
1

Very high speed link emulation with TLEM
Luigi Rizzo, Giuseppe Lettieri, Vincenzo Maffione Dipartimento di Ingegneria dell’Informazione

Università di Pisa, Italy
Email: {rizzo,g.lettieri}@iet.unipi.it, v.maffione@gmail.com

Abstract—In this work we discuss the limitations of link
emulators based on conventional network stacks, and present
our alternative architecture called TLEM, which is designed
to address current high speed links and be open to future
speed improvements. TLEM is structured as a pipeline of stages,
implemented with separate threads and with limited interactions
with each other, so that high performance can be achieved.
Our emulator can handle bidirectional traffic at speeds of over
18 Mpps (64 byte packets) and 40 Gbit/s (1500 byte packets)
per direction even with large emulation delays. Even higher
performance can be achieved with shorter delays, as the workload
fits better into the L3 cache of the system. TLEM is distributed as
BSD-licensed opensource as part of the netmap distributions, and
runs on any system that supports netmap (this includes FreeBSD,
Linux and now even Windows).

I. INTRODUCTION

Link and network emulators are hardware or software
systems that manipulate network traffic in ways similar to the
devices they emulate: traffic is subject to queuing, bandwidth
limitations, delay, and possibly classification and scheduling.
Figure 1 shows some of the configurable features.

Link emulators have been embedded in commodity Operat-
ing Systems (OSes) for almost twenty years. The most relevant
examples include dummynet [8], [1], which is available
for all major operating systems (FreeBSD, Linux, OS/X and
Windows), and netem [4] and tc [5], which are Linux-only.
Placing the emulator within the OS eases experiments, as they
can be run with real traffic sources/sinks, and potentially even
without an actual network. On the negative side, performance
can be limited by the OS’ network stack, which is often unable
to deal with the extreme packet rates of 10+ Gbit/s networks.

Having recently developed solutions for high speed network
I/O, we have been confronted with building high speed link
emulators. In this paper we discuss why the existing, afore-
mentioned emulators are not up to the task, and present an
alternative design that we developed to build a very high speed
link emulator called TLEM.

Our system, available as open source under a BSD li-
cense, uses a pipeline of stages, each assigned to a separate
core, to achieve high performance. The pipelined architecture
addresses in an elegant way one of the key problems in

Input NICInput NIC delay

queue
bandwidth
limit

Output NICOutput NIC

Fig. 1. The basic features supported by a link emulator.

scaling network appliances, namely the preservation of packet
ordering. A mixed blocking/busy wait architecture inspired
to solutions used in Virtual Machine communication keeps
latency under control while achieving high packet rates and
low energy consumption.

TLEM achieves bidirectional delay emulation at speeds of
over 18 Mpps with short frames, and over 40 Gbit/s with 1500-
byte frames. These figures exceed the capacity of 10 Gbit/s
links, even with minimum packet sizes, and are almost 20
times faster than a basic dummynet or tc instance. While
not including all features of dummynet, TLEM is very easy
to extend, so more complex or custom features such as time-
based transmissions, empirical or trace-driven delay emulation,
packet mangling, classification, scheduling etc. can be added
with little effort.

II. BACKGROUND

A. Legacy link emulators

After early experiments with custom solutions and dedicated
hardware, the quest for link emulators has been effectively
addressed in 1997 with our seminal work on dummynet [8],
which showed how in-system link emulation can be achieved
in simple and effective ways. Its integration in FreeBSD [9]
made the tool readily available to a large number of re-
searchers, who used it in countless research projects, testbeds
such as Emulab [13] and Planetlab [3], [2], as well as in ISPs
and commercial deployments. On the Linux side, netem [4]
and the traffic shaper tc [5] have become popular, also
favoured by a much larger diffusion of the OS.

An emulator embedded in the OS has huge advantages in
terms of ease to use, flexibility, and availability. Experiments
do not require any special setup other than configuring, with
OS commands, the desired features of the underlying network.
On the negative side, the very same location of the emulator
raises the bar when it comes to modify or extend its features.
Kernel components are generally fragile, and the environment
offers limited support for features such as floating point
computations, logging, and crash handling. In dummynet,
we have tried to compensate these limitations with periodic
overhauls of the code, adding functionality such as support
for loadable schedulers [1], enhanced link emulation [2], and
improving performance. Part of our effort was also dedicated
to make dummynet available on other platforms, such as
Linux and Windows (the OS/X version came by itself when
Apple decided to base its OS upon FreeBSD).

