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Abstract

A method is presented for the analysis of lamindiedms with general stacking sequences and ailyitrar
located, through-the-width delaminations. Firsg tklative displacements and concentrated forcéiseatrack
tip are determined based on classical laminatienrthand Timoshenko beam kinematics. Next, new tifies)
called crack-tip displacement rates, are definethaselative displacements per unit increase atlciength.
The previously computed quantities are then usedatoulate the energy release rate and its model llla
contributions via an adaptation of the virtual &atosure technique. Results for homogeneous améterial

delaminated beams are presented and compared forébetions of other methods in the literaturestha

applications to some non-standard delaminatiorsggstimens are illustrated.
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applied load in the ADCB test
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crack-tip segment with crack-tip forces applied
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a @, P cross sections’ rotations of laminate and sublatema
@1, @ cross sections’ rotations of poir@s andC,

) free-end cross-section rotation of cantilever beam
Vi Vis Vo shear strains of laminate and sublaminates

n sublaminates thickness ratio

K, K1, Ko curvatures of laminate and sublaminates

M, Lo, s, Ly parameters used to express the crack-tip forces
L, 1y dimensionless elastic-interface constants

W, Vo, U, Uy parameters used to express the crack-tip forces
Vox Poisson’s ratio in thexplane

L P Po crack-tip displacement rates

25, Py P crack-tip displacement rates in segmgnt

a2y B Py mode | crack-tip displacement rates

o o oy mode Il crack-tip displacement rates

o peak normal interfacial stress

I peak tangential interfacial stress

7} mode-mixity angle

Q1, Qo, Q3 roots of characteristic equation

ADCB asymmetric double cantilever beam

AMMB asymmetric mixed-mode bending

DCB double cantilever beam

DCB-UBM double cantilever beam loaded with unevending moments
LEFM linear elastic fracture mechanics

MMB mixed-mode bending

VCCT virtual crack closure technique

1. Introduction

Delamination is one of the most common and insisli@ilure modes for composite
laminates. Interlaminar cracks propagating at tiberface between two adjacent laminae may
originate from different causes and lead to glda@dire of a laminate. A huge number of
experimental, analytical, and numerical studieshasen devoted to this problem during the
last decades [1-5].

The analysis of delamination is commonly condudtetthe context of fracture mechanics.
In particular, based on linear elastic fracture haeics (LEFM), theenergy release ratés, is
the most used parameter to predict the initiatiwsh growth of delamination cracks. On one
hand, analytical and numerical models are develodpedmpute the expected valueszoin
laboratory specimens or real structural componntg]. On the other hand, experimental

techniques are used to assess the critical enelggse rate, anterlaminar fracture

toughnessG_, of specific materials [8]. The analysis is howesemplicated by the fact that

delamination cracks usually propagate under a rhikeothree basic fracture modes (I or

opening, Il or sliding, and 1l or tearing) and tiacture toughness depends onrtiwe
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mixity (a measure of the relative amounts of fractureeapdlhe energy release rate turns out

to be the sum of three modal contributio@®s, G, , andG, , that the theoretical models

should be able to predict. Besides, experimenssinig should be carried out to determine the
delamination toughness not only in pure fracturel@so but also under mixed-mode
conditions. To this aim, several alternative theéoat models and experimental techniques
have been developed. Their results, however, agoeaetimes conflicting. Ducept et al. [9]
conducted tests on symmetric and asymmetric deltramspecimens. They analysed their
experimental results based on the global metholl [d€al method [11], and virtual crack
closure technique (VCCT) [12, 13], obtaining sigraht differences. Also, Harvey et al. [14,
15] observed relevant discrepancies between diftéracture mode partitioning theories in
the interpretation of experimental results.

In this paper, attention is focused on laminateahfiee containing delaminations under /11
mixed-mode conditions. This problem was analysea proneering work by Pook [16], who
used plate theory to calculate the energy relesteeand the mode | and Il stress intensity
factors for several configurations of homogeneasisotropic beams and plates with mid-
plane delaminations. Williams [10] used beam theorgompute the energy release rate and
the mode | and Il contributions for homogeneousisewith delaminations located at
arbitrary depth. Williamsglobal methocassumes that fracture mode | is produced when
opposite bending moments act on the two sublansnate which the laminate is split;
besides, mode Il is assumed when the delaminatibigsinates have equal curvatures. Such
assumptions, however, lead to incorrect resuttsefsublaminates have different thicknesses.
To overcome this drawback, Schapery and Davidséhdfoposed a method based on
classical laminated plate theory, where the modetyrmdepends on a numerical parameter to
be determined via finite element analysis. Indepetigl, Nilsson and Storakers [18] analysed
layered plates and discussed several alternatvebé partitioning of fracture modes.

An elasticity theory approach was instead propdsefuo and Hutchinson [11], who
considered the problem of a semi-infinite crackasen two homogeneous and isotropic
elastic layers subjected to axial forces and benpdioments. According to thdwcal method
the energy release rate is computed based on Iemmyt while the mode mixity is obtained
by solving a plane elasticity problem. Suo [19]esxted the local method to orthotropic
materials by using the conceptarsthotropy rescalind20, 21]. Liet al.[22] and Andrews
and Massabo [23] added the effects of shear fdorasotropic and orthotropic materials,

respectively. In a recent paper,dtial.[24] use classical beam theory and fitting ofténi
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element results to reproduce Suo and Hutchinsaedigions for the mode mixity. They also
present an interesting discussion on the relatipristtween the concentrated crack-tip forces
of the beam-theory model and the singular strestsilglitions of the elasticity solution.

A different approach to the problem was proposedlby and Ladevéze [25], who
modelled delamination by considering an elastierfiace between the separating layers of a
laminate. Subsequentlglastic-interface modelsere used many other authors [26—35].
Elastic-interface models can be regarded as p#aticases of the more general class of
cohesive-zone modd36—-39]. Based on such models, the work of coleeactions
(corresponding to the energy release rate of LEBMalculated based on the values of the
interfacial stresses at the delamination front.

Most methods in the literature are limited to hoergpus or bimaterial beams. Only a few
authors consider laminated beams. Amongst theséssGaet al. [40] and Lundsgaard—
Larsenet al.[41] used classical lamination theory to analymsdsvich beams. Rask and
Sgrensen [42] proposed evaluating lhetegral for multidirectional laminated specimens
from the measures of beam curvatures and bendimgemis. \WWang and Harvey and co-
workers proposed an orthogonal decomposition metthartition fracture modes in
laminated beams [43—-45].

