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ABSTRACT 

Stochastic optimization methods such as Genetic Algorithms (GA’s) search for the global 12 

minimum of the misfit function within a given parameter range and do not require any calculation 

of the gradients of the misfit surfaces. More importantly, these methods collect a series of models 

and associated likelihoods that can be used to estimate the posterior probability distribution (PPD). 15 

However, because GA’s are not a Markov Chain Monte Carlo method (MCMC), the direct use of 

the GA-sampled models and their associated likelihoods produce a biased estimation of the PPD. In 

contrast, MCMC methods, such as the Metropolis-Hastings and Gibbs sampler, provide accurate 18 

PPDs but at considerable computational cost. In this work, we use a hybrid method that combines 

the speed of GA to find an optimal solution and the accuracy of a Gibbs Sampler (GS) to obtain a 

reliable estimation of the posterior probability distributions. First, we test this method on an 21 

analytical function and show that the GA method cannot recover the true probability distributions 

and that it tends to underestimate the true uncertainties. Conversely, combining the GA 

optimization with a GS step enables us to recover the true PPD. Then, we demonstrate the 24 

applicability of this hybrid method by performing 1D elastic Full-Waveform Inversions (FWI) on 

synthetic and field data. We also discuss how an appropriate GA implementation is essential to 

attenuate the “genetic drift” effect and to maximize the exploration of the model space. In fact, a 27 

wide and efficient exploration of the model space is important not only to avoid entrapment in local 

minima during the GA optimization but also to ensure a reliable estimation of the posterior 

probability distribution in the subsequent GS step.  30 
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Introduction 36 

Full-waveform inversion (FWI) is a data-fitting procedure that is based on full-wavefield 

modelling to extract quantitative information from seismograms (Tarantola, 1986). The aim is to 

exploit the full information content of the data to derive high-resolution quantitative models of the 39 

subsurface. Most recent developments have focused on building P-wave velocity models to be used 

as improved background velocity fields for wave equation depth migration (Vireux and Operto, 

2009; Sirgue et al. 2010; Prieux et al. 2011; Morgan et al. 2013). In this context, the FWI is usually 42 

solved in the acoustic approximation and by applying gradient-based methods (such as the Gauss-

Newton or conjugate gradient). A limitation of the gradient-based methods is their local nature and 

the consequent requirement of a good starting model to avoid convergence toward local minima. A 45 

way to overcome this problem is to use stochastic optimization methods, which are less affected by 

the presence of local minima in the misfit function but require huge computational efforts.  

Stochastic FWI was first performed in the 1990s to invert single-shot gathers, assuming an 48 

acoustic approximation and 1D geological models. In this context, the limited number of model 

parameters made it possible to apply global optimization techniques, such as simulated annealing 

and genetic algorithms (Sen and Stoffa, 1991; 1992). For many practical applications, the stochastic 51 

approach to elastic FWI is usually limited to horizontally stratified media using reflectivity method 

(Mallick, 1999; Mallick and Dutta 2002; Mallick et al. 2010; Fliedner et al. 2012; Li and Mallick, 

2015).  It is known that the computational cost of stochastic methods grows exponentially with the 54 

number of unknowns. Such scaling problem is sometimes referred to as the “curse of 

dimensionality” (Bellman, 1957) and it makes the stochastic, elastic, FWI unfeasible for 2D or 3D 

applications in which thousands or even millions of unknowns are considered. However, thanks to 57 

the recent growth of high performance computing, the stochastic approach to FWI begins to be used 

to derive accurate, low-resolution, 2D or 3D compressional velocity fields that are well-suited to 

play the role of starting models for gradient-based, acoustic, FWI (Sajeva et al. 2014a; Gao et al., 60 
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2014; Tognarelli et al. 2015; Datta, 2015). In these applications a method to reduce the number of 

unknown parameters and a highly efficient parallel implementation are crucial to make the 

computational cost of the stochastic inversion affordable (Diouane et al. 2014; Sajeva et al. 2014a). 63 

The extension of this two-step approach, based on a global (low-resolution) inversion followed by a 

local (high-resolution) inversion, to the elastic case is not the topic of the present work but deserves 

deeper investigation. 66 

Many global derivative-free methods perform a wide exploration of the multidimensional 

parameter space and collect many different models. However, it is the single model producing the 

best fit with the observed data that focuses our attention, while the other models are often neglected. 69 

In this way, we fail to quantify the uncertainty that characterizes the final result. Instead, inverse 

problems can be solved in a probabilistic framework (Dujindam, 1988; Tarantola, 2005) in which 

the final solution is represented by posterior probability distributions (PPDs) in model space (see 72 

Appendix A for a brief review of the Bayesian formulation of inverse problems).  

Among the many global search methods that have been proposed to solve 1D full-waveform 

inversion, we choose to apply genetic algorithms (GA’s). Likewise other global search algorithms, 75 

GA’s are not a Markov Chain Monte Carlo (MCMC) method (Rubinstein and Kroese, 2011), and a 

biased PPD is estimated if directly computed from the set of GA-sampled models and their 

associated likelihoods. To derive an unbiased PPD estimation, a simple grid-search method or a 78 

more sophisticated MCMC algorithm must be applied (Sen and Stoffa, 1996). However, the direct 

application of these methods is not feasible for high dimensional model spaces due to their high 

computational costs. Therefore, several methods that follow the solution of 1D FWI by means of 81 

GA optimizations (Sen and Stoffa, 1996; Mallick, 1999; Hong and Sen, 2009) or via local 

optimizations (Gouveia, and Scales, 1997, 1998) have been developed to obtain reliable and 

unbiased estimates of the posterior distributions. Another strategy based on ensemble Kalman filter 84 

(Evensen, 2009) has been proposed in the context of 1D elastic FWI to reduce the number of 

unknowns and to perform a statistical analysis of the final result (Jin et al. 2008).  
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In the present study, we combine an implementation of the GA method with a resampling of the 87 

explored model space by means of a MCMC method known as Gibbs Sampler (GS) (Geman and 

Geman, 1984). This hybrid approach attempts to combine the speed of GA’s and the unbiased 

nature of GS to obtain reliable estimates of the uncertainties that affect the final result. In particular, 90 

the GS exploits all the models and their respective likelihoods that were collected during the GA 

inversion to compute the posterior probability distributions in model space. Sambridge (1999) 

proposed the same hybrid strategy in the context of neighbourhood algorithm inversion. However, 93 

as discussed in Sajeva et al. (2014b), the neighbourhood algorithm seems to show a slower 

convergence compared to GA in solving 1D elastic FWI.  

To achieve a reliable estimation of the posterior probability distributions, the first step of GA 96 

optimization must perform a wide exploration of the model space because an insufficient GA 

sampling of the model space cannot be compensated for by the subsequent GS step. In this regard, 

GA optimization suffers from the “genetic drift” effect (Goldberg and Segrest, 1987; Horn, 1993), 99 

which limits the exploration of the model space and may guide the algorithm to prematurely 

converge toward a local minimum. To address this issue, we apply a GA implementation that 

combines the Niched-GA (N-GA) method with other mechanisms, such as migration, competition 102 

between subpopulations, and the stretching of the fitness function to maximize the exploration of 

the model space and to reduce the genetic drift. 

In this work, the GA+GS approach for FWI is applied to derive a complete elastic 105 

characterization of the subsurface, assuming wave propagation in 1D elastic models. We start with a 

brief summary of genetic algorithms that introduces the reader to our particular implementation of 

GA optimization. Then, we discuss an example on an analytical misfit function to demonstrate the 108 

applicability of the hybrid method and the importance of attaining a wide exploration of the model 

space during GA optimization. The next section illustrates a synthetic FWI example in which the 

number of layers and their thicknesses are assumed to be known to avoid the overparameterization 111 

of the inverse problem (Sen and Stoffa, 1991). This simple synthetic example allows us to 
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demonstrate the capability of our peculiar GA implementation to attenuate the genetic drift and to 

maximize the exploration of the model space. To this end, we make use of self-organizing maps (de 114 

Matos et al. 2006) to visualize and compare the different model space explorations that are 

produced by standard GA and by our GA implementation. The second synthetic example is more 

complex because the 1D elastic model is derived from actual well log data. As in Mallick and Dutta 117 

(2002), we overcome the over-parameterization problem by fixing the layers’ thicknesses to 

constant values based on the dominant frequency that characterizes the observed seismic data. 