Nevertheless, extending an in-kernel emulator remains hard,
and very little third party code has made its way into
dummynet. Similar considerations apply to netmem and tc.

Chiara
Typewriter
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
 to servers or lists, or reuse of any copyrighted component of this work in other works.

B. Performance
On the performance side, dummynet and netem both

suffer from the constraints of the environment in which they
run. At any time over the past 20 years, the network stack in
all OSes has generally been unable to cope with the packet
rates produced by the fastest NICs of the time. When 1 Gbit/s
NICs became widespread, the bottlenecks were the PCI bus
and single core, low speed CPUs. As CPU and bus speeds
improved, and additional cores become available, NIC speeds
also bumped up to 10+ Gbit/s, leaving the gap unchanged. On
2010 hardware, dummynet [1, Sec.4.2] could handle about
0.5 Mpps. Recent versions of tc peak at about 1.1 Mpps.

Current hardware is however more balanced between I/O
and computation speeds, so the time is ripe for building link
emulators that can cope with NIC speeds.

C. Network I/O performance
As discussed elsewhere [10], network I/O subsystems

for commodity OSes were designed almost 30 years ago,
with constraints (CPU number and speed, memory size and
speed, NIC and protocol features) very different from today.
Retrofitting the software on modern architectures (which can
exploit parallelism, and have fast and large memories but
with high latency) and supporting a variety of “hardware
offloading” features on the network cards (such as checksums,
TCP segmentation and reassembly, VLANs and encapsulation)
provided much smaller gains than what one could expect.

Acknowledging the I/O performance issue, much work in
recent years has targeted efficient mechanisms for network
I/O, particularly for applications such as software switching,
traffic capture and generation. High performance APIs such as
netmap [11] and DPDK [6] have given excellent results and
pushed several improvements (batching, streamlined process-
ing, etc.) also to the standard network stack.

Our netmap architecture is particularly convenient to use,
as applications can transparently connect to different “network
ports” talking to physical interfaces (NICs), Virtual switches
such as VALE [12] or point to point pipes. The amortised I/O
costs vary from 10 to 50 ns per packet for short packets, up
to a worst case of 150-200 ns for sending a 1500 byte packets
through a virtual switch.

Link emulators are good candidates to use the fast I/O
frameworks mentioned above. In fact, replacing the network
I/O component with a faster one removes one of the heaviest
cost components from the emulator. How much this con-
tributes to performance must be determined experimentally,
which is what we do in the next few Sections.

D. Early experiment: netmap-ipfw
Our first attempt at high speed emulation, in 2012, was to

run the dummynet code on top of netmap. For this project,
called netmap-ipfw [7], we ported to user space the entire
kernel code for dummynet and its associated packet classifier,
ipfw. This was done by building a library to replicate some
kernel functionality in user space (memory allocation, module
management, timers, sysctl and ioctl/sockopt), while otherwise
keeping the existing (kernel) code almost unmodified. The net-
work I/O path was replaced by calls to the netmap framework.

E. netmap-ipfw performance
Packet processing costs in netmap-ipfw are made of

three components: network I/O (the one we replaced by
netmap), packet classification, and emulation. Network I/O is
much faster in the userspace version, while the other two are
essentially unchanged between the two environments (kernel
and userspace), although there might be some differences due
to the different locking requirements. To measure performance
we ran netmap-ipfw connected to netmap pipes on a single-
socket system with i7 CPUs at 3.5 GHz, 12 Mbytes of cache
and RAM running at 1333 MHz.

Due to the additive impact of the three components, it is
easier to report performance in terms of time per packet,
which is also an additive figure. “Time per packet” should
be interpreted as the inverse of the throughput (“packet per
second”) computed over large (≈ 1 second) intervals; we could
not measure these numbers in other ways, as some operations
are amortised over batches of packets, and individual packets
are processed in multiple phases.
Cost breakdown. netmap-ipfw runs the following opera-
tions on each packet: 1) read packet, encapsulate in pseudo-
mbufs; 2) apply ipfw rules for filtering; 3) for packets subject
to emulation, allocate a buffer, copy the packet, and copy it
back into a netmap buffer when it is time to release it; 4)
transmit the packet.

