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1 Introduction

The ATLAS and CMS collaborations found an excess in pp → γγ events [1, 2] that can

be interpreted as the production of a new scalar resonance S with mass MS ≈ 750 GeV,

provided that S has a large enough width into photons, Γγγ = Γ(S → γγ). Assuming that

S is produced trough gg or qq̄ partonic collisions, the claimed γγ excess can be reproduced

for Γγγ/MS ≈ 10−6 if the S width is narrow, and for Γγγ/M ≈ 10−4 if the total width is

large, ΓS ∼ 0.06MS . Larger values Γγγ/M ≈ 10−3 are needed if S is produced trough γγ

partonic collisions [3–6].

This raises a theoretical question: how can such a width be obtained in a fundamental

theory? Extra charged fermions or scalars X must be present to mediate the S → γγ

process, and they must be coupled to S, through Yukawa couplings y or scalar cubic

couplings κ.

In the fermionic case, Γγγ gets enhanced by considering a large Yukawa y and/or a large

multiplicity N and/or a large hypercharge Y of the new fermions. All these enhancements

imply that some coupling (y and/or gY ), when renormalised up to higher energies, becomes

larger until it develops a Landau pole, signalling the presence of new non-perturbative

physics [3, 7, 8]. In section 2 we revisit such issues, adding the extra constraint of vacuum

stability along the S direction.
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Figure 1. Maximal Γγγ generated by a fermionic loop compatible with perturbativity considering a

750 GeV scalar (dashed curves) or pseudo-scalar (continuous curves) with a CP-conserving Yukawa

coupling. The green band shows the value of Γγγ favored by the 750 GeV excess, assuming that S

has a narrow (lower) or broad (upper) width.

In the scalar case, the loop that mediates S → γγ can be enhanced by a large cubic

κS|X|2 [9–11]. At first sight, this presents two possible advantages. First, the RGE evolu-

tion of κ never generates Landau poles since it has dimension 1 and thereby corresponds to

a relevant operator (unlike the dimensionless Yukawa coupling y introduced in the fermionic

case). Furthermore, a large cubic can arise if there is a weakly-coupled1 scalar sector around

≈ 10 TeV that contains the light scalars S and X with a cubic coupling among them, which

does not get suppressed. However, a large cubic leads to extra minima in the potential

V (S,X) and is thereby subject to vacuum stability bounds. In this work we consider abso-

lute stability and meta-stability. We will find that, after imposing such bounds, the max-

imal Γγγ given by a scalar loop is similar to the maximal Γγγ produced by a fermion loop.

In section 2 we reconsider fermion models. In section 3 we consider scalar models.

Signals at colliders and connection with Dark Matter is discussed in section 4. Conclusions

are given in section 5.

2 A fermionic loop

We couple S to N fermions ψ with mass Mψ, hypercharge Q = Y and singlet under SU(2)L.

We assume that the N fermions have the same mass and same couplings, such that the

Lagrangian

L = LSM +
(∂µS)2

2
+ ψ̄(i /D −Mψ)ψ + [Sψ̄(y + i ỹγ5)ψ + h.c.]− V (S)− V (S,H) (2.1)

1The weak-coupling ensures computability.
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respects a SU(N) symmetry, under which ψ is in the fundamental representation: this

choice simplifies computations and maximises Γγγ . The potential is V (S) = 1
2M

2
SS

2+λSS
4.

The Yukawa coupling y (ỹ) is present if S is a scalar (pseudo-scalar). y and ỹ have the

same RGE, and ỹ contributes more to S → γγ than y (see e.g. [3]). If S is a pseudo-scalar

the loop function is maximal at Mψ = MS/2, and we find

Γγγ
M
≈ 0.6 10−6N2ỹ2Y 4

∣∣∣∣
Mψ=MS/2

,
Γγγ
M
≈ 0.2 10−9N2ỹ2Y 4

∣∣∣∣
Mψ=1 TeV

. (2.2)

The formula for general Mψ can be found in ref. [3]. Allowing SU(N) to become a gauge

symmetry (we will see below why this is useful) with gauge constant g, the relevant RGE are

(4π)2βgY = g3Y

(
41

6
+

4N

3
Y 2

)
(2.3a)

(4π)2βg = −bg3 b =
11

3
N − 2

3
− · · · (2.3b)

