
C. Dubois, P. Masci, D. Méry (Eds.): F-IDE 2016
EPTCS 240, 2017, pp. 53–66, doi:10.4204/EPTCS.240.4

Extending a User Interface Prototyping Tool with Automatic
MISRA C Code Generation

Gioacchino Mauro
Department of Information Engineering, University of Pisa, Pisa, Italy

giocchi27@gmail.com

Harold Thimbleby
Swansea University — Prifysgol Abertawe, Swansea/Abertawe, UK

harold@thimbleby.net

Andrea Domenici Cinzia Bernardeschi
Department of Information Engineering, University of Pisa, Pisa, Italy

{cinzia.bernardeschi,andrea.domenici}@unipi.it

We are concerned with systems, particularly safety-critical systems, that involve interaction between
users and devices, such as the user interface of medical devices. We therefore developed a MISRA C
code generator for formal models expressed in the PVSio-web prototyping toolkit. PVSio-web
allows developers to rapidly generate realistic interactive prototypes for verifying usability and safety
requirements in human-machine interfaces. The visual appearance of the prototypes is based on a
picture of a physical device, and the behaviour of the prototype is defined by an executable formal
model. Our approach transforms the PVSio-web prototyping tool into a model-based engineering
toolkit that, starting from a formally verified user interface design model, will produce MISRA C code
that can be compiled and linked into a final product. An initial validation of our tool is presented for
the data entry system of an actual medical device.

1 Introduction

Formal methods are important for developing and understanding safe and secure systems. The PVSio-web
framework [20, 21, 22, 26] allows developers to use formal methods in a friendly and appealing way
as it provides realistic animations and is integrated with a graphical editor for the Emucharts language
[23]. (Emucharts is a state machine formalism with guards and actions associated with transitions; it is
explained further in Sect. 3.4 below.)

PVSio-web uses the formal modelling language of the Prototype Verification System (PVS) [27],
including the PVSio extension [24]. PVS is an industrial-strength theorem proving system that allows
formal verification of safety and reliability properties of hardware and software systems [5, 31]. Although
PVS itself is very effective, it is not widely used for model-based development and analysis of user
interfaces, as the tool has a steep learning curve. PVSio-web softens this learning curve, making the tool
more user-friendly and accessible, providing developers with a graphical modelling environment, and a
toolbox for developing realistic visual prototypes of user interfaces.

The applications of embedded software in safety-critical applications increase continuously. Taking
this into account, together with the requirements to reduce time and overall production costs, automatic
code generation plays an essential role. Automatic code generation guarantees a smooth conversion

http://dx.doi.org/10.4204/EPTCS.240.4

54 MISRA C code generation

Emucharts

Editor

Model EditorPVS

generator

PVS theory

C Code
Generator

C Code

HB Templates

Model
Emucharts

Theorem
Prover

Proof

Ground
Evaluator

Simulation

PVSio−web

Developer

PVS environment

Figure 1: C code generation in the PVSio-web development process.

from model to code and reduces the debugging and testing required for source code, provided that the
correctness of code generation and of the high-level model have been verified.

We therefore present an extension to PVSio-web that generates C code. Specifically, our extension
generates MISRA C [1], a safety-oriented subset of C developed by the Motor Industry Software Reliability
Association (MISRA). MISRA C is commonly used in safety-critical subsystems, such as car braking in
automotive systems.

With this new extension, formal PVS specifications generated from Emucharts diagrams are auto-
matically converted to C, significantly shortening project development time. Because of the approach,
the semantics of generated C code is equivalent to the formal models, and therefore the code retains the
reliability and safety properties formally verified for the PVS model.

In summary, our main contribution is an approach to software development that integrates logic-
and state machine-based formal modelling, validation by simulation, and automatic implementation by
generating production code to be run on the actual system hardware, all based on an industrial-strength
formal methods toolkit.

2 Related work

Model-based approaches are commonly used in the field of human computer interaction, for example [13].
Most approaches are focused on describing user interfaces and their implementations at various levels of
abstraction. Developers of user interfaces for interactive systems also have to address heterogeneity and
adaptation to the context of use. For example, in [29], a model-based declarative language for the design
of interactive applications based on Web services in ubiquitous environments was presented. In contrast
to these familiar approaches, the present work proposes a framework enabling a formal verification of
user interaction. The framework is meant for safety analysis of safety-critical devices and not with user
interface design issues as discussed in [29],

Similarly to our approach, formal models were used in [6] to describe functionality and component
interactions, where they were combined with user interface models in order to get the entire model of the

G. Mauro, H. Thimbleby, A. Domenici & C. Bernardschi 55

system. Moreover, an Android emulator application was generated, using Java and XML technologies.
Presentation models and presentation interaction models were used in [9] to model interactive software
systems; these models were shown to be usable with a formal specification of the system functionality. In
[7] the same formalisms were used to model user manuals of modal medical devices, proving that the user
manual may be not always consistent with actual device behaviour.

