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Abstract

In a network where weighted fair-queueing schedulers are used at each link, a flow is guaranteed

an end-to-end worst-case delays which depends on the rate reserved for it at each link it traverses.

Therefore, it is possible to compute resource-constrained paths that meet target delay constraints,

and optimize some key performance metrics (e.g., minimize the overall reserved rate, maximize

the remaining capacity at bottleneck links, etc.). Despite the large amount of literature that has

appeared on weighted fair-queueing schedulers since the mid ’90s, this has so far been done only

for a single type of scheduler, probably because the complexity of solving the problem in general

appeared forbidding. In this paper, we formulate and solve the optimal path computation and

resource allocation problem for a broad category of weighted fair-queueing schedulers, from those

emulating a Generalized Processor Sharing fluid server to variants of Deficit Round Robin. We

classify schedulers according to their latency expressions, and show that a significant divide exists

between those where routing a new flow affects the performance of existing flows, and those for

which this do not happen. For the former, explicit admission control constraints are required

to ensure that existing flows still meet their deadline afterwards. However, despite this major

difference and the differences among categories of schedulers, the problem can always be formulated

as a Mixed-Integer Second-Order Cone problem (MI-SOCP), and be solved at optimality in split-

second times even in fairly large networks.

Keywords: QoS routing, worst-case delay, weighted fair-queueing, admission control,

optimization

1. Introduction

The research on Quality of Service (QoS) in the ’90s has produced a vast number of packet

scheduling algorithms, to be employed at network links to determine whose flow’s head-of-line
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packet should be sent on the link when more than one flow is backlogged. Many of these algorithms

aim to approximate Generalized Processor Sharing (GPS, [1]), also called Weighted Fair Queueing5

(WFQ). The latter is an ideal paradigm, which emulates a fluid reference system where backlogged

flows are served simultaneously, and each one is given a share of the link proportional to its weight.

If the weights are chosen as the flows’ requested rates, then each flow always gets no less than its

requested rate as long as the sum of the rates does not exceed the link capacity.

Several packet schedulers have been proposed that approximate GPS in an environment where10

only one packet at a time can be transmitted, instead of several simultaneously. These strike var-

ious trade-offs between accuracy of approximation and implementation complexity, two properties

that have been proved to be in opposition [2]. In particular, the accuracy of a scheduler can be

measured by its latency, i.e., its worst-case scheduling delay; in other words, the maximum lag of

a scheduler’s service with respect to GPS. The smaller this lag, the more closely that scheduler’s15

operation will resemble that of GPS.

At one end of the spectrum lie Packet-by-packet Generalized Processor Sharing (PGPS) and

Worst-case Fair Weighted Fair Queueing (WF2Q), both exhibiting the smallest possible latency.

More specifically, their latency is inversely proportional to the requested rate, plus a small additive

constant; we thus call these Strictly Rate-proportional (SRP) schedulers. Their downside is that20

they have a relatively high complexity, i.e., O(log n), n being the number of active flows1. This

might be an issue on high-speed links, where scheduling decisions have to be made in a packet

transmission time (few nanoseconds) and many flows can be active simultaneously.

At the other end of the spectrum we find instead Frame-based (FB) schedulers such as Deficit

Round-robin (DRR) [4] and its derivatives (e.g., [5, 6, 7]). These have constant (i.e., O(1))25

complexity, a result that is only possible because the order of service of backlogged flows is constant

over time. As a consequence, their latency is looser than those of the SRP schedulers, since it

includes a term which grows linearly with the number of flows, corresponding to the time it takes

to cycle through all the flows.

In between these two extremes, we have two other possibilities. On one hand, approximations30

of the GPS paradigm based on flow grouping [8, 9], which achieve O(1) complexity by using clever

data structures, but constraining flow rates to be integer multiples of a basic quantity. The latency

expression of these Group-based (GB) schedulers is similar to that of SRP schedulers, albeit with

higher multiplicative and additive constants. On the other hand, schedulers that dispense with

some of the intricacies of emulating a GPS server, hence have a higher latency, still at O(log n)35

1Note that the complexity was believed to be O(n) until [3] proved otherwise. This misconception, lasting for

about a decade, made pursuing approximations of these schedulers at O(logn) complexity a worthy task, which

was in fact undertaken by several researchers.
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complexity. This is the case, for instance, of Self-clocked Fair Queueing (SCFQ, [10]). The latency

of this scheduler has an additive term that grows linearly with the number of flows, hence we call

it Weakly Rate-proportional (WRP).

When WFQ packet schedulers are employed, it is possible to compute the worst-case end-

to-end delay (WCD) of a flow in a multi-hop path, once its settings—specifically, its minimum40

guaranteed rate and latency—at each link it traverses are given. In particular, the WCD expression

includes the sum of the latencies at all traversed links. A WCD guarantee is important for many

applications, e.g., playback-based ones (voice, video, . . . ) and real-time ones (machine-to-machine

applications, augmented/virtual reality, automated trading, . . . ). The above-mentioned property

allows one to select rates on the given path so that the WCD stays below a pre-specified deadline.45

In turn, this paves the way to algorithms that compute network paths where enough rate is available

to meet that deadline, something that we call delay-constrained routing (DCR) henceforth.

DCR belongs to the field of QoS routing, also well researched in the last two decades. How-

ever, most of the works on delay-based QoS routing assume static additive per-link delays (e.g.,

[11]), hence neglect the contribution of queueing to the overall end-to-end delay. Alternatively,50

stochastic traffic models are used to compute average end-to-end delays (e.g., [12]), which however

do not provide reliable guarantees on worst-case ones, and therefore cannot be used in sensitive

applications. Two works concerned with DCR are [13, 14], which show that path computation as-

suming SRP schedulers is NP-hard in general. If, however, the same rate is reserved at each link,

then DCR becomes a polynomial problem. As recently shown in [15, 16], reserving the same rate55

at each link is largely suboptimal, i.e., a significant fraction of path requests are rejected unnec-

essarily only because of that assumption. Furthermore, despite NP-hardness, optimal solutions

can be found in split-second times even in large-scale networks.