Just doing steps #1 and #4, which account for I/O costs,
requires only 26 ns per packet without touching the payload
of the packet (pipes are fully zero copy, and netmap-ipfw
exploits the feature if possible). The value grows to 50 ns if
we access even just one byte of the packet, as we pay the
cache miss penalty for accessing untouched data.

Enabling step #2 (traffic filtering), increases the processing
time by an amount that depends on the complexity of the
ruleset. The first rule requires 33 ns, extra rules take at least
6-7 ns each. Thus, the combination of I/O and traffic selection
brings us in the best case to about 83 ns per packet, which is
already too slow for the peak rate on 10 Gbit/s NICs.

The largest cost component is however #3, the one related
to emulation. In this case the filters must use an ipfw rule
that makes packets go to a dummynet pipe, which in turn
implements the emulation. Packets subject to emulation must
be delayed for some time before being sent out, and this
feature requires two data copies in and out of a temporary
buffer. In our experiments, step #3 requires about 290 ns per
packet even for 64-byte packets. Adding the I/O and filtering
times, this translates into a maximum throughput of 2.7 Mpps
when dealing with unidirectional traffic. Bidirectional traffic
would reach a much lower rate, because the same core that
runs the entire netmap-ipfw process would also have to
deal with traffic in the opposite direction.
Discussion. The above numbers are both reason for excitement
and for depression. On the one hand, we have achieved a 5-
fold speedup over the existing in-kernel implementation. On
the other hand, for emulation we are still six times below the
top speed of a 10 Gbit/s interface. While we have beaten the
I/O bottleneck, the design of ipfw and dummynet, as well as
that of other in-kernel emulators, still has significant overheads
in packet representation and management, that result in too

frequent memory allocations and copies. Shared data structures
also force the use of a single thread or coarse grained locking.

Another limitation of netmap-ipfw, also due to the
environment in which it was originally developed, is that it
operates with a relatively coarse granularity (programmable,
but for practical purposes in the order of 100 µs). At 10 Gbit/s,
100 µs correspond to one megabit of data, which means that
traffic is released from the emulator in large bursts.

III. TLEM, A PIPELINED LINK EMULATOR

From the experience with netmap-ipfw we have learned
that a single core is unable to cope with traffic at line rate
on even a 10 Gbit/s interface. We thus redesigned the link
emulator to further trim unnecessary functions (such as the
filtering options that exist in ipfw, or the general purpose
traffic scheduler in dummynet), and use an architecture that
can make use of the many cores available in the system,
but without introducing expensive locking or checks for data
dependencies (such as the ones that typically occur when
partitioning traffic and operating in parallel on the subsets).

A. Pipelined structure

The solution we adopted for our design, called TLEM, is
a pipelined structure, shown in Figure 2. Each stage performs
a simple task and has minimal interactions with the others.
Each direction is managed by a different pipeline, so we can
deal with bidirectional traffic with no loss of performance,
of course subject to the availability of a sufficient number of
cores in the system.

Each pipeline in TLEM is made of at least an input
stage, that reads incoming traffic and copies it into a shared
buffer, and an output stage, that polls the buffer and releases
packets at their due time. Before going to the output stage,
packets are annotated with their fate (“drop” or “keep”), the
time at which they can be released, and possibly altered
if the emulation requires packet modifications. Depending
on their cost, computations such as annotations and packet
modifications can be run in the input stage, or in additional
stages in the pipeline.

Decomposing operations in a pipeline it is inherently safe
from packet reordering. Of course, to achieve a sufficient
performance, we should make sure that each stage of the
pipeline can cope with the expected processing rate, and for
efficiency, we should make sure that the workload on each
stage is well balanced. TLEM can introduce more stages
in the pipeline to perform the computations. In the current
implementation, we have found that the input and output stages
suffice to exceed the speed of a 10 Gbit/s interface.

Input NICInput NIC Input
stage · · · Output

stage Output NICOutput NIC

shared buffer

Fig. 2. The architecture of TLEM

IV. TLEM OPERATION

In the rest of this Section we describe how TLEM imple-
ments its functions. Following Figure 1, we recall that the
emulator must first replicate the effect of a queue attached to
a link with predefined bandwidth, and then impose additional
delay in delivering the packet, to model propagation delays and
possibly additional effects such as further queueing in other
parts of the network. We call link queue the simulated queue,
and delay line the part that emulates delay.