Finally, we present a field case inversion that is performed on a single shot gather that was extracted 120 

from a Well Site Survey (WSS), where no a priori information in the form of borehole logs or 

geotechnical data is available. In all the FWI examples that we discuss, the reflectivity algorithm 

(Kennett, 1983) is used for forward modelling. 123 

 

A brief introduction to genetic algorithms  

Genetic algorithms are search algorithms based on the mechanics of natural selection and 126 

evolution according to the Darwinian principle of “survival of the fittest” (Holland, 1975). The GA 

optimization process is always driven by three main genetic operators: selection, cross-over and 

mutation. A population of individuals, which encodes candidate solutions to an optimization 129 

problem, evolves toward better solutions by starting from a population of randomly generated 

individuals. The fitness, namely, the goodness of each candidate solution, is evaluated in each 

iteration (or “generation”), and then multiple individuals are stochastically selected from the current 132 

population based on their fitness (models with higher fitness are more likely to be selected). The 

selected models are then modified (using crossover and mutation operators) to form a new 

population, which is used in the next iteration.  135 

In the fitness assignment, each individual in the selection pool receives a reproduction 

probability depending on its own misfit value and the misfit values of all the other individuals. The 

fitness value for each individual can be determined either directly from its associated misfit or by 138 
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applying a rank-based fitness assignment. Bäck and Hoffmeister (1991) observed that the latter 

approach is more robust than proportional fitness assignment and thus is the method that is applied 

in this work. In the successive step, the models are selected for reproduction and several selection 141 

methods can be used to this goal. See Goldberg and Deb (1991) or Blickle and Thiele (1995) for an 

extensive comparison and discussion about selection schemes that can be used in a GA 

optimization. The next step of cross-over produces new individuals by combining the information 144 

(namely, the value of each variable) of two or more parents. Finally, in the mutation step randomly 

created values are added to the variables with a low probability to prevent premature convergence 

and to escape from local minima. After the parents have been subjected to these operations, the 147 

generated offspring has to be reinserted to replace the parents to form the new population. We use 

an elitist reinsertion, which preserves the fittest individuals of the previous generation in the new 

generation, combined with a fitness-based reinsertion in which the lowest-fitness parents are 150 

replaced by higher-fitness offspring. 

 

Our GA implementation and the hybrid GA+GS method  153 

In this work, we adopt a more sophisticated version of GA that is called a niched GA (N-GA), 

which is based on the punctuated equilibria evolutionary theory (Gould and Eldredge, 1977). 

According to this method, the initial random population is divided into multiple subpopulations, 156 

which are subjected to separated selection and evolution processes (Goldberg, 1989; Mitchell, 

1998). The N-GA method has been demonstrated to avoid the genetic drift effect (Horn, 1993), 

which is the loss of diversity inside a single population that can lead to a local minimum in the case 159 

of multimodal misfit functions.  

To further improve the exploration of the model space, we apply different evolution strategies 

for different subpopulations. Therefore, the entire set of subpopulations evolves according to 162 

different selection methods, mutation operators and fitness assignment methods. Tanese (1987) 

demonstrated that this approach, in which different evolution strategies are simultaneously applied, 



9 
 

increases the capability of GA to explore the entire model space. In addition to these strategies, we 165 

shrink the mutation range and stretch the fitness function (Sen and Stoffa, 1991, 1992) by 

increasing the selective pressure in each generation. The mutation range is the range that contains 

the admissible values that a mutated variable can assume, whereas the selective pressure is the 168 

probability of the best individual to be selected compared with the average selection probability of 

all individuals. In particular, we set a small selective pressure value for the initial generations to 

ensure maximum genetic variance within each subpopulation. In this way, models with similar 171 

fitness values have similar likelihoods of being selected, which results in a more efficient and wide 

exploration of the model space. Conversely, we set a higher selective pressure at the end of the 

inversion, when the most promising zones of the misfit function have been reached. In this way, 174 

minor differences in the fitness values are exaggerated, which results in a fine tuning of the 

solution. In the following FWI tests, the selective pressure linearly increases with the number of 

iterations. We also adopt competition between subpopulations, where the best fitting subpopulations 177 

are awarded with some individuals from the less-fitting ones to better explore the most promising 

portions of the model space (Schlierkamp-Voosen and Mühlenbein, 1996). 

The FWI tests that follow are quite similar in terms of the number of unknowns (21 and 60 180 

unknowns in the two synthetic inversions and 48 in the field data inversion) and thus we can keep 

the same GA setting for all the tests. In particular, we use a population of 400 individuals, which 

evolves into 40 generations and is divided into 10 subpopulations, for more than 13000 forward 183 

model evaluations. In all cases, we apply a selection rate of 0.8 (we select 80% of the parents for 

reproduction) and a mutation rate that is the reciprocal of to the number of unknowns, whereas 

migration and competition between subpopulations occur every 8 and 5 iterations, respectively. 186 

Concerning the mutation rate Schlierkamp-Voosen and Mühlenbein (1993), performing GA 

optimizations and considering from 2 to 100 unknowns, demonstrated that the best choice for the 

mutation rate is the reciprocal of the number of unknowns. In this way, on average, just one variable 189 

for each individual is mutated per iteration. In the following examples, the classical L2 norm 
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between observed and modelled seismic data is considered as the misfit function. In all cases, 

different evolution strategies for each subpopulation, stretching the fitness function and shrinking 192 

the mutation range, are included during the iterations. In particular, among the many rank-

proportionate selection methods available, we use the stochastic universal sampling, roulette wheel 

selection and tournament selection methods and we apply linear and non-linear fitness assignments. 195 

More detailed information about these and other GA principles can be found in Goldberg (1989), 

Mitchell (1998) or Sivanandam and Deepa (2008). 

There is no unique rule to set the GA parameters, as the best GA setting strongly depends on the 198 

problem under examination and in particular on the number of unknowns and on the complexity of 

the misfit function. For these reasons the best setting for the GA parameters is usually found by trial 

and error. Basing on our experience on GA optimization for FWI, the heuristic rules we have 201 

followed are briefly summarized below. The number of individuals must be always higher than the 

number of unknowns: in case the misfit surfaces are complicated, it should be 10 or 20 times the 

number of unknowns. Instead, in case of simple convex misfit surfaces 2 or 3 times the number of 204 

unknowns should suffice. Also the choice for the number of subpopulations strongly depends on the 

number of local minima that we suppose characterizes the misfit function. In our experiments, we 

found that 5 to 10 subpopulations are required for performing an efficient exploration of the model 207 

space. Concerning the selection rate, we found that a value between 0.8-0.9 is usually a good 

compromise between preserving genetic variance and ensuring an efficient selection process. 

Different criteria can be used to stop a GA optimization. For example the inversion can be stopped 210 

when no further improvements can be seen in the data misfit evolution. This is the stopping 

criterion adopted in this work. Another possible stopping criterion is based on the difference 

between the mean and the minimum data misfit. In fact, as noted by Reeves and Rowe (2002), the 213 

approaching of mean misfit toward the minimum misfit indicates a loss of genetic diversity. When 

the genetic diversity is low, the genetic optimization is less efficient and it may be convenient to 

stop the inversion. 216 
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Once the GA inversion has stopped, it is possible to create an approximate PPD for the GA 

solution (Sen and Stoffa, 1992) that we name the GA PPD, which, as previously said, suffers from 

several limitations. Therefore, we apply the Gibbs sampler method to efficiently estimate the PPD 219 

for each variable. The mathematical formulation of the GS step is detailed in Sambridge (1999) 

together with recipes for practical applications. Thus, only a brief summary is given in Appendix B. 