(4π)2βy = (2N + 3)y3 − y
(

6g2Y Y
2 + 3

N2 − 1

N
g2
)

(2.3c)

(4π)2βλS = 72λ2S + 2Ny2(4λS − y2) (2.3d)

where βθ ≡ dθ/d lnµ and · · · denotes the contribution of extra possible particles charged

under SU(N). For simplicity, we assumed a vanishing quartic coupling |S|2|H|2.2

Assuming g = 0 and ignoring eq. (2.3d) we reproduce the results of [3, 7, 8], that we

plot in figure 1 as the maximal value of Γγγ as function of the Landau poles scale. We

have checked that taking into account the RGE for λS , eq. (2.3d), which was partially

considered in [12–15], does not affect these results.

We impose that λS does not hit a Landau pole, and that it does not lead to too fast

vacuum decay [17, 18]: this gives the upper and lower bound in the following formula,

respectively

− 0.016

1 + 0.01 lnµ/MS
< λS(µ) . 4π. (2.4)

Combining eq. (2.2) with eq. (2.3a) shows that the maximal Γγγ is obtained for small

N = 1 and for Y as large as allowed by Landau poles for hypercharge, which corresponds

to uninteresting values Y ∼ 10. Thereby, we also plotted the maximal Γγγ at fixed values

of Y and N . We see that Γγγ . 10−6 can be obtained within models with reasonable Y ∼ 1

and N . 3 that remain perturbative up to the Planck scale. Larger values of Γγγ need

new non-perturbative physics not much above the TeV scale, especially if the fermion ψ is

colored, such that it can also mediate S → gg but needs to be heavier of about 1 TeV in

view of LHC bounds.

Gauged SU(N). Finally, we consider the new class of models obtained gauging SU(N).

Such models interpolate between weakly-coupled models (g = 0) and strongly-coupled

models (g becomes non perturbative around MS) considered in the literature [3, 19–24].

It is interesting to notice that, even without considering the non-perturbative limit, a

2This coupling was considered in [12–15] and helps in stabilising the electroweak (EW) vacuum [16].
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perturbative g allows to obtain qualitatively larger values of y and thereby of Γγγ without

hitting Landau poles than in the g = 0 limit. Indeed, if g > 0, the RGE for y, eq. (2.3c),

implies that the low energy value of y is attracted towards the Pendleton-Ross infra-red

fixed point [25–28]
y2

g2
→ 3(N − 1/N)− b

2N + 3
(2.5)

provided that the latter term is positive, b < 3(N − 1/N). In such a case, y at low energy

can become arbitrarily large without hitting Landau poles, given that the same holds for

g. For example, in the limit of large N and small b one has y2/g2 → 3/2.

If instead the latter term in eq. (2.5) is negative the infra-red fixed point does not exist,

and adding a g > 0 does not give a result qualitatively different from in the g = 0 limit.

3 A scalar loop

We now consider the scalar case, which requires discussing the (meta)stability of the full

potential. Thereby we first consider the case of a single scalar.

3.1 A single charged scalar

We start considering the following minimal model, where the SM is extended by adding

a neutral real scalar singlet S and one complex singlet X with hypercharge Y = Q. The

scalar potential is

V (H,S,X) = −
M2
h

2
|H|2 + λH |H|4 + λHS |H|2S2 + λHX |H|2|X|2 + κHSS|H|2 + V (S,X)

(3.1)

where the terms involving only the new scalars S and X are

V (S,X) =
M2
S

2
S2 +M2

X |X|2 + λSS
4 + λXSS

2|X|2 + λX |X|4 +
κS
3
S3 + κXSS|X|2. (3.2)

At very large field values (when S and X are much bigger than the dimensionfull param-

eters) the potential is stable if λS , λX > 0 and λ2XS < 4λSλX [16]. The resulting S width

into photons is
Γ(S → γγ)

M
=

α2
em

256π3

∣∣∣∣κXSMS

2M2
X

Q2F

(
4M2

X

M2
S

) ∣∣∣∣2 (3.3)

where the loop function F is

F (x) = x

[
x arctan2

(
1√
x− 1

)
− 1

]
x→∞

=
1

3
. (3.4)

Considering the potential as function of S only, absolute stability is satisfied for |κS |2 <
18M2

