
Swarm Obstacle and Collision Avoidance using Descriptor Functions

Mario Innocenti1, Member, IEEE, Lorenzo Pollini1, Member, IEEE,
Giovanni Franzini1, Student Member, IEEE, and Alessandro Salvetti2

Abstract— The descriptor function framework is used as tool
for the control management of a swarm of dynamic agents. In
this framework, a provision is made for obstacle and collision
avoidance, thus improving the potential of the methodology
from previous results. Obstacle and collision avoidance terms
are added to the overall mission performance index, and the
resulting control law moves the agents along obstacle and
collision free trajectories. The analytical derivation is validated
via numerical simulations.

I. INTRODUCTION

The descriptor function approach was originally proposed
in [1], and [2], following earlier work in [3], as an attempt to
generalizing the control management of swarms, to encom-
pass different agent characteristics, and different missions
(tasks), within a common mathematical structure. The main
ideas behind the framework are reviewed herein for clarity’s
sake.

We consider the problem of controlling a swarm of het-
erogeneous agents (typically autonomous vehicles), which
must accomplish a cooperative mission, possibly composed
by more than one tasks.

An agent descriptor function (ADF) is assigned to each
agent that characterizes, in a general sense, the position, of
the agent, the environment where the agent operates, and
some of the specific properties of the payload (for instance a
video camera, survival equipment, etc.). Clearly, the ADF
could be a very complex even mathematically intractable
function, and in the following it is considered continuous
and continuously differentiable, but otherwise general. An
example [4] is shown in Figure 1, where an ADF describing
an ultrasound sensor (such as a sonar) in a two-dimensional
environment is depicted. The third dimension, represented by
level curves, could indicate the “intensity” of the particular
sensor.

Mathematically, the ADF can be written as:

di(pi, q) : P ×Q → R+

where the index i indicates the i-th agent, pi ∈ P is the state
vector of agent i, P ⊆ Rn is the spatial domain of each agent,
Q ⊆ Rm, with m = {2, 3}, is the domain of the environment
(spatial and not spatial), and R+ = {x ∈ R : x ≥ 0}. The

1 M. Innocenti, L. Pollini and G. Franzini are with the De-
partment of Information Engineering, University of Pisa, 56122 Pisa,
Italy. {mario.innocenti,lorenzo.pollini}@unipi.it,
giovanni.franzini@for.unipi.it

2 A. Salvetti is with AgustaWestland S.p.A., 21015 Varese, Italy.
alessandro.salvetti@hotmail.it

(a)
0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b)

Fig. 1: Examples of ADFs (Sigmoid with Field of View).

motion of each agent, as common practice in this type of
problems, is modeled by a single integrator:

ṗi = ui

where ui is the control vector of agent i. The task (or
mission) to be accomplished is also described by a task
descriptor function (TDF), which may describe the need for
resources in a point q ∈ Q of the environment, at time t:

d∗(t, q) : R+ ×Q → R+ (1)

As an example, if we consider the uniform deployment
task [5], [6], a very simple expression for Eq. (1) is a constant
value.

The control law for each agent is then obtained by
minimizing a task error function (TEF) defined as

e(t,p, q) = d∗(t, q)−D(p, q), p =
[
pT
1 , . . . ,p

T
Na

]
where Na denotes the number of agents, and D(p, q) is the
swarm descriptor function given by

D(p, q) =

Na∑
i=1

di(pi, q)

Using the procedure described in [2], and [7], we introduce
the following cost function

J(t,p) =

∫
Q
f(e(t,p, q))σ(q)dq

and we select a control law as:

ui = −β
[
∂J(t,p)

∂pi

]T
, β > 0 (2)

The cost function J expresses the level of achievement of
the task, where σ(q) is a weight on the importance of the
environment, and f(·) ≥ 0 is a weight function. Clearly
the definition of an appropriate f(·) plays a critical role in

2016 IEEE Conference on Control Applications (CCA)
Part of 2016 IEEE Multi-Conference on Systems and Control
September 19-22, 2016. Buenos Aires, Argentina

978-1-5090-0755-4/16/$31.00 ©2016 IEEE 487

the computation of the agents’ control laws, and on the task
execution. Convergence and stability conditions can be found
in the same references, using the cost index as a candidate
Lyapunov function.