To derive the final PPD, the explored model space is divided into Voronoi cells that are centred on 222 

each model found by the GA inversion and the likelihood value of the model is assigned to the 

whole cell. The model space is then resampled by running a Gibbs sampler, which extracts a 

sequence of random samples from a specific probability distribution. The GS algorithm is 225 

frequently applied when direct sampling is difficult, such as when the analytical formulation of the 

distribution is not known explicitly and it is only numerically defined. The sequence of random 

samples is used to approximate the joint or the marginal distributions of the variables. Other authors 228 

have demonstrated (see, for example, Gelman et al. 2013) that the sequence of samples drawn by a 

GS algorithm constitutes a Markov chain. Because the likelihood values that are required by the 

Gibbs sampler are known from the approximate GA PPD, no additional forward model is needed. 231 

This characteristic is particularly important because it determines the low computational cost of the 

GS step.  

In general, multiple GS walks are sequentially performed to increase the reliability of the results, 234 

and the results of each step are combined to derive the final probability distributions. However, the 

samples drawn at the beginning of the chain (during the so called “burn-in period”) may not 

accurately represent the desired distribution (Sambridge, 1999). Therefore, we do not include these 237 

samples in the evaluation of the final PPD. In the following inversion examples, we use 100 

different GS walks in which 2000 random samples are drawn from the GA PPD. From these 2000 

samples, only the second half is used to compute the final probability distributions. During the 240 

computation of final PPDs, we consider uninformative prior distributions that are uniformly 

distributed over the entire search range for each inverted parameter. In this context, the final 
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probability distributions are mainly determined by the likelihood functions (see Appendix A for 243 

further details). To verify if the Gibbs sampler has reached a stable distribution, it is important to 

check the Potential Scale Reduction (PSR) factor (see Appendix B) which gives an indication on 

the reliability of estimated PPDs.  246 

 

Testing the GA+GS method on an analytical function 

We perform a test that uses an analytical function to demonstrate the potential of this hybrid 249 

approach to attain an unbiased estimation of the marginal and joint posterior probability 

distributions. In this test, the GA+GS method is employed to draw samples from a 2D joint PPD 

p(x1, x2) with a double peak structure, taken from Hong and Sen (2009). Due to the simplicity of the 252 

function, and to evidence the need of an accurate exploration of the model space, we employ a 

standard single-population GA optimization instead of the more sophisticated implementation that 

was previously described. This simple 2D example allows us to compare both the true joint PPD 255 

and the joint PPD that is estimated by the GA+GS method. As shown in equation 1, the considered 

PPD is the sum of two bivariate normal distribution probability density functions PDF1(x1, x2) and 

PDF2(x1, x2), in which a factor of 0.5 ensures that the resulting posterior distribution is properly 258 

normalized:  
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ρ is the correlation coefficient of x1 and x2 as defined in the following equation: 
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The analytical distribution PDF1(x1, x2) is characterized by a mean vector equal to μ = (0,0) and a 

covariance matrix equal to 270 
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The matrix in equation 6 indicates that x1 and x2 are uncorrelated to each other and thus the 

correlation coefficient is 0. The distribution PDF2(x1, x2) has a mean vector of μ = (4, 0) and a 273 

covariance matrix given by 
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Therefore, x1 and x2 are correlated to each other in this case, with a correlation coefficient equal 276 

to 0.4. By summing PDF1(x1, x2) and PDF2(x1, x2) as described in equation 1, the resulting joint 

PDF(x1, x2) is a bimodal surface (Figure 1a) with one peak at (0,0) and the second peak at (4,0). 

In Figure 1, we give a visual representation of the different steps that characterize the GA+GS 279 

approach. Figures 1a and 1b represent the analytical PDF and the ensemble of 1000 models (white 

dots) that result from the GA optimization on the joint PDF p(x1, x2), respectively. The Voronoi 

cells, which divide the entire model space that is explored by the GA optimization, are shown in 282 

Figure 1c, while the multiple GS walks that are used to draw random samples from the GA PPD are 

illustrated in Figure 1d. According to Sambridge (1999), the random GS walks allow the 

computation of the final GA+GS estimation of the PPD. As expected, the sampling performed by 285 

the GS algorithm is denser in the upper left corner of Figure 1d, which is where the GA’s focused 

the exploration of the model space. However, the GS, differently from the GA sampling, respects 
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the importance sampling principle (Rubinstein and Kroese, 2011) and allows for a highly accurate 288 

estimation of the final posterior probabilities. 

The marginal PPD is a projection of the joint PPD to a particular parameter axis and can be 

obtained by integrating out all the other parameters. The true marginal PPDs for x1 and x2 are shown 291 

by the green lines in Figures 2a and 2b, respectively. The marginal PPD for x1 is a bimodal 

distribution, whereas that for x2 is a univariate normal distribution. We now aim to compare the 

marginal and joint PPDs that are estimated after the GA optimization and GA+GS method with the 294 

true values. To this end, we compute the marginal GA PPDs on the GA ensemble of 1000 models 

(orange bars in Figures 2a and 2b) following Sen and Stoffa (1992). We then refine the marginal 

GA PPDs by running a GS to derive the final GA+GS marginal PPDs (blue curves in Figures 2a 297 

and 2b).  

 

Figure 1: Examples of the different steps that characterize the hybrid GA+GS approach. a) The 300 

initial analytical PDF used in the optimization. b) The 1000 models (white dots) sampled during the 

GA optimization. c) The model space portion explored during the GA step is divided into Voronoi 

a) b) 

d) c) 
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cells (delimited by the white lines), and the likelihood that is associated with each explored model is 303 

assigned to the entire cell. This step results in the GA approximation of the PPD. d) Multiple GS 

walks (examples of GS walks are illustrated by the green paths) are used to draw samples from the 

GA approximation of the PPD. This step gives the final PPD that was estimated by the GA+GS 306 

approach.  

 

 309 

Figure 2: In a) and b), comparisons are shown for the variables x1 and x2 from the true marginal 

distributions (green lines), the marginal PPDs that were estimated by the GA method (orange bars) 

a) b) 

c) d) 

e) 
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and the GA+GS marginal PPD estimations (blue lines). c) The GA approximation of the joint 312 

distribution. Note the strong underestimation of the uncertainties that resulted from the 

oversampling of the model space region with the highest probability. d) The final joint PPD 

estimated by the GA+GS method (compare with the true joint probability distribution shown in e) 315 

and the GA joint estimation shown in 1c). Note the different colour-scale in c) and d). e) The true 

joint posterior distribution (in colour) defined by equation 1 and represented in Figure 1a. The 

white dots represent the 1000 models sampled in the GA optimization. The red circle in d) and e) 318 

marks the area where the differences between the true and estimated GA+GS joint PPDs are more 

prominent. See the text for additional comments. 

