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Abstract. We consider the consistency proof for a weak fragment of arithmetic published by
von Neumann in 1927. This proof is rather neglected in the literature on the history of consistency
proofs in the Hilbert school. We explain von Neumann’s proof and argue that it fills a gap between
Hilbert’s consistency proofs for the so-called elementary calculus of free variables with a successor
and a predecessor function and Ackermann’s consistency proof for second-order primitive recursive
arithmetic. In particular, von Neumann’s proof is the first rigorous proof of the consistency of an
axiomatization of the first-order theory of a successor function.

§1. Introduction. In 1925, the twenty-one-year-old John von Neumann (then still
Neumann János) wrote and submitted to the Mathematische Zeitschrift a long paper,
Zur Hilbertschen Beweistheorie. The paper would have been published two years later
(Von Neumann 1927; it is reprinted in Von Neumann 1961, 256–302). The paper contains
a consistency proof for a fragment of first-order arithmetic by a variant of Hilbert’s Substi-
tution Method.

An in-depth account of this work of von Neumann’s is lacking in the current literature on
consistency proofs and the ε-Substitution Method. In this paper we try to fill this gap. We
shall consider the following questions. What is the system of which von Neumann proves
consistency? How does it relate to the systems treated by Hilbert and by Ackermann? What
are the distinctive features of von Neumann’s Substitution Method? In which meta-theory
can von Neumann’s proof be carried out?

Von Neumann’s consistency proof is for a system containing full predicate logic and
axioms for a successor function. This fills an apparent gap in the commonly accepted
historical account of the development of consistency proofs and the Substitution Method.
Von Neumann’s paper also contains a clear and insightful presentation of Hilbert’s proof-
theoretic approach (Ansatz) and a detailed critique of the most important consistency proof
produced until then in the Hilbert school, namely Ackermann’s proof (Ackermann 1925).
Moreover, von Neumann gives a very precise (although slightly peculiar) definition of
the general notion of a formal system (using—probably for the first time in the literature—
axiom schemas), a rigorous delimitation of the specific formal system treated, together with
many interesting side remarks (e.g., on decidability, on choice principles, on definitions by
recursion, etc.). We herein concentrate strictly on the proof, and we do not attempt to
address all the other themes and aspects of this very rich work of von Neumann’s.1

Received: May 15, 2014.
1 This holds, in particular, for the interesting topic of a possible comparison between Von

Neumann’s prudential attitude on the Entscheidungsproblem shown in this paper (1927, 11 ff.),
and Bernays’—and especially Hilbert’s—optimism on the problem in those years: this would
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430 LUCA BELLOTTI

The present paper is organized as follows. In Section 2 we review the literature on von
Neumann’s proof. In Section 3 we attempt to locate von Neumann’s proof in the commonly
accepted historical scheme of the development of consistency proofs in the Hilbert school.
In Section 4 we present the details of the formal system of which von Neumann proves
consistency. In Section 5 we give a detailed description of von Neumann’s proof.

§2. Review of the literature. A lot of scattered references to von Neumann’s paper
exist in the literature. One is even (in a footnote) on the first page of Gödel’s incompleteness
paper. There is an early critical comment on von Neumann’s symbolism in Leśniewski
(1929), to which von Neumann replied in (1931); there is a brief account of his result,
without details, in Heyting (1955, 52–54), and a somewhat cryptic one in Ulam’s obituary
of von Neumann (1958, 13–14). Ackermann briefly reviewed the work in the Jahrbuch
über die Fortschritte der Mathematik.

Concerning the more recent historical literature one can observe that a satisfactory
account of von Neumann’s proof is missing. One reason is probably that, as Zach writes in
(2003, 226),

Von Neumann’s paper of 1927, the only other major contribution to proof
theory in the 1920s, does not entirely fit into the tradition of the Hilbert
school, and we have no evidence of the extent of Hilbert’s involvement
in its writing.

Nevertheless, as we shall argue, von Neumann’s proof is very close to the methods of
the Hilbert school and in fact provides the first rigorous application of—essentially—the
Substitution Method to the full predicate calculus extended by axioms for a successor
function.

The merits of von Neumann’s work are not totally overlooked in the literature. On the
one hand, early recognition by Hilbert, Ackermann and Bernays of the importance of von
Neumann’s work is documented. In his address to the International Congress of Mathe-
maticians in 1928 (Hilbert 1928, 1929), Hilbert writes that “the consistency proof of the
ε-axiom for the natural numbers has been accomplished by the works of Ackermann and
von Neumann”. After reading von Neumann’s paper, Ackermann acknowledged the prob-
lems in his own proof of ε-reduction and reworked his own proof using von Neumann’s
notion of Grundtypus.2 On the other hand, partly because of the common misconceptions
of that time about exactly which system had been proved to be consistent, partly because of
the nonhistorical preoccupations of the working mathematicians involved in the endeavor
of consistency proofs, partly also because of the fact that von Neumann was sort of an
outsider to the Hilbert school, it is fair to say that no precise assessment of the merits of
von Neumann’s work and of its exact relationship to the work of Hilbert and Ackermann
can be found in the early literature.

require a systematic study of the relevant texts (mainly some of the material collected in Hilbert
2013) which is beyond the scope of the present work.

2 The following two excerpts from Mancosu–Zach–Badesa (2009) and Zach (2003) summarize the
situation: “Ackermann continued to work on the proof, amending and correcting the ε-substitution
procedure even for first-order ε-terms. These corrections used ideas of von Neumann (1927),
which was completed already in 1925” (2009, 398). “In 1927, Ackermann developed a second
proof of ε-substitution, using some of von Neumann’s ideas (in particular, the notion of an
ε-type, Grundtyp). The proof is unfortunately not preserved in its entirety, but references to it
can be found in the correspondence” (2003, 242).
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VON NEUMANN’S CONSISTENCY PROOF 431

The recent historical literature also recognizes the importance of von Neumann’s work
but leaves it as an open problem to figure out what exactly are the reasons of this impor-
tance. The most thorough account of von Neumann’s proof in the recent literature are the
following two excerpts from Mancosu–Zach–Badesa (2009, 398 and fn. 89):

Von Neumann (1927) used a different terminology from Ackermann, and
the precise connection between Ackermann’s and von Neumann’s proofs
is not clear. Von Neumann’s system does not include the induction axiom
explicitly, since induction can be proved once a suitable second-order
apparatus is available. Hence, the consistency proof for the first-order
fragment of his theory does not include induction, whereas Ackermann’s
system has an induction axiom in the form of the second ε-axiom, and his
substitution procedure takes into account critical formulas of this second
kind. Another significant feature of von Neumann’s proof is the precision
with which it is executed: von Neumann gives numerical bounds for the
number of steps required until a solving substitution is found.

Von Neumann (1927) is remarkable for a few other reasons. Not only
is the consistency proof carried out with more precision than those of
Ackermann, but so is the formulation of the underlying logical system.
For instance, the set of well-formed formulas is given a clear induc-
tive definition, application of a function to an argument is treated as
an operation, and substitution is precisely defined. The notion of axiom
system is defined in very general terms, by a rule which generates axioms
(additionally, von Neumann remarks that the rules used in practice are
such that it is decidable whether a given formula is an axiom). Some of
these features von Neumann owes to König (1914).

In the present paper we intend to locate more precisely this work of von Neumann’s
within the historical scheme of the development of consistency proofs and of the Substitu-
tion Method proposed in Mancosu–Zach–Badesa (2009), to which we adhere.

Part of the difficulty in isolating the merits of von Neumann’s proof comes from the
confusion about the strength of the systems for which consistency had been proved. This
confusion was very common at the time. In particular, the role of induction was some-
what underestimated. The simultaneous development of logic and mathematics that Hilbert
promoted took forms that are not familiar nowadays. We will argue that von Neumann’s
work witnesses a very insightful understanding of the limits of the Substitution Method.
Indeed the consistency proof does in full rigor as much as was possible at the time without
using transfinite induction and without substantially new ideas (such as those introduced
by Gentzen).

§3. Early consistency proofs. We briefly recall the stages of the development of
consistency proofs in the first years of the 1920s. We adhere to the accounts presented
in Zach (2003) and Mancosu–Zach–Badesa (2009).

We are particularly interested in Stage II and III of Hilbert’s program as identified there.
Stage II is a consistency proof for the so-called elementary calculus of free variables with
successor and predecessor. This axiom system consists of axioms for propositional logic,
identity axioms, and two axioms for a successor and a predecessor function: a +1 �= 0 and
δ(a + 1) = a (for the full list of axioms see Zach 2003). The rules of inference are Modus
Ponens and substitution for individual variables and formula variables.
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432 LUCA BELLOTTI

Note that this system does not include quantifiers. As reported by Zach (2003), Hilbert’s
1921/22 lecture notes contain a consistency proof for this system using a standard induction
on the length of proofs. Stage III is a consistency proof for a system expanding the ele-
mentary calculus described above with definitions by primitive recursion and an induction
rule. This system is also presented in Hilbert’s lecture notes from 1921/22. The transition
from this system to Ackermann’s formulation of the ε-calculus is nicely described in Zach
(2003). From our perspective it is interesting to observe that Hilbert’s original formulation
uses the τ -operator. This is a term-forming operator that applies to formulas (and deriva-
tively to functions) and picks a counterexample. The τ -operator can be used to define
quantifiers. If an axiom imposing that the counterexample is minimal is added then the
τ -operator can also be used to derive the induction principle and the least number principle.
Hilbert and Bernays later changed the notation—but not the meaning—of the τ -operator
and used the ε-operator. Ackermann switched to the dual and now common meaning of the
ε-operator (i.e., finding a witness).

