α,χ,λ).η̌ ′ ∈ Γ(r). Since (α,χ,λ).H ′(r,Fi,χ) = H ′(r,αλ (r).Fi,χ)
still belongs to SH(r,F,χ), and therefore to SH(r,P,χ), we have that (ρ,κ,Γ) |= (r,ϕ, η̌ .(α,χ,λ)){F}χ . We can
therefore conclude that (ρ,κ,Γ) |= P′.

�

We recall Theorem 4.28 (the original appears on p. 31).

Theorem 4.28 (Subject reduction) If P
µ−→ P′, and (ρ,κ,Γ,∆ω) |= P, then (ρ,κ,Γ,∆ω) |= P′.

PROOF. The proof is by induction on the way P
µ−→ P′ is obtained using the axioms and the rules in Table 1 plus

the new rule (Repeated Acquire). We only consider the most interesting cases. The others are similar to the ones
in the proof of Theorem 4.12.

• (Repeated Acquire): P is in the form !req(r){R}χ! ‖ (r,ϕ, η̃){0}�. We know that (ρ,κ,Γ,∆ω) |= P, and, as
a consequence, that (ρ,κ,Γ,∆ω) |= (r,ϕ, η̃){0}� and (ρ,κ,Γ,∆ω) |= !req(r){R}χ! . The clauses in Table 6,
ensure that

(ρ,κ,Γ,∆ω) |= 0 ∧ (ϕ, η̃) ∈ Γ(r)
(ρ,κ,Γ,∆ω) |= R ∧ (cond 1)

where (cond 1) is

∀(ϕ, η̂) ∈ Γ(r).∀η̂ ′ ∈Mix(∆ω(r))(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r), where [H(r,R,χ!)] ∈ ∆ω(r).

We need to prove that (ρ,κ,Γ,∆ω) |= P′, where P′ =!req(r){R}χ! ‖ (r,ϕ, η̃){R}χ! . Consequently, we need
to prove that (ρ,κ,Γ,∆ω) |= (r,ϕ, η̃){R}χ! and (ρ,κ,Γ,∆ω) |= !req(r){R}χ! .

Since (ϕ, η̂) ∈ Γ(r), the required results is then established. More precisely, we have that

(ρ,κ,Γ,∆ω) |= R ∧ (cond′ 1)

where (cond′ 1) is ∀η̂ ′ ∈Mix(∆ω(r))(ϕ,Adm(ϕ, η̂ , η̂ ′)) ∈ Γ(r), where [H(r,R,χ!)] ∈ ∆(r).

We can therefore conclude that (ρ,κ,Γ,∆ω) |= (r,ϕ, η̂){R}χ! .

• The case (µ = α(r)). The axioms and the rules (Open), (Close), (Comm), (CommR), (Acquire), (Release)
and (Policy2) do not apply. By Congruence Lemma 4.11 and the induction hypothesis, the property is
preserved by the rules (Choice), (Par), (Res), (Cong), (Local). The only case to be considered is that

46 Checking Global Usage of Resources handled with Local Policies

of (Policy1). We may assume that P ≡ (r,ϕ, η̂){R}χ! for suitable S, such that the prefix α(r) is at top-
level in R, i.e. R = α(r).R′. We also assume that η̂ .(α,χω) |= ϕ . From the clauses in Table 4, suitably
modified with the ones in Table 6, we have that (ρ,κ,Γ,∆ω) |= α(r).R (and in turn that (ρ,κ,Γ,∆ω) |= R),
H ′′(r,α(r).R,χω) = (α,χω).η̂

′.η̂ ′′ belongs to ∆ω(r), and that ∃η̂ ′.η̂ .(α,χω).η̂
′.η̂ ′′ ∈ Mix(∆(r)). Since

ϕ |= η̂ .(α,χ!).η̂
′ (with η̂ ′′ possibly empty), we have that η̂ .(α,χ!).η̂

′ ∈ Γ(r). Since H ′′(r,α(r).R,χ) =
(α,χ!).H

′′(r,R,χ) still belongs to ∆ω(r), we have (ρ,κ,Γ,∆ω) |= (r,ϕ, η̂ .(α,χω)){R}χ . We can therefore
conclude that (ρ,κ,Γ,∆ω) |= P′.

�

	Introduction
	Programming Abstractions for Resource-awareness
	Resource Rental Service
	Processes Coordination

	The G-Local -Calculus
	Syntax
	Operational semantics

	Control Flow Analysis
	CFA: Step 1
	CFA: step 2
	CFA: Step 3

	Concluding remarks and discussions
	Appendix