 321 

The GA method tends to oversample the region with high probability and thus underestimates 

the true uncertainties. In contrast, the hybrid GA+GS method yields marginal PPD estimations that 

are very similar to the true values. The joint GA PPD (Figure 2c) severely underestimates the 324 

variance that is associated with the inverted parameters, whereas it strongly overestimates the 

probability that is associated with the peak at (0,0). Moreover, the bimodality of the true distribution 

and the correlation between x1 and x2 in the PDF2(x1, x2) in this approximated PPD are completely 327 

lost. Instead, the GA+GS joint PPD that is shown in Figure 2d nicely matches the true joint 

probability distribution of Figure 2e. Figure 2d also shows that the GA+GS method can predict the 

correlation between x1 and x2 in PDF2(x1, x2) as evidenced by the slope of the estimated PPD near 330 

the secondary peak at (4,0). The main differences between the true and the GA+GS joint PPDs 

occur in the areas that are highlighted by the red circles in Figures 2d and 2e. In fact, the PPD 

values in Figure 2e are between 0.05 and 0.1, whereas those in Figure 2d are very close to zero, 333 

which indicate an underestimation of the PPD function due to an insufficient sampling by the GA 

method (the GA’s sampled only two models in this area). Therefore, the importance of an accurate 

exploration of the model space in the GA optimization, which the standard GA method was unable 336 

to perform, is confirmed. This justifies our efforts in implementing an efficient GA that avoid the 
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genetic drift effect. However, this analytical example also demonstrates that the hybrid GA+GS 

algorithm is a reliable method for uncertainty analysis. 339 

 

First synthetic example: exact parameterization 

The reference model is a geological sequence that was extracted from the Ocean Drilling 342 

Program (ODP) database (http://www-odp.tamu.edu/) and includes a total of eight layers, whose 

thicknesses, P-wave velocities (Vp), S-wave velocities (Vs) and densities are shown in Figure 3 

(black curves).  345 

 

Figure 3: Comparison between the true (black) and predicted (red) elastic properties (a, b and c 

for Vp, Vs and density, respectively). The grey lines show the parameter ranges used during the 348 

inversion. 

 

The reference synthetic seismogram, which was computed by the reflectivity method, consists of 351 

30 traces that are spaced by 100 m with a minimum offset of 100 m. The source signature is a 5-Hz 

Ricker wavelet. To estimate the capability of our algorithm to explore the model space, we set a 

wide search range for each parameter: +/- 400 m/s for Vp and Vs and +/- 0.4 g/cm3 for density, 354 

centered around the true parameter values.  

a) b) c) 
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Figure 4: a) Observed seismogram, b) best predicted seismogram and c) their difference. The 357 

seismograms are NMO-corrected for the water velocity and are represented with the same 

amplitude scale. 

 360 

Overparameterization is a well-known issue in inverse problems, which is caused by too many 

correlated unknowns being introduced into the inversion. For example, overparameterization can be 

produced if the thicknesses and the number of layers are left unknown or by simultaneously 363 

inverting the P-wave velocity and the thickness of each layer. In fact, many combinations of Vp and 

layer thickness give rise to almost identical reflection kinematics. The overparameterization 

severely aggravates the ill-posedness of the inverse problem and increases the number of local 366 

minima in the misfit function. To avoid overparameterization in this example, we set the layer 

thicknesses and the water properties to their true values. 

b) 

c) 

a) 
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Figures 3a, b and c show a comparison between the best predicted model and the true one. The 369 

Vp values are totally recovered, whereas the results are less accurate for Vs and, particularly, for 

density. Figures 4a, b and c show the observed and best predicted seismograms and their difference, 

respectively. Note the good results in terms of data misfit. Figures 5a, b and c show the evolution of 372 

the mean model misfit (blue curve) and the minimum model misfit (red curve) that were computed 

when considering the entire set of ten subpopulations for the Vp, Vs and density, respectively. The 

model misfit is computed as follows:  375 
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i mm
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where N is the total number of layers (excluding the water column) and mtrue and mpre are the true 

and current predicted models, respectively. The final model misfit for Vp (Figure 5a) is smaller than 378 

the Vs model misfit, and the evolution of the Vs and density model misfits are characterized by 

more irregular trends that indicate that the seismogram is more sensitive to Vp perturbations than to 

variations in the other two variables. The differences between the mean and minimum model misfit 381 

curves tend to decrease during the inversion as the algorithm converges to a good fitting model.  

The 10 subpopulations show different data misfit evolutions (Figure 5d) as they explore different 

parts of the model space. Jumps occur when competition and migration take place. The evolution of 384 

the number of individuals for each subpopulation is shown in Figure 5e: all of the subpopulations 

have the same number of individuals (40 individuals) in the first iteration, and this number changes 

every 5 iterations when competition occurs. Due to competition, the most successful subpopulations 387 

(those that explore the most promising portion of the model space) attract individuals from the less 

successful ones. At the end of the inversion, the best subpopulation (number 8, yellow curve in 

Figure 5e) has more than doubled its number of individuals. Conversely, fewer than 20 individuals 390 

remain in the worst subpopulation (number 10, red curve in Figure 5e).  
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Figure 5: Evolution of the mean and the best model misfit for the Vp, Vs and density parameters 393 

as a function of iteration number (a, b and c, respectively). Evolution of the data misfit (d) and the 

number of individuals (e) for each subpopulation. 

 396 

Figure 6 shows a comparison between the GA approximation of the marginal PPD (orange bars) 

and the marginal probability distribution for each model parameter that is estimated by combining 

the GA and GS methods (cyan filled curves). The posterior marginal distributions of the density are 399 

often multimodal and flat, which indicates that multiple values of this parameter generate 

seismograms with almost identical data misfit. Conversely, the peak of the a posteriori distribution 

that is estimated by the GA+GS method for Vp and secondarily for Vs is always very close to the 402 

true value. This figure makes clear that, as expected, the uncertainty that is associated with the 

elastic parameter estimation increases when passing from Vp to Vs and to density. The proposed GA 

implementation returns marginal PPDs that, although they possess an underestimated variance with 405 

respect to the GA+GS method, are not characterized by a spiky appearance (as shown, for example, 

in Sambridge, 1999), meaning that the implemented GA method is able to efficiently explore the 

model space.  408 

a) b) c) 

d) e) 
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Figure 6: The GA approximation of the marginal PPDs (orange bars) and the final GA+GS 

estimation of the marginal distributions (cyan filled blue curves) are displayed from top to bottom 411 

for each inverted layer. The Vp, Vs and density values are represented in the left, central and right 

columns, respectively. The continuous black and dashed red lines illustrate the true and the 

predicted model parameters by the GA inversion, respectively. To better display the variance of 414 

each parameter, the x axes are represented with the same scale. 

 

Figure 7 illustrates the posterior 2D marginal probability distributions estimated by the GA+GS 417 

for the fourth layer. Figures 7a and 7b display the 2D distributions projected onto the Vp-density 

and Vs-density planes, respectively. The bimodality that characterizes the density PPD and the 

inverse correlation between the Vp and density parameters are both evident in Figure 7a.  420 



22 
 

 

Figure 7: The posterior 2D marginal distributions for the fourth layer. The Vp-density and Vs-

density distributions are shown in a) and b), respectively. The dotted white lines represent the true 423 

values. To better compare the resolution that is associated with each parameter, the axes are 

represented with the same scale.  

 426 

The highest peak corresponds to a Vp of 1800 m/s and to a density of 1.7 g/cm³, which are very 

close to the true values (white dotted lines in the figure), whereas the secondary peak is located at 

lower Vp but at a higher density value, showing a negative Vp-density correlation. The higher 429 

resolution that characterizes the Vp estimation with respect to the density estimation is also evident. 

The positive correlation between Vs and density clearly stands out when examining the Vs-density 

2D marginal distribution (Figure 7b): in this case, higher density values are associated with higher 432 

Vs values.  The opposite parameter correlations that are shown in Figures 7a and 7b occur because 

we are trying to match not only the kinematics of the reflections but also their amplitudes. 

Concerning the amplitude of the reflections and considering the Aki and Richards equation (Aki 435 

b) 

a) 



23 
 

and Richards, 1980) for the P-wave reflection coefficient from a single interface (or other analogous 

equations), the Vs and density contrasts exert an opposite influence on the variation in the reflection 

coefficient with incidence angle, while the Vp and density contrasts produce the same effects. Thus, 438 

to keep the variation in the reflection coefficient constant with incidence angle, an increase in the Vs 

contrast must be associated with an increase in the density contrast; conversely, an increase in the 

Vp contrast must be associated with a decrease in the density contrast. Therefore, the GA+GS 441 

method was also able to recover the correct correlations among the inverted parameters.  