SλS . In the presence of both S and X, absolute stability can be again computed

analytically, although the result is too long to be presented. The main qualitative feature

is that the upper bound on Γ(S → γγ) ∝ |κXS |2 grows proportionally to some combination

linear in the quartics λS , λXS , λX . This means that the scalar loop contribution to S → γγ

is limited by perturbativity of the quartics, just like a fermion loop contribution is limited

by perturbativity of the Yukawa y2. Then our goal is generalising to scalar case the result

found in the fermionic case and shown in figure 1.
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Figure 2. Left (a): maximal cubic |κXS |/MS allowed by stability (green) and by meta-stability

(yellow) as function of λX = λS = λXS . Right (b): the corresponding value of Γγγ/M assuming

that the scalar X has charge Q = 1. Vacuum decay is too fast in the red regions.

3.1.1 Meta-stability

The meta-stability condition can be computed only numerically, and is weaker than the

stability condition, altought they are qualitatively similar.

For the numerical computation we use the tool-chain SARAH-SPheno-Vevacious: we

implemented the minimal model of eq. (3.2) in SARAH [29–34] and generated the Fortran

code for SPheno [35, 36] to get a spectrum generator for the model. SPheno was used to

compute all masses and branching ratios, and the produced spectrum file is then given to

Vevacious [37] as input to check the stability of the electroweak vacuum. For this purpose,

we generated a model file with SARAH for Vevacious which includes the possibility of VEVs

for the charged scalar beside to ones for the neutral states. Vevacious checks the stability

of the scalar potential via a homotopy method which guarantees to find all minima of the

tree-level potential. In the case that there is a minimum deeper than the desired one, it

calls ComsoTransitions [38] to calculate the life-time of the vacuum. The decay rate Γ

per unit volume for false vacuum decay can be written as [17, 18]

d℘

dV dt
=
e−S

R4
(3.5)

where R ≈ 1/MS is the size of the bounce and S is the action of the bounce. At tree level

it is given by

S =

∫
d4x

(
(∂µS)2

2
+ |DµX|2 + V (S,X)

)
. (3.6)

CosmoTransitions finds the multi-field optimal ‘path’ to tunnel from the false to the true

vacuum using the B-splines algorithm. For more technical details we refer to [38].
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Integrating over our past-light cone, taking into account the expansion of the universe,

we find the present value of the vacuum-decay probability ℘,

℘0 = 0.15
e−S

(RH0)4
, (3.7)

where H0 ≈ 67.4 km/sec Mpc is the present Hubble rate. A probability ℘0 larger than 10%

is obtained for S > 412. Based on the result of this calculation, we label as meta-stable a

point such that ℘0 > 10%, and unstable otherwise.

To start and to illustrate the result, we consider the special case λX = λXS = λS and

κS = 0. Furthermore we fix MX = MS/2, which is the value that maximises Γγγ . Figure 2a

shows the resulting stability region (green): the maximal |κXS | grows proportionally to the

squared root of the couplings. The extra region allowed by meta-stability (in yellow) has

a similar shape. In figure 2a we show the corresponding Γγγ rate, assuming a single scalar

X with Q = 1: we see that a phenomenologically relevant value Γγγ & 10−6 needs quartic

couplings of order 1.

3.1.2 Perturbativity limits

In order to quantify if a TeV-scale value of the quartics is ‘too large’, we solve their one-

loop renormalisation group equations and compute the RGE energy scale µ = Λ at which

a coupling hits a Landau pole. The RGEs that involve only the quartic couplings of S,X

are (the full set of RGE is given later)

βλX =
1

(4π)2
[
20λ2X + 2λ2XS

]
, (3.8a)

βλXS =
1

(4π)2
[
8λ2XS + 8λXS(λX + 3λS)

]
, (3.8b)

βλS =
1

(4π)2
[
λ2XS + 72λ2S

]
. (3.8c)

A large coupling leads to a Landau pole at low energy; in such a case Λ can be approximated

as

Λ ≈MS exp min
λ

λ

βλ
(3.9)

which becomes exact in the case of a single quartic coupling.

We next perform a full scanning, picking 104 random points in the 4-dimensional

parameter space of the model, and checking if stability and/or meta-stability are satisfied;

in such a case we compute Γγγ and the Landau pole scale. The final result is shown in

figure 3: like in the fermionic case, a larger Γγγ implies a Landau pole at lower energy.