The aim of this paper is to retrieve the spiritdifliams [10] and set up a method to
calculate the energy release rate and mode miaggdbsolely on beam theory. Williams’
assumptions on fracture mode partitioning are Ealdy new assumptions, which hold also
for laminates with delaminations not placed onrthé-plane. Furthermore, the proposed
method applies not only to homogeneous and isatiogams, but also to laminated beams
with general stacking sequences, including thosle @nding-extension coupling.

The mechanical model underlying the present meihiod purpose kept as simple as
possible in order to obtain simple analytical esgrens for all the quantities of interest. This
is done at the risk of affecting the accuracy stites, but in the hope that the proposed
approach could help to shed light on a subjectclvhktill raises some controversy in the
literature. For instance, it is assumed that tHandimating sublaminates are perfectly clamped
at the crack-tip cross section. Indeed, it is Wetwn that taking into account the so-called
root rotations[46] could be crucial to get accurate predictiohexperimental test results (in
particular, in terms of the displacements and deé&tions of laboratory specimens).
Moreover, the present method is based on Timoshleeam kinematics [47], which assumes
that plane cross sections remain plane and undethrbut may rotate freely with respect to

the beam centreline. Thus, the present model udaktyi disregards some strain
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contributions (for instance, those related to thes$bn effect), which would require an

elasticity approach to be taken into account. Aerssequence, it is expected that the results

of the present method — in particular, for the moubety — may differ from those of more
complex analytical and numerical methods in thexditure. Nonetheless, the present method
can serve as a benchmark for the validation of moneplex methods in the limit case where
classical beam theory assumptions are fulfillee (gewhat follows, the comparison with the
elastic-interface model). Advantages of the progosethod compared to other ones include
also the following:

() laminated beams with arbitrary stacking sequenaage analysed, including those with
bending-extension coupling; instead, most methodka literature are limited to
homogeneous and isotropic beams;

(i) analytical expressions are obtained for the eneigase rate and its mode | and Il
contributions; there is no need to resort to fieliement analyses, numerical calculations,
or numerical parameters given in tabulated form;

(iif) shear forces and the effects of shear deformalitiéytaken into account, which may be
particularly relevant for composite laminates;

(iv) the method can be used for the design and datatredwf non-standard delamination
toughness testse. tests on multidirectional laminated specimens \piksibly
asymmetric delaminations.

The structure of the paper is the following. Int8®et2, a laminated beam is considered
with a general stacking sequence and an arbitrdaciyted, through-the-width delamination.
Attention is focused on a crack-tip segment, naraalynfinitesimally short portion of the
beam including one of the delamination crack tigessed on classical lamination theory [48]
and Timoshenko beam kinematics [47], the relatigpldcements occurring at the crack tip
(after an elementary crack growth) and the conagégdrforces acting at the crack tip (prior to
the elementary crack growth) are determined. Furtbes, new quantities, calledack-tip
displacement ratesre defined as the relative displacements peiingrease in crack length
[49]. In Section 3, the crack-tip displacement sadee used to calculate the energy release rate
and its modal contributions via an adaptation efuhtual crack closure technique [13, 50].
Section 4 presents results for homogeneous anddrimadelaminated beams. The present
method is compared to the elastic-interface mdgte]l §nd the local method [11, 22]. Also,
applications to some non-standard delaminationsfgstimens with general stacking

sequences are illustrated. Discussion of the obdaiasults follows in Section 5.
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2. Static and kinematic analysis of a crack-tip segment

2.1. Delaminated laminated beam and crack-tip segme

Let us consider a laminated beam of lergtthicknessH = 2h, and widthB, with an
arbitrarily located, through-the-width delaminatioilength & (Fig. 1). A Cartesian
reference systei@xyzis fixed with the origin at the geometric centfeone of the end
sections of the beam, tleaxis in the longitudinal direction, the andz-axes aligned with
the width and height directions, respectivelyslassumed that geometry, material properties,
restraints, and loads are such that the beam carobelled as a planar beam in Dex
plane. Within such assumptions, the beam can be midyers of different materials and
thicknesses and/or fibre-reinforced laminae wififedent orientations. Quite general stacking
sequences are allowed by the present model, imgutose with bending-extension
coupling, provided that the laminate and the sublates resulting from delamination are
free from out-of-plane effectgg.torsion, out-of-plane sheatc). As an example, many

symmetric and non-symmetric angle-ply and crosdaptyinates can be analysed.

crack-tip

@{efmentq

h \\\\ N ~N
"o 1oy - -

T T

T T

BN B a

AN \\' \\l

a > 0y J

Fig. 1. Delaminated laminated beam and crack-tip segment.

Attention is now restricted to@ack-tip segmendefined as an infinitesimally short
portion of the beam included between two cross@estA andB, located immediately
behind and ahead of the delamination crackQiffig. 2). The crack-tip segment can be
thought of as an assemblage of three short lansinet@nected to each other at the crack-tip
cross sectionC (Fig. 2a): the upper and lower parts of the detet@d beam, denoted as
sublaminates No. 1 and 2, respectively, and thelantnated part, denoted as laminate No.

3. The sublaminate thicknesses are indicated Wittand H,. Besides, in order to simplify
some of the forthcoming expressions, the half teslsesh, = H,/2 andh,=H, /2, are

introduced.
According to classical lamination theory [48], enilaated beam can be modelled as a

homogeneous beam, provided that equivalent stérgeare defined (see also Appendix A).

DOI: 10.1016/j.engfracmech.2016.08.010




P.S.Valvo / Engineering Fracture Mechani85 (2016) 114-139 8

Hence, letA,, B,, C,, andD, respectively denote thextensional stiffnesbending-

extension coupling stiffnesshear stiffnessandbending stiffnesper unit width of the three

laminates (Fig. 2b). Here, the subscupil{l, 2, 3} refers to the laminate number.

A1, B1, C1, D1 As, Bs, C3, D3
PLe ? @R@P J @
H‘Zl }—'j—: i mh i

o x — e i i,;‘c Tth

h
(a) Cg (b) Az, Bz, C2, D2

Fig. 2. Crack-tip segment: (a) laminated beam; (b) assagebdf equivalent homogeneous beams.