 

The proposed GA versus the standard GA implementation 444 

To better illustrate the benefits in terms of the wider exploration of the model space that 

characterize the proposed GA implementation, we repeat the FWI test that was described in the 

previous section by using a standard, single-population GA. The main GA parameters (as the 447 

individuals for each generation, or the maximum number of generations) are the same as those in 

the previous example. Due to the high-dimensional model space, we use the clustering technique 

that is known as self-organizing map (SOM; de Matos et al. 2006) to visualize the model space 450 

explorations that are performed by the two different GA implementations. In particular, the entire 

set of GA models up to a given iteration will constitute the input ensemble for the SOM algorithm. 

The SOM method uses a net that is formed by neurons to compute the unified distance matrix 453 

(Ultsch, 1993), which is a 2D representation of a high-dimensional model space and helps to 

display clusters in high-dimensional spaces. In the following examples, we employ a particular 

version of the unified distance matrix, the so-called “sample hits” plot, which indicates how many 456 

data points extracted from the input ensemble of explored models are associated with each neuron. 

Therefore, neurons associated with many data points can be thought of as a single cluster. 

We aim to cluster the entire set of models generated up to a particular generation for the standard 459 

GA and the proposed GA implementation. Models that explore the same portion of the model space 

will be classified by the SOM algorithm as belonging to the same cluster. To analyse the different 
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evolutions of the model space exploration, the SOM clustering is performed with the models that 462 

were produced up to different generations serving as the input. The two examples start from the 

same initial random population and evolve for 40 generations. In Figure 8, the different explorations 

of the model space in the two cases are represented by the sample hits plot. In this case, we used an 465 

8x8 map that consists of 64 neurons distributed according to a hexagonal topology. In Figure 8 the 

dimension of each violet hexagon is proportional to the number of input models that are associated 

with each neuron. 468 

As expected, the distribution of the randomly generated models is fairly even in the initial 

generation (Figure 8a). However, comparing the evolutions of the two GA implementations after 

fifteen generations shows that the standard GA method has already restricted its exploration to 471 

limited portions of the entire model space (Figure 8b), while the GA implementation we use is still 

exploring different sectors of the model space (Figure 8c). This characteristic of the standard GA 

method is confirmed at the last generation (Figure 8d), when most of the models generated during 474 

the inversion are localized to a single restricted portion of the entire model space, evidencing the 

genetic drift effect. Conversely, the proposed GA implementation has performed a wider model 

space exploration as indicated by the many different clusters at the end of the 40 generations 477 

(Figure 8e).  
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Figure 8: Sample hits plots that represent the different evolutions of the standard single-480 

population and our GA implementation. Each plot is generated by clustering the entire set of 

generated models up to a certain generation and projecting the result to a two-dimensional map 

(see the text for more details). The two tests start from the initial, randomly generated population of 483 

models (a). The evolution of the standard single-population GA case is represented in b) and d), 

a) 

b) c) 

d) e) 
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whereas c) and e) represent the evolution of our GA inversion. This figure demonstrates that the 

proposed GA implementation is characterized by a wider exploration of the model space compared 486 

with the standard GA method.  

 

Second synthetic example: underparameterization 489 

Any attempt to exactly parameterize the subsurface will, in fact, be an underparameterization 

because the layers in real media are thinner and far more numerous than modelled layers (Sen and 

Stoffa, 1991). Starting from this basic knowledge, we consider a depth model that is derived from 492 

actual well log data of Vp, Vs and density. In particular, by making use of the Backus averaging 

method (Backus, 1962) and considering a source wavelet with a dominant frequency of 50 Hz and 

the minimum velocity of the log, we scale the log data to the seismic scale by determining an 495 

equivalent depth model with constant layer thicknesses of 3 m (Figure 9, black curves). On this 

scaled model, we computed a synthetic seismogram that constitutes our observed data. 

In the following inversion, the forward modelling is performed by considering the same source 498 

signature but with a dominant frequency of 15 Hz. Knowing that the expected maximum resolution 

of 1D FWI is between 1/4 and 1/6 of the maximum wavelength associated with the dominant 

frequency (Mallick and Dutta, 2002), we fix the layer thicknesses of the inverted model to 20 m, 501 

that is, to 1/5 of the maximum wavelength. In the data misfit calculation, the modelled data are 

compared with a low-pass filtered version of the observed seismogram. In this example, the range 

of admissible values for Vp, Vs and density are set within ranges of 800 m/s and 0.8 g/cm3 for the 504 

velocities and density, respectively (Figures 9a, b and c, grey lines), which are centred on heavily 

smoothed versions of the original logs. Both the GA setting and the seismic acquisition parameters 

are the same as those in the first example. 507 
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Figure 9: Comparison between the true (black) and the predicted (red) elastic properties (a, b 

and c). The black curves represent the log data after Backus averaging for a dominant frequency of 510 

50 Hz. The red curves indicate the predicted elastic properties for a dominant frequency of 15 Hz. 

The grey lines show the inversion parameter ranges that have been defined around a highly 

smoothed version of the original log data. 513 

 

The trends of the predicted properties (red lines in Figures 9a, b and c) reproduce the true elastic 

properties despite the different resolutions. As expected, the P-wave velocity shows a better match, 516 

while the results are less accurate for Vs and particularly for density. The inversion was able to 

reconstruct the numerous sudden increases and reversals that occur in the true Vp profile. Figures 

10a, b and c demonstrate the good fit between the observed and predicted seismic data in the 519 

frequency bandwidth considered in the inversion.  

a) b) c) 
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Figure 10: a) Observed seismogram, b) best predicted seismogram and c) their difference for the 522 

same frequency range during the inversion (which determines the layer thickness of the inverted 

model). The seismograms are NMO-corrected for the water velocity and are represented with the 

same amplitude scale. 525 

 

Figure 11 illustrates a comparison between the GA and GA+GS estimation of the marginal 

probability distributions for the first seven layers (excluding the water column, whose properties are 528 

assumed to be known during the inversion). The conclusions that are drawn from the first example 

still remain valid in this more realistic test: the density remains the less-resolved elastic parameter 

and the GA method underestimates the uncertainty that is associated with each inverted parameter.  531 

a) 

b) 

c) 
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Figure 11: The GA approximation of the marginal PPDs (orange bars) and the final GA+GS 

estimation of the marginal distributions (cyan filled curves) are shown from top to bottom for the 534 

first seven layers. The Vp, Vs and density values are represented in the left, central and right 

columns, respectively. The dashed red lines show the predicted model parameters by the GA 

inversion. To better display the variance of each parameter, the x axes are represented with the 537 

same scale.  

 

Third example: inversion of field data 540 

Finally, we apply the hybrid GA+GS inversion to a field common shot from a marine well site 

survey, which is characterized by a 1 ms sampling interval, 20 m minimum offset, 12.5 m group 

interval, 607.5 m maximum source-receiver distance and 0.6 s recording length. The limited 543 

maximum offset and the simple layered nature of the shallow strata make the assumption of a 1D 

model realistic. As for the previous synthetic example, we low-pass filter (0 – 37 Hz) the shot 

gather used in the inversion, yielding a vertical resolution of 20 m, which we fix as the thickness of 546 

the layers in the inverted model. The source signature used in the inversion is taken from the 

recordings of an auxiliary channel that contains the source pulse for each shot. The GA setting is the 

same as that used in the previous tests, which results in a total number of individuals (that is, of the 549 

explored models) equal to 13200.  
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The velocities that are determined from standard velocity analysis define the Vp trend, whereas 

the Vs and density trends are empirically scaled values from Vp, which are defined from the 552 

lithological and geological context of the explored area (a shallow water shale-sand sequence). The 

admissible parameter ranges in the inversion are +/-300 m/s for Vp and Vs and +/-0.3 g/cm3 for 

density and are centred around their respective trends.  555 

The results are illustrated in Figures 12a, b and c. We observe a linear and gradual increase for 

all the parameters and a significant Vp jump at 280 m, which is associated with a density decrease. 