Actually, the maximal Γγγ is a factor of few lower than in the corresponding fermionic case.

The Γγγ width can be increased by allowing for a scalar X with bigger charge and/or

for multiple states X. However, these possibilities are limited by Landau poles for the

hypercharge gauge coupling and by precision data, as studied in the next section.
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Figure 3. Maximal Γγγ allowed by perturbativity considering a scalar S with a cubic coupling to

one singlet charged scalar X with Q = Y = 1.
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Figure 4. Maximal Γγγ generated by a scalar loop compatibly with vacuum stability (dashed

curves) or by meta-stability (continuous curves) as function of the scale at which the theory becomes

non-perturbative. The upper curves in black refer to a generic set of scalars; the lower curves to

some special case: a single scalar (N = 1) with unity hypercharge (Y = 1), multiple fields (blue,

N = 3), bigger hypercharge (green, Y = 3) and both (magenta, N = Y = 3). The maximal Γγγ is

obtained for MX = MS/2 (left panel); in the right panel we consider MX = 1 TeV, which is allowed

by LHC data if the scalar fields are colored.
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3.2 Many scalars

We now generalize the results of the previous section including more charged scalars. We

consider N scalars X with hypercharge Y and singlet under SU(2)L, assumed to lie in a

fundamental representation of an extra SU(N) global or gauge symmetry. This means that

all scalars have the same mass and the same cubic: this choice maximises their effect on

Γγγ for a fixed scale at which the theory becomes non-perturbative. The vacuum stability

and meta-stability conditions remain the same as in the previous section: we just need to

take into account the enhancement in Γγγ and the modified perturbativity conditions.

3.2.1 Perturbativity limits

We write the RGE including all relevant SM couplings: the gauge couplings g3, g2 and

g1 ≡
√

5/3gY , the top Yukawa coupling yt and the quartic couplings λH , λHS and λHX .

We also consider the (possibly vanishing) gauge coupling of SU(N), g. The RGEs for the

dimensionless couplings λX , λXS , λS , g1 and g are

(4π)2βλX = 4(N + 4)λ2X + 2λ2XS −
36Y 2g21λX

5
+

54Y 4

25
g41 + 2λ2HX +

+
3(N − 1)(N2 + 2N − 2)

4N2
g4 − 6(N2 − 1)

N
g2λX , (3.10a)

(4π)2βλXS = 8λ2XS + 4λXS

[
(1 +N)λX + 6λS −

9Y 2g21
10

]
+

+4λHSλHX −
3(N2 − 1)

N
λXSg

2 (3.10b)

(4π)2βλS = Nλ2XS + 72λ2S + 2λ2HS , (3.10c)

(4π)2βg1 = g31
41 + 2NY 2

10
, (3.10d)

(4π)2βg = g3
(
−11

3
N +

1

6

)
. (3.10e)

We included the quartic couplings λHS and λHX that involve the Higgs boson because,

although they negligibly affect the non-perturbativity issue, they unavoidably enter into the

RGEs for λX , λXS , λS . Indeed the quartic λHX is unavoidably generated by hypercharge

interactions because both H and X are charged; then a λHS coupling is generated too as

dictated by the following RGEs:

(4π)2βλHX = λHX

[
4(1 +N)λX −

(36Y 2 + 9)g21
10

− 9g22
2

+ 12λH + 6y2t

]
+4λHSλXS + 4λ2HX +

27g41Y
2

25
− 3(N2 − 1)

N
λHXg

2, (3.11a)

(4π)2βλHS = 2NλXSλHX+8λ2HS+λHS

(
24λS−

9g21
10
− 9g22

2
+6y2t +12λH

)
, (3.11b)

(4π)2βλH = 2λ2HS +Nλ2HX +
27g41
200

+
9g21g

2
2

20
+

9g42
8

+ λH

(
−9g21

5
− 9g22 + 12y2t

)
+24λ2H − 6y4t , (3.11c)

– 8 –
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(4π)2βyt = yt

(
9

2
y2t −

17g21
20
− 8g23 −

9g22
4

)
, (3.11d)

(4π)2βg2 = −19g32
6

, (4π)2βg3 = −7g33. (3.11e)

We are now ready to present our final result. Setting g = 0 (global SU(N) symmetry) in

figure 4b we show the maximal value of Γγγ , as function of the scale at which a Landau

pole develops. Γγγ gets significantly enhanced, even by orders of magnitude, with respect

to the minimal case N = Y = 1 considered in section 3.1. The plot also shows the special

cases N = 3 and Q = 3. The final result is similar to the analogous fermionic result, shown

in figure 1.