It is important to observe in this context that Hilbert’s (1923) and Hilbert–Bernays’
(1923, 1923a) only contain a sketch of the consistency proof for the system with the
substitution axioms. In particular, only the case in which the proof contains exactly one
first-order ε-term εa A(a) and the corresponding critical formula is treated explicitly. Zach
(2003) identifies the following challenges left open after Hilbert’s 1922/23 treatment.

1. Extend to cover more than one ε-term in the proof.

2. Take care of nested ε-terms.

3. Extend to second-order ε-terms.

These three points are those addressed by Ackermann in his 1924 dissertation (published
in 1925). It is generally acknowledged that Ackermann only in part achieved his goals.
In particular, while the treatment of point (3) above was partly successful, though to
the limited extent of a consistency proof for a version of second-order PRA (essentially
inaugurating the use of transfinite induction in consistency proofs), the treatment of the
Substitution Method in its full generality (i.e., points (1) and (2) above) is known to be
rather defective. Let us quote Zach (2003, 241) on this point.

A preliminary assessment can, however, already be made on the basis
of the outline of the substitution process above. Modulo some needed
clarification in the definitions, the process is well-defined and terminates
at least for proofs containing only least-number axioms (critical formulas
corresponding to axiom (4)) of rank 1. The proof that the procedure
terminates (paragraph 9 of Ackermann 1925) is opaque, especially in
comparison to the proof by transfinite induction for primitive recursive
arithmetic. The definition of a Substitution Method for second-order
ε-terms is insufficient, and in hindsight it is clear that a correct termi-
nation proof for this part could not have been given with the methods
available.

Ackermann himself was aware of the defects of this part of his dissertation and reworked
the proof in the subsequent years.

According to the previous account of the history of consistency proofs between 1921 and
1924, it seems fair to say that there is a significant gap between the elementary calculus of
free variables with successor and predecessor of Hilbert’s 1921/22 lecture notes (defined
above) and Ackermann’s system of 1924.
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VON NEUMANN’S CONSISTENCY PROOF 433

In this perspective von Neumann’s 1927 paper gains a special interest. The paper con-
tains a fully satisfactory syntactic consistency proof for a system stronger than the system
treated by Hilbert: von Neumann’s system consists of full first-order predicate calculus plus
axioms for a successor function. The proof is completely rigorous and does not share the
opacity of Ackermann’s (1925) treatment of the ε-Substitution Method. On the other hand,
von Neumann’s proof works for a system that is significantly weaker than the target system
of Ackermann’s (1925) and indeed weaker than the system used by Hilbert and Bernays
in Stage III (1923, 1923a). The latter system includes definitions by primitive recursion
and the second ε-axiom. But Hilbert only gives a sketch of the ε-reduction procedure for
a very special case. Ackermann’s (1925) system is even stronger than Hilbert’s one in that
it includes second-order definitions by primitive recursion. But, as previously remarked, it
is commonly acknowledged that Ackermann’s proof is defective (except for the subsystem
corresponding to second-order PRA) and indeed Ackermann reworked his proof using
ideas of von Neumann’s.

It is true that the weak system whose consistency is proved by von Neumann can be
shown to be consistent much more easily with the methods of Herbrand (1931) or Gentzen
(1934), but this holds only because one then has their general strong results at disposal
(results which of course were unknown in 1925).3 The main interest of von Neumann’s
proof lies in the method adopted by him, a method which is (as will be evident after the
detailed description of the proof) quite original in the context of the Hilbert school in the
mid-Twenties, and whose possibilities of further development and application (by adopting
stronger background assumptions) have not been explored yet.

The bottom-line seems to be as follows. Von Neumann’s proof is the first fully rigorous
syntactic proof of the consistency of a system of first-order arithmetic with quantifiers and
a successor function. The other main merit of von Neumann’s paper is the introduction of
the notion of Grundtypus, which proved to be the right notion to rework and generalize
Ackermann’s 1924 proof, as later done by Ackermann himself, a work culminating in his
(post-Gentzen) consistency proof for full Peano Arithmetic in 1940 (Ackermann 1940).
The latter merit is already acknowledged in both the early (Hilbert–Bernays 1939, 122)
and recent literature (Zach 2003, Mancosu–Zach–Badesa 2009).

§4. The theory. We here describe the formal system whose consistency von Neumann
proves. Our description is, as much as possible, in current notations and respects current
conventions. We warn the reader that in many cases these are different from von Neumann’s
conventions.

In particular, Von Neumann’s terminology diverges from ours. We shall adhere to some
extent to it, while in other cases we use current terminology. Von Neumann does not
distinguish between propositions and terms and uses ‘formula’ (Formel) for both. We shall
use the term expression instead, to avoid confusion to the contemporary reader. We shall
also use ‘formula’, ‘sentence’, ‘term’ in their current usage. A τ -term is a term beginning
with the τ -operator (see below).

The logical basis of the system is a version of first-order predicate calculus with identity,
with negation and conditional as primitive connectives, and both quantifiers as primi-
tives. The language has identity as the only binary relation, a single monadic predicate

3 In fact, Herbrand proved in his thesis (Ch. 4) the consistency of this weak system also by a simple
elimination of quantifiers, without his theorem.
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434 LUCA BELLOTTI

Z (mnemonic for Zahl), a single constant 0, and a single unary function symbol ′ (succes-
sor). A term-forming operator τ acting on formulas is present in the language (its action
will be presently explained).

The axioms can be divided into four groups. Von Neumann gives axiom schemas (in-
stead of axioms and substitution rules).

(I) Propositional axioms

Let A, B, C be closed formulas.

(1) A → (B → A)

(2) (A → (A → B)) → (A → B)

(3) (A → (B → C)) → (B → (A → C))

(4) (A → B) → ((B → C) → (A → C))

(5) A → (¬A → B)

(6) (A → B) → ((¬A → B) → B)

(II) Identity

Let C be a formula with at most one free variable; let a, b be closed terms.

(1) a = a

(2) (a = b) → (C(a) → C(b))

(III) Arithmetic

Let a, b be closed terms.

(1) Z(0)

(2) Z(a) → Z(a′)
(3) ¬(a′ = 0)

(4) (a′ = b′) → (a = b)

(IV) Quantifiers and τ -operator

Let A be a formula with at most the variable x free; let b be a closed term.

(1) ∀x A → A(b)

(2) A(b) → ∃x A

(3) A(τ x A) → ∀x A

(4) ∃x A → A(τ x¬A)

The axioms in Groups (I)–(IV) are all the axioms of the formal system whose con-
sistency is proved in the paper. The only deduction rule of the system is Modus Ponens
(the axioms of Group IV make rules on quantifiers superfluous). Only closed formulas
occur in proofs.

An important difference with respect to our ordinary formal languages is the presence,
in the logical basis, of Hilbert’s τ -operator. This operator was introduced by Hilbert in
his 1922/23 lectures. The τ -operator applies to a formula A with respect to a variable x ,
possibly occurring free in the formula, and generates a term τ x A. When x is the only free
variable in A, this term intuitively stands for a counterexample to the validity of A, if one
exists. If there is at least a counterexample to the predicate expressed by a given formula
with one free variable, then the term consisting of the τ -operator applied to that formula
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VON NEUMANN’S CONSISTENCY PROOF 435

denotes any one of these counterexamples; if there are no counterexamples, it denotes
(conventionally) an arbitrary fixed object (e.g., 0). In other words, the τ -operator chooses
an example of the ‘worst case’ for a given predicate (the operator is nonextensional, since
the choice is relative to the formula expressing the predicate): if even the example of
the worst case satisfies the predicate, then everything does; dually, if there is something
satisfying the predicate, then also the example of the worst case of the negation of the
predicate must satisfy the predicate (otherwise, everything would satisfy the negation of
the predicate). The point of axioms (3) and (4) is just to express this. To recall Hilbert’s
memorable example: If Aristides the Just is corrupt, then anyone is corrupt.

In Hilbert’s treatment of 1922/23 axioms were included to force the τ -operator to give
the least counterexample, if one exists. Von Neumann leaves this minimality axiom out.
Thus, the axioms of Group IV are fully in the tradition of the Hilbert school of that time,
except for the following points.

1. von Neumann retains Hilbert’s τ -operator and does not adopt the dual ε-operator,
as done instead by Ackermann in 1924.

2. von Neumann retains the quantifiers along with the τ -operator, and the respective
axioms are formulated accordingly.

3. von Neumann does not include the minimality axiom for the τ -operator, which was
included in Hilbert’s treatment of 1922/23.

The first two points are merely conventional and cosmetic. The third point is substantial:
that the minimality axiom, which can be used to derive the induction axiom, is left out of
the system is a witness of von Neumann’s remarkable insight.

Von Neumann also discusses two further groups of axioms. The first (Group V) includes
a single axiom schema, which is a form of the full impredicative second-order Com-
prehension Schema (suitably adapted to the language and idiosyncratically formulated—
we shall not give it here, to avoid notational complications). This schema is explicitly
introduced by the author since it is necessary to allow the formal development of a system
sufficient for classical analysis (first of all, after the introduction of a suitable new predicate,
it allows the proof of the full second-order version of mathematical induction). But, of
course, the consistency proof does not encompass the system including this schema, as
von Neumann explicitly remarks. The second (Group VI) includes three axiom schemas,
rigorously expressing for this system some basic rules that allow the usage of explicit
(nominal) definitions; in our current logical practice these (notationally rather cumber-
some) axiom schemas are not on the same language-level as the ones in the other groups.
The consistency proof regards a system that at present we would formulate with the axiom
schemas in Groups (I)–(IV) only.