A. Packet I/O

TLEM uses netmap for packet I/O, thus requiring only a
small fraction of a core for communicating with the NIC,
even at 10 Gbit/s and above. The amortized cost per packet
is between 10 and 20 ns when accessing network devices,
excluding the cost of data touching operations (reads, which
incur some latency on the first access; and copies, which
consume CPU cycles and pollute caches). The above makes
it possible for the input and output stages to perform a fair
amount of useful computation.

A straightforward implementation of the emulator in Fig-
ure 1 is the one used in dummynet: there, we first put packets
into a “link queue” (enforcing queue size limitations); drain
the queue at a rate corresponding to the link’s bandwidth,
putting packets into a second queue implementing the delay
line; and finally, extract packets from the delay line at their
due transmission time. The above scheme is only appropriate
for low speed operation. At our target speeds, enqueueing and
dequeueing packets multiple times is a performance bottleneck
that should be avoided.

TLEM, instead, uses only a single enqueue and dequeue
operation per packet. Packets coming from the input NIC are
immediately1 stored in a large circular buffer, described in
Section IV-F. Each packet is preceded by a packet descriptor,
which, among other things, contains the absolute time when
the packet should be released to the output interface. This
value is computed as described in Section IV-B and IV-D, and
is used by the output stage of the pipeline.

B. Queue and link bandwidth

Traffic shaping (emulating a link with predefined band-
width) is a core function of any link emulator. When the i-th
packet arrives at time tiA, TLEM computes when it will exit
the link, tiL, using the following formula:

tiL = max(ti−1
L , tiA) +

li
B

where li is the packet’s length (including framing overhead,
such as preambles, inter-packet gaps, checksum) and B is
the link’s bandwidth. Minor modifications to the formula can
be used when when the link’s bandwidth is not constant.
As an example, Time Division Multiplex channels let clients
communicate only during periodic slots of time; even on an
idle channel, a packet arriving outside the slot must wait for the

1as an optimization, TLEM does not store packets that must be dropped
because of queue overflow or random drops.

next slot to be ready, and tiL must be computed accordingly.
Another example is that of wireless links where bandwidth
may vary depending on channel conditions. TLEM can be
configured, with user supplied C code, to emulate these and
other variable bandwidth channels.

Knowledge of the exit time tjL for all previous packets
makes it possible to determine the queue occupation (in bytes
and packets) at the arrival of a new packet, and determine
whether or not it should be dropped, without having to
implement a separate link queue.

C. Random packet drops

Congestion-induced drops, as described earlier, are a normal
artifact of a communication network and one that TLEM em-
ulates precisely. It is sometimes useful to study the behaviour
of an application in presence of other types of packet drops or
errors. These could be caused by channel noise, or complex
congestion situations elsewhere in the network that cannot be
simply modeled with a queue and a link.

For this reason TLEM, same as many other emulators,
supports random or deterministic packet dropping or errors.
The actual distribution of drops (e.g., their frequency, bursti-
ness, data dependencies) may affect the behaviour of the
system under test, so it is important to provide high flexibility
in defining drop patterns. This feature is implemented by
calling a user-supplied C function on each packet, which
returns a yes/no answer to determine whether the packet
should be dropped. The user supplied function can be stateful,
thus supporting complex policies that simulate burst errors.
TLEM also includes some predefined distributions that can
be configured from the command line, and include constant
packet- and bit- error rates.

D. Link delay

The time tiL computed above only indicates when the packet
exits the link queue. Before being actually released by the
emulator, a packet may incur further delay, normally to model
the effect of its traversal of the physical link. The link delay
may also be used to model additional equipment downstream,
including queueing delay and possibly multipath effects.

To support these features, TLEM must compute an ad-
ditional value for each packet, tiD, which is added to tiL to
determine when the packet can be released.

In the simplest case, tiD is constant and can be configured
from the command line. Same as for random drops, users can
call a library function or provide arbitrary C code to compute
the tiD for each packet. Library functions include uniformly
or exponentially distributed delays within a range.

Values for non uniform distributions are computed by gen-
erating a uniformly distributed number in the range [0, 1] and
using it as the argument to the Inverse of the Cumulative Den-
sity Function (CDF) for the distribution, to generate the desired
values. When the CDF is too difficult to invert analytically, or
it is empirically derived from actual samples, the inverse is
simply tabulated with a sufficient number of samples.