3.2.2 Gauged SU(N)

The gauging of the SU(N) symmetry allows, both in the fermionic and in the scalar case, to

get larger values of Γγγ without hitting Landau poles. Indeed, if g runs becoming larger at

low energy, the quartic λX gets driven to comparably large values, being attracted towards

the quasi-fixed point [25–28]

λX
g2
→

sλg − b+
√

(sλg − b)2 − 4sλsg

2sλ
(3.12)

where b, sg, sλ, sλg are constants that parameterise the RGE coefficients as

(4π)2βg = −bg3 , (4π)2βλX = 2[sλλ
2
X − sλgλXg2 + sgg

4] , (3.13)

For example we find λX/g
2 → (3+

√
6)/4 in the limit of large N and small b� sλg. Like in

the fermionic case, the qualitative properties of λX from eq.s (3.13) depend on the sign of

E ≡
(sλg − b)2 − 4sλsg

4s2g
(3.14)

(see the last article in [25–28]). The infra-red fixed point exists if E ≥ 0; in such a case

there is no Landau pole for values of the quartic such that
√
E ≤ D ≤ Λ0 +

√
E, where

D ≡
sλg − b

2sg
, Λ0 ≡

g2(µ0)

λ(µ0)
(3.15)

and µ0 is some reference energy. If instead E < 0 there is always a Landau pole.

This situation is illustrated in figure 5 and in its caption. The plot on the right has

E ≥ 0 (so a fixed point is allowed), and the low-energy value of y remains finite even

assuming no Landau pole up to arbitrarily large energy. The plot on the left has E < 0 (no

fixed point), and y at low energy must be small if the theory cannot have Landau poles up

to higher energy: allowing a g 6= 0 only has a minor effect with respect to the g = 0 limit.
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Figure 5. Maximal NλX at low energy (chosen to be 1 TeV) as function of the maximal energy

at which the theory holds without hitting Landau poles. We consider the large N limit and fixed

values of the ‘t Hooft coupling
√
Ng at TeV energy. Left: no fixed points. Right: the gauge beta

function is reduced to b = N such that a fixed point for y arises.
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Figure 6. Cross section pp→ XX∗ for producing two uncolored particles (scalars in the left plot

and fermions in the right plot) with charge Q and hypercharege Y , indicated as QY .

4 Collider probes and dark matter

4.1 Collider probes

We now discuss how the scenario can be probed at colliders. The partonic cross section

q1q̄2 → X1X̄2 for pair production of two uncolored scalars or fermions X1X̄2 is

dσ

dt̂
=
V 2
L + V 2

R

144πŝ2
×

{
(2M2

1M
2
2 +ŝ2−2(M2

1 +M2
2 )t̂+2t̂2+ŝ(2t̂− (M1−M2)

2) fermion

(M2
1M

2
2 − (M2

1 +M2
2 )t̂+ t̂2 + ŝt̂) scalar

(4.1)
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where

V 2
A =


3

(
QqQX

e2

ŝ
+ gqAgX

g22/c
2
W

ŝ−M2
Z

)2

for qq̄ → XX∗

3wX

(
g22

ŝ−M2
W

)2

for ud̄→ X1X2

(4.2)

and g = T3 − s2WQ is the Z coupling, A = {L,R}. So far we considered the case of

a SU(2)L singlet: in such a case one has wX = 0. Otherwise w 6= 0 if A = L and

T3(X1) − T3(X2) = ±1: wX = 1 if X is a weak doublet; wX = 2 if X is a weak triplet.

The resulting pp cross section is plotted in figure 6 and grows as NQ2. As well known, the

cross section for pair production of scalars (left) is p-wave suppressed and about one order

of magnitude smaller than the fermion pair production cross section (right).

The experimental bounds on such cross sections depend on how X decays. A large va-

riety of possibility exists; furthermore gauged SU(N) could lead to ‘quirk’ phenomena [39].