In [17], model checking was used to model and prove properties of specifications of interactive
systems so that possibly unexpected consequences of interface mode changes can be checked early in
the design process. In [19], the complementary role of model checking and theorem proving in the
analysis of interactive devices was considered. Recent work [16] explored the paths that a user will take in
interacting with medical devices for the analysis of properties of the behaviour of safety-critical devices.
A model-checking approach has also been used to analyse hardware behaviour [4].

A discussion of production code generation in model-based development can be found in [11]. Many
papers deal with specific code generators, for example TargetLink [3]. Code generators specifically
designed for medical systems are described in [2] and [28].

3 PVS, model-driven development and Emucharts

This section provides background information on the PVSio-web framework and its relationship to
model-driven development.

3.1 PVS, the Prototype Verification System

The PVS is an interactive theorem prover for a typed higher-order logic language, providing an extensive
set of inference rules based on the sequent calculus [30]. Its PVSio extension is a ground evaluator that
can compute the results of ground function applications, that is PVS expressions consisting of a function
name applied to variable-free arguments. PVS functions are purely declarative definitions of mathematical
mappings, without any procedural information on how to compute them, but the PVSio package can
derive and execute an algorithm to evaluate a ground function application, turning it into a procedure
call. The PVSio package also provides functions with side effects, such as input and output, which do not
interfere with the semantics of a theory.

A system is modelled in PVS as a theory, a collection of logical statements and definitions about
the structural and behavioural aspects of the system. The system’s required properties are expressed as
theorems to be verified with the PVS theorem prover. If the behavioural aspects are expressed as functions,
the system can also be simulated with the PVSio extension. The same logical model can then be used
both for verification and simulation.

3.2 Model-driven development

Model-driven development (MDD) is based on creating an executable system model by assembling
functional blocks. An executable model makes it possible both to simulate the system and to generate
production software to control it. Together with the naturalness of the graphic language of functional
blocks, these features make MDD very attractive to developers. However, this approach has two limits:
first, functional blocks lend themselves to building design models, but not specification ones; and secondly,
formal verification of a block-based model is tedious, and in fact it is uncommon in industrial practice.

A formal approach can be used to create both specification and design models and intrinsically
lends itself to rigorous verification of system properties. In particular, logic specification languages,

56 MISRA C code generation

such as PVS, are supported by automatic or interactive theorem provers used by developers to check if
system requirements, expressed as logical formulas, are implied by a system’s description expressed in a
logic theory. However, formal methods require expertise in languages and methods that are not widely
known in the wider developer community. Further, most formal languages abstract from the familiar
procedure-oriented computation model of popular programming languages, making it harder to generate
executable software.

It is then desirable to have tools and methods providing developers with the features of both approaches.
The present work is part of a research effort aimed at this goal. With the PVSio-web framework, a
developer can build a model in a graphical state-machine language or a logic language, or both (Sect. 3).
The graphical model is translated into the logic language automatically, and the resulting translation is
both verifiable and executable using the PVSio ground evaluator, which acts as an interpreter for the
PVS language. The PVSio-web framework thus provides features of the formal approach: A formal
specification language and a verification tool, and features of MDD, thus providing a full graphical
modelling language and a simulation engine. A translator from Emucharts to C makes it possible to
generate code from a state machine-based model that can be validated by simulation and verified by
theorem proving. The other important feature of MDD — generation of production code capable to be
run on the actual system hardware — is a key contribution of this paper.

3.3 PVSio-web

The PVSio-web framework is a set of tools, co-ordinated by a web-based interface, for prototyping and
simulation of interactive devices. Its main components are, besides PVS with its PVSio extension: (i)
the Prototype Builder, a graphical tool used to choose a picture of an existing or anticipated device’s
front panel and to associate PVS functions with active areas of the picture representing device inputs
(e.g., buttons or keys) and outputs (e.g., alphanumeric displays or lights); (ii) the Model Editor, a
textual interface to write PVS code; (iii) the Emucharts Editor, a graphical tool to draw Emucharts
state machine diagrams; (iv) a Simulation Environment; and (v) Code Generators for PVS and other
formal languages (currently Presentation Interaction Models [8], Modal Action Logic [15], and Vienna
Development Method [12]) — and for MISRA C, as presented in this paper.