It is commonly stated (see, e.g., van Heijenoort 1967, 489) that both von Neumann and
Ackermann proved in fact the consistency of a subsystem of arithmetic with quantifier-
free induction. In the case of von Neumann, this can be considered correct, recalling that
one can prove that if a subsystem of arithmetic without induction is consistent, it remains
consistent when a quantifier-free induction rule is added (this was known in the Hilbert
school at the time). The case of Ackermann is more complicated, and we cannot discuss
it here; we refer the reader to Zach (2003). As we have seen, Ackermann set out for a
stronger system (including induction and definitions by second-order primitive recursion)
but his 1924 proof is defective in many respects (see discussion above) so that it is hard
to assess exactly which system is proved consistent. Ackermann’s proof is criticized in
detail by von Neumann in the last part of his paper. There (in the very last paragraph of the
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436 LUCA BELLOTTI

paper)4 he also seems to imply the false statement that both he and Ackermann could even
prove the consistency of a predicative subsystem of analysis (roughly what nowadays is
known as ACA0, a conservative extension of Peano Arithmetic PA). But it is well-known
that the limitations of the consistency proofs obtained were not at all clear at the end of the
Twenties (see Zach 2003 for discussion).

§5. Overview of the proof. We give a reasonably detailed exposition of von
Neumann’s proof. This serves two purposes. The first is to offer to the modern reader a
presentation of von Neumann’s proof stripped-off of some of the oddities of the notation
and terminology of his times and of his own, although we chose to respect two momentous
choices of his: to use τ ’s instead of ε’s and to retain quantifiers (otherwise the whole
proof should be fully reformulated, in fact completely altered, as will be evident after its
exposition). The second is to give the reader enough ground to judge whether our proposed
historical assessment is justified.

5.1. The proof strategy: part 1. Von Neumann starts with the consistency problem and
shows how to reduce its solution, step by step, to the solution of gradually simpler and more
specific problems, and ultimately to the satisfaction of purely combinatorial conditions,
whose fulfilment is finally proved, thus demonstrating consistency. In the course of these
reductions von Neumann reformulates the basics of the Substitution Method and, more
importantly, introduces the key notion of a Grundtypus. We shall presently outline this
sequence of reductions.

First of all, though, we briefly recall the main idea of the Substitution Method. The
basic goal of the procedure is (roughly) to find suitable substitutions of terms in place
of the variables acted upon by the operators which are to be eliminated (instances of
the ε-operator or–here–of the τ -operator, which in their turn would allow an eliminative
definition of quantifiers–although the latter are retained in the formal language here),
in such a way that all the formulas so obtained (from given initial sets of formulas to
be evaluated) satisfy certain requirements that will ultimately ensure the consistency of
the formal system. Thus, Von Neumann’s procedure is akin to the classical procedure of
ε-substitution (see Hilbert–Bernays 1939, Tait 1965, Moser 2006, etc.), provided one
recalls that the ε-operator chooses an example, while the τ -operator chooses a counterex-
ample. His proof is carried out by means of a suitable enrichment of the theory whose
consistency is to be proved, by finding witnesses for the τ -terms, chosen in such a way that
the relevant formulas (axioms) are made true. Although the basic idea is similar, this marks
a difference5 with respect to the (sort of ‘priority’) arguments developed by Ackermann,
which are the basis of the classical Substitution Method, officially presented by Bernays in
the second volume of the Grundlagen (1939): this is based on successive replacements of
terms, usually with ‘backtracking’, until a final solving substitution is found after a finite

4 “The formalism thereby [by Ackermann’s proof, after the necessary limitations to its scope]
recognized as consistent makes it possible only the construction of a mathematics which
corresponds to the semi-intuitionistic mathematics of the critics of set theory and analysis before
Brouwer” (1927, 46), e.g., he adds, Russell’s and Weyl’s predicative systems.

5 Whose precise extent cannot be discussed here, since this would require too much space and
a technical competence on these methods in general that we do not have. These are also the
reasons why we do not venture into a precise comparison with current, state-of-the-art uses of the
Substitution Method, such as those in (e.g.) Buchholz–Mints–Tupailo 1996, Moser 2006, Moser–
Zach 2006, etc.
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VON NEUMANN’S CONSISTENCY PROOF 437

number of steps (in the original formulations, termination must be proved by finitistic
means).6

Step 1. The starting point is the fact that if a theory has a valuation then it is consistent.
A valuation7 here is a decidable partition (T, F) of the set of all the closed expressions in
the language of the theory such that (a) all closed instances of axioms of the theory are in
T , (b) A → B is in T iff A ∈ F or B ∈ T , and (c) A ∈ T iff ¬A ∈ F . If the theory has a
valuation then it is consistent, since if there were a proof of a contradiction then the finitely
many axioms occurring in the proof would be in T ; the valuation would have to put in T
both a formula and its negation (since we would have proved both); but this contradicts the
last property in the definition of valuation.

Von Neumann first defines a valuation (T, F) that works (without modifications through-
out the proof) for the first three groups of axioms. This is achieved as follows. Two spe-
cial constants, WT and WF are introduced: they denote the truth values, True and False,
respectively. We have to define a partition (T, F) of the set of all closed expressions.
For those expressions which are not formulas, the partition is necessarily quite artificial;
von Neumann decides (without consequences for the consistency proof) to define the
partition for all the expressions (even the open ones). First he simply puts all variables
and all constants except WF into T , and WF into F . Then we have the nontrivial clauses.
A sentence A → B belongs to T iff either A belongs to F or B belongs to T (note that
with the first three groups of axioms there is no problem in deciding which case holds).
A sentence ¬A belongs to T iff A belongs to F . A sentence a = b belongs to T iff a and b,
as expressions, are syntactically identical. A sentence Z(a) belongs to T iff a is a numeral
(in the usual sense, since we have 0 and successor in the language). All atomic sentences
that do not fall under the previous cases belong (by default, without effect on the proof) to
T . If a is an expression which has already been put into T or into F , then ∀x(a), ∃x(a)
and τ x (a) belong to T (this is again a degenerate case, with vacuous operators).

Step 2. The next move is to reduce the consistency problem to that of finding valuations
for each finite subset S of axioms of the target theory. To this aim, von Neumann first
introduces the notion of partial valuation. A partial valuation (‘Teilwertung’) with respect
to a finite set S of axioms is simply a valuation relativized to that set of axioms. Thus,
instead of referring to all the axioms, condition (a) (in the above definition of valuation) is
limited to the axioms in the set S: all the elements of S receive the value True. In a partial
valuation the assignment of truth values depends in general on the chosen set of axioms S,
while in a valuation it does not. In general, the presence of quantifiers makes it necessary
to find a partial valuation.

The problem is now reduced to finding a partial valuation for every finite set S of (closed
instances of) axioms of the formal system. The point is that if for every finite set of axioms

6 Ackermann developed his methods on the basis of Hilbert’s original intuitions, and employed
them, as we said above, both in Ackermann 1925 and (with corrections and refinements) 1940:
we again refer the reader to Zach 2003 and Mancosu–Zach–Badesa 2009 for clear exposition
and discussion (the analogy with priority arguments was suggested by an anonymous referee).
By the way, a method which is to some extent similar to Von Neumann’s one (more than to
Ackermann’s one) was also employed, in a different context, by Shoenfield 1967, Section 4.3; a
detailed comparison, which again would require a long detour, is out of the scope of the present
paper.

7 Wertung: this notion is traced back by von Neumann to Julius König.
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S of a given formal system there is a partial valuation with respect to S, then the formal
system is consistent: as above, if there were a proof of a contradiction, then the finitely
many axioms occurring in the proof would constitute such a set S; the partial valuation
with respect to S would have to verify both a formula and its negation, but this contradicts
the last property in the definition of partial valuation.8

Step 3. The next move is to reduce the problem of showing that a finite set of sentences
has a partial valuation to that of defining a so-called reduction rule. A reduction rule
or procedure is a rule that associates to each closed formula or term another formula or
term, its reduct, that has the property that all the τ -operators and the quantifiers occurring
in the original formula or term have been eliminated. The resulting formula or term is
called reduced (see Def. 5.1 below). Thus, a reduction procedure is a method to eliminate
all the operators (τ -operators and quantifiers) from closed expressions, finding suitable
substitutions of terms for the variables bound by the operators which are to be eliminated.

Instead of directly defining a partial valuation (TS, FS) for each finite subset S of the
axioms (as a partition of all closed expressions), one can define more simply for each S a
reduction rule PS , depending on S, and set

A ∈ TS ⇔ PS(A) ∈ T,

where PS(A) is the reduct of the expression A by means of the procedure PS , and T is from
the above fixed partition (T, F) of all expressions (see Step 1; since this is a partition, the
same condition holds for false expressions). The reduction rule PS depends on the finite
set S of axioms, in the sense that different reduction rules may give different reducts for
the same expression, suitable for different sets S.9

Von Neumann then imposes the minimal conditions on a reduction rule that guarantee
that the resulting partition is a partial valuation. The following notion of reduced expression
plays a central role here.

DEFINITION 5.1 (Reduced Closed Expression). A closed expression is reduced if no closed
subexpression (inclusive of the expression itself) begins with a quantifier or with a
τ -operator.

Thus, reduced closed expressions are, by definition, closed expressions without quanti-
fiers or τ -operators.