H

The internal forces are defined as the resultaxe®acting on the laminate centrelines.
Accordingly, theaxial force shear forceandbending momerdre denoted witiN,,, Q,,, and
M, respectively (Fig. 3). It is assumed that no kloads are applied on the crack-tip

segment, which therefore will be in equilibrium endhe action of the internal forces only. In
the limit case of a crack-tip segment of vanisHergth, the internal forces in laminate No. 3

turn out to be

N,=N;+ N, Q=Q+Q and M= M+ M,— Nh+ Nh (1)

Wa

Fig. 3. Internal forces and generalised displacement auive

Let u, and w, respectively denote trexial andtransverse displacement$the laminate
centreline, andy, theircross-section rotatigrpositive if counter-clockwise (Fig. 3). In line

with the Timoshenko beam theory [47], tinaal strain shear strain andcurvatureare

DOI: 10.1016/j.engfracmech.2016.08.010
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respectively defined as

gzdua =d_vy,

T odx T 77 dx

dp,
dx

+¢,, and k, =

(2)

According to classical lamination theory [48], théernal forces and strain measures can

be related as follows:
N,=B(A,¢, +B,k,), Q,=BC,y,, and M,=B@B,¢,+D,k,) (3)

or, by inversion of Egs. (3),

&, ZE(aaNa +baMa)’ Vo :iCanw and Kq :_1 ba Na +da Ma )’ (4)
B B B

where

aa=iz, bﬂ:-%, Ca:i, and da:% (5)
A,D, -B? A,D, -B2 C, A,D, - B2

are theextensional compliangeending-extension coupling compliapnskear compliance
andbending complianceespectively. Note that if the sublaminates areoupled (which is

the case for homogeneous and unidirectional lae&aB, =0 andb, =0, so that Egs. (3)-

(5) can be conveniently simplified.

2.2. Crack-tip relative displacements

Let us now consider aglementary crack growthwhereby the delamination crack
increases its length by a small amoukd,, under constant external loads. The initial crack-
tip segmentS, where the crack tip is located at pdih(Fig. 4a), transforms into a new
segmentSS,, where the crack tip moves to a new positnwhile pointC splits into two
points,C; andC,, belonging to sublaminates No. 1 and 2, respdgti¥@g. 4b). The cross
section passing through poidtis denoted wittD. It is assumed that the internal forces acting
on cross sections andB do not change appreciably with the elementarykcgrowth, but

pointsC; andC; generally undergo non-zero relative displacem@fits 5). Thecrack-tip

relative displacementare defined as follows:

Au=u,, - U, =(L-gh)-(u+gh),
AW=w,, - W, =W — W, and (6)
Ap=q, - @, =% - @,

whereu, andu., are the axial displacements of poi@isandC,, respectivelyw,., and

DOI: 10.1016/j.engfracmech.2016.08.010
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W, are the corresponding transverse displacemerdsparand ¢, are the cross-section

rotations. In particularAu is thecrack-tip sliding displacemenfAw is thecrack-tip opening

displacementand Ag is thecrack-tip relative rotation

® © ® 000

M Q11! | | M O ]
<(H N C : M; KF G D : M3
N3 N3
M2 Q2 —ﬁL —))
N2 ILQ3
|
|

(a) (b)

Fig. 5. Deformed crack-tip segment after the elementaagicgrowth.

The crack-tip relative displacements are here etatlby assuming that the two
delaminating sublaminates deform as cantilever lse@ffengthAa, clamped at cross section
D and loaded by the internal forcég, Q;, M; andNy, Q., M», at the cross sections passing
through pointsC; andC,. From the solution of the auxiliary problem ofaanlinated cantilever

beam loaded at its end (see Appendix B), it islyakiown that

DOI: 10.1016/j.engfracmech.2016.08.010
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Bu D= [(3, +bh) N ~(a,=b,h) N,+(byrd b} M=(b~d h) M}A a

Aw D%(le1 -¢,Q)Aa, and (7)
AwD%(blNl -b,N,+d,M,-d ,M ) Aa

where powers of\a of order higher than one have been neglected.

The clamped-end assumption for the sublaminatagjiste strong assumption, that will
affect the results. Nevertheless, this assumpsionade here for the sake of simplicity. A
possible improvement to the model could be obtaimedonsidering the root rotations, for

instance, by introducing rotational springs atghblaminate end sections [46].

2.3. Crack-tip displacement rates
Thecrack-tip displacement rateme defined as the crack-tip relative displacespet

unit increase in crack length [49]:

_ . Au _ . Aw AV
p, = lim —, ,ow—llarIlOE, and p¢—AIE|‘[n0Aa. (8)

In particular, p, is thecrack-tip sliding displacement rat@,, is thecrack-tip opening
displacement rateand p, is thecrack-tip relative rotation rateBy substituting Egs. (7) into

(8), the crack-tip displacement rates turn outeo b

1

Ly :E[(a1+b1h1) N1_(az_b2h2) N2+(b1+d 1h) M_(b z_d zh) ML
pw:%(C1Q1_C2Q2)’ and 9
1

Py :E(blNl -b,N, +d,M, -d ,M,).

By substituting Egs. (3) into (9), and expressing the lamst#faesses as functions of the

compliances through inversion of Egs. (5), the following exprassaoe also obtained:
P, =& & rKkh+rh, p,=y,-y, and p,=Kk —K, (10)

which show that the crack-tip displacement rates are a measure ofi¢hendi¢ in strains at
the crack tip between the two delaminating sublaminates. The gpadisfplacement rates
describe the kinematics of an elementary crack growth. They willdztinghe following to
calculate the energy release rate and patrtition fracture modes. drestirtg to note that the
first of Eqgs. (10) — by recalling also Egs. (8) — turns olgdgwery similar to the expression

DOI: 10.1016/j.engfracmech.2016.08.010
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used by Carlssoet al.[40] to evaluate the tangential relative displaeatrof the crack faces
of a double cantilever beam (DCB) sandwich specimso, it is worth mentioning that

similar quantities have been tacitly used by Schaped Davidson [17].

2.4. Crack-tip forces
The initial crack-tip segmerit (prior to the elementary crack growth) can be ioleté by

superimposing the segmertts (after the elementary crack growth) afd, where suitable

self-equilibrated pairs of axial forcad¢, shear force€Qc, and bending momentslc, are
applied at point€; andC, (Fig. 6). Suclcrack-tip forcescan be regarded as the forces acting
at the crack tip prior to crack propagation. Thasedifferent from the internal forces acting
on the crack-tip segment prior to crack growth,chihare applied on the sublaminate
centrelines. The axial and bending componéssandMc, were introduced by Schapery and
Davidson [17]. Harvey and Wang [44] considered #isoshear componer@c. Li et al. [24]
interpreted the crack-tip forces as the resultahtke singular stress fields at the crack tip of

the plane elasticity solution.