PVSio-web can be used to prototype a new device interface, or to create a reverse-engineered model
of an existing one. In either case, a developer creates formal descriptions of the device’s responses to user
actions, using the model and Emucharts editors, and associates these descriptions with the active areas of
the simulated interface, using the prototype builder. In the simulation environment, the developer, or a
domain expert or a potential user, interacts with the prototype clicking on the input widgets. These actions
are translated to PVS function calls executed by the PVSio interpreter.

3.4 Emucharts

An Emucharts diagram is the representation of an extended state machine in the form of a directed
graph composed of labelled nodes and transitions. Transitions are labelled with triples of the form
trigger[guard]{action}, where trigger is the name of an event, guard is an enabling Boolean expression,
and action is a set of assignments to typed variables declared in the state machine’s context. The default
guard is the true value and the default action is a no-operation. The state of the machine is defined by the
current node and the current values of the context variables.

The code generator for PVS produces a theory containing functions that define the state machine
behaviour on the occurrence of trigger events. Since an Emucharts diagram usually represents a device

G. Mauro, H. Thimbleby, A. Domenici & C. Bernardschi 57

Figure 2: The PVSio-web user interface with the Prototype Builder and Emucharts Editor frames.

response to user actions, such events represent user actions, such as pressing a button on a control panel.
During simulation on a PC, a user click on an active area of the device picture causes the simulator to
generate a function application expression that is passed to the PVSio ground evaluator.

4 From Emucharts to safe C

The aim of programming code generation in the PVSio-web framework is producing a module that
implements the user interface of a device, which can be compiled and linked into the device software
without any particular assumptions on its architecture. In this way, the user interface module can be used
without forcing design choices on the rest of the software. In our approach, the generated module contains
a set of C functions. The main ones are, for each Emucharts trigger: (i) a permission function, to check if
the trigger event is permitted, i.e., whether it is associated with any transition from the current state, and
(ii) a transition function that, according to the current state, updates it, provided that the guard condition
of an outgoing transition holds. The code includes logically redundant tests (assert macros) to improve
robustness.

To generate production-quality code fit for safety-critical applications we adopt MISRA guidelines.
The MISRA guidelines for the C language, originally conceived for the automotive industry, enforce
programming practices to improve maintainability and portability and, above all, to reduce the risk of
malfunction due to implementation- or platform-dependent aspects of the C language. For instance, there
are rules that bar the use of constructs such as goto, and rules requiring that numeric literals be suffixed
to indicate their type explicitly. The generated code currently complies with the first version of the 1998
MISRA C guidelines.

58 MISRA C code generation

〈 headerfile 〉 ::= 〈 preprocessor_directives 〉
[〈 constant_definitions 〉]
〈 typedef_definitions 〉
〈 state_labels_enum 〉
〈 state_structure 〉
〈 utility_functions 〉
〈 init_function 〉
〈 permission_functions 〉
〈 transition_functions 〉

Table 1: Structure of a header file. Non-terminal symbols are enclosed between angle brackets; square
brackets enclose optional symbols.

4.1 Code generation

Our MISRA C code generator was implemented in JavaScript using Handlebars [14], a macro-expansion
tool for web applications. A Handlebars template is a piece of text containing “Handlebar expressions,”
which refer to elements of the surrounding context, typically an HTML document. A Handlebars expres-
sion specifies a character string as a function of context elements, which is compiled into a JavaScript func-
tion that returns the template text with the substitutions computed by the Handlebars expressions. For ex-
ample, a template fragment for a C preprocessor #include directive is #include "{{filename}}.h",
where the Handlebars expression {{filename}} contains the filename parameter that will be replaced
by the actual name of the file to be included.

The code generator produces a header file, an implementation file, a makefile, a simple test driver file,
and a documentation manual.

The structure of the header file is defined by the grammar in Table 1. The header file contains, among
other items, the declarations (typedef_definitions in the grammar) for types with explicit representation
of size and sign, e.g., UC_8, for eight-bit unsigned char, the declaration (state_labels_enum) for an
enumeration type defining the node labels, and the declaration (state_structure) for the state structure type
representing the state of the Emucharts model. This structure contains one context field for each variable
defined in the Emucharts context, and two more fields (curr_node and prev_node) contain the labels of
the current and the previous node.