TLEM imposes one restriction on link delay distributions:
the tiD must not cause packet reordering. This is motivated by

practical considerations: reordering would require a sorting
step when producing the output schedule, slowing down the
emulator and complicating storage management. The con-
straint is enforced by conditionally increasing packet release
times so that they are monotonically increasing.

E. Output stage

The output stage has a very simple task: it only needs to
look at the shared buffer, and copy packets to the output buffers
(provided by netmap) and transmit them when their release
time has elapsed. The computation on each packet is minimal,
and the most expensive operation is the data copy. Prefetch
instructions help reduce a bit the effect of cache misses. The
output stage can transmit multiple packets at once when it lags
behind, thus highly increasing I/O speed and self-adjusting its
efficiency to the demands of the input load.

F. Shared buffer

The stages of TLEM communicate through a circular
buffer, shared by all stages of the pipeline. Packets are written
contiguously into the buffer by the input stage, each preceded
by a fixed size header containing the packet’s release time,
its length and a small amount of metadata. For performance
reasons, packets are padded to multiples of a cache line, and
are never split in two parts when the buffer wraps around.

The buffer is allocated when the emulator is started, and is
large enough to store all packets in the queue and the delay
line of the emulated link. At the speeds of interest (40 Gbit/s
and higher), a delay of 100 ms requires 500 Mbytes of memory
for data, plus space for packet descriptors and padding.

It is common practice for high speed I/O frameworks to try
as much as possible to use “zero-copy” solutions, saving the
CPU cycles and memory bandwidth involved with the data
copies. In our case, we had to abandon this idea because of
the potential waste of memory, and also because zero copy
solutions tend to generate sparse memory accesses, resulting
in frequent Translation Lookaside Buffer (TLB) misses which
would defeat or greatly reduce the advantages of zero-copy.
Our choice of a contiguous buffer containing both descriptors
and data packets is extremely cache friendly, and makes good
use of the TLB entries due to high locality of accesses.

Each stage of the pipeline has its own pointers into the
shared buffer, to track which packet it should process next, and
tell the downstream stage about the availability of new packets.
Contiguous stages in the pipeline act as a producer and a
consumer, and we handle communication between the two
with mechanisms similar to those used for lock-free queues.

To reduce access to shared variables, each stage of the
pipeline keeps a private copy of the buffer pointers updated
by the other stages, and refreshes the copy only when it has
consumed all the data/space available. Since the buffer pointers
only move in one direction, this permits a correct access to
the buffer while minimizing contention.

For the handling of extreme situations (buffer full or
empty), we decided not to implement a blocking scheme using
semaphores or similar mechanisms. Instead, stages spin on the
buffer pointer when they have no work to do and are waiting

for updates. Spinning does not mean busy-wait: since stages
know the release time of the packets, they can switch between
sleep and busy wait depending on when they should act next.
CPU utilization rapidly goes to a few percent even with modest
sleep times (a few microseconds) and the additional jitter
introduced by going to sleep is modest.

G. Bidirectional traffic

TLEM as described operates on a single direction of the
traffic. Handling bidirectional traffic is as simple as running
two instances of the pipeline in Figure 2, one per direction.
Similarly, one can run multiple TLEM instances in a single
host by starting pipelines on different pairs of interfaces.

V. PERFORMANCE

As for netmap-ipfw, we studied TLEM’s behaviour with
various configurations (delay and queue sizes) and input traffic
patterns. The test platform uses a fast i7 CPU (i7-5930k at
3.5 GHz), and 2133 MHz memory, with enough cores to run
on a separate core each stage of the pipeline, as well as traffic
sources and sinks. We ran our measurements on 10-Gbit/s
NICs and on netmap pipes (with I/O costs similar to those of
10- and 40-Gbit/s NICs), and using both FreeBSD and Linux.

The main figures we are interested in are throughput, accu-
racy in the delay emulation, and stability of performance (both
in terms of throughput and jitter in the output). We briefly
discuss how the latter two are affected by the power man-
agement mechanism (C-states, frequency scaling) available on
modern hardware and exploited more or less aggressively by
the operating system.

A. Providing a sane test environment

Modern CPUs have power management mechanisms, such
as C-states and P-states, aimed at reducing power consumption
when the system is idle.