To make sure that the partition (TS, FS) induced by a reduction rule PS is a partial
valuation, it is sufficient (by definition of partial valuation) to ensure that the reduction rule
commutes with the connectives (the reduct of a negation is the negation of the reduct, etc.),
with identity, and with the basic operations and predicates of the language (the reduct of a
successor is the successor of the reduct, etc.), that the reduct of 0 is 0, and that if a and b

8 This use of the notion of partial valuation apparently marks a first slight methodological
divergence from the consistency proofs of the Hilbert school. In the latter the finiteness condition
is derived from focusing on a purported formal proof of a contradiction. It seems that Von
Neumann reasons here in terms of finiteness of proofs in general instead, and does not focus
his procedure on a particular proof-figure. But this difference should not be overemphasized, and
we do not insist on it: we have just seen that the relevant application of the notion of partial
valuation to the consistency problem concerns just the purported proof of a contradiction.

9 This is usual in substitution methods in general. Here, the choice of specific witnesses for the
τ -terms will depend on the given set of axioms in which the τ -terms occur. But it will be possible
to fully appreciate this point only below, when we inductively define a reduction procedure.
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have the same reduct, then C(a) and C(b) (where C is any formula with at most one free
variable) have the same reduct. For this purpose, it is sufficient to stipulate that any reduced
formula is its own reduct, that any reduct is reduced, and that if a∗ is the reduct of a, then
B(a) and B(a∗) (where B is any formula with at most one free variable) have the same
reduct. Thus, von Neumann singles out the following two conditions (the first is twofold)
on any reduction procedure P , where RE D denotes the set of reduced expressions.

(α) a ∈ RE D ⇒ P(a) = a; for all a, P(a) ∈ RE D.

(β) P(B[x/a]) = P(B[x/P(a)])

A further condition (III′b in von Neumann’s paper) is necessary and will be the hardest to
guarantee. This condition is simply the following.

(Condition III′b) All elements of S that are instances of quantifiers
axioms or of τ -axioms (Group IV) belong to TS .

Step 4. Von Neumann makes one more simplifying step by singling out a special set of
expressions and showing that it is enough to define a reduction rule on it. This is the set of
directly reducible expressions, defined as follows.

DEFINITION 5.2 (Directly Reducible Expression). A closed expression is directly reducible
if it begins with a quantifier or a τ -operator but no proper closed subexpression of it begins
with a quantifier or with a τ -operator.

In particular, a τ -term is directly reducible if it has no proper subterm without free vari-
ables which is a τ -term, and the formula on which the τ -operator acts has no closed sub-
formula in which quantifiers occur. A closed formula is directly reducible if it begins with
a quantifier, it has no proper closed subformula in which quantifiers occur, and no τ -terms
without free variables occur in it. Von Neumann makes the fundamental observation that
in a reduction rule it is always sufficient to deal with directly reducible terms and formulas,
since the other terms and formulas can then be reduced by sequences of reductions of
directly reducible ones. In this way conditions (α) and (β) can always be ensured.

Step 5. The problem is now reduced to that of finding, for each finite set of sentences S,
a rule PS assigning reduced expressions to directly reducible expressions and satisfying
Condition (III′b).

In general, in order to obtain a partial valuation for all the closed expressions in the
language with respect to the finite set S of axioms, it is certainly sufficient to make true
the reducts of all the (finitely many) instances of the axioms (of all the groups) in which
the closed formulas and terms in the set S occur. For the other formulas it is then enough
to assign the values according to the truth tables of the connectives.

Since the instances of axioms of Groups (I)–(III) can always be trivially made true (von
Neumann shows this on p. 24 of his paper; see above, Step 1), the point is to make true the
reduced formulas of all the instances of the axioms of Group IV (expressing the relations
between quantifiers and τ -terms) in which the closed formulas and closed terms from the
set S occur. These axioms are conditionals: thus (in view of Steps 1–3 above) we just
have to give the suitable values to the reducts of their antecedents and consequents. Von
Neumann hence formulates the following condition, which we call Condition (*).

(Condition *) Let A be any formula in which at most x occurs free and
let b be any closed expression such that A, x, b belong to S. Then the
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PS-reducts of all the instances of axioms of Group IV belong to T . These
instances are the following.

∀x A → A(b), A(b) → ∃x A, A(τ x A) → ∀x A, ∃x A → A(τ x¬A).

A word of clarification is needed on what von Neumann means when he says here that the
combination A, x, b belongs to S. This means that A, b occur in S as sub-expressions of
elements of S (von Neumann first uses gehörende and later vorkommende, pp. 27 ff.), with
at most x occurring free in A.

Step 6. The next crucial move is to restate the property that a reduction rule satisfies
Condition (*) in terms of types. The notion of type is commonly recognized (e.g., by
Bernays in Hilbert–Bernays 1939, 122) as the main contribution of von Neumann to the
development of substitution methods for consistency proofs. From the definitions below,
though, it will be clear that von Neumann’s notion of type (and the more specialized
notion of ground-type) is only akin to the current notion of ε-type or ε-matrix.10 So we
carefully stick to his terminology below, explaining it. This holds also as regards nesting
and subordination of types (see the definition of subtype, Def. 5.4 below), and the use of
dots instead of variables (a choice which, however, will have no consequence whatever for
the proof).

Recall that an expression is a proper subexpression of another expression if it occurs in
it and does not coincide with it; a subexpression is free in another if any variable occurring
free in it is free (in every occurrence) also in the expression in which the subexpression
occurs; a free proper subexpression is maximal if it is not a proper subexpression of any
free proper subexpression.

DEFINITION 5.3 (Type; Substituent). Let α be an expression. The type of α, t ype(α), is the
formal expression obtained by removing from α all the maximal proper free subexpressions
and replacing each one by a dot. The sequence of the removed subexpressions, from left to
right, is the sequence of substituents of α.

DEFINITION 5.4 (Subtype). If α is an expression and β is a proper subexpression of α not
free in α, then the type of β is a proper subtype of the type of α.

We occasionally denote by � the subtype relation. Note that the notion of subtype is
independent of the expressions considered, and depends only on their types. We associate
a set of types to any finite set S of sentences (axioms) as follows.

DEFINITION 5.5 (Ground-types of S). We define a set of types, called Ground-types of S,
GT (S), inductively.

1. If A, x belong to S, then type(τ x A), t ype(∀x A), t ype(τ x¬A), t ype(∃x A) are in
GT (S).

2. If t ∈ GT (S) and t ′ � t , then t ′ ∈ GT (S).

10 But not identical with it: with respect to notation, here we have dots instead of fresh variables;
more important, Von Neumann’s notion of type (even restricted to terms) involves in its definition
expressions in general, not only terms. The differences, however, are immaterial for all practical
purposes in this kind of consistency proofs (apart, of course, from the use of τ instead of ε). For
the notion of ε-matrix see Tait (1965), Moser (2006), etc. Wang (1963, 364) uses ‘ε-category’. It
is true that the word ‘type’ is overloaded in logic, but with this calque from German we want to
be deliberately faithful to the terminology of the classics of the Hilbert school.
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3. If t ype(τ x A) ∈ GT (S) then type(∀x A) ∈ GT (S).

4. If t ype(∀x A) ∈ GT (S) then type(τ x A) ∈ GT (S).

5. If A = ¬A′ and type(τ x A) ∈ GT (S) then type(∃x A′) ∈ GT (S).

6. If t ype(∃x A) ∈ GT (S), then type(τ x¬A), t ype(∀x¬A) ∈ GT (S).

Let us then divide the types so obtained into groups, putting in one and the same group,
given a formula A (belonging to S), the types τ x A and ∀x A, when the formula A has not
the form ¬A′; and putting in one and the same group the types τ x A, ∀x A and ∃x A′, when
the formula A has such form. Let us enumerate the (finite) set of all groups in a standard
way, ensuring that the groups with smaller index in the enumeration have as elements
proper subtypes of the types in the groups with greater index.11 The main induction will
be precisely on the number of groups (see below): this is sufficient, since the types in the
same group are related enough to be treated together.

The Ground-expressions (‘Grundformeln’) for the set S are all the substituents (in the
sense of Def. 5.3) in the types of the terms and formulas in S, and in addition all the
closed expressions occurring in the sentences of S. We call Ground-constants (GC(S)) and
Ground-operations (G O(S)) of S the constants and operations occurring in the Ground-
expressions for S (recall that, in general, in our language as constants we have only 0
and the truth values, and as operations we have only the connectives, for formulas, and
successor, identity and the predicate Z , for terms). We always put the truth values WT ,
WF , among the ground constants. We omit reference to S below, when there is no danger
of confusion.

The next key-notion is that of degree, which is defined with respect to a given reduction
rule P . The P-degree, degP , measures, in general, the complexity of a reduced expression
with respect to a reduction rule P .

DEFINITION 5.6 (P-degree). Let P be a reduction rule.

1. If k ∈ GC then degP(k) = 0.

2. If O ∈ G O is an n-ary operation, and a1, . . . , an ∈ RE D such that
max(degP(ai )) = d, then degP(O(a1, . . . , an)) = d + 1.

3. If t ∈ GT with n dots, and a1, . . . , an ∈ RE D such that max(degP(ai )) = d, then
degP(P(t[a1, . . . , an])) = d + 1.

Note that point (2) accounts both for logical (propositional) complexity and for nesting
of relations. In point (3), t[a1, . . . , an] is the result of the substitution of the components
of the n-tuple (a1, . . . , an), in their order, in the n empty places of the type t .