In this paper, we extend and improve the descriptor
function framework by introducing obstacle and collision
avoidance capabilities. The former is obtained by defining
for each obstacle in the environment a descriptor function
that dissuades the agents from visiting the obstacles region.
Collisions are prevented introducing in the cost function J a
penalization term that increases as the agents get too close.
Therefore, conversely to most of the approaches proposed
in literature, see for example [8], [9], [10], [11], obstacle
and collision avoidance are incorporated directly into our
framework, and are not introduced as augmentation terms for
the existing control law. The effectiveness of the developed
approach is proved by means of formal arguments, and
supported by numerical simulations.

II. OBSTACLE AVOIDANCE

The original format described in the previous section
does not take into account the presence of obstacles in the
scenario, in fact, according to most flocking methodologies,
the agents’ trajectories are the result of meeting mission ob-
jectives, rather than following a specific path. The problem of
obstacle avoidance has been widely studied in the literature
from the application of potential fields [12], to the use of
gyroscopic effects [8], just to mention a few. In the area of
path planning algorithms, it is common practice to modify
the original control law with terms, which take into account
the presence of static and/or dynamic obstacles.

In this section, we address the problem of incorporating
the presence of obstacles directly in the descriptor function
framework, in an attempt to generalize the agents’ controller
synthesis to account for scenarios with obstacles.

The introduction of an obstacle avoidance term in the
framework starts from the nature of the selected optimization
structure, that is the agents follow trajectories defined by a
negative gradient of the cost J . The agents, in other words,
move toward areas characterized by lack of resources (larger
positive errors d∗ −D > 0). If, for some areas, the TDF is
too small or the swarm ADFs are limited, the agents will not
direct themselves toward them. An obstacle, therefore, can
be thought as an area of no interest for the swarm, and this
idea will be incorporated in the TEF. With this in mind, we
can define a new expression of the error as:

e(t,p, q) = d∗(t, q)−D(p, q)− dobs(p, q) (3)

The function dobs(p, q) : P × Q → R+ is the obstacle
descriptor function (ODF) associated to all obstacles present
in the environment, and is defined as:

dobs(p, q) =

No∑
k=1

dkobs(p, q) (4)

where dkobs(p, q) : P × Q → R+ is the ODF associated to
the k-th obstacle, and No is the number of obstacles in the

environment. In the following, Qk
obs ⊂ Q will denote the

area occupied by the obstacle k, and Qobs =
⋃No

k=1Qk
obs.

Eq. (4) depends on the environment Q, and, in general, on
the position of the agents as well. As an example, we could
assume a constant value, possibly time–varying, over each
obstacle dimension.

A. Convergence and Stability

We now prove that with the new TEF definition, Eq. (3),
the original control law still guarantees convergence to a
local minimum.

Proposition 1. For a time invariant task, the control law
Eq. (2) guarantees converge to a local minimum.

Proof. Considering Eq. (3), the time derivative of J is:

dJ(t,p)

dt
=
∂J(t,p)

∂t
+
∂J(t,p)

∂p
ṗ (5)

where, having defined fe = ∂f(e)/∂e,

∂J(t,p)

∂t
=

∫
Q
fe

dd∗(t, q)

dt
σ(q)dq (6)

∂J(t,p)

∂p
ṗ = −

Na∑
i=1

[∫
Q
fe

(
∂di(pi, q)

∂pi

+

No∑
k=1

∂dkobs(p, q)

∂pi

)
σ(q)dq

]
ṗi

Introducing the control law, Eq. (2), in Eq. (5) we have that

dJ(t,p)

dt
=
∂J(t,p)

∂t
− β

∥∥∥∥∂J(t,p)∂p

∥∥∥∥2
For a time invariant task ∂J(t,p)/∂t = 0, and dJ(t,p)/dt ≤
0, which guarantees convergence to a stable local minimum.

If the task is time varying, ∂J(t,p)/∂t 6= 0, and the
behavior of the cost function time derivative should be evalu-
ated accordingly. In the following, we prove convergence for
an effective coverage task, that could describe an exhaustive
search over some area.

Proposition 2. For an effective coverage task, whose TDF
can be written as [2]

d∗(t, q) = max

{
0, C −

∫ t

0

D(p(τ), q)dτ

}
, C > 0 (7)

where C is the amount of resource necessary to assume the
area be sufficiently searched, and f(e) = e2, the control law
Eq. (2) guarantees convergence to a local minimum.