Heavy leptons tend to give easily detectable signals, potentially giving limits as strong as

the present inverse luminosity L, σ . few/L ≈ fb. In such a case, figure 6 implies that

new fermions and (to a lesser extend) new scalars with large multiplicities and/or large

charges are already excluded, if their masses are around few hundred GeV: if the particles

are long-lived and don’t decay inside the detector, the limits are 660 to 785 GeV for electric

charges from 2 to 6 [40]. However, if the particles decay inside the detectors, there are no

model independent limits, and the general constraints on quasi-degenerate EW-multiplet

are around 200-400 GeV [41].

4.2 Dark matter

It is interesting to consider the case where X lies in a SU(2)L multiplet that contains, as

lightest component, a neutral state that can be a Dark Matter candidate. At colliders

Dark Matter can be seen as missing energy. If the SU(2)L multiplet is quasi-degenerate

(Minimal Dark Matter limit [42]), the decay products that allow to tag the event become

soft and can be missed. One needs to rely on initial state radiation, which can give an

extra jet or photon or Z, but with a smaller cross section, such that the signal can easily

be below the SM backgrounds. In this situation a large multiplicity of light X particles

(M .MS/2) becomes allowed.

The thermal freeze-out cosmological Dark Matter abundance is reproduced when the

s-wave DM (co)annihilation cross-section equals to σ0 = σcosmo ≈ 1/(22 TeV)2. In the

Minimal Dark Matter limit the σ0 induced by SM gauge interactions is given by

σ0 =

∑
R d

2
Rσ0(R)

(
∑

R dR)2
(4.3)

where [42]

σ0(n, Y )=


g42 (2n4+17n2−19)+4Y 2g4Y (41+8Y 2)+16g22g

2
Y Y

2(n2−1)

1024πncM2
R

fermion

g42 (3− 4n2 + n4) + 16 Y 4g4Y + 8g22g
2
Y Y

2(n2 − 1)

256πcnM2
R

scalar

(4.4)
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We have considered a multiple set of MDM representations R that fill a n-dimensional

representation of SU(2)L with hypercharge Y . Their number of degrees of freedom is dR =

2cn (scalar) or dR = 4cn (fermion) where c = 1/2 (1) for a real (complex) representation.

Taking into account that extra annihilations mediated by S are typically subdominant [3],

N degenerate scalar doublets with Y = 1/2 reproduce the observed DM abundance if their

mass is M = 540 GeV/
√
N , which is lighter than MS/2 (providing decay channels for S) for

N ≥ 2. Such doublets predict extra decays S → γZ,ZZ,W+W− at an acceptable level [3].

This shows that a consistent scenario can be obtained. On the other hand, fermionic

doublets or higher SU(2)L multiplets such as triplets cannot reproduce the DM abundance

unless they have a very large multiplicity N . For example, for N real representations which

transform as a n under SU(2)L, the terms proportional to g42 dominate the cross section

giving

σ0(n, Y )

σcosmo
∼
(

440 GeV

MR

)2 1

N


1

2
n3 +

17

4
n− 19

4n
fermion

n3 − 4n+
3

n
scalar

. (4.5)

If SU(N) is gauged its vectors could form quasi-stable Dark Matter [43].

4.3 Precision observables

Given that it is difficult to directly detect quasi-degenerate Dark Matter weak multiplets

at LHC, it is interesting to explore how they indirectly affect precision data.

New scalars or fermions with hypercharge Y and mass MX belong to the class of

‘universal new physics’ that affects precision data measurable at colliders with energy√
s�MX only trough the S, T ,W,Y parameters [44]. We assume that these particles are

not coupled to the SM Higgs doublet, so that the S and T parameters are not affected.

On the other hand, the Y and W parameters receive the following contributions [45]

Y =
∑
s

∆b
(s)
Y

αY
40π

M2
W

M2
s

+
∑
f

∆b
(f)
Y

αY
20π

M2
W

M2
f

, (4.6a)

W =
∑
s

∆b
(s)
2

α2

40π

M2
W

M2
s

+
∑
f

∆b
(f)
2

α2

20π

M2
W

M2
f

, (4.6b)

where ∆b
(s)
Y = dRY

2/6 and ∆b
(f)
Y = dRY

2/3 are the usual contributions to the hypercharge

beta-function coefficients coming from each scalar and fermion. ∆b
(s)
2 and ∆b

(f)
2 are the

analogous coefficients for the SU(2)L beta functions.