These initial results call for a more systematical investigation of the DCR problem. In [15, 16]

only SRP schedulers are treated, and no result exists for the other three categories (GB, WRP,60

FB), despite the fact that most of these schedulers have been known for decades and are used in

practice in today’s equipment (especially DRR and variants thereof). This means that the trade-

off between employing lower-complexity schedulers (e.g., GB or FB ones) and the corresponding

utilization of the network has not been properly characterized yet. This work aims at filling this

gap by formulating the DCR problem for all the above-mentioned categories of schedulers. More65

specifically, given the current state of the network, a reservation cost per unit of rate for each link,

a source, a destination and a WCD deadline, we determine a path along which the new flow can

be routed and the corresponding rate reservation on each link (if they exist) so that the deadline

is met, while existing flows still meet theirs, at the minimum possible reservation cost. The fact

that the latency of a scheduler does or does not depend on the other flows (their number and/or70

current reserved rates) simultaneously present on the link affects the way admission control needs
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to be done at flow setup. With SRP and GB schedulers, a new flow can always be admitted as

long as the used links have enough rate; hence admitting a new flow will never jeopardize the

guarantees of pre-existing flows traversing the same links. For WRP and FB schedulers, instead,

checking rates is not sufficient: a flow may in fact be rejected even when there is enough rate,75

because admitting it would make other flows violate their delay guarantees, since their latency

would grow if the new flow were admitted.

In this paper, we show that the DCR problem can always be formulated as a Mixed-Integer

Second Order Cone Program (MI-SOCP), for all the above scheduler categories, through careful,

non-obvious modeling choices. While MI-SOCPs are in general NP-hard, they have a convex con-80

tinuous relaxation, which may make them routinely solvable by today’s general-purpose solvers

such as CPLEX if the number of variables is not too high. This allows us to compute optimal

paths in networks of fairly large size in hundreds of milliseconds at the worst. We remark that

this was not, ex-ante, obvious: convexity is a rather “fragile” property, that is easily lost even

with apparently very minor modifications of the functions. Indeed, our result strictly hinges on85

the fact that only one flow is optimized, with the others being kept at their previous state (in

terms of both path and reserved rates on the links): some—although not all—of the developed

formulæ would not be jointly convex in all the problem’s variables if more than one flow would be

optimized simultaneously. Furthermore, the fact that the obtained MI-SOCPs can be solved this

quickly hinges on at least two important facts. The first is the recent breakthrough in the efficiency90

of solution algorithms for Mixed Integer-Nonlinear Problems (MI-NLPs), of which MI-SOCPs are

a subclass [17]. The second is the use of nontrivial formulations, in particular obtained through

the Perspective Reformulation technique [18, 19], which yield tighter lower bounds and therefore

significantly increase the efficiency of the solution processes [15]. Only the combined effect of these

improvements allows us to coalesce in the same framework combinatorial constraints, such as those95

of routing, and non-linear ones, such as those of worst-case delays, in a solution time which would

have been unthinkable only ten years ago. Being able to solve the DCR problem optimally for

several categories of schedulers allows us to compare these categories as for QoS routing perfor-

mance, i.e., to better characterize the cost that has to be payed, in terms of network utilization,

for using lower-complexity schedulers. This is particularly relevant in view of a relatively new fact100

that has recently modified the landscape of QoS routing, i.e., that centralized path computation is

now being advocated in several networking architectures—e.g., those based on Path Computation

Elements [20], the control plane of Software Defined Networks [21], industrial networks, avionic

networks, and cyber-physical systems—where explicit guarantees on the delivery time are to be

coupled with the resource usage efficiency that only an entity with a global knowledge of the105

network status can provide. Hence, centralized, optimal path computation solution is nowadays

a viable approach, allowing us to employ techniques that would have been unsuitable under the
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assumption that path computation was meant to be done by routers themselves, hence had to be

simple and rely on local state information only. This means that theoretical network performance

improvements related to the use of more efficient scheduling algorithms may in fact translate into110

practice in several applications environments.

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3

introduces the system model, and Section 4 states the problem formally and outlines our solution

approaches. These are evaluated numerically in Section 5. Finally, Section 6 reports conclusions

and highlights directions for future work on this topic.115

2. Related Work

We now describe the most relevant related work on QoS routing and optimal path computa-

tion. QoS routing is concerned with finding paths subjects to QoS constraint, such as a minimum

guaranteed bandwidth, a maximum delay or jitter, etc.. A seminal paper on the topic is [22],

which shows that computing a shortest path under two or more additive or multiplicative con-120

straints is NP-complete. For instance, per-link delays are additive, and per-link loss probabilities

are multiplicative. However, path computation with one additive/multiplicative constraint and

concave constraints (such as a minimum available bandwdith along a path) is instead polynomial.

There has been a large amount of literature devoted to finding approximate solutions for the

multi-constrained QoS routing problem (e.g., [23, 24, 25, 26]), or advocating doing part of the125

work offline (the so-called “pre-computation” approach) to make the online part faster [27]. All

the above works, however, consider link delay as a static per-link metric, hence neglect queueing.