The declarations are followed by the function prototypes of the two utility functions enter and leave,
the init function, and, for each trigger, one permission and one transition function. The functions receive a
pointer to a structure of type state passed by a calling program. The enter and leave functions, called by
the init and transition functions, update the curr_node and prev_node fields, respectively, with the target
and source node label of the executed transition. The leave function has been introduced to allow future
versions to implement checkpointing algorithms. The init function initialises the state’s context fields
with the values of the context variables specified in the Emucharts diagram, and the curr_node field with
the label of the initial node. As mentioned above, each permission function checks if the current node has
a transition labelled by the respective event. Then, the matching transition function chooses among the
transitions triggered by that event, according to the respective guards (assumed to be mutually exclusive).

The implementation file contains the function definitions. For example, consider the Emucharts
diagram of the data entry system of the Medtronic MiniMed 530G System shown in Figure 3. The
diagram has a context variable display of type double represented on 64 bits, which holds the value shown
on the device’s display. The node labels and the state type are defined as

G. Mauro, H. Thimbleby, A. Domenici & C. Bernardschi 59

Figure 3: Emucharts diagram for the Medtronic MiniMed 530G data entry system.

typedef enum { off, on } node_label;
typedef struct {

D_64 display;
node_label curr_node;
node_label prev_node; } state;

The code for the permission function associated with the click_UP trigger is

UC_8 per_click_UP(const state* st) {
if (st->current_state == on) {

return true;
}
return false;

}

where the return type UC_8 (eight-bit unsigned character) is used to represent the Boolean type. The
transition function is

state click_UP(state* st) {
assert(st->current_state == on);
assert(st->display < 10 || st->display == 10);
if (st->display < 10 && st->current_state == on) {

leave(on, st);
st->display = st->display + 0.1f;
enter(on, st);
assert(st->current_state == on);
return *st;

}
if (st->display == 10 && st->current_state == on) {

leave(on, st);
st->display = 10.0f;
enter(on, st);

60 MISRA C code generation

assert(st->current_state == on);
return *st;

}
return *st;

}

A proof of the correctness of this translation schema is shown in Appendix A.

5 Case study

The Alaris GP, made by Becton Dickinson and Company, was used as a case study for the MISRA C code
generator.

This volumetric infusion pump is a medical device used for controlled automatic delivery of fluid
medication or blood transfusion to patients, with an infusion rate range between 1 ml/h and 1200 ml/h. It
has a monochrome dot matrix display with three significant digits, and has 14 buttons for operating the
device (see Figure 4). The pump has a rather complex user interface, with different modes of operation
and ways of entering data, including the possibility of choosing from a list of preloaded treatments. For
simplicity, in this paper only the essential part of the data entry interface, concerning numerical input and
display, is considered.

Numerical input is done through the chevrons buttons: upward and downward chevrons increase and
decrease, respectively, the displayed value. The amount by which the value is increased or decreased
depends on whether a single or double chevron is pressed, and on the current displayed value. More
precisely, the displayed value is changed as follows: (i) If the displayed value is below 100, the value
changes by 0.1 units for a single chevron, and steps up or down to the next decade for a double chevron
(e.g., from 9.1 to 10.0); (ii) if the displayed value is between 100 and 1,000, the value changes by 1 unit
for a single chevron, and steps up or down to a value equal to the next hundred plus the decade of the
displayed value for a double chevron (e.g., from 310 or 315 to 410); (iii) if the displayed value is 1,000 or
above, the value changes by 10 units for a single chevron, and steps up or down to a value equal to the
next hundred for a double chevron (e.g., from 1,010 or 1,080 to 1,100).

The Emucharts diagram for the numeric data entry is shown in Fig. 5. Triggers click_alaris_up and
click_alaris_dn represent clicks on the upward and downward single-chevron buttons, respectively, and
triggers click_alaris_UP and click_alaris_DN represent clicks on the double-chevron ones. For each
event, combinations of guards and actions specify the rules described above.

The PVS code generator translates the diagram into an executable logic theory, and the C code
generator produces permission and transition functions for each trigger, as explained previously.

5.1 Mobile applications

The PVSio-web framework uses a standard web interface to integrate its tools: this approach offers a
uniform interface that a developer can access with any web browser.

Our framework has been extended by providing the possibility to run simulations on a mobile
device. Smartphones and tablets improve usability and help make user interaction similar to actual device
operation. For example, mobile devices could be used in a hospital environment to train medical personnel
and patients.

An interactive device can be simulated using the C source code produced by the PVSio-web generator,
compiled and linked with a mobile device-specific application. For example, the code for the user interface

G. Mauro, H. Thimbleby, A. Domenici & C. Bernardschi 61

Figure 4: Front panel of the Alaris GP infusion pump.

of the Alaris infusion pump has been ported to the Android [10] platform using the Android NDK [25]
toolset, which can embed C code in a Java project, relying on the Java Native Interface (JNI) [18].