Proof. The derivative of the weight function, that is fe = 2e,
has an unknown sign. Thus, the integral sign in Eq. (6) is
unknown as well. If, however, we set ui = 0, the agents tend
to cancel d∗ in the area covered by their ADFs. Thus, the
error in Eq. (3) decreases, and so does the performance index

488

r R
x

M
hHxL

(a) h(x)

r R
x

-200

-600

-1000

h'HxL

(b) h′(x)

Fig. 2: Graph of Eq. (9) for r = 2, and R = 8.

J . As a matter of fact, according to Eqs. (5), (6) and (7), the
time derivative of J , for u = 0, is equal to:

dJ(t,p)

dt

∣∣∣∣
u=0

=
∂J(t,p)

∂t
= −

∫
Q
fe

Na∑
i=1

di(pi(t), q)σ(q)dq

Therefore, ∂J(t,p)/∂t ≤ 0, and, recalling the results in
Proposition 1, dJ(t,p)/dt ≤ 0.

B. The Obstacle Descriptor Function

The presence of the obstacle descriptor function dobs
allows the swarm to move towards the target defined by the
task, but there could be cases where the attracting component
of the TDF is still such as to overcome dobs. The following
proposition states under which condition this cannot happen.

Proposition 3. If dkobs → +∞ when the position of at least
one agent tends to the border of the k-th obstacle, then the
agents will never collide against that obstacle.

Proof. Suppose dkobs →∞, then

e(t,p, q) = d∗(t, q)−D(q, q)−
No∑
k=1

dkobs(p, q)→ +∞

Thus, J → +∞. Since we know that dJ(t,p)/dt ≤ 0, the
cost functional can never increase to infinity. Therefore it
is not possible to have dkobs → ∞, and the agents will not
collide with the obstacle.

A possible choice for the obstacle descriptor function is

dkobs(p, q) =

{∑Na

i=1 h(‖Spi − cki ‖), q ∈ Qk
obs

0, q /∈ Qk
obs

(8)

where S ∈ Rm×n is a selection matrix that applied to the
agent state pi gives its position in Q, cki ∈ Qk

obs is the point
of the k-th obstacle nearest to the i-th agent, and h(x) ≥ 0
∀x. In the light of Proposition 3, we require that h(‖Spi −
cki ‖) → +∞ as ‖Spi − cki ‖ → 0+, that is as the agent i
reaches the border of the obstacle. A smooth function h(·)
that satisfies the above requirements is given by:

h(x) =

{
max

{
0,− (x−R)3

x−r

}
, x > r

M, x ≤ r
(9)

where M > 0, and 0 ≤ r < R < +∞. The parameter
r can be tuned according to the minimum distance from
the obstacle we want to maintain, whereas R defines at
what distance the obstacle influences the agent motion (see

Figure 2). According to Eq. (2), the new control law, in the
presence of the obstacle avoidance term, becomes:

ui =β

[∫
Q
fe

[
∂di(pi, q)

∂pi

]T
σ(q)dq

+

No∑
k=1

∫
Qk

obs

fe

[
∂dkobs(p, q)

∂pi

]T
σ(q)dq

]

=β

[∫
Q
fe

[
∂di(pi, q)

∂pi

]T
σ(q)dq

+

No∑
k=1

ST (Spi − cki)
h′(‖Spi − cki ‖)
‖Spi − cki ‖

∫
Qk

obs

feσ(q)dq

]
=β
[
utask
i + uobs

i

]
(10)

where h′(x) = ∂h(x)/∂x.
The obstacle influences both terms of the control law, since

the TEF e, and consequently fe, depends on the ODF (see
Eq. (3)). The contribution of the obstacle to utask

i depends
on the ADF, i.e. if di(pi, q)� 0 for q ∈ Qk

obs then the k-th
obstacle actually has a repulsive influence on the agents. The
obstacle avoidance contribution to uobs

i is independent of the
ADF and the task. In particular, if h′(‖Spi − cki ‖) = 0 ∀k,
then uobs

i = 0. This occurs when ‖Spi − cki ‖ ≥ R ∀k, that
is when the agent is sufficiently away from all the obstacles.

Proposition 4. If the weight function f(·) is chosen such
that fe(·) ≤ 0 for q ∈ Qobs, then the component uobs

i of the
control law in Eq. (10) will always move the agents away
from the obstacles when the distance is less than R.