Relatively fewer works [13, 14, 28] aim to find paths and per-link rate reservations that meet a

pre-specified non-additive end-to-end worst-case delay. This is possible because the WCD is a

decreasing function of (among other things) the rates reserved at each link, if the sending rate of130

the flow is upper bounded [29]. The above works assume PGPS schedulers [1] and leaky-bucket-

shaped flows, and endeavour to find a path with enough available rate. It has been shown in [28]

that path computation under the above assumptions is a polynomial problem if the rates to be

reserved at each link are the same and known in advance. Later, [13] and [14] have shown that

this is still true even with unknown rates, as long as they are all the same. Allowing rates to135

be different, instead, makes the problem NP-hard. However, our previous works [15, 16] have

shown that constraining the rates to be the same at all links comes with a high cost in terms

of network performance: removing that assumption, in fact, abates the flow rejection probability

considerably. Moreover, even though path computation becomes non-polynomial, it is still solvable

in split-second times for fairly large-scale networks, hence online path computation with unequal140

rates is practicable. Furthermore, heuristic approaches can be devised that are much faster than

exact solution methods while achieving solution of similar quality, thus reinforcing the above claim.
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All these works only consider PGPS schedulers. However, their results can obviously be applied

without any modification to every scheduler whose latency expression is the same as PGPS, i.e.,

to any SRP scheduler. A first classification of schedulers based on their latency expression—and145

on the impact that these expressions have on optimization problems—can be found in [30]. In

that work, group-based approximations of WFQ are not mentioned, since they have only appeared

more recently. To the best of our knowledge, this is the first work considering delay-constrained

routing using non-SRP schedulers. As we show later on, employing non-SRP scheduler is not

straightforward from a modeling point of view, since it introduces admission control constraints,150

on one hand, and requires some clever modeling choices, on the other. We terminate this section

by observing that there are indeed many works comparing schedulers, along the dimensions of

latency, fairness and complexity. While almost every work proposing a new scheduler somewhat

positions it in the above three-dimensional space, some works [2, 3] show that the three axes

are not independent, and what fundamental trade-offs bound them together. To the best of our155

knowledge, no work so far compared schedulers regarding their suitability to QoS routing.

3. Background and system model

This section details the hypotheses underlying our contribution, and provides the necessary

background on worst-case delay computation and latency expressions.

The network where flows have to be routed is represented as a directed graph G = (N,A),160

where N is the set of nodes (i.e., routers or switches) and A is the set of arcs (i.e., links) joining

them. A node i ∈ N is characterized by a fixed node delay ni, representing the time it takes for a

packet to travel from an input interface to an output interface. A link (i, j) ∈ A is characterized

by its constant propagation delay lij and its capacity wij . Moreover, the maximum transmit unit

(MTU) L is known and assumed to be constant throughout the network for simplicity.165

We focus on a tagged flow to be routed through the network, and call s ∈ N and d ∈ N \ {s}

its source and destination nodes. The flow has an end-to-end deadline δ, and the routing must be

such that the WCD of the flow must not exceed δ. A WCD guarantee can only be given if the

injection rate of the flow is upper-bounded. Such upper bound can be expressed in the form of

an arrival curve A(τ) : R+ → R+, which is a wide-sense increasing function bounding from above170

the number of bits that the flow is allowed to send in any interval of length τ . That is, if F (t)

measures the overall number of bits injected by the flow by time t, we have F (t+τ)−F (t) ≤ A(τ)

for all t and τ ≥ 0. We assume that the arrival curve is affine, i.e. A(τ) = σ + ρ · τ . This curve

is often referred to in the literature as the leaky-bucket arrival curve, and its two non-negative

parameters σ and ρ are called burst and rate, respectively.175

We assume that each link is managed by a WFQ scheduler (e.g., PGPS, DRR, etc.), where

each flow traversing the link has to specify its reserved rate for the link. Obviously, in order to
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verify whether or not a feasible routing exists for the new flow it is necessary to know the current

state of the network. This is specified by the set K of existing flows: each flow in k ∈ K is

characterized by its chosen path p(k) between its source and its destination, its deadline δk, its

burst and rate parameters σk and ρk, and its reserved rates rkij for each link (i, j) ∈ p(k). We will

similarly denote by p the path chosen for the new rate, and by rij the chosen reserved rates for

(i, j) ∈ p. Finally, we will denote by P (i, j) = { k ∈ K : (i, j) ∈ p(k) } the set of existing flows

traversing the arc (i, j); note that this does not comprise the new one, which has yet to be routed.

All this data is clearly required to define the conditions under which a feasible path p and reserved

rates exist for the new flow. For instance, any WFQ scheduler guarantees that—over a suitable

interval of time—the new flow will be served at least with the required rate rij , regardless of the

presence of other flows; however, this holds only provided that the link is not oversubscribed, i.e.,

rij +
∑

k∈P (i,j) r
k
ij ≤ wij . (1)

Also, in order for the WCD to be finite the minimum rate among all links of the path must be at

least as large as the traffic injection rate of the flow, i.e.,

rij ≥ ρ ∀(i, j) ∈ p . (2)

Under (2), the WCD along path p is

σ

min{ rij : (i, j) ∈ p}
+
∑

(i,j)∈p

(
θij + lij + ni

)
(3)

where θij is the latency that the flow experiences on link (i, j). That latency models the delay

that the head-of-line packet of the tagged flow undergoes due to the scheduling process, and its

expression varies from one scheduler to the other. Following and extending [30], we can classify

WFQ schedulers into four classes, depending on their latency expressions:

• Strictly Rate-Proportional (SRP) latency, i.e., the one of Packet-by-packet GPS (PGPS, [1],

also called WFQ) and Worst-case Fair Weighted Fair Queueing (WF2Q, [31]). The expression

for SRP latency is:

θij =
L

wij
+

L

rij
. (4)

Note that the latency is inversely proportional to the reserved rate, barring an additive180

constant L/wij (which is unavoidable and due to atomic packet transmission), hence the

name SRP. Thus, the latency can be reduced by increasing the flow’s reserved rate. It

has been proved that SRP latency can only be achieved at O(log n) worst-case per-packet

complexity [2, 3], n being the number of flows traversing the link.