6 Conclusions

We presented the implementation of our MISRA C code generator for the PVSio-web prototyping toolkit.
Automatic code generation significantly reduces project development time. Our approach eliminates a
human-performed step in the development process: user interface software engineers no longer need to
convert the design specifications into executable target code.

Our tool improves the development of safe and dependable user interfaces, as it greatly facilitates
using formal methods easily and reliably with real UIs, which we demonstrated with the medical device
examples in this paper.

Current and future directions include improving this initial integration with other features of C, still
conformant to MISRA C under the most recent 2012 rules. We plan to develop code generators for
programming languages such as C++, Java and ADA.

62 MISRA C code generation

Figure 5: Emucharts diagram for numeric data entry.

Acknowledgements

This work was partially supported by the PRA 2016 project “Analysis of Sensory Data: from Traditional
Sensors to Social Sensors” funded by the University of Pisa.

References

[1] Motor Industry Software Reliability Association (1998): Guidelines for the Use of the C Language in Vehicle
Based Software. Motor Industry Research Association.

[2] Ayan Banerjee & Sandeep K. S. Gupta (2014): Model Based Code Generation for Medical Cy-
ber Physical Systems. In: 1st Workshop on Mobile Medical Applications (MMA ’14), pp. 22–27,
doi:10.1145/2676431.2676646.

[3] M. Beine, R. Otterbach & M. Jungmann (2004): Development of safety-critical software using automatic code
generation. Technical Report, SAE Technical Papers, doi:10.4271/2004-01-0708.

[4] C. Bernardeschi, L. Cassano, A. Domenici & L. Sterpone (2013): Unexcitability Analysis of SEUs Affecting
the Routing Structure of SRAM-based FPGAs. In: Proc. of the 23rd ACM Great Lakes Symposium on VLSI,
GLSVLSI ’13, pp. 7–12, doi:10.1145/2483028.2483050.

http://dx.doi.org/10.1145/2676431.2676646
http://dx.doi.org/10.4271/2004-01-0708
http://dx.doi.org/10.1145/2483028.2483050

G. Mauro, H. Thimbleby, A. Domenici & C. Bernardschi 63

[5] Cinzia Bernardeschi, Paolo Masci & Holger Pfeifer (2008): Early Prototyping of Wireless Sensor Network
Algorithms in PVS, pp. 346–359. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-540-
87698-4_29.

[6] J. Bowen & A. Hinze (2011): Supporting Mobile Application Development with Model-Driven Emulation. In:
Formal Methods for Interactive Systems 2011, Electr. Comm. EASST 45, doi:10.14279/tuj.eceasst.45.634.

[7] J. Bowen & S. Reeves (2012): Modelling User Manuals of Modal Medical Devices and Learning from the
Experience. In: 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ’12),
pp. 121–130, doi:10.1145/2305484.2305505.

[8] J. Bowen & S. Reeves (2015): Design Patterns for Models of Interactive Systems. In: 24th Australasian
Software Engineering Conference (ASWEC), IEEE, pp. 223–232, doi:10.1109/ASWEC.2015.30.

[9] A. Cerone, P. Curzon, J. Bowen & S. Reeves (2007): Formal Models for Informal GUI Designs. Electronic
Notes in Theoretical Computer Science 183, pp. 57–72, doi:10.1016/j.entcs.2007.01.061.

[10] Guiran Chang, Chunguang Tan, Guanhua Li & Chuan Zhu (2010): Developing Mobile Applications on the
Android Platform. In: Mobile Multimedia Processing, pp. 264–286, doi:10.1007/978-3-642-12349-8_15.

[11] T. Erkkinen & M. Conrad (2007): Safety-critical software development using automatic production code
generation. Technical Report, SAE Technical Papers, doi:10.4271/2007-01-1493.

[12] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat & M. Verhoef (2005): Validated Designs For Object-oriented
Systems. Springer-Verlag TELOS, Santa Clara, CA, USA.

[13] J. D. Foley & P. Noi Sukaviriya (1994): History, Results, and Bibliography of the User Interface De-
sign Environment (UIDE), an Early Model-based System for User Interface Design and Implementation.
In: Proceedings of Design, Verification and Specification of Interactive Systems (DSVIS’94), pp. 3–14,
doi:10.1007/978-3-642-87115-3_1.

[14] (2016): Handlebars Semantic Template. Available at http://handlebarsjs.com.