Proof. Without loss of generality, consider the influence of
a single obstacle k on the agent i. From Eq. (10) we have:

uobs
i = ST (Spi−cki)

h′(‖Spi − cki ‖)
‖Spi − cki ‖

∫
Qk

obs

feσ(q)dq (11)

Given the hypothesis on fe, the integral term in Eq. (11) is
negative. Recalling from Figure 2 that h(·) ≥ 0, and h′(·) ≤
0, we can then write Eq. (11) as follows,

uobs
i = γST Spi − cki

‖Spi − cki ‖
, γ ≥ 0

So the control law has a magnitude γ and a direction equal
to Spi − cki , which is normal to the obstacle surface and
away from it.

C. Weight Functions f(·)
The actual computation of the control law depends of

course on the specific form of the weight function f(·). One
of the expressions most frequently used in the literature is
the quadratic function:

f(e) = e2 (12)

This, however results in a large number of local minima and
a penalty on the case of excess of resources. The latter fact
can be mitigated using:

f(e) = max {0, e}2 (13)

489

(a) No Obstacle Avoidance. (b) With Obstacle Avoidance.

Fig. 3: Obstacle Avoidance in a Static Coverage Task.

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Effective Coverage Task

X

Y

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7
x 10

5 J = ∫ max(g,e)
2
 dq

time

J

Fig. 4: Obstacle Avoidance in an Effective Coverage Task.

(see [7]). Note that both Eqs. (12) and (13) respect the
condition fe(·) ≤ 0 for q ∈ Qobs stated in Proposition 4.
As a matter of fact, the derivative of Eqs. (12) and (13) are
2e and 2max{0, e} respectively, and for q ∈ Qobs the TEF
is such that

e(t,p, q) = −D(p, q)− dobs(p, q) ≤ 0

since d∗ = 0 on the obstacles region.
The weight function in Eq. (13) reduces the effectiveness

of the control law in Eq. (10), since the elimination of
negative errors will cancel the repulsive contribution from
utask
i . We can overcome this problem by introducing the

following function:

g(q) =

{
−M, q ∈ Qobs

0, q /∈ Qobs
(14)

with M > 0. Using Eq. (14) we define the new weight:

f(e(t,p, q)) = max {g(q), e(t,p, q)}2 (15)

Note that Eq. (15) is such that fe(·) ≤ 0 for q ∈ Qobs. The
simulations results presented in the following sections were
obstained using Eq. (15).

D. Examples

Figure 3 shows the influence of the obstacle avoidance
component of the control law in a static coverage task.
The swarm has four agents (three omnidirectional and one
with field of view), which move from left to right of the
environment. The graph on the left shows the behavior with
ui = βutask

i , whereas the graph on the right has the complete
control law. The benefit in obstacle avoidance is evident.

Figure 4 shows the example of an effective coverage
task. The cost function is continuously decreasing but it
cannot reach zero because of the presence of obstacles in

(a) One Agent Deadlock. (b) Three Agents Deadlock.

Fig. 5: Examples of Deadlock.

(a) Obstacle Detection During
an Effective Coverage Task.

(b) Obstacle Detection During a
Dynamic Coverage Task.

Fig. 6: Obstacle Detection Simulations.

the environment. The “uneven” behavior of the agents (some
move a lot and some very little) is typical of the effective
coverage as also reported in [2], [3]. This may be desirable
or not depending on how tight the swarm is supposed to be
moving during the task.

E. Special Cases

One of the issues that we encounter in motion planning
over obstacles is the presence of degenerated cases leading
to deadlock. A classic example is a geometric symmetry
as shown in Figure 5. The current framework suffers from
deadlock in some cases, but we remind the reader that, in
practice, the uncertainties present in the modeling, first of
all the use of single integrator as dynamics, make perfect
symmetry very unlikely in most instances. In addition, during
the motion of the swarm, complete symmetry of the agent
descriptor function is hardly achievable because of the nature
of problem itself.

The ODF in Eq. (8) can also be used for obstacle detection,
depending on the agent capability to do so. This is described
in Figure 6, where two examples of effective coverage and
dynamic coverage are shown. In the figure, the color red
indicates the obstacle as undetected, while the color green
shows detection by the agents as the task unfolds. The
starting point of the swarm is at the bottom left corner of
the scenario. We note that the ODF is not contributing to
the overall control law if the obstacle is set at some distance
greater than R. The detection occurs as soon as the obstacle
is in the field of view of the agent, that is a threshold

490

present in the agent descriptor function ADF. Based on this
intersection, a portion of the obstacle is considered known,
and the obstacle avoidance controller takes over. It is clear
from Figure 6 that this process is more accurate in a dynamic
coverage task (most obstacles are green), since the agents
perform an accurate search of the environment, as compared
to an effective coverage scenario. Finally, the inclusion of
an obstacle avoidance term in the framework could also be
used to establish areas of the environment that are of less
use for the swarm, so that resources are not wasted.