• Group-Based (GB) approximations of WFQ, e.g. [8, 9]. In these schedulers, flows are grouped

by requested bandwidth at logarithmic intervals, which ensures O(1) complexity at the price
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of a larger latency. The link latency expression is [8]

θij = 2
L

wij
+ 3

2dlog2 wijL/rije

wij
, (5)

which can be easily shown to satisfy

2
L

wij
+ 3

L

rij
≤ θij ≤ 2

L

wij
+ 6

L

rij
. (6)

Hence, the latency is still rate-proportional, but with a constant (≥ 3) multiplying the rate-185

dependent term and a larger constant offset: thus, it is in general larger than (4). We call

(5) a Group-Based latency.

• Schedulers with Weakly Rate-Proportional (WRP) latency, e.g. Self-clocked Fair Queueing

[10]. SCFQ was introduced as a simpler approximation of the GPS paradigm, since it does

not need to emulate a GPS scheduler. However, it still exhibits logarithmic complexity, and

its latency depends on the number of flows |P (i, j)| traversing the link simultaneously:

θij = |P (i, j)| L
wij

+
L

rij
. (7)

If |P (i, j)| is large, increasing the reserved rate may decrease the latency only marginally,

hence the name given to this class.

• Frame-Based (FB) schedulers, such as DRR [4] and similar [5, 6], which achieve O(1) com-

plexity by imposing that flows are visited in a fixed order, each for a minimum amount of

time (called a quantum). The quantum determines the guaranteed rate, which is in fact the

ratio of the quantum to the round duration. Thus, in these schedulers latency depends on

the number of flows, but also on their quantum, hence on the reserved rate for each flow.

Note that O(1) complexity can only be guaranteed if all quanta are lower bounded. In DRR,

the quantum lower bound is equal to the MTU L. Moreover, quantum allocation also reflects

rate partitioning, i.e., one flow is guaranteed double the rate as another flow if and only if

its quantum is twice as large. This implies that the flow requesting the minimum reserved

rate must get a quantum equal to the lower bound L, and all other flows get their quantum

accordingly. Thus, the latency expression of DRR, besides the number of flows, also depends

on the reserved rates of other flows on the link. More specifically, it depends on both their

sum

r̄ij =
∑

k∈P (i,j) r
k
ij

and their minimum

rmin
ij = min{ rkij : k ∈ P (i, j) } .
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The latency of the DRR scheduler has been computed in [6]; it is easy to verify that the

formula obtained therein can be rewritten as

θij =
L

wij

r̄ij
min{ rij , rmin

ij }
+ |P (i, j)| L

wij
+

L

rij
. (8)

Other frame-based schedulers (e.g. [5, 6]), which are variants of the basic DRR scheme,

achieve smaller latencies by scaling down the lower bound on the quanta (i.e., below the

MTU size) by a constant factor κ, and avoiding the complexity penalty by using clever data

structures. The resulting latency has the similar expression

θij =
L

wij

r̄ij
κ ·min{ rij , rmin

ij }
+ |P (i, j)| L

wij
+

L

rij
.

The limit for κ → ∞ exactly reproduces the WRP latency (7). However, the cost of the190

scheduling algorithm, either in time or in space if implemented in hardware, grows with κ,

which means that κ cannot be taken arbitrarily large. Yet, clever implementations allow to

select κ so as to get quite close to the WRP latency, at a reasonable cost; the interested

reader is referred to [6] for details. For simplicity, in the following we will only work with

κ = 1, as employing a generic κ > 0 would not change the shape of the models.195

The aim of this paper is to formulate and solve the Delay-constrained Routing (DCR) problem:

given the current state of the network and a set of link reservation costs fij > 0—i.e., the cost of

reserving one unit of capacity on (i, j)—find one feasible s-d path, and a feasible reserved rate at

each of its links, so that the flow can be routed along the path and meet its end-to-end deadline at

the minimum possible reservation cost. Obviously, admitting a new flow must not jeopardize the200

delay guarantees of other flows already present in the network. This is a practical concern, since

both the latency formulas of WRP (7) and FB (8) schedulers include terms that depend on the

number of flows traversing the link. Furthermore, (8) also includes the minimum rate reserved for

a flow at that link. Therefore, admitting a new flow, by increasing some other flow’s latency, might

make them violate their deadline, in which case the new flow must be rejected. In other words,205

the admission of a new flow, for these schedulers, requires global admission control to ensure that

all other established flows keep meeting their deadlines. Note that this problem cannot occur

with SRP or GSRP schedulers, since their latencies only depend on the rate of the new flow being

routed. For these, therefore, global admission control is not required, and the admission of a new

flow is only conditioned by the availability of rate along the chosen path. So far, the DCR problem210

has only been dealt with in the context of SRP schedulers in [15, 16], where it has been proven to

be a Mixed-Integer Second Order Cone problem (MI-SOCP). In the following, we formulate it for

the other categories of schedulers—notably, those requiring global admission control.
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4. Mathematical programming formulation

In [15, 16], the DCR problem for SRP schedulers was formulated as a MI-SOCP problem. We215

recall that formulation hereafter, as a baseline to understanding its generalizations.

To model routing, we use binary variables xij ∈ {0, 1} to indicate whether link (i, j) belongs

to p: this allows us to write down the standard flow conservation constraints

∑
(j,i)∈BS(i)

xji −
∑

(i,j)∈FS(i)

xij =


−1 if i = s

1 if i = d

0 otherwise

i ∈ N . (9)

If the (indirect) cost of setting any xij = 1 is positive, (9) ensure that—at optimality—the x

variables represent an s-d path. In (9), BS(i) is the subset of A containing the arcs entering node

i (the so-called “backward star” of the node), while FS(i) is the subset of A containing the arcs

leaving node i (the so-called “forward star” of the node). We then introduce rate reservation vari-

ables rij , that are instead continuous, and an additional variable rmin, with an obvious meaning.