M Q11! | |
((— — |
N1 c ‘ﬁL . Ms
----- — ) =
o
N2

®00® ©000

M Q11! i | | , e |
(<t ol 1 s
‘ D | . M —>>p |
= M- Q21 C2| l_‘ﬁL_)j + N|CMC AC2 - ‘ﬁL
(ot 1= lle SR
: S ' ! I '
| | | | | | | |
Aa Aa

Fig. 6. The initial crack-tip segmefitas the superposition of segmesgsindSc.

The intensities of the crack-tip forces can be mbeiteed by observing that the crack-tip

DOI: 10.1016/j.engfracmech.2016.08.010
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relative displacements resulting from the supetmrsof segments, andS. should all be

equal to zero. This is equivalent to impose thahalation of the superimposed crack-tip

displacement rates. Now, the internal forces ims&g S, turn out to be

NP =-Ne, Q=-Q, and M =-M-NHh

C C C (11)
N, :Nc’ Qz :Q:' and My = M - N:I}
Hence, by substituting Egs. (11) into (9), the crack-tip dsghent rates ifi.,
pf;: =—fuNe = fiuMg, pSv: - waQo and ,0;,: == fw wN f(a wM ¢ (12)
can be computed. In Egs. (12) flexibility coefficients
fun :%(31 +a, +2bh,-2bh,+d 1h21 +d 2hzz)’
1
fuM = fq:N :E(b1 + bz +dlh1_d 2h2)’
1 (13)
wa :E(Cl +Cz)' and
1
f!ﬂ\/l :E(dl +d2)’

have been introduced. The flexibility coefficiedisscribe the deformability of the crack-tip
segment. In passing, it is noted that similar gtiasthave been defined within a finite
element framework in a revised formulation of the T [51].
To annihilate the crack-tip relative displacemeénts, it is necessary that
p,*+pP; =0, p,+p,=0, and p,+p, =0 (14)
Hence, by substituting Egs. (12) into (14), theckrap displacement rates,
P, =FfuNc+ f Mg, p,= 1, Qe and p, =1, N+, M (15)
are determined as functions of the crack-tip farttes noted that the coefficiertt,, (equal
to f, by virtue of Betti’s reciprocity theorem) introcega coupling betweenl . and p,
and,vice versabetweenN. and p,. This coupling vanishes for symmetrically delantéuh
beams with uncoupled sublaminates (for whighks b, =0 andd,h, =d,h,) and, more

generally, for delaminated laminated beams suchlthad.h, =-b,+d h,.

Lastly, by inversion of Egs. (15), the crack-tipdes,
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f _f f _f
N =M il =Pu ang M =—uPe" enP (16)
© ot fy = ff cCf R AP0 AR
uN "¢gM uM "@N wQ uN"¢g M uM @ N

are obtained as functions of crack-tip displacematats. The crack-tip forces can also be

expressed as functions of the internal forceseanstiblaminates, as explained in Appendix C.

3. Energy releaserate and fracture mode partitioning

3.1. Energy release rate

Theenergy release rajés, is the decrease of potential energy of the sysigent in the
crack growth process, per unit area of new surfaeated. According to Irwin [52], the
energy spent to produce an extension of the csaekual to the work done to close the crack
by the forces acting on the crack faces prior &xkrextension. In analogy with the VCCT
used in finite element analyses [12, 13], the wafrklosure can be defined as the work done
by the crack-tip forces on the corresponding redatlisplacements. Hence,

. 1
G=Ilim ——(N.Au+ QAW+ M.A®. 17
AaQOZBAa( c Q@ MAY (17)

Schapery and Davidson [17] used an equation sinal&qg. (17), but without the shear
term, Q.Aw. This term is needed here because, accordingtdithoshenko beam theory

[47], there are three independent, generalisedatispent components.
By recalling the definition of the crack-tip dispment rates, Egs. (8), the energy release

rate becomes
1
=g (Nefu + Qepu* Mcpy). (18)
Furthermore, by substituting Egs. (15) into (18% €nergy release rate can be expressed in

terms of the crack-tip forces,

1
GzE[ fun ch"'( f(/lN+ fm) NeM+ fwMMC2+ fWQQCZ}’ (19)

or, by substituting Eqgs. (16) into (18), in ternfgtee crack-tip displacement rates,

G :i f(/J'\/“Ouz _(wa + fuM)pUlo¢)+ fuNIO!/J2 + ,0W2 ] (20)

uN "¢M N "uM

Egs. (18)-(20) offer three equivalent ways to cotaphe energy release rate for a given

problem. In practice, once the internal forcesatdross sections behind and above of the
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crack tip are known, Egs. (9) furnish the crackeligplacement rates. Then, the crack-tip
forces can be determined from Eqs. (16) @wbtained via Eqgs. (18) or (19). Alternatively,
the energy release rate can be directly obtaireed &q. (20).

3.2. Fracture mode partitioning
Delamination cracks generally propagate under aahfracture modes. In I/l mixed-
mode problems, the energy release rate is the $tmvoonodal contributions,

G=G +G, (21)

respectively corresponding to fracture modes I fopmp and Il (sliding). By inspection of
Egs. (18)—(20), it is not obvious how to identifyetcontributions of fracture modes | and II.
On one hand, it is intuitive that the terms depegdinQc and p,, should contribute only to
G (incidentally, such terms are relevant only ifash@eformability is taken into account); on

the other hand, the terms dependindNenpMc and p,, p,, are strongly tied one another and,

hence, contribute to both fracture modes. It is alsted that this coupling depends on the

flexibility coefficient f,, = f_, , which is generally non-zero in the case of asymmme

@N
delamination cracks.

Here, the partitioning of fracture modes is basedhe following simple kinematic
assumption: pure mode | fracture occurs when taeketip sliding displacementu, is
equal to zero (or, equivalently, when the corresipayncrack-tip displacement raye, =0).
The modal contributions to the energy releaseaatethen be computed in a way similar to
that proposed elsewhere for the VCCT [50].

Let us imagine that the relative displacements betwthe crack faces are closed in an

ideal two-step process. In the first ideal stepresponding to the mode Il contribution,
suitable axial forcesN; , are applied at points; andC,, while neither shear forces, nor
bending moments are applied at the same points 7&)g The intensity oN! should be such
as to exactly close the gap in thdirection, Au, produced by the elementary crack growth.