With increasing C-states (named C0, C1,), more and
more parts of the CPU are shut down when a core is HALTed,
but this causes longer delays to restart operation. When a core
goes to sleep with deep C-states enabled, it may take up to
100 µs to wake up, compared to less than 1 µs in C1. Which
C-states can be used by the CPU can be set in the BIOS, or
with run-time mechanisms such as setting sysctl variables (on
FreeBSD) or keeping certain file descriptors open (on Linux).
Once a certain C state is available, the CPU will automatically
make use of it when a HALT or equivalent instruction is
executed.

P-states, also known as dynamic frequency scaling, are a
different mechanism used to slow down active cores, throttling
frequency (and reducing operating voltages) to reduce power
consumption. Throttling is normally controlled by software
subsystems (called “governors”) that monitor system load and
set the operating frequency accordingly.

Stable performance demands that C-states other than C1 are
disabled, as a wake up latency of 10..100 µs would induce a
huge jitter on the delay. Also, 100 µs correspond to about
1300 minimum size packets on a 10 Gbit/s link, meaning that

the system would run dangerously close to the total queue size
of the input NIC, easily resulting in packet drops.

Dynamic frequency scaling is also a source of jitter. Many
power governors dynamically adjust the CPU frequency based
on observed load on relatively long intervals. If an application
is power aware and goes to sleep under light load, the governor
may reduce the clock speed to 1/3 or less of the peak value,
resulting in limited ability to handle spikes of load.

Another source of jitter is interrupt moderation. This is
a mechanism designed to reduce the interrupt load on the
system, which is necessary with conventional I/O architectures
(this includes NAPI in Linux) where the interrupt handler
performs a significant amount of work. In netmap, the interrupt
handler has very little work to do, so while it makes sense to
use interrupt moderation, values should be limited to 10-20 µs
to keep jitter small.

B. Latency accuracy and jitter

We have run a small number of tests on the system to
determine the accuracy and jitter of latency emulation, not
only across netmap pipes but also using Intel 10 Gbit/s NICs.
We avoided the effect of C- and P-states by using only C1
and setting CPUs to the maximum clock rate, and prevented
thread migrations by pinning threads to a specific core, to
reduce delay and jitter in waking up threads upon interrupts
or timer notifications. These delays are, in normal situations,
limited to 10 µs or less.

Another factor that affects latency is the load in the various
stages of the system. Because we want to exploit batching,
each stage may defer notifications or transmissions until a
batch of available packets has been fully processed. TLEM
has a command line parameter to set the maximum batch size,
thus choosing a tradeoff between throughput and performance.
We found that batch sizes of 64 packets give good results with
short packets, although our tests with larger packets suggest
that the batch size should also account for packet sizes.

With all the above considerations, we have measured that,
on physical interfaces, latency emulation is accurate to 50 µs,
which is in line with the expected effect of all the above
mechanisms.

C. Throughput

We tested TLEM in a configuration similar to that presented
in Section II-E, using netmap pipes for I/O. Our configuration
uses two cores per direction, one for the input stage and one
for the output stage. The input stage has three main tasks: i)
read packets; ii) compute timestamps; iii) copy to the shared
buffer. The output stage instead has two tasks: i) copy from
the shared buffer to the netmap buffer; ii) write to the netmap
port. The TLEM pipeline has two stages, both extremely fast
as we will see, and we need to run both in order to perform
an experiment. Measurements can only indicate the maximum
of the time spent in each of the stages of the pipeline, leaving
some uncertainty on the location of the actual bottlenecks in
the system. Nevertheless, the data reported below will give
some hints on what are the operations that influence the
performance of the system and suggest ways to improve it.

Our first experiment was done by disabling the copy of
packets on both input and output. Note that the shared queue
still needs to be updated with packet descriptors, which are
scattered through the buffer itself. In this configuration, we
achieved a time of 30 ns per packet with zero delay, growing
to 35 ns when generating a 20 ms delay. The extra delay does
not require additional computation, but changes the memory
access patterns, as it defines the distance between a packet
is written to the queue and its extraction time. At 10 Gbit/s,
20 ms correspond to 200 Mbits or 25 Mbytes, exceeding the
L3 cache size on our system. This means that accesses to the
shared buffer must go to main memory, and this explains the
extra time in this experiment.