For these we define the reservable capacity cij ≤ wij − r̄ij at each arc: rij ≤ cij ensures that (1)

holds. Note that cij may be chosen to be strictly smaller than wij− r̄ij if some of the link capacity

has to be kept for other uses (signaling, backup paths, . . . ). Then, the constraints

0 ≤ rij ≤ cijxij (i, j) ∈ A (10)

ρ ≤ rmin ≤ rij + cmax(1− xij) (i, j) ∈ A (11)

ensure on one hand that rij = 0 if xij = 0, and on the other hand that ρ ≤ rmin ≤ rij ≤ cij if

xij = 1, so that both (1) and (2) hold. Note that cmax = max{ cij : (i, j) ∈ A } is used in (11) to

ensure that any link not in the chosen path (xij = 0) does not contribute to bounding rmin from

above.220

The constraint on the WCD given by (3) can be modeled using an auxiliary variable t and a

rotated SOCP constraint as follows:

t+
∑

(i,j)∈A

(
θij +

(
lij + ni

)
xij

)
≤ δ (12)

t rmin ≥ σ , t ≥ 0 (13)

Note that the lij and ni terms in the sum in (12) are only counted in if xi,j = 1, i.e., if the link

and node are actually in the chosen path p. For the same reason, some care must be taken to

constrain the latency variable θij to be equal to zero if xij = 0, or to an appropriate (convex)

nonlinear expression otherwise, which in the SRP case looks as follows:

θij =

 L
rij

+ L
wij

if xij = 1

0 if xij = 0
.
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This is a disjunctive set, being expressed by a disjunction, which is in general nonconvex. Also

note that xij = 0 =⇒ rij = 0, which renders the L/rij term ill-defined. In [15] it is proven that

the best approach to represent a disjunctive set makes use of Perspective Reformulation techniques

[32, 18, 33] and results in:

θij = Lsij + (L/wij)xij (i, j) ∈ A (14)

sijrij ≥ x2ij , sij ≥ 0 (i, j) ∈ A (15)

Clearly, the “(L/wij)xij” term in (14) can be merged into the corresponding “(lij + ni)xij” term

in (12), obtaining

t+
∑

(i,j)∈A
[
Lsij + (L/wij + lij + ni)xij

]
≤ δ (16)

subject to (15). Finally, we assume the linear objective function

min
∑

(i,j)∈A fijrij , (17)

i.e., we minimize the weighted amount of allocated rate along the path using the given reservation

costs fij . The whole model is thus a Mixed-Integer Second Order Cone Program, due to the

(rotated) conic constraints (13) and (15). MI-SOCPs can be solved (although, in general, not

in polynomial time) by off-the-shelf, efficient, general-purpose solvers like Cplex or GUROBI. We

remark that different formulations of some of these constraints are possible, which may result in225

the solvers to be able to solve the problems somewhat more efficiently in some cases, as discussed in

[34]. However, the presented formulation is already efficient enough for all the cases we test, hence

we stick to it for simplicity. We also remark that formulation (9)–(17) only requires knowledge

of the other flows in the definition of the reservable capacities cij . In fact, with SRP schedulers,

once a set of feasible rate reservations has been computed so that the new flow meets the required230

deadline, there is no need to check whether the other, already admitted flows still meet theirs

provided that no link is over-reserved, i.e., (1) holds. Therefore, no further admission control

constraints are required. This is no longer true for the other schedulers, which therefore require a

different analysis.

4.1. Generalizations to other latency models235

We now show that similar MI-SOCP models can also be derived when GB, WRP and FB

schedulers are used. We refer the readers to [34] for more details on the derivations and possible

alternative models.

4.1.1. Group-based Schedulers

The embodiment of (3) to the case of GB schedulers, whose latency is (5), is not straightforward.

In fact, (5) is non-smooth, given the ceiling operator on the exponent. This would lead to complex
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non-linear, non-convex models, for which very few solvers are available and that could hardly

be solved to optimality in split seconds. However, it is easy to observe that both the lower and

upper bounds to (5) shown in (6) lead to convex models. In particular, using the upper bound in

(6)—which is a safe choice, since we are discussing worst-case performance—we can just replace

(14) with

θij = 6Lsij + (2L/wij)xij

leaving (15) unchanged; this means that (16) becomes

t+
∑

(i,j)∈A
[

6Lsij + (2L/wij + lij + ni)xij
]
≤ δ .

Because the latter only differs from (16) in two coefficients, there is no impact on the shape of240

the optimization model. Also, no “explicit” admission control mechanism is required in this case,

save checking that enough capacity is available for the new flow similarly to the SRP case.

4.1.2. Weakly Rate-Proportional Schedulers

We now consider the latency model (7), which includes term |P (i, j)|. Again, the embodiment

of (3) in this case is straightforward: just replace (14) with

θij = Lsij + (L/wij)|P (i, j)|xij (18)

leaving (15) unchanged. As |P (i, j)| does not depend on the rates, this again has no impact on the

shape of the optimization model. Note, however, that in this case admission control is required.