[15] M. D. Harrison, J. C. Campos & P. Masci (2015): Reusing models and properties in the analysis of similar
interactive devices. Innovations in Systems and Software Engineering 11(2), pp. 95–111, doi:10.1007/s11334-
013-0201-3.

[16] MD. Harrison, JC. Campos, R. Rimvydas & P. Curzon (2016): Modelling information resources and their
salience in medical device design. In: 8th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’16), doi:10.1145/2933242.2933250.

[17] Campos JC & Harrison MD (2001): Model checking interactor specifications. Automated Software Engineer-
ing 8(3–4), pp. 5275–310, doi:10.1023/A:1011265604021.

[18] (2016): Java Native Interface. http://docs.oracle.com/javase/8/docs/technotes/guides/jni/.

[19] P. Masci, A. Ayoud, P. Curzon, MD. Harrison, I. Lee & H. Thimbleby (2013): Verification of interactive
software for medical devices: PCA infusion pumps and FDA regulation as an example. In: 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, (EICS ’13), doi:10.1145/2494603.2480302.

[20] P. Masci, P. Mallozzi, F. L. De Angelis, G. Di Marzo Serugendo & P. Curzon (2015): Using PVSio-web
and SAPERE for rapid prototyping of user interfaces in Integrated Clinical Environments. In: Verisure2015,
Workshop on Verification and Assurance, co-located with CAV2015.

[21] P. Masci, P. Oladimeji, P. Curzon & H. Thimbleby (2014): Tool demo: Using PVSio-web to demonstrate
software issues in medical user interfaces. In: 4th International Symposium on Foundations of Healthcare
Information Engineering and Systems (FHIES2014).

[22] P. Masci, P. Oladimeji, P. Curzon & H. Thimbleby (2015): PVSio-web 2.0: Joining PVS to Human-Computer
Interaction. In: 27th International Conference on Computer Aided Verification (CAV2015), Springer,
doi:10.1007/978-3-319-21690-4_30. Tool and application examples available at http://www.pvsioweb.org.

[23] P. Masci, Yi Zhang, P. Jones, P. Oladimeji, E. D’Urso, C. Bernardeschi, P. Curzon & H. Thimbleby (2014):
Combining PVSio with Stateflow. In: 6th NASA Formal Methods Symposium (NFM2014), doi:10.1007/978-
3-319-06200-6_16.

http://dx.doi.org/10.1007/978-3-540-87698-4_29
http://dx.doi.org/10.1007/978-3-540-87698-4_29
http://dx.doi.org/10.14279/tuj.eceasst.45.634
http://dx.doi.org/10.1145/2305484.2305505
http://dx.doi.org/10.1109/ASWEC.2015.30
http://dx.doi.org/10.1016/j.entcs.2007.01.061
http://dx.doi.org/10.1007/978-3-642-12349-8_15
http://dx.doi.org/10.4271/2007-01-1493
http://dx.doi.org/10.1007/978-3-642-87115-3_1
http://handlebarsjs.com
http://dx.doi.org/10.1007/s11334-013-0201-3
http://dx.doi.org/10.1007/s11334-013-0201-3
http://dx.doi.org/10.1145/2933242.2933250
http://dx.doi.org/10.1023/A:1011265604021
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://dx.doi.org/10.1145/2494603.2480302
http://dx.doi.org/10.1007/978-3-319-21690-4_30
http://dx.doi.org/10.1007/978-3-319-06200-6_16
http://dx.doi.org/10.1007/978-3-319-06200-6_16

64 MISRA C code generation

[24] C. Muñoz (2003): Rapid prototyping in PVS. Technical Report NIA 2003-03, NASA/CR-2003-212418,
National Institute of Aerospace, Hampton, VA, USA.

[25] (2016): NDK. Available at http://developer.android.com/ndk.

[26] P. Oladimeji, P. Masci, P. Curzon & H. Thimbleby (2013): PVSio-web: a tool for rapid prototyping device user
interfaces in PVS. In: FMIS2013, 5th International Workshop on Formal Methods for Interactive Systems,
doi:10.14279/tuj.eceasst.69.963.

[27] S. Owre, J. M. Rushby & N. Shankar (1992): PVS: A Prototype Verification System. In: Automated
Deduction—CADE-11: 11th International Conference on Automated Deduction, pp. 748–752, doi:10.1007/3-
540-55602-8_217.

[28] M. Pajic, Zhihao Jiang, Insup Lee, O. Sokolsky & R. Mangharam (2014): Safety-critical Medical Device
Development Using the UPP2SF Model Translation Tool. ACM Trans. Embed. Comput. Syst. 13(4s), pp.
127:1–127:26, doi:10.1145/2584651.