Two remarks are essential for the rest of the proof. The first is that, independently of the
chosen rule P but depending on S, we can determine a number p̄ strictly larger than the
P-degree of the P-reducts of Ground-expressions, for any reduction rule P . Von Neumann
remarks that it is sufficient to take the successor of the maximum number of occurrences of
operations and abstractions (i.e., τ -operators or quantifiers) in a Ground-expression from S.
Note then that the number p̄ does depend on the set of Ground-expressions, which is
univocally determined by the choice of the system S of axioms. The second remark is

11 This can be done, e.g., by defining (on the basis of the definitions of type and subtype) a suitable
equivalence relation on expressions and then defining a suitable ordering on the equivalence
classes, inducing the desired enumeration of groups. This can be achieved in various standard
ways, all interchangeable for the present purpose. Since no more details on this will be needed
below, we omit the tedious definitions.
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that we can bound the number of closed expressions of P-degree ≤ d independently of P
(but, again, depending on S), for any d. Let ϕ(d) be an upper bound on that number.12

Note that the function ϕ only depends on the number of Ground-constants, the number of
Ground-operations, the number of groups, and the maximum number of argument places
in the operations and of empty places in the types.

We now have to define, given S, a map PS : DR → RE D that also satisfies Condition
(*), where DR denotes the set of directly reducible expressions. For notational brevity,
sometimes we shall write (here and below, whenever this is not a source of confusion)
redP ( ) instead of PS( ), omitting reference to the given S, or even red( ), without men-
tioning the given P . The general condition that must be satisfied for this purpose, denoted
(T) by von Neumann (on page 30 of his paper), is the following.

(Condition T)
A type t has the form τ x A, ∀x A (or ∃x A′ only in case A = ¬A′). Let it have n

empty places (marked by dots). Then we have to satisfy the following, for each type under
consideration.

• For all n-tuples (a1, . . . , an) of reduced closed expressions of P-degree < p̄ con-
sider t[a1, . . . , an], the result of the substitution of the components of the n-tuple,
in their order, in the n empty places of the type. This has the form τ x R, ∀x R, or
∃x R′.

• If there exists a reduced closed expression b of P-degree ≤ p̄ such that13

redP (R[x/b]) ∈ F then

— redP(τ x R) := one such b,
— redP(∀x R) := WF ,
— redP(∃x R′) := WT ,

• Else

— redP(τ x R) := 0,
— redP(∀x R) := WT ,
— redP(∃x R′) := WF ,

Condition (T) is sufficient for our purpose: if the condition is satisfied, then the truth-
values of the reduced formulas (occurring as antecedents and consequents) will be such
that they will make true all the conditionals (instances of the axioms on quantifiers) that
should be made true according to Condition (*). Indeed, among the types mentioned in
the condition there are all the ones occurring in the initial set S (by definition of Ground-
type), and the reducts of the substituents and of the b’s, as reducts of Ground-expressions,
all have degree less than p̄ (by definition of p̄): hence, the condition encompasses all
the cases that have to be considered. In Condition (*) we want to take care of all the
quantifier axioms arising from choices A, b, x occurring in S, and we want to ensure that
P maps all these axioms to T . The reducts under P of the antecedents and consequents
of the axioms are exactly what we obtain in Condition (T). Consider for example the first

12 We defer the discussion of the calculation of this bound to Section 5.4 below.
13 Here, as von Neumann remarks, it would be sufficient to put ‘<’ instead of ‘≤’, since (as

we explain in the next paragraph) all the relevant reducts have degree strictly less than p̄.
Nevertheless, it turns out that by choosing ‘≤’ the correctness proof (given below) is made a
bit simpler.
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axiom: ∀x A → A[x/b]. The reducts we need to take into consideration are P(∀x A) and
P(A[x/b]). The reduct by P is defined either directly (if the formula is directly reducible)
or by a sequence of steps acting on directly reducible formulas within the formula. Each
step replaces a directly reducible formula by a reduced formula. Thus, the reduct by P
of ∀x A can be obtained as follows: from ∀x A go to t ype(∀x A), then replace the dots by
the P-reducts of the substituents of ∀x A. Now consider A[x/b]. The reduct by P is again
obtained by a sequence of steps each one replacing a directly reducible subformula of the
formula. Also, we know (see Step 3 above) that P satisfies P(A[x/b]) = P(A[x/P(b)]).
Therefore the P-reduct of A[x/b] is again obtained as one of the formulas considered
under Condition (T).

In conclusion, given a finite set S of formulas, and thus given a finite set of Ground-types,
divided into groups, and finite sets of Ground-constants and Ground-operations, respecting
all the constraints given above, the goal is to find a corresponding reduction rule P such
that Condition (T) is satisfied.

Step 7. The final move is to abstract from the unnecessary details and to reformulate
Condition (T) by dropping all the unnecessary dependencies. Von Neumann observes that
S in Condition (T) determines the groups of Ground-types, the sets of Ground-operations
and Ground-constants, and the quantities s̄, c̄, ō, n̄, p̄ (where: s̄ is the number of groups of
Ground-types, c̄ is the number of Ground-constants, ō is the number of Ground-operations,
n̄ is the maximum number of argument places in the Ground-operations and of empty
places in the types, and p̄ is the fixed upper bound on the degree of the reducts of the
Ground-expressions under any reduction rule). Condition (T) is then replaced by Condition
(T′), which abstracts from S as much as possible. In Condition (T′) we deal with an
arbitrary set (system) of types, which we declare as the Ground-types, an arbitrary set of
operations, which we declare as the Ground-operations, and an arbitrary set of constants,
containing WR and WF , which we declare as the Ground-constants. These choices uniquely
determine the quantities s̄, c̄, ō, n̄, p̄. Then we ask that there exist a reduction rule P
such that Condition (T) is satisfied with respect to P and to the chosen systems of types,
operations, and constants, and corresponding (uniquely determined) quantities s̄, c̄, ō, n̄, p̄.
It is here crucial that, as we observed above, the quantity p̄ is independent of the reduction
rule P . Our aim is now to prove that for any such choice there exists a reduction rule P
that satisfies Condition (T) with respect to that choice.

5.2. The proof strategy: part 2. After Steps 1–7 are completed, it remains to prove
that, for every choice of S, there exists a reduction rule PS satisfying Condition (T). Von
Neumann stresses the importance of finding PS from S uniformly. In his terms, we must
find a rule to associate a PS to any given S. The needed uniformity is achieved by using an
inductive proof strategy. By induction on the number s̄ of groups of types (the base case,
s̄ = 0, being trivial) von Neumann proves that there exists an adequate reduction rule for
any system of types with s̄ groups. We present the details of the induction step, when s̄ has
the form σ + 1.

The goal is to define the P-reducts of all directly reducible closed expressions whose
type t is in one of the groups g1, . . . , gσ , gσ+1 in such a way that Condition (T) is satisfied
by P with respect to p̄ and the other parameters indicated above. The induction hypothesis
is that a reduction rule P∗ exists that satisfies Condition (T) for all the types in the groups
up to and including gσ with respect to the same parameters except—crucially—for the
parameter p̄, which is replaced by p̄∗. We will see below how p̄∗ has to be chosen in order
for the argument to go through.
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The approach taken by von Neumann will ensure that the P-reduct of all directly re-
ducible closed expressions whose type is in gσ+1 and whose substituents have P-degree
< p̄ will be defined. For the directly reducible closed expressions whose type is in gσ+1
whose substituents do not have P-degree < p̄, which are irrelevant, an arbitrary choice is
made. On expressions whose type is not in gσ+1 P will coincide with P∗. Recall that if a
Ground-type in the group gi is a proper subtype of another in the group g j , then i < j .

Von Neumann’s strategy is to resolve the first quantification in Condition (T) (which
read: for all n-tuples (a1, . . . , an) of reduced closed expressions of P-degree < p̄) by
stratifying, i.e., by proving successively the property for all n-tuples of P-degree ≤ 0, then
for all n-tuples of P-degree ≤ 1, etc., up to for all n-tuples of P-degree ≤ p̄ − 1. The
definition of P will be obtained by bootstrapping.

The stratification and bootstrapping procedure goes as follows.14 For succinctness we
only deal with types of the form τ x A (the treatment of the other types being derivative).

First we deal with the reduced closed expressions of P-degree ≤ 0. These by definition
are the Ground-constants, whatever P may be. The set of all n-tuples of Ground-constants
can be enumerated, let

C1, . . . , Ck0

for some k0 be such an enumeration. By insertion in the dots of the relevant type of the
form τ x A the Ci s give rise to directly reducible expressions

τ x R1, . . . , τ
x Rk0 .

We now have to assign a P-reduct to each of these. Suppose for the sake of exposition that
this has been done.

We are then in a position to assign P-reducts to all the instantiations of the same type by
expressions of P-degree ≤ 1, despite the fact that P is not completely defined yet. Indeed,
the reduced closed expressions of P-degree ≤ 1 can only have one of the following three
forms: (i) expressions of P-degree ≤ 0, (ii) P-reducts of the expressions obtained by filling
the dots of types in gσ+1 by expressions of P-degree 0, (iii) P-reducts of the expressions
obtained by filling the dots of types in g1, . . . , gσ by expressions of P-degree 0. We know
all these expressions: those arising from (i) are just the Ground-constants, those arising
from (ii) are the reducts we just defined in treating C1, . . . , Ck0 , and those arising from
(iii) we know since P and P∗ coincide on types not in gσ+1. We can thus enumerate all
n-tuples of such expressions (different from C1, . . . , Ck0 ), let them be

Ck0+1, . . . , Ck1 ,

for some k1. By insertion in the dots of the relevant type the new Ci s give rise to directly
reducible expressions

τ x Rk0+1, . . . , τ
x Rk1 .