We cannot be totally confident in the density estimates due to the ambiguities in the density 558 

estimation and the cross-talk between velocity and density. Moreover, independent or additional 

data such as well log recordings or geotechnical data are not available to validate the results. 

Figures 13a, b and c show the observed seismogram, the best predicted seismogram and their 561 

difference, respectively. Given the noise contamination, the absence of any pre-processing and the 

elastic 1D assumption, the match between the predicted and observed data is reasonable. The 

evolutions of both the data misfit and the number of individuals for each subpopulation are depicted 564 

in Figures 14a and 14b, respectively. Figure 14a shows that the trends of the different 

subpopulations nicely merge and assume a rather flat attitude after approximately 20/25 iterations, 

indicating that convergence has been attained. The evolution of the number of individuals for each 567 

subpopulation is illustrated in Figure 14b. Figure 15 shows a comparison between the GA and 

GA+GS estimation of the marginal distributions for the first seven layers (excluding the water 

column, whose properties are assumed to be known). In contrast to the synthetic examples, the final 570 

GA+GS marginal PPD estimations in this more challenging test appear more complex, and an 

increase in the uncertainties and ambiguities is visible for all parameters but is particularly evident 

for the density. The overall higher ambiguity in the parameter estimations may be ascribed to noise 573 

contamination in the observed data but can also be due to the physical assumptions that were made 

in the forward modelling computation (e.g., perfectly elastic propagation, homogeneous and 

isotropic 1D media), which may not be totally verified in this specific case. Moreover, the very low 576 



31 
 

resolution that is associated with the density estimations is also related to the limited offset range 

that characterizes this WSS acquisition. However, for the purposes of this paper, this test confirms 

that the posterior marginal probabilities that are derived from the GA-sampled models strongly 579 

underestimate the uncertainties that are associated with each inverted parameter and that the GS 

step is needed to better understand the true ambiguities that are associated with the final result.  

 582 

Figure 12: The predicted model (red lines) and the admissible ranges for each parameter (grey 

lines) for the P-wave velocity, S-wave velocity and density in a, b and c, respectively.  

a) b) c) 
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 585 

Figure 13: The comparison between the observed and best predicted seismogram and their 

difference is shown for the same frequency range during the inversion (a, b and c, respectively). 

The seismograms are NMO-corrected for the water velocity and are represented with the same 588 

amplitude scale.  

 

 591 

Figure 14: The evolution of the data misfit and the number of individuals for each subpopulation 

(a and b, respectively). 

a) 

b) 

c) 

a) b) 
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 594 

 

Figure 15: The GA approximation of the marginal PPDs (orange bars) and the final GA+GS 

estimation of the marginal distributions (cyan filled curves) are represented from top to bottom for 597 

the first seven inverted layers. The Vp, Vs and density values are represented in the left, central and 

right columns, respectively. The dashed red lines show the best model parameters estimated by the 

GA inversion. To better illustrate the variance of each parameter, the x axes are represented with 600 

the same scale.  

 

Conclusions 603 

We have described a hybrid method for uncertainty estimation that is applicable to stochastic 

inversions and combines the fast convergence of genetic algorithms with the accuracy of Gibbs 

sampler to estimate posterior probability distributions in model space. The first analytical test 606 

showed that the true marginal and joint distributions of the considered variables cannot be estimated 

from the GA models alone because the GA optimization tends to oversample the model space 

regions that are characterized by lower data misfit (or higher likelihood), which results in a severe 609 

underestimation of the uncertainties. A further refinement with a Gibbs sampler is needed to better 

estimate the uncertainties of the results and to correctly recover the correlation that exists among 

different inverted parameters.  612 
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Conclusions that are similar to those drawn from the analytical example can be derived from all 

the FWI tests on both synthetic and actual data: the validity of the hybrid GA+GS approach has 

been confirmed and its applicability to solving geophysical inverse problems has been positively 615 

tested. As expected, the uncertainties increase when passing from Vp to Vs and density estimations. 

To avoid the overparametrization problem in the FWI inversion, we follow the approach 

proposed by Mallick and Dutta (2002) that fixes the layer thicknesses to a constant value of 618 

between 1/4 and 1/6 of the maximum wavelength associated with the dominant frequency. We also 

attempted a peculiar implementation of the niched approach to GA’s to maximize the exploration of 

the model space and prevent the genetic drift effect. In particular, we applied different evolution 621 

strategies to different subpopulations and employed tools such as the stretching of the fitness 

function, shrinking of the mutation range and competition between different subpopulations. By 

using the data from the first synthetic example and employing the SOM clustering technique, we 624 

have demonstrated the improved model space exploration performance of our niched GA 

implementation compared to that of the standard, single population GA method. This advanced, 

niched GA inversion approach not only reduces the possibility of the genetic algorithm becoming 627 

trapped in local minima but also performs a wider exploration of the model space, which is essential 

to ensure a reliable estimation of the posterior probability distributions in the successive GS step.  

One limitation of the GA FWI lies in the high computational cost of the stochastic optimization 630 

that, presently, makes unfeasible the applicability of the method to large, industrial scale, data 

volumes. However, we point out that a GA FWI is an embarrassingly parallel problem in which a 

large number of unrelated and independent forward problems can be solved sequentially with little 633 

or no communication among different tasks. This makes it possible for a parallel implementation to 

greatly speed up the inversion. In this work we used a parallel genetic algorithm implemented 

through a Message Passing Interface (MPI) communication protocol. This parallel implementation 636 

allowed the inversion of a single CMP gather of the field data to be completed in 6 hours, 

approximately. The GS algorithm is also easily parallelizable and less than half an hour was 
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required to complete this step for the field data test. These computational times refer to the use of a 639 

Octave code running on 2 compute nodes of a Linux cluster in which each compute node is a 2 esa-

core Intel(R) Xeon(R) CPU E5645 at 2.4 GHz. Therefore, there is room for significant 

improvements in the computational efficiency, for example by writing the code in a lower level 642 

language, by optimizing its parallel implementation and by running the code on many more 

compute nodes.  

Another limitation of the 1D FWI is the assumption of a 1D subsurface model that limits its 645 

applicability to very simple geological contexts or to seismic data gathers that have been properly 

migrated (Mallick, 1999). However, despite this assumption and the high computational cost, the 

stochastic 1D FWI is a powerful method to derive elastic models of the subsurface that can be used 648 

in many geophysical applications: e.g. well-site analysis, shallow hazard assessment (Mallick and 

Dutta, 2002) or reservoir characterization (Bacharach, 2006). Performing an extra Gibbs sampler 

step adds a negligible CPU time with respect to the GA FWI and yields valuable additional 651 

information on the reliability of the estimations. Note that the uncertainties associated to the 

estimated elastic properties can be considered in subsequent investigations that make use of the GA 

FWI outcomes. In this sense, they can be propagated to further estimations such as porosity or 654 

saturation estimations, to remain in a reservoir characterization context. The elastic properties 

estimated by 1D FWI, together with their associated posterior probability distributions, can be also 

useful for defining different initial starting models for local, gradient-based optimizations (Xia et al. 657 

1998). We also point out that the uncertainty and the cross-talk that affect the final estimates, as 

seen in our examples, particularly the Vp-density cross-talk and the Vs and density uncertainties, 

can be greatly reduced if multicomponent seismic data or/and wide angle ranges (near or beyond 660 

the critical angle) are available (Operto et al. 2013). 

As a final remark, we point out that the GA+GS method in the present implementation can not 

be directly applied to 2D or 3D FWI due to unaffordable computational cost of the GA 663 

optimization. Currently, we are trying to extend and adapt the proposed methodology to uncertainty 
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quantification in 2D acoustic FWI. Our preliminary attempts indicate that it is crucial not only the 

availability of a highly efficient and parallel code running on tens of compute nodes, but more 666 

importantly, an efficient strategy to reduce the number of inverted model parameters in the 

stochastic inversion. 