In fact, unlike with SRP and GB, in this case a flow’s latency depends on |P (i, j)|, which changes

(for some arcs) if a new flow is admitted. Hence, we need to ensure that existing flows still meet

their deadline after the new flow is admitted; if this is not the case, the new flow must be rejected,

even though there may be enough rate for it to meet its own deadline. For each active flow k ∈ K,

we therefore define the delay slack δ̄k

δ̄k = δk − σk

min{ rkij : (i, j) ∈ p(k)}
−

∑
(i,j)∈p(k)

(
L

rkij
+ (|P (i, j)| − 1)

L

wij
+ lij + ni

)
(19)

which represents the amount of extra delay that flow k can tolerate, without changing either its

path p(k) or its reserved rates rkij , while still meeting its deadline δk. Note that the term |P (i, j)|−1

comes from the fact that the term “|P (i, j)|” in (7) does not count k, as it refers to the status

where k had not been routed yet. On the contrary, when defining δ̄k the flow has already been

routed, and it is obviously true that k ∈ P (i, j) for all (i, j) ∈ p(k) (which in particular means

that |P (i, j)| − 1 ≥ 0). Now, in order to ensure that the delay of k along p(k), using the fixed

reserved rates rkij , does not increase more than δ̄k, it is sufficient to add the linear admission

control constraint ∑
(i,j)∈p(k)(L/wij)xij ≤ δ̄k . (20)
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It goes without saying that the model is still MI-SOCP, since the above admission control con-

straints are linear. Of course, one needs one constraint (20) for each k ∈ K, and therefore the245

number of added constraints w.r.t. the original SRP and GB formulation is O(|K|).

4.1.3. Frame-based Schedulers

Finally, we consider FB schedulers. When comparing their latency expression against WRP’s,

(4), it is apparent that FB latency includes both a “simple” additive term (L/wij)|P (i, j)| like

(7), and the rate-dependent term
L

wij

wij − rij
min{ rij , rmin

ij }
(21)

However, clearly, (21) only applies if xij = 1, i.e., arc (i, j) is chosen to be in the path for the new

flow; in fact, the term would otherwise go to +∞ when xij = 0 =⇒ rij = 0. Now, (21) is not a

jointly convex function in rij and all the rkij (rmin
ij ). However the latter are fixed in this setting

and therefore so is rmin
ij ; this makes (21) convex in rij . In fact, the function

φ(rij) = (wij − rij)/min{ rij , rmin
ij }

that describes (up to a constant) (21) can be rewritten as

φ(rij) =

 φ1(rij) = wij/rij − 1 if rij ≤ rmin
ij

φ2(rij) = (wij − rij)/rmin
ij if rij ≥ rmin

ij

.

It is then immediate to see geometrically, and easy to verify algebraically, that not only φ1(rmin
ij ) =

φ2(rmin
ij ), but also φ1(wij) = φ2(wij)[ = 0]. It follows that φ2(rij) ≥ φ1(rij) for all rij ∈ [rmin

ij , wij ],

whereas φ1(rij) ≥ φ2(rij) for rij ∈ (0, rmin
ij ]. Hence, in the interval [ρ, wij ] that matters for our

problem one can alternatively define

φ(rij) = max{φ1(rij) , φ2(rij) } .

Hence, using standard representation of convex max-functions we can formulate (21) as

θij = Lsij
L

wij
|P (i, j)|xij + vij (i, j) ∈ A

vij ≥ Lsij − L/wij , vij ≥ (L/rmin
ij )xij − Lrij/(wijr

min
ij ) , vij ≥ 0 (i, j) ∈ A

(again, including (15) as well).

As can be expected, admission control constraints for FB schedulers are more complex than

WRP’s due to the need to express the nonlinear term (21). However, one can use the same

definition of delay slack used for WRP; this is because, as already mentioned, the FB latency is

equal to WRP’s plus the rate-dependent addendum. As the latter depends on the choices made for
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the new flow, hence is not constant, it cannot be included in the delay slack, i.e., the righ-hand-side

of the constraint. In other words, one can write the admission control constraint as

∑
(i,j)∈p(k)

L

wij

(
xij +

wij − rkij
min{ rij , rmin

ij }

)
≤ δ̄k (22)

with δ̄k of (19). This is clearly related to the WRP version (20), but for the extra part (21); it has

to be remarked, again, that that term only applies when xij = 1 =⇒ rij > 0 (otherwise it would

send that term to +∞). Exploiting the already discussed properties of (21), a SOCP formulation

can be easily obtained:

∑
(i,j)∈p(k)(L/wij)(xij + (wij − rkij)zij) ≤ δ̄k (23)

zij ≥ 1/rmin
ij , zij ≥ sij (i, j) ∈ p(k) (24)

Note that the 1/rmin
ij term is always well-defined because (i, j) ∈ p(k), hence arc (i, j) is not

empty—it contains at least the flow k—and therefore rmin
ij > 0. It is also important to remark250

that neither the variables sij nor the zij depend on the flow k; that is, these can be defined just

once for all arcs (i, j) ∈ A and then used to define the admission constraints for all the active

flows. Actually, the zij variables only need to be defined for all (i, j) for which at least one active

flow is routed. Therefore, in this case as well the model is still a MI-SOCP, despite the additional

admission control constraints. Note that their number is higher than those of WRP, as constraints255

(23) are O(|K|), whereas (24) are O(|K|+ |A|); also, some O(|A|) extra variables are needed.

5. Numerical Results

We now analyze the impact on network performance of employing different schedulers for QoS

routing. In general, simpler schedulers come with higher latencies, and this must reflect on their

ability to admit traffic in the network. We analyze this effect by measuring the blocking probability,260

i.e., the relative ratio of unfeasible path computations, in several scenarios. We also show that

solving to optimality the DCR problem is affordable with all the scheduler classes: the solution

time is invariably well below one second, on off-the-shelf hardware, even for large networks and

for a wide range of loads. This has already been shown for SRP schedulers in [16]; we now

extend that result by showing that even factoring in admission control constraints (for WRP and265

FB schedulers) does not increase the computational burden significantly. Furthermore, modeling

improvements may further improve the efficiency of the solution process, as discussed in [34].