III. COLLISION AVOIDANCE

The collision avoidance problem deals with the require-
ments necessary to maintain a minimum inter-agent distance,
in order to avoid collisions. This problem was not addressed
in the original work [1], [2], and is widely studied in the
literature in areas dealing with connectivity maintenance
(structure of the underlying graph) or flocking [12], [13].
An ad hoc approach to the problem can also be found in [4].

We define a new cost function J as follows,

J(t,p) = JDF(t,p) + ωJCA(p), ω > 0 (16)

where JDF denotes the cost function used in the previous sec-
tion, and JCA is a term that takes in account the possibility of
collision among the agents. Following the approach in [13],
[9], which is based on potential theory considerations, we
can use Eq. (16) as a candidate Lyapunov function, i.e.
V (t,p) = J(t,p), and use the sign of its time derivative
to compute a new control law defined as

u = uDF + uCA

where uDF denotes the control law stated in the previous
section (see Eqs. (2) and (10)), and uCA is the collision
avoidance term. The time derivative of V is given by:

dV (t,p)

dt
=
∂JDF(t,p)

∂t
+
∂JDF(t,p)

∂p
ṗ+ω

∂JCA(p)

∂p
ṗ (17)

Considering Eq. (2) and choosing

uCA
i = −α

[
∂JCA(p)

∂pi

]T
, α > 0 (18)

Eq. (17) can be written as:

dV (t,p)

dt
=
∂JDF(t,p)

∂t
−
[
∂JDF(t,p)

∂p
,
∂JCA(p)

∂p

]
·

·W

[[
∂JDF(t,p)

∂p

]T
,

[
∂JCA(p)

∂p

]T]T
where:

W = W ⊗ I2×2 =

[
β 1

2 (α+ ωβ)
1
2 (α+ ωβ) ωα

]
⊗ I2×2

As discussed in the previous section, the time varying
component ∂JDF(t,p)/∂t is equal to zero for time invariant
tasks. Otherwise, its sign must be studied according to the
task definition. However, in Proposition 2, we proved that for
the effective coverage task we have that ∂JDF(t,p)/∂t ≤ 0.

r R D d
x

M
fHxL

(a) f(x)

r R D d
x

-4000

-2000

2000

4000

f'HxL

(b) f ′(x)

Fig. 7: Selected Expression for f(x) in Eq. (20).

Therefore, we need the symmetric weighting matrix W to
be positive definite, i.e. the coefficient α, β and ω must be
selected such that the eigenvalues of W are strictly positive.
The above constraints allow the system to evolve towards a
local minimum (local maxima and saddle points are unstable
and can be avoided [1], [2]).

In order to extend the work in [13], [9] without the use
of potential flow fields, we propose a cost function that
increases indefinitely as the distance between two agents
becomes lower or greater than some limiting values selected
by design. Consider the following expression:

JCA(p) =

Na∑
i=1

Na∑
j=1
j 6=i

f(‖S(pi − pj)‖)

= 2

Na∑
i=1

j=i+1

f(‖S(pi − pj)‖)

(19)

with:

f(x) =

{
max

{
0, (R−x)

3(x−D)3

(x−r)(x−d)

}
, r ≤ x ≤ d

M, otherwise
(20)

with M > 0, and 0 ≤ r < R ≤ D < d. As shown in
Figure 7, the agents are constrained in relative distance by r
and d respectively. If the relative distance is between R and
D, the contribution of JCA is zero, increasing the flexibility
of the proposed solution.

Given Eqs. (18), (19), and (20), we have that,

uCA
i = −2α

Na∑
j=1
j 6=i

f ′(‖S(pi − pj)‖)
‖S(pi − pj)‖

STS(pi − pj) (21)

where f ′(x) = ∂f(x)/∂x. From Eq. (21) we see that the i-th
agent is subjected to an action by the other Na − 1 agents,
with amplitude and direction specified by −αf ′(‖S(pi −
pj)‖). The above comments confirm the behavior described
in Figure 7, from which the i-th agent moves away from
the j-th one when their distance is less than R, since
−αf ′(‖S(pi − pj)‖) > 0. The opposite occurs when their
relative distance is greater than D.