We now have to assign a P-reduct to each of these.
The procedure is iterated along the same lines. The bootstrapping works since we can

enumerate all n-tuples of closed expressions of P-degree ≤ i + 1 after having defined
the P-reducts of all instantiations of the type τ x A by n-tuples of closed expressions of
P-degree ≤ i . Globally, we are assigning, in order, P-reducts of instantiations of the type
τ x A by the n-tuples

C1, . . . , Ck0 , Ck0+1, . . . , Ck1, . . . , Ckp̄−2+1, . . . , Ckp̄−1,

14 Hardly surprisingly nowadays, but one should not forget that von Neumann writes in 1925.
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where the n-tuples Cki +1, . . . , Cki+1 are the not-yet-considered n-tuples of expressions of
P-degree ≤ i . The enumeration Cki +1, . . . , Cki+1 is only possible after the P-reduct of all
instantiations by C j with j < ki + 1 have been defined. This set-up obviously imposes the
constraint that the procedure used to assign P-reducts to instantiations of the type τ x A by
the Ci s can be repeated k p̄−1 times.

Now let us consider how the actual assignment of P-reducts to instantiations of
the type τ x A by the Ci s is performed. As outlined, this is done group by group (of
n-tuples), first treating the instantiations by C1, . . . , Ck0 and only then treating the instan-
tiations by Ck0+1, . . . , Ck1 , for the bootstrapping procedure to work. Within each group
Cki +1, . . . , Cki+1 , the instantiations are dealt with in the order of enumeration (which is
arbitrary).

Here we are bound to use the induction hypothesis. Hence the P-reduct of a directly
reducible expression τ x Ri is chosen among the P∗-reducts of expressions Ri [x/b] ob-
tained by substituting x in Ri with some closed term b. The induction hypothesis is that
P∗ satisfies Condition (T) with respect to parameter p̄∗ for expressions whose type is in
g1, . . . , gσ . This ensures that the P∗-reduct of such an expression is well-defined as long as
the P∗-degree of the term b is ≤ p̄∗. For the moment let us stipulate that when defining the
P-reduct of τ x Ri (for i ∈ {1, . . . , k p̄−1}) the bound on the P∗-degree of the candidates b
is Bi . The induction hypothesis ensures that P∗ satisfies Condition (T) as long as Bi ≤ p̄∗.
Moreover, we require that Bi ≤ Bi+1, since once a candidate b is accepted as the P-reduct
of τ x Ri , it is fully entitled to be taken as a component of the new n-tuples instantiating
the relevant type.15 We will see below (in the next subsection) which further constraints
are imposed in order to prove the correctness of the reduction rule P we are defining. In
any case, the above-described procedure completely defines a rule P once the parameters
B1, . . . , Bkp̄−1 are fixed.

Let us sum up the constraints imposed on the parameters p̄∗ and Bi s by the above
construction. For all i such that 1 ≤ i ≤ k p̄−1,

1. Bi ≤ p̄∗.

2. Bi ≤ Bi+1.

Since the values of the Bi s are nondecreasing (by Constraint 2) we can express them as
follows.

Bi+1 = max(γ1, . . . , γi ) + Ni+1,

where for all i such that 1 ≤ i ≤ k p̄−1, Ni ≥ 0 and γi is the P∗-degree of the P-reduct of
τ x Ri as defined in the procedure. Further constraints on the Ni s will arise in the proof of
correctness of the definition of P . Since fixing the parameters B1, . . . , Bkp̄−1 fixes the rule
(as we have just seen), it follows that the above-described procedure completely defines a
rule P once the parameters N1, . . . , Nkp̄−1 are specified.

For the rest of the argument the following remarks will be crucial. Suppose we want
to bound the P∗-degree of a reduced closed expression as a function of its P-degree.
Such an expression, call it α, is obtained from Ground-constants by < p̄ (resp. ≤ p̄)16

repeated applications of Ground-operations or applications of types in g1, . . . , gσ+1

15 Strictly speaking, to require Bi ≤ Bi+1 for all i is more than we need, in view of the grouping
of n-tuples just described. We put this constraint since in any case it will be essential in order to
prove the correctness of the procedure, as we shall see in detail in the next subsection.

16 The distinction is relevant in Condition (T), cf. fn. 12 above.
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446 LUCA BELLOTTI

and successive P-reduction. We can distinguish two cases. Case 1: the last step in the
P-degree history of α is an application of a type in gσ+1 and successive P-reduction.
Let this type be τ x A. Then the P-reduct has, by construction, P∗-degree equal to one of
γ1, . . . , γk p̄−1 . Case 2: not Case 1. Then the P-degree history of α can be subdivided as
follows: a sequence of steps ending in the last application of a type in gσ+1, followed by
< p̄ (resp. ≤ p̄) many applications of Ground-operations or types in g1, . . . , gσ . In this
case the P-reduct has, again by construction, P∗-degree less than (resp. less than or equal
to) max(γ1, . . . , γk p̄−1) + p̄. Thus, in general (resp. with ‘<’ in place of ‘≤’):

degP(α) ≤ p̄ ⇒ degP∗(α) ≤ max(γ1, . . . , γk p̄−1) + p̄.

This bounding of the P∗-degree of a reduced closed expression on the basis of its
P-degree is essential in the correctness proof below. It is the main constraint arising from
the chosen definition procedure for P . Essentially, the bound says that reduced expressions
of P-degree ≤ p̄ can have (as we have just shown by the above reasoning by cases) at most
the sum of the P∗-degree of the reduct of the instantiation of the relevant type by one of
the Ci s (i ∈ {1, . . . , k p̄−1}) plus p̄.

After this abstract account, before proving the correctness of the whole construction
(in the next subsection), it is better to give for the sake of clarity a step-by-step description
of the way the induction works, following von Neumann. The induction step is of course
the crucial point in this proof, and the place in which the specific, original features of von
Neumann’s approach turn out: hence it is useful to try to see in full detail what is really
going on.

We have seen that the induction hypothesis is that we can always find a reduction
procedure in the case s̄ = σ ; we have to prove that we can always find a reduction
procedure in the case s̄ = σ + 1. By induction hypothesis, as we have seen, we may
suppose that we already have a procedure P∗, satisfying Condition (T) for all the groups
up to and including gσ , for the same constants and operations, and for the same parameters,
except that in place of p̄, we take a p̄∗, which must be (for reasons that will be explained in
the correctness proof in the next subsection) equal to p̄(2(ϕ( p̄−1))n̄

), where ϕ(p) is the
function (mentioned above, Step 6) giving the maximum number of reduced formulas
having degree at most p. Note that the induction hypothesis allows this because of its
generality.

For the types which do not belong to gσ+1, we define the procedure P as identical with
P∗. Thus, we have to define the procedure P only for the terms and formulas whose types
belong to gσ+1. We know that if a ground type in the group gi is a proper subtype of
another in the group g j , then i < j . For clarity, we shall concentrate on terms and the
τ -operator; the truth-functional evaluation of formulas can be obtained immediately.

Let us suppose that in the group of types gσ+1 occurs, as the only τ -type, the type of the
term τ x A, where A is a formula having at most x free, and the type has n empty places.17

Let us take all the n-tuples of closed terms whose P-degree is 0, where P is the reduction
procedure we are defining. We have seen that we can do this, although P is not yet defined,
since we already know that, in general, only the ground constants have degree 0. We
enumerate these n-tuples in the following way (e.g., ordering them lexicographically, but
this is irrelevant): C1, . . . , Ck0 .

17 Of course, ‘τ -type’ abbreviates ‘type of a τ -term’, and we denote the type (as above, without loss
of generality) with the corresponding term.
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Now we make all possible substitutions of these n-tuples in the type considered, satu-
rating each time the n empty places of the type, in order, with the n components of the
n-tuple.

The first substitution in the type, by means of the first n-tuple C1, will yield a certain
τ -term without free variables, directly reducible, that we shall denote τ x R1.

Now we take all the closed terms b whose P∗-degree has at most a certain value N1,
which must be (for reasons that again will emerge only in the correctness proof in the
next subsection) equal to p̄(2(ϕ( p̄−1))n̄−1), and we substitute them in turn in place of the
variable x in the formula R1, resulting from the considered τ -term by removing the initial
τ -operator. Among these closed terms we search for a counterexample for the formula
R1, and we shall use precisely this counterexample to define the P-reduct of the τ -term.
Given a certain b, let the formula resulting from its substitution in R1 in place of x be
R1[x/b], a formula whose reduct with respect to the procedure P∗ we can compute, by
induction hypothesis. This reduced formula will have the value True or the value False.
If, for at least one b, the respective reduced formula has the value False, then the reduct
with respect to P of the considered τ -term is defined as any one of these falsifying b’s;
otherwise, the reduct of the τ -term is defined as the constant 0. For the corresponding
quantified formulas, in order to respect Condition (T), in the first case the reduct of the
universal formula is accordingly defined as the value False and the reduct of the (possibly
also occurring) existential formula as the value True; vice versa in the second case. The
P-reduct of the τ -term, so defined, has a certain P∗-degree, known beforehand; we denote
this degree by γ1; by construction, γ1 is at most N1.

Let us proceed to the second substitution. We substitute C2 in the type, obtaining now
a τ -term τ x R2. We take all closed terms b whose P∗-degree is at most γ1 + N2, where
N2 = p̄(2(ϕ( p̄−1))n̄−2), and we substitute them in turn in place of x in R2, thus obtaining
certain formulas, that we denote in general by R2[x/b]. Now we reduce all these formulas
by P∗ (we can do this by induction hypothesis), and we look at the resulting truth values.
If at least once we have the value False, as reduct of the τ -term we take any one of the
falsifying terms, otherwise we take 0, and we give the corresponding truth values to the
quantified formulas, everything as above. We denote the P∗-degree of the P-reduced term
so obtained by γ2; clearly γ2 is at most γ1 + N2.