5.1. Simulation setup

Constructing a set of meaningful instances to compare the various scheduling classes is a

nontrivial exercise. We follow the guidelines of our earlier paper [16], which we summarize here for270
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ease of reading. A number of real-world IP network topologies, shown in Table 1, are taken from the

Internet Topology Zoo [35]. These topologies are heterogeneous with respect to network dimension,

connectedness (represented by the average node rank) and geographic span (summarized by the

average per-link propagation delay), ranging from regional (e.g., Belnet2009) to world-wide (e.g.,

DeutscheTelekom). Link delays lij are set according to the geographic coordinates, dividing the275

geodesic distance between i and j by the speed of light in a fiber. Node delays are selected equal

to 40µs, a figure that can be expected to be on the safe side according to [36]. Link capacities

are assigned using the FNSS tool [37], and selected among {1, 10, 40} Gbps, according to the edge

betweenness centrality metric. FNSS also generates realistic traffic matrices based on the network

capacity, and we exploit this to generate the ρ value of each request so that it can be accepted in an280

unloaded network. Traffic matrices are generated using a log-normal distribution with a mean rate

equal to 0.8 Gbps and a variance of 0.05. The MTU L is fixed to 1500 bytes. Flow deadlines δ are

set with the following process. We first compute two extreme values: δmin, corresponding to the

minimum feasible deadline obtained by allocating the entire link capacity and then calculating the

delay-shortest path, using SRP schedulers, given this fixed allocation, and δmax, corresponding to285

the delay bound obtained by allocating a rate equal to ρ on all the links of the shortest path, still

using SRP schedulers. Delay requests smaller than δmin cannot be met, whereas requests higher

than δmax are likely to make the delay constraint redundant with SRP schedulers. Thereafter, δ is

randomly chosen uniformly within the interval [ δmin , δmin+β(δmax−δmin) ] for a fixed parameter

β ∈ (0, 1); the smaller β, the more difficult meeting the delay constraint can be expected to be.290

Path computation request inter-arrivals are exponential with a varying rate λ: each path lasts

for an exponentially distributed time with a mean equal to 1s, hence λ represents the number

of erlangs. The number of path computations requested is large enough to estimate blocking

probabilities correctly even at low values of λ. Each point in the graphs is obtained as the average

of five independent replicas, and 95% confidence intervals are also reported.295

Simulations have been performed on a 2.299 Ghz AMD Opteron 6376 with 16Gb RAM, running

a 64 bits Linux operating system (Ubuntu 12.4). All the codes were compiled with gcc 4.4.3 and

-O3 optimizations. The MI-SOCPs were solved by off-the-shelf commercial solver Cplex 12.6, ran

with default parameters. Thus, it is not unlikely that just tweaking the algorithmic parameters of

the solver could buy us an additional speedup.300

5.2. Results: blocking probability

We simulate path computation with all the scheduler classes, namely SRP, WRP, FB and GB;

for the latter we use the lower bound approximation of the latency given in (5), for reasons that

will become clear soon. We plot the blocking probability in Figure 1, as a function of λ, for all

the above topologies when β = 0.2 and σ = 3MTU.305
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Figure 1: Blocking probability for all topologies, � = 0.2 and � = 3 MTU
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Figure 1: Blocking probability for all topologies, β = 0.2 and σ = 3 MTU
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Table 1: Topologies used in the simulations (Topology Zoo dataset, [35]).

Topology # nodes # links # flows avg. node rank avg. prop. delay (ms)

Abilene 11 28 110 2.55 5.03

AttMpls 25 112 600 4.48 4.54

Bellcanada 48 128 2256 2.67 2.83

Belnet2009 21 48 420 2.29 0.19

DeutscheTelekom 39 124 912 3.18 13.79

Geant2010 37 112 1332 3.03 3.93

Ibm 18 48 306 2.67 4.67

Iris 51 128 2550 2.51 0.27

For all the schedulers classes, the blocking probability ranges from negligible (when λ = 0.1)

to almost certain (when λ = 100). The figure clearly shows that SRP outperforms all the other

scheduler classes. What makes GB perform poorly is the fact that latency (5) includes a factor two

to multiply the rate-dependent term. This fact is unique among all scheduler classes, and is such

that GB is often unable to meet the deadlines (which, we recall, were already challenging for SRP310

schedulers) even in an unloaded network. Note that we have chosen a lower bound approximation

on purpose, so as to discount the hypotheses that GB’s poor performance were due to a pessimistic

upper-bound approximation.

The charts show that WRP and FB perform considerably worse than SRP, although they

exhibit the same dynamics; that is, their blocking probability does decrease at small loads, unlike315

that of GB. Among them, FB performs considerably worse than WRP, which is expected in that it

always has larger latency for the same allocated rates (cf. the discussion about the extra term (21)

in §4.1.3). The performance gap between WRP and SRP could be explained similarly, at least for

larger loads where several active flows are present on the network: cf. the discussion about the

extra term |P (i, j)| in the latency formulæ of §4.1.2. However, a deeper analysis shows that an320

entirely different factor is also at play here: namely, admission control. The relevant mechanism

is the following: when a flow is admitted, its rates are computed based on the current value of

|P (i, j)| (and of rmin for FB). In particular, because a minimum-cost allocation is sought, the

smallest possible rates are computed. Given the inverse proportionality between rates and delay,

this means that, for the given path, the selected rates are those that produce the largest possible325

feasible delay, i.e., δ. In other words: when a flow is admitted, its delay slack (19) is necessarily

null. The consequence of this choice is that, unless some flow disappears later on, any other

flow that attempts to use the same links will increase |P (i, j)|, thus increasing the WCD of any

existing flow: but because the WCD is already at its maximum, even a fractional improvement

is impossible. Thus, a new flow may be found to be impossible to route not because there is not330
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enough rate to support it, but because of the fact that it would disrupt the current flows (i.e.,

because of admission control). In other words: once any flow seizes a link (i, j), it prevents any

other flow from using it until it is removed.