669 
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APPENDIX A: A brief introduction to Bayesian inference and Monte Carlo integration 

The geophysical inversion problem of estimating earth model parameters from observations of 672 

geophysical data often suffers from non-uniqueness, that is several models may fit the observations 

equally well. Casting an inverse problem in a statistical framework (Tarantola, 2005) allows us to 

characterize the non-uniqueness of the solution by its probability density function (PDF) in model 675 

space. The main advantage of this approach lies in the fact that it produces the posterior probability 

density function for a model, given the observed data. Although most statistical approaches make 

simplistic assumptions of Gaussian prior PDFs and uncorrelated data errors, the results obtained 678 

from such approaches are physically meaningful and with practical utility. In this section, we give a 

brief overview of the Bayesian formulation, following the concepts described in Sen and Stoffa 

(1996). 681 

As usual, we represent the model by a vector m and the data by a vector d given by: 

  )1(,,, 21 Ammmm
T

M=  

and 684 

  )2(,,, 21 Adddd
T

N=  

consisting of elements mi and di, respectively, where each element is considered to be a random 

variable. The quantities M and N are the number of model parameters and data points, respectively, 687 

and the superscript T represents a matrix transpose. Following Tarantola (2005) notation, we 

assume that p(d|m) is the PDF of d for a given m (also called the likelihood function), p(m|d) is the 

conditional PDF of m for a given d, p(d) is the PDF of data set d and p(m) is the PDF of model m 690 

independent of the data. From the definition of the conditional probabilities, we have: 

)3()()|()()|( Ampmdpdpdmp =  

From this formulation we obtain an equation for the conditional PDF of model m given the 693 

measured data d as follows: 
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)4(
)(

)()|(
)|( A

dp

mpmdp
dmp =  

which describes the state of information for model m given the data d. This equation is the so-696 

called Bayes' rule. The denominator p(d) does not depend on m and can be considered a constant 

factor in the inverse problem (Duijndam, 1988). Replacing the denominator in equation with a 

constant, we have: 699 

)5()()|()|( Ampmdpdmp   

The PDF p(m) is the probability of the model m, independent of the data, i.e. it describes the 

information for the model without any knowledge of the data and is called the prior PDF. Similarly, 702 

the PDF p(m|d) is the state of information on model m given the data and is called the posterior 

PDF or the PPD. Obviously, the prior knowledge in the model is modified by the likelihood 

function, but assuming a uniform prior PDF, the posterior PDF is primarily determined by the 705 

likelihood function (Duijndam, 1988). Assuming Gaussian errors (Sen and Stoffa, 1996), the 

likelihood function takes the following form: 

  )6()(exp)|( AmEmdp −  708 

where E(m) is a misfit function that we want to minimize in the inversion process. The 

expression for the PPD can thus be written as 

  )7()()(exp)|( AmpmEdmp −  711 

This PPD is the final solution of the inversion problem from a Bayesian point of view. However, 

the PPD can not be displayed in a multi-dimensional space. Therefore, several measures of 

dispersion and marginal density functions can be used to describe the solution. Among these, the 714 

marginal PPD of a particular model parameter, the mean model and the posterior model covariance 

matrix are, respectively, given by: 

)8()|()|( 1121 Admpdmdmdmdmdmdmp Miii    +−= 
 

717 

)9()|( Admpmdmm =  
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and 

)10()|()()( AdmpmmmmdmC T
M −−=   720 

Equations A8-A10 are often referred to as the Bayesian integrals and, for a non-linear inverse 

problem, they can be calculated via a numerical evaluation (see Sen and Stoffa, 1996; Sambridge, 

1999). The generic Bayesian integral I, can be expressed as: 723 

= )11()()( AmPmfdmI  

where the domain of integration spans the entire model space and f(m) represents a generic 

function used to define each integrand. To simplify the notation, in equation A11 we substitute 726 

p(m|d) with P(m) dropping the |d term. We maintain this notational simplification from here on. 

Using a Monte Carlo integration technique, a numerical approximation of equation A11 can be 

derived as follows: 729 


=

=
N

k k

kk A
mq

mPmf

N
I

1

)12(
)(

)()(1
 

where I  indicates the numerical approximation of the Bayesian integrals, N is the number of 

Monte Carlo integration points and q(m) is their density distribution that is assumed to be 732 

normalized: 

)13(1)( Amqdm =  

Equation A12 can be finally re-written as a simple weighted average over the ensemble of Monte 735 

Carlo integration points: 


=

=
N

k

kk Awmf
N

I
1

)14()(
1

 

where wk indicates the frequently called “important ratio” and is equal to: 738 
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 741 

APPENDIX B: Using the Gibbs sampler to approximate the Bayesian integrals  

In the following we give a brief description of the GS step that constitutes the second part of the 

proposed methodology. We refer the reader to Sambridge (1999) for more detailed mathematical 744 

information.  

The GS algorithm exploits the finite ensemble of models collected during the GA optimization, 

and their associate likelihood, to refine the PPD estimated by the GA method. This can be viewed 747 

as an interpolation problem in a multi-dimensional space (Sambridge, 1999). After performing a 

GA inversion, in which all the explored models and associated likelihoods have been saved and 

stored, the GA approximation of the PPD can be derived by constructing a multi-dimensional 750 

interpolant using Voronoi cells in the model space (Voronoi 1908). This approximate PPD is 

derived by simply setting the known PPD of each model as a constant inside its Voronoi cell. We 

call this the GA approximation of the PPD, and write it as 753 

)1()()( BmPmP GA
iGA =   

where mi
GA is a model in the input ensemble of GA-sampled models that is closest to m (a 

generic point in the model space). In particular, PGA(m) represents all information contained in the 756 

input ensemble and constitutes the only information available in the GS step to compute the final 

PPD. If we assume an efficient exploration of the model space during the GA optimization, we can 

consider PGA(m) as a rough approximation of the target, final, PPD P(m). Then, we have: 759 

)2()()( BmPmPGA   

This final PPD can be computed using a MCMC algorithm (such as the Gibbs sampler) that 

generates a new set of Monte Carlo samples (that will constitute the resampled ensemble) the 762 

distribution of which asymptotically tends towards PGA(m). In other words, the new samples drawn 

during the GS walk are designed to importance sample the GA approximation of the PPD. The 

rejection method (Gilks and Wild, 1992) can be used to generate such resampled ensemble. 765 
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During the GS walks the density distribution of the resampled ensemble (indicated with q(m) in 

equation A12) satisfies the following relation: 

)3()()( BmPmq GA   768 

The assumption that the PGA(m) is a rough approximation of the target P(m) (see equation B2) 

determines that the importance ratio (indicated with w in equation A14)  can be approximated to 1 

according to the following equation: 771 

)4(1
)(

)(
B

mP

mP
w

GA

=  

Then, the Bayesian integral of equation A12 becomes a simple average over the resampled 

ensemble:  774 

)5()(
1

1

Bmf
N

I
N

k

GS
k

=

=  

where mk
GS

 is a generic model sampled by the GS algorithm, N is the total number of resampled 

points and f is the generic function already introduced in equation A11. 777 

The computational time (t) of the GS step linearly depends on the number of GS walks (Ns), on 

the number of models drawn per walk (Nr) and on the dimension of the model space (d) according 

to the following expression: 780 

)6(BdNsNrt   

As suggested by Sambridge (1999) it is advisable that Nr>>Ns. In addition it is also preferable 

to use multiple independent random walks (Ns>1), each starting from different point in model 783 

space. The value of Nr and Ns should increase with the dimension of the models space and with the 

dimension of the input ensemble. Higher Ns and Nr values ensure more reliable approximations of 

the Bayesian integrals, although increasing the computational time. The convergence of the GS 786 

algorithm to a stable posterior distribution can be checked by computing the Potential Scale 

Reduction (PSR) factor (Gelman et al. 2013). This number quantifies the difference between the 

“within-walk” and “between-walk” estimated variances. The PSR factor decreases to 1 as the 789 
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number of drawn samples (N) tends to infinite. A high PSR value indicates that the variance within 

the walks is small compared to that between the walks and that longer walks are needed to converge 

to a stable distribution. Usually, a PSR factor lower than 1.2 for a given unknown proves that 792 

convergence has been achieved for that particular model parameter. Based on our experience of GS 

applications in the context of 1D elastic FWI, we note that convergence of the GS is usually 

obtained when Nr is 30-40 times the number of unknowns, whereas a Ns value between 70 and 100 795 

is usually adequate. Obviously, the optimal Nr and Ns values depend not only on the number of 

unknowns but also on the topography of the misfit function. For example, the convergence of the 

algorithm can be more problematic in case of many local minima or in case of a severely ill-798 

conditioned inverse problem with a nearly flat misfit function. 