In practice, the first of Egs. (15) can be useddtermineN! as the axial force producing a
crack-tip sliding displacement rate equaldp. To sum up, in the first ideal step the following

crack-tip forces are applied:

N' =P+ @ =0, and M.=0 (22)

fuN
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Substitution of Egs. (22) into (15) shows that dfi@rementioned crack-tip forces produce

the following crack-tip displacement rates:
1l l | f(ﬂN
Py =P, P,=0, and g, =P, (23)
uN

Egs. (23) indicate that in the first ideal steg ¢ap between the crack faces inxthe
direction is completely closed, the gap in thdirection is left unchanged, while the relative

rotation may be partly decreased or increased dipgion the sign of the coupling flexibility
coefficient, f .

In the second ideal step, corresponding to motteelremainders of the crack-tip forces,
Nlc:Nc_Nlclz’ QC:QC’ and Mc: Mc* (24)

are applied at pointS; andC, (Fig. 7b). By substituting Egs. (24) into (15) and recglluys.
(16) and (22), the crack-tip displacement rates produced by such créaicéip are

determined as follows:

I I | f!ﬂN
0, =0, p,=p,, and p,=p,———p, (25)

fuN

@ @®
c| < Mcl
NE—> j| '%\f_} Mé

Ng 3 NC&/CZ |__<>

(a) (b)
Fig. 7. Crack closure forces: (a) mode II; (b) mode I.

According to Egs. (25), in the second ideal step, the gap idirection (already closed
in the first step) is left unchanged, while the gap inztd&ection is closed. Furthermore,
from Eqs. (23) and (25) it follows thaa; +p'; = p,» Which means that the relative rotation
between the crack faces vanishes as a result of the application of théiwfackes in the
two ideal steps. Thus, the two ideal steps correspond tmthplete closure of the crack.

The modal contributions to the energy release rate can now be detinyiconsidering
the work of closure done by the systems of crack-tip forces, EQsarf@d24), on the
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corresponding crack-tip displacement rates, E@.48d (25). To this aim, it is worth noting
that the two systems of crack-tip forces are en@aéy orthogonal, which means that their

mutual work is zero [50, 51]. Note also tHé} is in general distinct frorilc, but if
f = fn =0 then g, = f, N and Ng = N, . Egs. (13) show that this happens when the

unbalance parametep, =b, +b,+d h,—d h,=0. This condition includes, as special cases,

homogeneous and unidirectional laminates with sytrica#ly located delaminations.
By substituting Eqgs. (22)—(25) into (18), and rénglEgs. (16), the energy release rate
contributions corresponding to fracture modes | Bnd

fio = FPD)? o7 2
_1{1(uNp¢ ¢N10u)+pw:| dG“_ipu (26)

'" 2B 2B,

fuN fuN f(pM - fuM wa fWQ

are determined. By substituting Eqgs. (15) into (26 modal contributions can also be
expressed as functions of the crack-tip forces:

1{fuNf¢M—f f

- f N_+f M2
|:28 M “gN Mé+fWQQ(2:j and G‘I:i( un Ne uM C) |

2B £

(27)

fuN
Egs. (26) and (27) show that baBhandG, are non-negative quantities, in line with their

physical meaning [50, 51]. Furthermore, the abawgatons reveal the conditions for having

pure fracture modes: pure moded,(=0) is obtained wherp, =0 (as per the initial
assumption on fracture mode partitioning), whilegomode Il G, =0) occurs when both
M. =0 and Q. =0 (the latter condition is relevant only if sheafateability is taken into

account). It is worth noting that the above coraisi coincide with those obtained by Harvey

and Wang [44] by using the Timoshenko beam thedry. [Also, the above result is in line

with the observation by Let al.[24] that pure mode | cannot correspond\to =0, as this

resultant force could vanish even if the distrilbbus@ear stresses at the crack tip are non-zero.
By recalling Egs. (10), it is also possible to detime expressions fdg andG, as

functions of the strain measures in the delamigagiblaminates,

.Z%{ 1 [k —ky) = f (e -6, +khi+k h))° +(V1—V2)2} and

fuN fuN f(/lM - fuM f(/lN fWQ (28)
_i (&, -&, +K1h1+K2h2)2

" 2B f

uN

Egs. (28) shed some light on the discussion alheutelationship between modal
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contributions and curvatures of the delaminatingaminates [16—18, 42]. In particular, it is

apparent that equal curvatures € «,) do not necessarily imply mode Il fracture. On the
other hand, opposite curvatureg € —«,) correspond to mode | fracture, provided that the
sublaminates have also equal axial strams-(,) and thicknessedy = h,).

In I/1l mixed-mode fracture problems, the mode ryixdian be characterised by the phase

angle of the complex stress-intensity factor [6dré] themode-mixity anglés defined as

- G
) =xarctan \/:, (29)

where thet sign has to be taken equal to the sigiNdf or p, .

4. Reaults

4.1. Homogeneous beams

For homogeneous beams, the sublaminate stiffnasses

A =E,H, B,=0, C,=>G,H,, and Da=1—12EXH§ (30)

a X a a a 6 zx " a?

where E, and G,, respectively are the longitudinal Young’'s modudns! shear modulus of

the material. The subscript =1 denotes the upper sublaminates 2 denotes the lower

one. In what follows, also the elastic modulushia transverse direction of the beak), will
be used (for isotropic materialg, = E,). By substituting Egs. (30) into (5), (9), (13hda

(20), the energy release rate,

_ 1 Hf+H§H1H2[m_&]2+ 3 Hle(gl_nger
2B°E, H* H (H, H,)] 5B8G, H (H H,
, 6 {M5+M§_(M1+Mz)2}

B’E,| H® H} H® ’

(31)

is obtained as a function of the internal forcethmdelaminating sublaminates. Likewise,

from Eqgs. (26), the mode | and Il contributions,
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2 2
_ 3 2HH,[ N, N 3 HH,Q Q
GI_T(H:L_HZ) 132 1__"2| 4 . 12 12| 4
8B’E, H®* {H, H,)] 5B°G, H |H H,

2
3 HH,[3H,+H H,+3H
+ZBZEX |];|32[ JHZ 2M1_ : ZMZJ and (32)
1

1 Hle(m_szz 9 HlHZ[M1+MZJ2

G =—— - 2 2
" 8B’E, H (H, H,

are determined as functions of the internal forces.