The only way to get around this problem is to overallocate rates somewhat, under WRP and

FB, so as to buy flows some slack at their admission. This can, for instance, be done by decreasing

the deadline by a small percentage in the WCD constraint, so as to force the model to allocate

more rates than these that would actually be necessary. That is, we can substitue the deadline

constraint (12) with

t+
∑

(i,j)∈A
(
θij + (lij + ni)xij

)
≤ δ(1− ε)

for some small ε > 0. This way, some delay slack is introduced to protect the flow from a

subsequent increase in |P (i, j)| and/or decrease in rmin. Of course, one should not overdo it, lest335

the problem is made unfeasible because the deadline is made too strict, or the increase in rate

consumption makes it impossible for other flows to be admitted for lack of available capacity that

could have been admitted otherwise. In order to verify that this mechanism is indeed significant

we have repeated the experiments, for WRP and FB, with the small value ε = 5 · 10−5. The

results are again plotted in Figure 1 (lines “WRP-sl” and “FB-sl”), alongside the non-slackened340

approaches. The charts show that even a small slack is enough to abate the blocking probability

substantially in most topologies, thus confirming that the admission control is a significant factor

for the blocking probability of WRP and SF schedulers.

5.3. Results: running times

Average computation times for all schedulers are shown in Figure 2, proving that computa-345

tion times, being in the tens to hundreds of milliseconds, are indeed affordable. As observed in

[16], computation times depend on the topology, and specifically on both its connectedness and

dimension, the former having larger impact on the size of the solution space than the latter. All

schedulers exhibit a decreasing trend with the load: this is because the optimization problem

becomes unfeasible at higher loads, as testified by the increase in the blocking probability, and350

the solver detects unfeasible problems faster than it solves feasible ones of the same size. This

phenomenon also explains why SRP is not consistently the fastest one despite having the simplest

model; indeed, especially for large loads SRP usually requires more time than the other sched-

ulers, largely because it has a lower failure rate. For analogous reasons, the “slackened” variants

(WRP-sl and FB-sl) usually require more time than the corresponding non-slackened one (WRP355

and FB). On the contrary, at lower loads, where the failure rate of all the schedulers is comparable,

the other models often are (fractionally) more costly to solve than SRP, which is expected due to

them being more complex. In fact, FB is also typically (fractionally) more costly to solve than

WRP, since it has more complex constraints, both for describing the latency of the new flow and
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for admission control. What is relevant, however, is that overall admission control constraints360

do not generate major overhead in the solution time, as testified by the fact that WRP and FB

computation times, both with and without slack, are comparable to those of SRP and GB.

6. Conclusions and future research

In this paper we have proposed—to the best of our knowledge, for the first time—a centralized

path computation and resource allocation approach that can be employed with all classes of fair-365

queueing schedulers. We believe that our work provides the following interesting contributions:

• It is possible to formulate the DCR problem for all relevant classes of fair-queueing schedulers

as MI-SOCPs; this was not a foregone conclusion, since there was no a-priori guarantee that

latency formulæ had to be convex, and a fortiori Second-Order Cone representable.

• As a consequence, there is an actual possibility to use WRP and FB schedulers for QoS370

routing purposes, using a centralized-decision approach, employing standard off-the-shelf

optimization tools. The overhead of doing this is comparable to that of using more complex

SRP schedulers, which again was not obvious since the corresponding mathematical models

are more complex.

• However, WRP and FB perform worse than SRP in terms of network performance, i.e., gains375

in implementation complexity have to be payed—possibly, dearly—for in terms of blocking

probability. While this could be expected, since WRP and FB have, all the rest being equal,

higher latency than SRP, the magnitude of the difference really is relevant. This means

that when designing a network for sustaining highly delay-sensitive flows, the choice of the

scheduling protocol at the routers may play a more important role than is currently realized.380

In particular GB schedulers, while being a clever O(1) approximation of SRP ones, perform

rather poorly as far as QoS routing is concerned, even if we solve the problem at optimality

while using a lower-bound approximation for the latency, thereby requiring smaller rates

than what would actually be needed to meet the required QoS bound. To the best of our

knowledge, our results are the first that offer insight in the trade-off between the cost of the385

scheduling protocol and the quality of the corresponding QoS routing.

• Our results for the first time reveal that the policy of minimizing the sum of rates allocated to

the newly routed flow, which has hitherto been assumed in all the works on QoS scheduling,

may not be the best one when admission control is required. In other words, minimizing

the rate, while intuitively appealing, is not necessarily a good proxy for actual network390

performances, as measured e.g. by blocking probability. This means that different notions of

“quality of obtained path and rates” will have to be developed in order to be embodied in the
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for admission control. What is relevant, however, is that overall admission control constraints360

do not generate major overhead in the solution time, as testified by the fact that WRP and FB

computation times, both with and without slack, are comparable to those of SRP and GB.
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Figure 2: Average computation times for all topologies, � = 0.2 and � = 3MTU

6. Conclusions and future research

In this paper we have proposed—to the best of our knowledge, for the first time—a centralized

path computation and resource allocation approach that can be employed with all classes of fair-365

queueing schedulers. We believe that our work provides the following interesting contributions:
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mathematical models. We have proposed a first, simple approach to this issue by selecting a

fixed delay slack, but it is apparent that our proposal is a somewhat crude one: there must

be an optimal slack—since both a null and a “high” ones lead to poor performance—but395

estimating it does not seem to be trivial.

We therefore believe that the topic deserves future investigations. In particular, it seems to be

important to come up with more appropriate objective functions and/or constraints describing

the quality of QoS routing than just the sum of the used rates along the links. As an example,

it would be interesting to investigate slack selection policies for schedulers requiring admission400

control.
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