 

Figure 16: a) and b) Examples of PSR factor values for the first synthetic inversion and for the field 801 

data inversion, respectively.  

 

Figures 16a and 16b show the PSR values for the Vp, Vs and density in the first seven layers, that 804 

are the layers which PPDs have been analyzed in the paper, for the first synthetic test and the field 

data example, respectively. The PSR values for the second synthetic test are very similar to those of 

a) 

b) 
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the first test and thus are not shown. Note that for both cases the PSR values for all the variables in 807 

every layer are below 1.2 indicating that GS has attained the desired convergence. Note also that the 

PSR factor tends to increase moving from the synthetic inversion to the field data inversion and 

from Vp to Vs to density. These increases indicate that the convergence of the GS algorithm is, as 810 

expected, slightly more problematic for the density (the less resolvable parameter) and for the field 

data inversion. 

 813 
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Figures and Captions 

 

Figure 1: Examples of the different steps that characterize the hybrid GA+GS approach. a) The 948 

initial analytical PDF that was used in the optimization. b) The 1000 models (white dots) that were 

sampled during the GA optimization. c) The model space portion that is explored during the GA 

step is divided into Voronoi cells (delimited by the white lines), and the likelihood that is associated 951 

with each explored model is assigned to the entire cell. This step results in the GA approximation of 

the PPD. d) Multiple GS walks (examples of GS walks are illustrated by the green paths) are used 

to draw samples from the GA approximation of the PPD. This step gives the final PPD that was 954 

estimated by the GA+GS approach.  

 

957 

a) b) 

d) c) 
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Figure 2: In a) and b), comparisons are shown for the variables x1 and x2 from the true marginal 960 

distributions (green lines), the marginal PPDs that were estimated by the GA method (orange bars) 

and the GA+GS marginal PPD estimations (blue lines). c) The GA approximation of the joint 

distribution. Note the strong underestimation of the uncertainties that resulted from the 963 

oversampling of the model space region with the highest probability. d) The final joint PPD that 

was estimated by the GA+GS method (compare with the true joint probability distribution that is 

shown in e) and the GA joint estimation that is shown in c)). Note the different colour-scale in c) 966 

a) b) 

c) d) 

e) 
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and d). e) The true joint posterior distribution (in colour) that is defined by equation 1 and 

represented in Figure 1a. The white dots represent the 1000 models that were sampled in the GA 

optimization. The red circle in d) and e) marks the area where the differences between the true and 969 

estimated GA+GS joint PPDs are more prominent. See the text for additional comments. 
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 972 

 

 

Figure 3: Comparison between the true (black) and predicted (red) elastic properties (a, b and c 975 

for Vp, Vs and density, respectively). The grey lines show the parameter ranges that were used 

during the inversion. 

978 

a) b) c) 



53 
 

 

 

Figure 4: a) Observed seismogram, b) best predicted seismogram and c) their difference. The 981 

seismograms are NMO-corrected for the water velocity and are represented with the same 

amplitude scale. 

984 

b) 

c) 

a) 
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Figure 5: Evolution of the mean and the best model misfit for the Vp, Vs and density parameters 987 

as a function of iteration number (a, b and c, respectively). Evolution of the data misfit (d) and the 

number of individuals (e) for each subpopulation. 

990 

a) b) c) 

d) e) 
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Figure 6: The GA approximation of the marginal PPDs (orange bars) and the final GA+GS 993 

estimation of the marginal distributions (cyan filled blue curves) are displayed from top to bottom 

for each inverted layer. The Vp, Vs and density values are represented in the left, central and right 

columns, respectively. The continuous black and dashed red lines illustrate the true and the 996 

predicted model parameters by the GA inversion, respectively. To better display the variance of 

each parameter, the x axes are represented with the same scale. 

 999 
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 1002 

 

Figure 7: The posterior 2D marginal distributions for the fourth layer. The Vp-density and Vs-

density joint distributions are shown in a) and b), respectively. The dotted white lines represent the 1005 

true values. To better compare the resolution that is associated with each parameter, the axes are 

represented with the same scale.  

1008 

b) 

a) 
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 1011 

Figure 8: Sample hits plots that represent the different evolutions of the standard single-

population and our GA implementation. Each plot is generated by clustering the entire set of 

generated models up to a certain generation and projecting the result to a two-dimensional map 1014 

a) 

b) c) 

d) e) 
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(see the text for more details). The two tests start from the initial, randomly generated population of 

models (a). The evolution of the standard single-population GA case is represented in b) and d), 

whereas c) and e) represent the evolution of our GA inversion. This figure demonstrates that the 1017 

proposed GA implementation is characterized by a wider exploration of the model space compared 

with the standard GA.  

1020 
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Figure 9: Comparison between the true (black) and the predicted (red) elastic properties (a, b 1023 

and c). The black curves represent the log data after Backus averaging for a dominant frequency of 

50 Hz. The red curves indicate the predicted elastic properties for a dominant frequency of 15 Hz. 

The grey lines show the inversion parameter ranges that have been defined around a highly 1026 

smoothed version of the original log data. 

a) b) c) 
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 1029 

 

Figure 10: a) Observed seismogram, b) best predicted seismogram and c) their difference for the 

same frequency range during the inversion (which determines the layer thickness of the inverted 1032 

model). The seismograms are NMO-corrected for the water velocity and are represented with the 

same amplitude scale. 

1035 

a) 

b) 

c) 
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Figure 11: The GA approximation of the marginal PPDs (orange bars) and the final GA+GS 1038 

estimation of the marginal distributions (cyan filled curves) are shown from top to bottom for the 

first seven layers. The Vp, Vs and density values are represented in the left, central and right 

columns, respectively. The dashed red lines show the predicted model parameters by the GA 1041 

inversion. To better display the variance of each parameter, the x axes are represented with the 

same scale.  

1044 
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 1047 

Figure 12: The predicted model (red lines) and the admissible ranges for each parameter (grey 

lines) for the P-wave velocity, S-wave velocity and density in a, b and c, respectively.  

1050 

a) b) c) 
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Figure 13: The comparison between the observed and best predicted seismogram and their 1053 

difference is shown for the same frequency range during the inversion (a, b and c, respectively). 

The seismograms are NMO-corrected for the water velocity and are represented with the same 

amplitude scale.  1056 

a) 

b) 

c) 
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 1059 

 

Figure 14: The evolution of the data misfit and the number of individuals for each subpopulation 

(a and b, respectively). 1062 

a) b) 
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 1065 

Figure 15: The GA approximation of the marginal PPDs (orange bars) and the final GA+GS 

estimation of the marginal distributions (cyan filled curves) are represented from top to bottom for 

the first seven inverted layers. The Vp, Vs and density values are represented in the left, central and 1068 

right columns, respectively. The dashed red lines show the best model parameters estimated by the 

GA inversion. To better illustrate the variance of each parameter, the x axes are represented with 

the same scale.  1071 
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Figure 16: a) and b) Examples of PSR factor values for the first synthetic inversion and for the field 1074 

data inversion, respectively.  

 

 1077 

a) 

b) 