It can be shown that Eq. (31) is equivalent toekgressions by Williams [10], except for
a term stemming from the moment balance of axiald®. However, the modal contributions
given by Egs. (32) are different from Williams’ eggsions because of the different

underlying assumptions.

4.1.1. Load cases

In the following Sections, results for homogenebeams will be presented and compared
to the predictions of the elastic-interface modéiere the two delaminating sublaminates are
modelled as Timoshenko beams connected by ancelaiface [35] (see also Appendix D).
Furthermore, the predictions of the local methdd 2] will be shown for reference. In order
to consider all possible load conditions, the gehleiad system acting on the crack-tip
segment is decomposed into the sum of three elamyeod conditions, respectively
corresponding to axial forces, shear forces, amdibg moments applied to the delaminating
sublaminates (Fig. 8). In turn, the elementary loalditions are decomposed into the sum of

three symmetric load cases, where

+ — —_

NS:Nl NZ, QS:M’ and MS:ME (33)
2 2 2

and three antisymmetric load cases, where

N =Tt Q=0 and M, =M (34)
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Fig. 8. Load decomposition for homogeneous beams.

It is worth noting that the symmetric and antisynimedoad cases correspond to fracture
modes | and I, respectively, for laminates witimsyetrically placed delaminations, but
result in mixed-mode fracture in general. In widdlofvs, the effects of axial forces, shear
forces, and bending moments will be examined séggrdor the sake of illustration, the

Poisson’s ratio is assumedas = 0.3 and the shear modulus computed as

G, = E /[2(1+v,)].

4.1.2. Effect of axial forces

Figure 9 shows the energy release r@tgroduced by axial forces as a function of the
sublaminate thickness ratig,=H, / H,. As customary in the literature [22, 28,is non-
dimensionalised with respect to the applied loadithe geometric and material parameters of
the problem in order to make results independennds of measurement. Without loss of
generality, here and in the following, attentiomastricted to the casgll[0, 1]. For both
symmetric (Fig. 9a) and antisymmetric (Fig. 9b)adforces, the energy release rate turns out
to be a decreasing function gfin the considered interval. The elastic-interfacmel [35]

and local method [11] furnish f@ the same results of the present method. Notdahéte
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symmetric load cas&; =0 for 7 =1, which means that uniform traction does not preduc

fracture propagation in a symmetrically delamindgadinate.

=== present method = === present method =

2L = elastic—interface model 2L = elastic—interface model

= local method

= local method

(a) n= (b) n=
Fig. 9. Dimensionless energy release rate due to (a) syneaad (b) antisymmetric axial forces.

Figure 10 shows the mode-mixity angle,produced by axial forces as a functionof
The plot is valid for both the symmetric and amtigyetric load cases. Actually, for axial
forces, the mode mixity turns out to have the sdependency on the sublaminate thickness
ratio in both cases. Results are presented fgoriggent method (red, continuous curve), the
elastic-interface model (orange, dashed curves))ttamlocal method (blue, dotted curve).
The results of the elastic-interface model depanthe values of the constants of the
tangential and normal distributed springs,andk, . The figure shows four curves
corresponding to four values (1, 10, 100, and 1@®@)e dimensionless elastic-interface
constantsy, =k H/G,, and 1, =k,H / E,. Note that ag/, and £, increase, the predictions
of the elastic-interface model tend towards thdsée present method, to which they
converge asymptotically for, = 1, — +oo (rigid interface limit case). The predictions bét
local method are approximately equal to those efeflastic-interface model fqu, = 1, =10
and 7 J[0.1, 1]. Major differences among the compared methodslaserved for the smaller
values ofp. Forn — 0O (thin film limit case), the present method preslictixed-mode
fracture withy =30°. This result is qualitatively consistent with tloeal method, which
however predicts a different value g¢f=52.1° . Instead, the elastic-interface model predicts
pure mode Il fracture =90°), regardless of the values of the interface conista

Interestingly, this latter result is consistenthwtite analysis of the peel test by De Lorenzis

and Zavarise [53]. Lastly, it is noted that fp=1 (symmetric delamination), all the
compared methods yielgt =90° , which means that if the fracture propaga®s>) then it

does in mode II.
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Fig. 10. Mode-mixity angle due to (symmetric and antisyrmuogaxial forces.

4.1.3. Effect of shear forces

Figure 11 shows the energy release i@tgroduced by shear forces as a functiovy of
As for the axial force load cad8,is non-dimensionalised with respect to the paramseif
the problem. All the compared methods predict thergy release rate to be a decreasing
function of 7 in the considered interval. For the elastic-irdeef model, four curves are
shown, corresponding to four values (1, 10, 100, H300) of the dimensionless interface
constantsu, and 4, . As the interface constants increase, the predistof the elastic-
interface model tend towards those of the presethoa, to which they converge
asymptotically in the limit case of a rigid intec&a Note that for the antisymmetric load case
(Fig. 11b), the present method prediGs-0 for /7 =1 (uniform shear does not produce
fracture propagation in a symmetrically delamindgedinate), but the compared methods
predictG >0. This is likely because the other methods maklierdift assumptions on the

deformation of the crack-tip cross section.
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Fig. 11. Dimensionless energy release rate due to (a) symena@d (b) antisymmetric shear forces.
Figure 12 shows the mode-mixity angle,produced by shear forces as a functjrnrhe
present method predicig =0° (mode I fracture) for both the symmetric (Fig. 1aad
antisymmetric (Fig. 12b) load cases, for all valokg . This means that, according to the
present method — based on the Timoshenko beanythesbrear forces do not contribute to
G, [54]. Instead, both the elastic-interface modé] [@d local method (in the version by Li
et al.[22]) predict generally non-zero values for thed@&anixity angle. However, at least for
the symmetric load case, the valueg/ofire very small (note the different axis scales in

figures 12a and 12b). The predictions of the edasterface model (curves are plotted far

and 4, equal to 10, 100, 1000, and*Léend towards those of the present method as

M, = U, - +oo (rigid interface limit case). The trends predicbgdthe local method appear
qualitatively similar to those of the elastic-irfeare model, but quantitatively different. For
n =1 (symmetric delamination), both the elastic-inteefanodel and local method predict

¢ =0° (mode | fracture) under symmetric shear loads@Er90° (mode Il fracture) under
antisymmetric shear loads.
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Fig. 12. Mode-mixity angle due to (a) symmetric and (b)symmetric shear forces.