[29] F. Paternò, C. Santoro & L. D. Spano (2009): MARIA: A Universal, Declarative, Multiple Abstraction-level
Language for Service-oriented Applications in Ubiquitous Environments. ACM Trans. Comput.-Hum. Interact.
16(4), pp. 19:1–19:30, doi:10.1145/1614390.1614394.

[30] Raymond Merrill Smullyan (1995): First-order logic. Dover publications, New York.

[31] Mandayam Srivas, Harald Rueß & David Cyrluk (1997): Hardware Verification Using PVS. In Thomas Kropf,
editor: Formal Hardware Verification: Methods and Systems in Comparison, Lecture Notes in Computer
Science 1287, Springer-Verlag, pp. 156–205, doi:10.1007/3-540-63475-4_4.

A Correctness of code generation

In order to assess the correctness of the generated code, the Emucharts diagram is taken as the reference
model, and a correspondence is established between the evolution of the model and that of the executed
code.

A.1 Transition system for an Emucharts diagram

As discussed above (section 4), an Emucharts diagram is a graph of nodes and labelled transitions,
extended with a set of typed context variables, each one with an initial value. Its semantics is given by a
transition system. Let the following be defined:

• A set N = {n1, . . . ,ni} of nodes;

• a set X = {x1, . . . , x j} of context variables (for simplicity, assumed to be typeless);

• a set V of values;

• a set E = {ε1, . . . , εk} of events;

• a set G = {g1, . . . ,gl} of guards, i.e., Boolean expressions involving variables, constants from V,
arithmetic and relational operators;

• a denumerable set V of valuations, i.e., functions from X to V;

• a set A = {a1, . . . ,al} of arcs, i.e., 5-tuples of the form (s, t,e,g,v), where s, t ∈ N are the arc’s source
and target node, e ∈ E, g ∈G, and v ∈ V is the valuation defined by the action labelling the
corresponding transition in the diagram; more precisely, v is the valuation obtained by overriding
the previous valuation with the assignments in the action associated with the arc;

• a set Q of states of the form 〈n,v〉, with n ∈ N and v ∈ V;

http://developer.android.com/ndk
http://dx.doi.org/10.14279/tuj.eceasst.69.963
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1145/2584651
http://dx.doi.org/10.1145/1614390.1614394
http://dx.doi.org/10.1007/3-540-63475-4_4

G. Mauro, H. Thimbleby, A. Domenici & C. Bernardschi 65

arc
ε, (p,q,e,g,v′); ε = e∧n = p∧ v |= g

〈n,v〉 → 〈q,v′〉

idle
ε, (p,q,e,g,v′); ε , e∨n , p∨ v 6|= g

〈n,v〉 → 〈n,v〉

Figure 6: Emucharts operational semantics.

• a transition relation→⊆ Q×Q, defined by the semantic rules in Figure 6, where the premises
contain an event ε, an arc label, and a logical condition, and the consequences contain a member of
the transition relation that is enabled if the condition holds.

With the above definitions, the associated transition system T is the tuple (Q,→,q0), where q0 = 〈n0,v0〉

is the initial state. Since the diagram is deterministic, given a sequence of event occurrences e1, . . . ,ek, . . .,
the transition system has only one sequential path. If an event cannot affect a state (either it is not permitted
or no guard prefixed by the event is satisfied), the system does not change state. The operational semantics
are given in Figure 6.

A.2 Transition system for the generated code

The generated functions are used within a more complex system, which is responsible for catching events
at the real or simulated user interface and for calling the respective functions according to an appropriate
protocol: the init function must have been called previously, then, when an event is catched, the permission
function of the corresponding trigger is called, and only if it returns true can the respective transition
function be executed.

Assume that the data entry subsystem of the device is controlled by a program P that responds to
input events by calling the respective functions. These function will take the device to the next state.

Also the program P can be modelled as a transition system TP based on the following sets, each
one being isomorphic (�) to the corresponding set in T , or an extension to that set: (i) A set NP � N of
node labels, each represented by an enumerator of the node_label type in P; (ii) a set XP = Xc∪{xcurr} of
variables, where Xc � X, each variable in Xc represents a context field of the state structure in P, and xcurr
represents the curr_node of the state structure; (iii) a set VP = Vc∪NP of values, where Vc = V; (iv) a set
EP � E of events, each one associated with one permission function and one transition function in P; (v) a
set GP �G of guards, each implemented as the condition of an if statement in P; (vi) a denumerable set
VP = Vc∪Vn of valuations from XP to VP, where Vc � V and Vn : {xcurr} → NP; (vii) a set AP � A of arcs,
where each arc has the form (vn(xcurr),v′n(xcurr),e,g,v′c), and each arc represents an if statement in the
transition function for event e having guard g as its condition and valuation v′ = v′n∪ v′c as its controlled
statement, with v′n implemented by the enter function and v′c by the assignments specified in the Emucharts
diagram.