The third substitution is treated in the same way, and we proceed like this up to and
including the k0-th substitution, each time considering the suitable degrees. The limitation
on the P∗-degree of the terms b to be substituted is, in general, the following (it will be
justified in the correctness proof below): when we substitute in the type the n-tuple Ck ,
then we consider terms b of P∗-degree at most Max(γ1, . . . , γk−1) + Nk , where Nk =
p̄(2(ϕ( p̄−1))n̄−k).

Now we have to consider all the n-tuples of closed terms having P-degree at most 1,
different from those previously considered. Although the procedure P is only partially
defined, we know that we can do this, because we already knew all the terms of degree 0,
and now (after the first k0 steps just described) we also know the P-reducts of the terms
resulting from the substitution in the considered type of the n-tuples of terms of degree 0;
these reduced terms are the only ones, among the relevant terms of P-degree 1, that had not
been determined yet. Let us denote Ck0+1, . . . , Ck1 these further n-tuples of closed terms
of P-degree at most 1. We now proceed with all the substitutions, as above, determining
the P-reduced terms and the respective degrees.

In the same way we proceed with the n-tuples of closed terms of P-degree at most 2
(which can be determined after all the preceding steps), then with the n-tuples of terms of
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448 LUCA BELLOTTI

P-degree at most 3, and so on, up to and including the case of the n-tuples of P-degree at
most p̄ − 1. The last n-tuple to be substituted will be Ckp̄−1 , where k p̄−1 ≤ (ϕ( p̄ − 1))n̄ by
definition of ϕ, since n ≤ n̄.

For the record, the induction step can be formulated, in full generality, as follows.
Fix a value of p, 0 ≤ p ≤ p̄ − 1. Let all the n-tuples of closed terms of P-degree less

than p be determined, and let also be determined the reducts of all the directly reducible
terms obtained by substituting those n-tuples in the τ -type of the group gσ+1. Let these
n-tuples be C1, . . . , Ckp−1 , and let the respective directly reducible terms be τ x Rν , with
ν ranging from 1 to kp−1. Let γν be the P∗-degree of the P-reduct of τ x Rν . We then
know all the n-tuples, different from the ones already given, of closed terms of P-degree
at most p (i.e., of P-degree less than p + 1). Let these n-tuples be Ckp−1+1, . . . , Ckp , and
let the respective directly reducible terms be τ x Rν , with ν ranging from kp−1 + 1 to kp.
The reducts of these terms τ x Rν , with ν ranging from kp−1 + 1 to kp, are inductively
defined as follows. Fix a value of ν, kp−1 + 1 ≤ ν ≤ kp. For all μ < ν let everything
be already determined, and let γμ be the P∗-degree of the reduct of τ x Rμ, with μ ranging
from 1 to ν −1. Take all the closed terms b of P∗-degree at most Max(γ1, . . . , γν−1)+ Nν ,
where Nν = p̄(2(ϕ( p̄−1))n̄−ν). Determine the P∗-reducts of the closed formulas obtained
by substituting x with these b’s in the fixed formula Rν . If among these P∗-reducts there
is at least a formula with value False, then the P-reduct of τ x Rν is defined as any one of
the b’s that, substituted to x in the formula Rν , yield one of these closed formulas whose
P∗-reduct is the value False; otherwise, it is defined as the constant 0. The reducts of the
corresponding quantified formulas are defined accordingly: in the first case the reduct of
the universal formula is the value False and the reduct of the (possibly also occurring)
existential formula is the value True; vice versa in the second case. In any case, γν denotes
the P∗-degree of the P-reduct of τ x Rν . This concludes the induction step.

5.3. Correctness of the construction. It remains to prove that, for some choice of the
parameters p̄∗, N1, . . . , Nkp̄−1 , the above-defined reduction P satisfies Condition (T). The
choice has to respect the constraints arising from the definition of P and further constraints
that will become apparent from how the argument for correctness can be framed, based on
that definition.

Von Neumann shows that the following choice (given without explanation in the previ-
ous subsection) works for the purpose. The reasons for the choice will be clear only after
the correctness proof.

p̄∗ = p̄2ϕ( p̄−1)n̄

N1 = p̄2ϕ( p̄−1)n̄−1

Ni+1 = p̄2ϕ( p̄−1)n̄−(i+1).

Recall that the function ϕ(d) occurring in the exponents (defined above, Step 6) bounds
the number of closed expressions of degree at most d (independently of P). Thus,
ϕ( p̄−1)n̄ ≥ k p̄−1 is the greatest possible number of n-tuples considered in the construction
(since n ≤ n̄).

We present the correctness proof for P in such a way as to heuristically justify this
choice. The proof is divided into two cases.

CASE 1. Consider a type in g1, . . . , gσ . The point of this case is the following. P and P∗
coincide on these types. Yet Condition (T) for P has a double universal quantification on
(i) all n-tuples of expressions of P-degree < p̄ and (ii) all expressions of P-degree ≤ p̄.
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The P-degree of an expression depends on the reduction P in a nonlocal way. In particular,
the P-degree of an expression can depend on the behavior of P on the types in gσ+1, on
which P∗ is not defined.

It is enough to show that, for any reduced closed expression α,

degP(α) ≤ p̄ ⇒ degP∗(α) ≤ p̄∗

and similarly with <. Then the conclusion holds because by induction hypothesis P∗
satisfies Condition (T) with respect to parameter p̄∗.

To carry out the argument we now—crucially—need to bound the P∗-degree of any
reduced closed expression as a function of its P-degree. As observed above this bound is
the following (for both < and ≤):

max(γ1, . . . , γk p̄−1) + p̄.

We then need to show that this quantity is ≤ p̄∗. To prove this crucial inequality we only
need to observe that

γ1 ≤ N1

γi+1 ≤ max(γ1, . . . , γi ) + Ni+1.

Thus, by choice of the Ni s, using a simple property of sums of exponentials,

max(γ1, . . . , γk p̄−1) ≤ p̄

k p̄−1∑
j=1

2ϕ( p̄−1)n̄− j ≤ p̄
(

2ϕ( p̄−1)n̄ − 1
)

.

Note that k p̄−1 is the number of steps the construction needs to be performed, and since
k p̄−1 ≤ ϕ( p̄ − 1)n̄ , terms in the above inequalities are well-defined.

CASE 2. Consider a type in gσ+1. The goal is to prove that P satisfies Condition (T) for
expressions whose type is in gσ+1.

Condition (T) says that, for all directly reducible expressions τ x R, ∀x R, ∃x R′ arising
from the types in gσ+1 by filling the dots in the type with n-tuples of reduced closed ex-
pressions of P-degree < p̄ (this is done by stratification in the construction), the following
must hold.

(∀b|degP (b) ≤ p̄)(P(R[x/b]) ∈ T ) ⇒ (P(τ x R) = 0),

(∃b|degP(b) ≤ p̄)(P(R[x/b]) ∈ F) ⇒ (P(τ x R) = one such b).

Now, the types in gσ+1 give rise to τ x Ri , ∀x Ri , ∃x R′
i where i is the stratification

index. The P-reduct is assigned it the way outlined in the previous section, which can
be summarized in the following definition.

(Definition (i))

(∀b|degP∗(b) ≤ max(γ1, . . . , γi−1) + Ni )(P∗(Ri [x/b]) ∈ T ) ⇒ P(τ x Ri ) = 0.

(∃b|degP∗(b) ≤ max(γ1, . . . , γi−1) + Ni )(P∗(Ri [x/b]) ∈ F) ⇒ P(τ x Ri ) = one such b.

Thus by Definition (i) P(τ x (Ri )) is either 0 or a b such that degP∗(b) ≤
max(γ1, . . . , γi−1) + Ni and such that P∗(Ri [x/b]) ∈ F .

Now von Neumann observes that the following condition is sufficient to ensure that P
satisfies Condition (T) for the relevant types. The condition reads as follows, where red( )
indicates the reduct by P or P∗ (which coincide in the case at hand).

(∗∗) red(Ri [x/P(τ x Ri )]) ∈ T ⇔ (∀b|degP (b) ≤ p̄)(red(Ri [x/b]) ∈ T ).
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We reason as follows for proving that this condition (**) implies that P satisfies Condi-
tion (T).

Assume the condition. Suppose Condition (T) fails. First suppose it fails because the
first implication in the definition of Condition (T) fails. That is,

(∃b)(degP(b) ≤ p̄ ∧ P(Ri [x/b]) ∈ F)

but

P(τ x Ri ) is not one such b.

Therefore red(Ri [x/P(τ x Ri )]) ∈ T , and by condition (**) it must be the case that
(∀b|degP (b) ≤ p̄)(red(Ri [x/b]) ∈ T . But this contradicts our hypothesis.

Now suppose that Condition (T) fails because the second implication in the definition of
Condition (T) fails. That is,

(∀b|degP(b) ≤ p̄)(P(Ri [x/b]) ∈ T ),

but

P(τ x Ri ) �= 0.

Then, by Definition (i), P(τ x Ri ) is a b such that degP∗(b) ≤ max(γ1, . . . , γi−1) + Ni ,
and P∗(Ri [x/b]) ∈ F . Therefore, by condition (**) (right to left), there exists b such that
degP(b) ≤ p̄ and red(Ri [x/b]) ∈ F . This contradicts the hypothesis.

We now prove that the condition (**) holds. We only prove the left-to-right direction,
the other being trivial. Let us reason on the contrapositive form of the implication. Suppose
that ∃b such that degP(b) ≤ p̄ and red(Ri [x/b]) ∈ F . If we are able to show that P(τ x Ri )
is one such b, then red(Ri [x/P(τ x Ri )]) ∈ F will follow.