4.1.4. Effect of bending moments

Figure 13 shows the energy release 1Gtgroduced by bending moments as a function of
n . As for the previous load cas€sjs non-dimensionalised with respect to the paramseif
the problem. For both symmetric (Fig. 13a) andsgmtimetric (Fig. 13b) loads, the energy
release rate is a decreasing functiomah the considered interval. The elastic-interface

model [35] and local method [11] furnish f@Grthe same results of the present method.

3000 3000
=== present = === present =
. 2000 - = elastic interface = . 2000 - = elastic interface =
:», E = Suo and Hutchinson (1990) :» Ng = Suo and Hutchinson (1990)
X X
w1000 ¢ o 1000
0 0
0 0
-0 _n
(a) - (b) -2

Fig. 13. Dimensionless energy release rate due to (a) syrnena@d (b) antisymmetric bending moments.

Figure 14 shows the mode-mixity angle,produced by symmetric and antisymmetric
bending moments as a function/pf For the elastic-interface model, four valuesi@, 100,
and 1000) of the dimensionless interface constantsind 1, , are considered. Comments to
figure 14 are similar to those applying to figu@e(axial force load case). Fgr— 0 (thin

film limit case), the present method agrees qualgdy with the local method in predicting

mixed-mode fracture, although they yield differeatues foryy (60° and 37.9°, respectively).
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The elastic-interface model predigts=0° (mode | fracture), regardless of the values of the

interface constants. This result is again consistéh the analysis of the peel test by De

Lorenzis and Zavarise [53]. Lastly, it is notedttfoa /7 =1 (symmetric delamination), all the

compared methods yielgt =0° (mode | fracture) for symmetric loads agrd=90° (mode II

fracture) for antisymmetric loads.
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Fig. 14. Mode-mixity angle due to (a) symmetric and (b)symmetric bending moments.

4.2. Bimaterial beams

Bimaterial beams, namely laminated beams made ofiifferent materials (Fig. 15), are

now considered. For simplicity, each material ismased to be homogeneous and isotropic.

Furthermore, it is assumed that the two sublaménaéee equal thicknesseld (=H, =h) in

order to focus on the effects of the mismatch endlastic moduli.

£ GY

5 E® GO

L

Fig. 15. Delaminated bimaterial beam.

The sublaminate stiffnesses are the following:

A =E®h, B, =0, clzgegyh, and Dl:1—12E§1’rf;

£

A =E®h, B,=0, c2=ge§§>h, and D,=
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where E” and G respectively are the Young’s modulus and shearutuscf the upper

sublaminate E” and G!® are the corresponding quantities of the loweraminate. By
substituting Egs. (35) into (5), (9), (13), and)a6e mode | and Il contributions to the
energy release rate,

3 1 1

G =—%-3 o) D) @
88° EV+ BV EY ., E|
E)((Z) E)((l)

(2) 1) (2) )
EL—lNlh+E— N, h— 2 + 7| M+ Ex+7
E(l) E(Z) (1) (2)
X X (36)
3 G(l) / G(Z) G(Z)
+5§th+G®[Gm

1 EP/EP
G, = 8B2N° Ex(l)"' Ex(z){

Q- sz ard

£ £ 2
Efl)Nh N, h+6—=- £0 M +6Mj
are obtained as functions of the internal forcée tal energy release rate can be obtained
by summing the two modal contributions given by .H8§). It can be shown that the
resulting expression fde would be identical to the one by Suo and Hutchindd], for axial
forces and bending moments, and to that by AndeswisMassabo [23], if also shear forces
are considered (apart from a term stemming from n@ations, not considered here).
Obviously, the modal contributions turn out to liféedent because of the different
assumptions on fracture mode partitioning.

For the sake of illustration, four load cases amsaered: antisymmetric axial forces,
symmetric shear forces, symmetric and antisymmbgrding moments (Fig. 16). The

Poisson’s ratio is assumedias = 0.3 and the shear modulus computed as

G =E? /[2(1+Vv )], wherea O0{, 2} .
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Fig. 16. Load cases for bimaterial beams: (a) antisymmatial forces; (b) symmetric shear forces; (c)

symmetric bending moments; (d) antisymmetric begditoments.

Figure 17 shows the mode-mixity angle as a funadiothe ratio between the Young's

moduli of the upper and lower sublaminatgs; / E®. The results of the present method are

compared to those of the elastic-interface mods]l {@& three values of the dimensionless

interface constantgy, =k H /G and 1z, =k ,H / E®. It is noted that the predictions of the

elastic-interface model tend towards those of tiesgnt method ag, = 1, — +o (rigid

interface limit case). For reference, also the jotexhs of the local method [11, 22] are

plotted. The general trends are qualitatively samibut differ quantitatively.
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Fig. 17. Mode-mixity angle for bimaterial beams: (a) antisyetric axial forces; (b) symmetric shear forcey; (

symmetric bending moments; (d) antisymmetric begditoments.

4.3. Laminated beams

For laminated beams with general stacking sequettoegnergy release rate and mode
mixity must be calculated by using the expressmfrSection 3. The resulting general
expressions are quite lengthy and will not be gilvere. However, as far as the total energy
release rate is concerned, it can be shown thadrdsent method yields exactly the same
expression obtained by Schapery and Davidson frihe axial loads and bending moments
contributions. Also, the expressions for the eneglgase rate obtained by Beioal.[21] and
Lundsgaard—Larseet al.[41] for sandwich specimens can be retrieved.

By way of example, the method will be applied toneonon-standard laboratory tests used
to measure the delamination toughness of complasitmates:
- the asymmetric double cantilever beam (ADCB) test;
the double cantilever beam loaded with uneven Imgneioments (DCB-UBM) test;

the asymmetric mixed-mode bending (AMMB) test;

the mixed-mode bending (MMB) test with doublers.
Lastly, a comparison with the method by Schapedy/Ravidson [17] will be made.

4.3.1. Asymmetric double cantilever beam (ADCB]J tes

In the asymmetric double cantilever beam testyrariated specimen with an initial
delamination of length is loaded by two opposite forces of equal intgn§lt(Fig. 18). The
mode mixity originates from the geometric and/otenal asymmetry of the loaded arms of
the specimen [31, 55].
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Fig. 18. Asymmetric double cantilever beam test.