The present experimental bound, |Y| . 2 10−3 [44], implies
∑

R dRY
2 .

1500(MR/375 GeV)2, which is too weak to have a significant impact on our present analysis.

Comparable limits on this kind of effects can be obtained from the differential pp→ µ+µ−

cross section at LHC at large invariant mass [46].

A future circular collider operating at the Z peak can measure W,Y with improved

accuracy. According to [47–49], a precision of 10−6 on sin2 θW (the effective mixing angle

defined trough Z couplings) is a reasonable goal. The theoretical uncertainty can be

brought down to the same level, expect for the uncertainty coming from αem(MZ), which
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presently is 18 10−6 [47–49]. A future circular collider could reduce this uncertainty by a

factor of 3 [50]. In any case this would be the dominant constraint on Y andW, given that

δ sin2 θW

sin2 θW
=

sin2 θWW + cos2 θWY
sin2 θW − cos2 θW

. (4.7)

The measurement of sin2 θW with a total precision of 10−5 would determine Y with a

±3 10−5 precision, if W = 0. This would give a strong test for the considered scenarios by

demanding
∑

R dRY
2 . 20(MR/375 GeV)2. If both Y and W are non-vanishing, sin2 θW

will restrict them to lie in a band, that becomes a long ellipse taking into account the other

measurements. The measurement of sin2 θW will be performed with high statistics during

the measurements of the Z resonance line-shape parameters, which represents the first step

in the planned baseline program [47–49]. We estimate that the precision δ sin2 θW ∼ 10−5

will be enough to extensively probe the parameter space favored by the claimed γγ excess.

At LEP, the LEP2 run above the Z peak measured W and Y as well as the Z-peak

LEP1 run [44], because these parameters give corrections that increase with the collider

energy, e.g.

σ(e+e− → µ+µ−)

σ(e+e− → µ+µ−)SM
= 1− (0.67W + 1.33Y)

s

M2
W

for s�M2
W. (4.8)

Similarly, we estimate that an e+e− collider operating at higher energy
√
s (around the

W+W−, Zh and tt̄ thresholds) can measure W,Y with ±0.3 10−4 accuracy [51].

Furthermore, processes such as e+e− → γZ can probe the anomalous γγZ, γZZ, etc

vertices generated by a loop of heavy charged fermions or scalars.

5 Conclusions

We computed the maximal value of the width into γγ of a neutral scalar S with mass MS .

In section 2 we considered the effect of a loop of charged fermions with a Yukawa

coupling y to S. Perturbativity of y was quantified by computing the scale at which y or

any other coupling, renormalised to higher energy, hits a Landau pole. We also impose

meta-stability bounds on the S potential. Figure 1 shows the maximal Γγγ as function of

the Landau pole scale.

In section 3 we considered the effect of a loop of charged scalars with a cubic cou-

pling to S. A large cubic does not lead to Landau poles, but it is, however, limited by

vacuum (meta)stability and perturbativity in a way that depends on dimensionless quartic

couplings, which are again subject to perturbativity bounds. Meta-stability was computed

considering the multi-field critical bounce. Figure 4 shows the maximal Γγγ as function of

the Landau pole scale. The result is similar to the fermionic case.

In both the fermionic and the scalar case we allowed for N states and considered the

possibility that a new SU(N) gauge symmetry acts on them. The maximal value of Γγγ
allowed by perturbativity becomes qualitatively larger if either the Yukawa coupling y or

the scalar cubic, in their renormalization group evolution, can approach an infra-red fixed

point. In such a case their maximal size is no longer controlled by Landau poles, but by
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the new gauge coupling g, which can be large. Non-perturbative models discussed in the

literature [3, 19–24] are recovered in the limit where the new gauge coupling g becomes

non-perturbative around MS .

In section 4 we considered the connection with Dark Matter, finding that N & 2 scalar

doublets with mass M .MS/2 can thermally reproduce the cosmological DM abundance.

If they are quasi-degenerate, it becomes difficult to see them at hadronic colliders. We

discussed how precision measurements can help in indirectly probing them.
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