Adding back memory copies (i.e. restoring full functionality
of the emulator) brings the per-packet time to about 44 ns with
zero delay, and 54 ns with 20 ms delay. The extra 15 ns can
be charged to the memory copy, and specifically to the read
latency in accessing the source.

We expect that memory copy costs are the dominant com-
ponent in the operation of the emulator, so we ran some
experiments with larger packets (1500 bytes). In this case the
per-packet time jumps to very high values, around 250 ns with
zero delay, and up to 400 ns for 20 ms delay. These rates
correspond to 48 Gbit/s and 30 Gbit/s, respectively.

Once again memory access times are the main culprit for
these values. With short delays (and correspondingly short
buffers), the memory copies make a reasonable use of L3
cache, which is shared among the various cores used in the
experiment. As the delay (and buffer size) increase, the cache
is overflown and memory accesses become more expensive,
with increased latency and reduced bandwidth.

VI. EXTENSIONS AND FUTURE WORK

We have presented TLEM, a fast, pipelined link emulator
that can deal with speeds tens of gigabits per second in a
scalable way. Being developed in userspace, TLEM is easy
to extend with additional features such as more complex
emulation functions and traffic selection mechanisms, and can
be extended with additional pipeline stages to preserve the
operating speed in the face of more expensive computations.

The main bottleneck in TLEM operation is currently con-
stituted by the cost of memory copies. We are studying
mechanisms to reduce these costs, including better support
for zero copy operation with large packets (the case where
copy costs are more important), and options to run copies in
parallel on separate cores (at the price of additional latency).

While our system has been designed specifically for link
emulation, its components can be easily reused for other
applications that fit the pipelined model of operation. One
example that we have already implemented is that of a
programmable traffic generator: we replace the input stage
with one that generates a suitable schedule of packets to
transmit, and use the output stage just as a fast data pump
that goes through the schedule as desired. The traffic generator
can read from a PCAP file, or generate packets programmat-
ically. Other examples include fast packet processors such as
firewalls, NAT or similar middleboxes. TLEM and the traffic

generator described above are part of netmap distributions at
github.com/luigirizzo/netmap/ .

ACKNOWLEDGEMENTS

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014-2018
under grant agreement No. 644866. This paper reflects only
the authors’ views and the European Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] CARBONE, M., AND RIZZO, L. Dummynet revisited. ACM SIGCOMM
Computer Communication Review 40, 2 (2010), 12–20.

[2] CARBONE, M., AND RIZZO, L. An emulation tool for planetlab.
Computer communications 34, 16 (2011), 1980–1990.

[3] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON, L.,
WAWRZONIAK, M., AND BOWMAN, M. Planetlab: an overlay testbed
for broad-coverage services. SIGCOMM Comput. Commun. Rev. 33, 3
(2003), 3–12.

[4] HEMMINGER, S., ET AL. Network emulation with netem. In Linux conf
au (2005), Citeseer, pp. 18–23.

[5] HUBERT, B. Linux Advanced Routing and Traffic Control. In Ottawa
Linux Symposium 2002.

[6] INTEL. Intel data plane development kit.
http://edc.intel.com/Link.aspx?id=5378 (2012).

[7] RIZZO, L. netmap-ipfw, a userspace version of ipfw+dummynet running
on top of netmap. https://github.com/luigirizzo/netmap-ipfw.

[8] RIZZO, L. Dummynet: a simple approach to the evaluation of network
protocols. ACM SIGCOMM Computer Communication Review 27, 1
(1997), 31–41.

[9] RIZZO, L. Dummynet and forward error correction. In USENIX Annual
Technical Conference (1998).

[10] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In USENIX
ATC’12 (2012), Boston, MA, USENIX Association.

[11] RIZZO, L. Revisiting network I/O apis: the netmap framework. Com-
mun. ACM 55, 3 (Mar. 2012), 45–51.

[12] RIZZO, L., AND LETTIERI, G. VALE, a switched ethernet for virtual
machines. In CoNEXT ’12 (New York, NY, USA, 2012), ACM, pp. 61–
72.

[13] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD,
S., NEWBOLD, M., HIBLER, M., BARB, C., AND JOGLEKAR, A.
An integrated experimental environment for distributed systems and
networks. SIGOPS Oper. Syst. Rev. 36, SI (2002), 255–270.