With the above definitions, let QP be a set of states where each state is a pair 〈vn,vc〉, with vn ∈ Vn,

vc ∈ Vc. The transition relation
P
−→ ⊆ QP ×QP is defined by the semantic rules in figure 7 applied to

elements of the above sets, and implemented by the permission functions, which check for each event e if
the condition vn(xcurr) = p holds or not, and by the transition functions, which check if the current values
of the variables satisfy the guards, and update node and variables accordingly. The associated transition

system TP is the tuple (QP,
P
−→,qP0), where qP0 is the state defined by the initial values of xcurr and of the

context variables, set by the init function. The operational semantics are given in Fig. 7.

66 MISRA C code generation

arcP
ε, (p,q,e,g,v′c); ε = e∧ vn(xcurr) = p∧ vc |= g

〈vn,vc〉
P
−→ 〈q,v′〉

idleP
ε, (p,q,e,g,v′c); ε , e∨ vn(xcurr) , p∨ vc 6|= g

〈vn,vc〉
P
−→ 〈n,vc〉

Figure 7: Generated code operational semantics.

A.3 Equivalence of the transition systems

To prove the correctness of the generated code, we introduce the definition of equivalence between
Emucharts states and the program states.
Definition 1. A member m of one of the sets N, X, V, E, defined in T , is equivalent (∼) to the member mP

paired to m by the isomorphism between the set containing m and the corresponding set in TP.
Definition 2. A state q = 〈n,v〉, q ∈ Q, is equivalent (∼) to a state qP = 〈vn,vc〉, qP ∈ QP iff n ∼ vn(xcurr) —
so the value of xcurr is equivalent to node n, and ∀x∈Xv(x) = vc(xP) (i.e., matching variables in q and qP

have the same values).
The proof of correctness for the generated code is by induction on the length of computation. We

assume that T and TP are the transition systems modelling, respectively, an Emucharts diagram and
a program that uses the generated code, respecting the previously introduced protocol, and accepts a
sequence of input events.
Theorem 1. Let T and TP be the transition systems introduced in the above paragraphs, and e = e1,e2 . . .

be a sequence of input event sequences. Let σ = q0,q1, . . . and σP = qP0,qP1, . . . be sequences of states,

with qi→ q(i+1) and qPi
P
−→qP(i+1).

We prove that, at each step of the computation, qi ∼ qPi:
Induction base. q0 ∼ qP0 by construction.

Induction step. Let q j ∼ qP j at step j. On the occurrence of an event e, let q j→ q(j+1) and qP j
P
−→qP(j+1).

We can prove that q(j+1) ∼ qP(j+1) by case analysis: (1) e not permitted in q j; (2) e permitted and guard
not satisfied; and (3) e permitted and guard satisfied.
Case 1: e not permitted. If the event is not permitted in the current state, rules idle and idleP apply to T
and TP, respectively, so that q(j+1) = q j and qP(j+1) = qP j, equivalent by induction hypothesis. Recall that
the permission function for e returns false in this case, and by hypothesis program P does not call the
corresponding transition function.
Case 2: e permitted and guard not satisfied. Also in this case, rules idle and idleP apply to the
transition systems. The if statements in P check that the guard does not hold, and the respective controlled
statements are not executed.
Case 3: e permitted and guard satisfied. In this case, Rules arc and arcP apply to both transition
systems, therefore (i) T moves from state q j = 〈n,v〉 to state q(j+1) = 〈n′,v′〉, or (ii) TP moves from state
qP j = 〈vn,vc〉 to state qP(j+1) = 〈v′n,v

′
c〉. Valuation v′n maps xcurr to a node label equivalent by definition to

n′, and v′c maps the context variables in TP to values equivalent by definition to those assigned by v′ to the
context variables in T ′.

The new states in the two transition systems are therefore equivalent.

	Introduction
	Related work
	PVS, model-driven development and Emucharts
	PVS, the Prototype Verification System
	Model-driven development
	PVSio-web
	Emucharts

	From Emucharts to safe C
	Code generation

	Case study
	Mobile applications

	Conclusions
	Correctness of code generation
	Transition system for an Emucharts diagram
	Transition system for the generated code
	Equivalence of the transition systems