A. Examples

Consider a static coverage task with four identical agents
in a symmetric configuration. Figure 8 shows the case of
absence and presence of the collision avoidance term in

491

(a) No Collision Avoidance. (b) With Collision Avoidance

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

Functional values

time

J

J
DF

 = task functional

J
dist

 = ditance constraint functional

J
DF

 + ω J
dist

 = total functional

(c) Cost Functions Evolutuions.

Fig. 8: Collision Avoidance for a Static Coverage Task.

Eq. (21) (Figure 8a and 8b, respectively). The behavior of
the cost function is shown in Figure 8c. From the figure, the
contribution of the collision avoidance term is evident, when
the relative distance becomes lower than a prescribed value.

Next we consider an effective coverage scenario. Figure 9a
shows the behavior of the swarm without the collision
avoidance term. In this case the red agent does not contribute
as much to the task, due to the selected scenario cost
function. The influence of the collision avoidance term is
clear in Figure 9b. In particular, this contribution increases
connectivity as well since there is a constraint on the max-
imum relative distance, and the red agent now contributes
fully to the task. Figure 9c describes the values of the cost
function. The green dashed curve indicates the contribution
of the collision avoidance term, whose slope depends of
course on maintaining the agents within the relative distance
constraints.

IV. CONCLUSIONS

The paper presents an analytical structure for obstacle and
collision avoidance of a swarm of agents. The descriptor
function framework for the control management of the swarm
is extended, and its flexibility in handling different tasks is
increased. The resulting control law maintains local stability
and convergence properties, and the results are validated via
simulation for static, dynamic, and effective coverage tasks.
Current work is directed towards experimental validation.

REFERENCES

[1] M. Niccolini, M. Innocenti, and L. Pollini, “Near optimal swarm
deployment using descriptor functions,” in Proc. 2010 IEEE Interna-
tional Conference on Robotics and Automation, Anchorage, Alaska,
2010, pp. 4952–4957.

(a) No Collision Avoidance. (b) With Collision Avoidance

0 100 200 300 400 500 600
0

0.5

1

1.5

2
x 10

5

J
 D

F
 +

 ω
 J

 d
is

t

0 100 200 300 400 500 600
0

200

400

600

800

J
 d

is
t

J e J
dist

(c) Cost Functions Evolutions.

Fig. 9: Collision Avoidance for an Effective Coverage Task.

[2] M. Niccolini, L. Pollini, and M. Innocenti, “Cooperative control for
multiple autonomous vehicles using descriptor functions,” J. Sens.
Actuator Netw., vol. 3, no. 1, pp. 26–43, 2014.

[3] I. I. Hussein and D. M. Stipanović, “Effective coverage using dynamic
sensor networks,” in Proc. 45th IEEE Conference on Decision and
Control, San Diego, California, 2006, pp. 2747–2752.

[4] A. Ferrari Braga, M. Innocenti, and L. Pollini, “Multi-agent coor-
dination with arbitrarily shaped descriptor function,” in Proc. 2013
AIAA Guidance, Navigation, and Control Conference, Boston, Mas-
sachusetts, 2013.

[5] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009.

[6] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” in Distributed Autonomous
Robotic Systems 5. Springer Japan, 2002, pp. 299–308.

[7] M. Niccolini, “Swarm abstractions for distributed estimation and
control,” Ph.D. dissertation, Univ. of Pisa, Pisa, Jul. 2011.

[8] D. E. Chang, S. C. Shadden, J. E. Marsden, and R. Olfati-Saber,
“Collision avoidance for multiple agent systems,” in Proc. 42nd IEEE
Conference on Decision and Control, Maui, Hawaii, 2003, pp. 539–
543.

[9] I. I. Hussein and D. M. Stipanović, “Effective coverage control for
mobile sensor networks with guaranteed collision avoidance,” IEEE
Trans. Contr. Syst. Technol., vol. 15, no. 4, pp. 642–657, 2007.

[10] G. M. Atinç, D. M. Stipanović, P. G. Voulgaris, and M. Karkoub,
“Swarm-based dynamic coverage control,” in Proc. 53rd IEEE Con-
ference on Decision and Control, Los Angeles, California, 2014, pp.
6963–6968.

[11] V. G. Santos and L. Chaimowicz, “Cohesion and segregation in swarm
navigation,” Robotica, vol. 32, pp. 209–223, 2014.

[12] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[13] I. I. Hussein and D. M. Stipanović, “Effective coverage control
using dynamic sensor networks with flocking and guaranteed collision
avoidance,” in Proc. 2007 American Control Conference, New York
City, USA, 2007, pp. 3420–3425.

492