By Definition (i) the contrapositive holds if the condition degP (b) ≤ p̄ is replaced by
degP∗(b) ≤ max(γ1, . . . , γi−1) + Ni . Since we know that in general

degP (b) ≤ p̄ ⇒ degP∗(b) ≤ max(γ1, . . . , γk p̄−1) + p̄,

we are left with showing that

max(γ1, . . . , γk p̄−1) + p̄ ≤ max(γ1, . . . , γi−1) + Ni .

Now observe that, in general, it holds that

γi+1 ≤ max(γ1, . . . , γi ) + Ni+1.

Then by the choice of Ni and a simple property of sums of exponentials (as above), we
have that

max(γ1, . . . , γk p̄−1) ≤ max(γ1, . . . , γi ) + p̄(2ϕ( p̄−1)n̄−i − 1).

It remains to show that, in the case at hand,

max(γ1, . . . , γi−1) = max(γ1, . . . , γi ).

Assume red(Ri [x/P(τ x Ri )]) ∈ T (we can do this, since this is the left-hand side of
the equivalence (**) whose forward direction we are proving). By Definition (i), this can
happen only if P(τ x Ri ) = 0. Therefore the degree γi is 0 and max(γ1, . . . , γi−1) =
max(γ1, . . . , γi ).

This concludes the correctness proof for P .
We wish to stress how the choice of the Ni s is dictated by the last part of the argument

we have just given.
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Let us define a new function, g(i), as a function yielding for every possible step i of the
inductive construction, 1 ≤ i ≤ M = (ϕ( p̄ − 1))n̄ , the number that must be added to the
previous maximum P∗-degree (of the closed terms taken as counterexamples) in order to
obtain the maximum P∗-degree for that step, as a function of the number, that here we shall
denote by i , of tuples of closed expressions considered till then (one at the first step, two
at the second, etc.; at the first step we simply take the maximum P∗-degree for that step).
This is the same number that above was denoted by Ni . We have to univocally determine
this function g, such that g(i) = Ni , 1 ≤ i ≤ M .

Now, in order to carry out the correctness proof we have just given, we have seen that
at the crucial step in the last part of the proof we need the following, for all i such that
1 ≤ i ≤ M :

max(γ1, . . . , γk p̄−1) ≤ max(γ1, . . . , γi ) + p̄(2ϕ( p̄−1)n̄−i − 1),

which is equivalent to

max(γ1, . . . , γk p̄−1) + p̄ ≤ max(γ1, . . . , γi ) + Ni .

By construction (see above), the maximum of the degrees γ1, . . . , γk p̄−1 is at most the
number obtained by adding the maximum of the degrees considered up to a certain point
(let them be γ1, . . . , γi , for a certain i ≤ k p̄−1) to the sum of the entire possible course of
values, from that point on, of the numbers that must be added to the previous maximum
P∗-degree in order to obtain the current maximum P∗-degree, viz. the numbers Ni , for all
i ≤ M . I.e., we have:

max(γ1, . . . , γk p̄−1) ≤ max(γ1, . . . , γi ) + Ni+1 + · · · + NM .

This formula holds for 1 ≤ i ≤ k p̄−1 (if k p̄−1 = M , in the special case i = M the second
member is simply max(γ1, . . . , γM ), so that the formula is trivially verified). Then, it is
sufficient to have, for all i such that 1 ≤ i ≤ M :

max(γ1, . . . , γi ) + Ni+1 + · · · + NM ≤ max(γ1, . . . , γi ) + Ni − p̄.

Hence, the function g(i) we are looking for (which gives, by definition, the value of Ni )
must be such that, for every i < M , the sum total of the course of its values for i + 1 ≤
k ≤ M , with addition of p̄, is the value of the function for the argument i (we take equality
since we look for the minimal solution). I.e., we must have, for all i < M :

g(i) = g(i + 1) + g(i + 2) + · · · + g(M) + p̄.

This functional equation has (in the given integer interval) as unique solution (by a simple
property of the geometric progression of common ratio 2) the function:

g(i) = p̄(2M−i ).

The function g(i) is thus univocally determined. In conclusion, the absolute maximum
degree (as the sum of all values of g(i) for 1 ≤ i ≤ M , to which we have to add p̄ as
above, Section 5.2) is:

p̄(2M ),

where the constant M is the total number of tuples. This is exactly the initial absolute
maximum degree, p̄∗, that was taken in the inductive construction.

5.4. The complexity of the procedure. Let us now look at the metatheory employed in
the consistency proof. The methods used by von Neumann can be certainly formalized in
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Primitive Recursive Arithmetic (PRA), and indeed the much weaker Exponential Function
Arithmetic (EFA) suffices (see below for details). The proof uses a double induction on
natural numbers (an induction on the number of the groups of types of τ -terms and, inside
it, an induction on the degrees of the closed expressions involved in the substitutions: see
above).

We now give some details concerning the bounds involved in the proof, first about the
function ϕ defined above (Step 6). Denoting by AP(i) the number of closed expressions
with degree ≤ i (under any reduction rule P), it is easy to see (by definition of degree) that
AP(i) satisfies the following equations.

AP (0) = c̄, AP(i + 1) ≤ c̄ + (ō + 3s̄)(AP(i))n̄ .

Setting

ϕ(0) = c̄, ϕ(i + 1) = c̄ + (ō + 3s̄)(ϕ(i))n̄,

we have AP(i) ≤ ϕ(i).
The historical interest of the bounds computed by von Neumann can be assessed as

follows. The reduction rule needs (for its use and the proof of its correctness) the totality
of the exponential function, since the bound (as defined in the preceding subsection) is
triply exponential: 2(ϕ( p̄−1))n̄

is exponential, and the function ϕ occurring in its exponent
is doubly exponential in its argument, as we have just shown. Thus, von Neumann’s proof
can be formalized in Exponential Function Arithmetic (EFA), but not below. The bound
is analogous to the lower bound established by Fischer and Rabin (see, e.g., Ferrante–
Rackoff 1979) for any decision method for Presburger Arithmetic, a theory whose con-
sistency is provable in EFA; compare also the analogous bounds for theories with one
successor (ibid.).18 On the other hand, the best known syntactic proofs of consistency for
first-order predicate calculus all require Super-Exponential Function Arithmetic (SEFA),
which proves the totality of the super-exponential function. These are the proofs by cut-
elimination (Gentzen 1934), the uses of the criterion for the consistency of open theories
given by Shoenfield in his famous textbook (1967, Section 4.3),19 and the applications
of (analogs of) Herbrand’s method (see Hilbert–Bernays 1939, Hajek–Pudlák 1998 and
Moser–Zach 2006). But all the mentioned results are much stronger than the mere consis-
tency result proved by von Neumann, although he treats a system with a successor function,
going beyond the pure predicate calculus (but still weaker than Robinson Arithmetic Q,
which again needs SEFA for its consistency proof).

What about heuristics? Is there a heuristic justification for the choice of the bounds? So
far, we have proved that they are exactly the right ones only post factum. This univocal
determination suffices, of course, but the reader can be a little dissatisfied. We do not
presume here to enter the (notoriously inaccessible) mechanisms of von Neumann’s mind,
of course, but we only want to see whether there is some reasonable, independent, and a
little more intuitive explanation for the choice of such bounds. On this point, we tentatively
suggest what follows.

18 In general, for the evaluation of upper (and lower) bounds (in the sense of computational
complexity) on decision procedures for theories related to the one treated by von Neumann, we
refer the reader to Ferrante–Rackoff (1979). It would be of at least historical interest to further
investigate whether von Neumann’s proof has tighter connections with decision procedures
developed in the decades following his work.

19 Although Shoenfield’s method of instantiation, as we said above, is somewhat similar to Von
Neumann’s procedure.
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Consider the fact that

L = 2M = 2(ϕ( p̄−1))n̄

is the number of the equivalence classes of possible types on the tuples of reduced ex-
pressions, when types are viewed simply as functions of codomain {0, 1} and two types
are viewed as equivalent when they are extensionally equivalent as such functions. Recall
that (by definition of degree) for all n the numeral of the number n has degree at most n,
since the only numerical constant is 0, the only numerical function symbol is the successor
symbol, and each application increases the degree by one.

This could be relevant for the determination of the maximum degree of the closed terms
b to be substituted: there are L equivalence classes, and at most p̄ occurring operators;
thus, p̄ is multiplied by L .

One could also recall the classic result according to which if a first-order formula in
which only monadic predicates occur is satisfiable, then it is satisfiable in a domain of at
most 2k elements, where k is the number of distinct predicates occurring in the formula.
If identity occurs, we have this result: if a first-order formula without function symbols, in
which only monadic predicates and identity occur, with quantifier rank (maximum number
of nested quantifiers) q, and m occurring monadic predicates is satisfiable, then it has a
model of cardinality at most q(2m) (for a simple proof see Börger–Grädel–Gurevich 2001,
250). If identity does not occur, one can always take q = 1.

This result could also be relevant, since in the inductive construction above each substi-
tution of a tuple of reduced expressions in a Ground-type yields, after removing the initial
operator, a monadic predicate on the variable of the operator.

We leave it as an open problem to give a more precise and (if possible) deeper heuristic
explanation of von Neumann’s choice.

§6. Conclusion. We have analyzed von Neumann’s consistency proof of 1925, pub-
lished in 1927. We have argued that von Neumann’s work can be considered the first
rigorous syntactic treatment of the consistency of first-order predicate calculus, thus filling
a gap between Hilbert’s lectures of the early Twenties and Ackermann’s 1924 dissertation.
In fact, von Neumann’s method works for a stronger system, namely the first-order the-
ory of one successor function, and essentially gives the first published rigorous syntactic
treatment of the consistency of open theories. Finally we have stressed how von Neumann’s
reduction is metamathematically optimal, in that it is formalizable in Exponential Function
Arithmetic.
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