The internal forces at the crack-tip cross seatioan ADCB test specimen are

N,=0, Q =P, M,=Pa

(37)
N,=0, Q,=-P, M,=-Pa
By substituting Egs. (37) into (9), the crack-tipgdlacement rates,
Pa P Pa
Py :E(b1 +b, +dh, —dh), p, :E(C1 +c,), and p, :E @, +d,). (38)
are determined. Then, from Egs. (13) and (16) theketip forces,
N.=0, Q.=P, and M.= Pa (39)

are obtained. Lastly, from Egs. (27) the mode | Rdntributions to the energy release rate,

2.2 _ 2 2
G = Pa2 d,+d, - (b, +b, +d;h, —d,h) P (c, +c,) and
B a +a,+2bh-2D,h+d K+d K| 2B (40)
G = P*a’ (b, +b, +d,h,—d h,)’
1]

2B a, +a,+2bh, - 2b h,+d f+d JT,

are calculated. The sum of the two modal contrdngiyields the total energy release rate,
_ P 2
G —E[cl +c, +a’(d, +d,)] (41)
It can be verified that, if the delaminating sublaates are uncoupled(=b, =0) and
shear deformability is neglected,(=c, =0), then Egs. (40) yield the same results computed

by the elastic-interface model [31] in the limisesof a rigid interfacey, = i, — +o).

4.3.2. Double cantilever beam loaded with uneverdb®y moments (DCB-UBM) test
Sgrensemwt al.[56] have proposed a modified DCB test, wherestecimen is loaded by

bending momentsM,; and M, (Fig. 19). Loading by moments instead of forces $everal

advantages: (i) the whole range of mode mixitiesnff pure mode | to mode Il) can be tested
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by varying the load ratioM, / M,; (i) delamination growth is stable during thetttss all

mode mixities; (iii) the test results are indepentdsd the delamination length (which can be
difficult to measure in some circumstances); (W& deformability does not influence the
test results. For symmetric specimens, the symoatiil antisymmetric parts of the applied
loads respectively correspond to fracture modesllih If the specimen is not symmetric
about the delamination plane, then an additionatcgoof mode mixity is given by the
geometric and/or material asymmetry of the loadetsaFor the sake of simplicity, a

symmetrically delaminated specimen is considered (& =a,, b, =-b,, ¢, =c,, d, =d,,

andh =h,).

Fig. 19. Double cantilever beam loaded with uneven bendingents test.

The internal forces at the crack-tip cross seatiodd DCB-UBM test specimen are

N,=0, Q=0, M,=M

_ (42)
N,=0, Q=0, M,=M,.
By substituting Egs. (42) into (9), the crack-tippgdlacement rates,
1 _ 1
Ly _E(b1+d1h1)(M1+ Mz), pw_o’ and pg;_Edl Ml_Mz ) (43)
are determined. Then, from Egs. (13) and (16) theketip forces,
1 b +dh 1
== M, +M,), =0, and M.== -M 44
© 2a1+331h1+d1hf( M) Q c=3 MM (44)

are obtained. Lastly, from Egs. (27) the modal gbations to the energy release rate,

=4
4B?

1 (b+dh)’

G
| 4B a, + Do, +d, i

(M,-M,)* and G, = M, + M, ¥, (45)

are calculated.

4.3.3. Asymmetric mixed-mode bending (AMMB) test

In the mixed-mode bending (MMB) test, a laminatpdcmen with an initial delamination
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of lengtha is loaded simultaneously by an upward loBd,and a downward load®, (Fig.

20). By suitably changing the relative intensitidéshe applied loads, a range of mode
mixities can be tested [57]. The test is standedifer unidirectional laminated specimens
with symmetric delaminations by ASTM [58], but Heeen used also for multidirectional and
asymmetric specimens [9], bimaterial specimens 89, multidirectional laminates [32, 33,
61], sandwich plates [62], and asymmetric adhegibehded joints [63, 64]. In all the
aforementioned cases, where there is geometrioandgiterial asymmetry about the
delamination plane, the partitioning of fracturedes does not correspond to the
decomposition of the applied loads into the symimeind antisymmetric parts, as it does for
symmetrically delaminated specimens. Unfortunatiblig, point appears not to have been
fully appreciated in the literature with a few egtiens [32, 33, 61]. The present method
furnishes a way to determine the mode | and Il dontions to the energy release rate for

asymmetric MMB test specimens within the contexb@im theory.

L2 L2
PuT Pdi
H |
H
a
L

Fig. 20. Asymmetric mixed-mode bending test.

The internal forces at the crack-tip cross seatioain AMMB test specimen are

Nl:O’ Ql: ! Mlzlau ,

a
46
R-R M=(3R-¢)a o

N,=0, Q,= >

l\)ll—‘ U

By substituting Egs. (46) into (9), the crack-tipplacement rates,

Pa P a P P
Py = UB (b1+b2+d1h1_d2h2)__2dB (b,=d ), p, 2—5(0 tC Q_Z_dBC 2
P P 47
a a
and p¢:LB(d1+d2)_$d2|

are obtained. Such quantities can then be useal¢alate the energy release rate and its
modal contributions via Egs. (20) and (26), respebt. However, the resulting general
expressions are quite lengthy and will not be gikere.
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4.3.4. Mixed-mode bending (MMB) test with doublers
Reedett al.[65] have proposed to reinforce mixed-mode benti@sgyspecimens (of

thickness2t,) experiencing premature bending failure by adddogiblers’,i.e. externally
bonded sheets of stiffer material (of thicknggsThe result is an MMB specimen, where the

sublaminates are bimaterial beams with bendingrside coupling (Fig. 21).

L2 L2
P T P f’i O GO
t =R
h 1
b @ GO
h ? 3
K’ RLED GY
a
L

Fig. 21. Mixed-mode bending with doublers test.

The sublaminate equivalent stiffnesses turn obeto

A=A = E>(<l)t1+ EiZ)tz’ B,=-B,= _E(Eél) - EA(Z)) Lt,
5 (48)

C,=2(6¥4+GEL), and D,=D, =] EV(E+ &) EVt(Gr )

C:l

while the compliances can be calculated via EQs B% observing that the specimen is
symmetric about the delamination plare € a,, b, =-b,, ¢, =c,, d; =d,, andh, = h,), the

crack-tip displacement rates, Egs. (47), can bel#ied as follows:

P,a 4P - P,
=—(b, +dh), p,=—t—1
pu ZB(l 11) pw ZB

(4R -R)a
2B

c, and p,= d, . (49)

By substituting Egs. (49) into (26), and recalligs. (13), the mode | and Il contributions
to the energy release rate,

_(4R -R))
! 16B2

Ra’ _ (b+d,h)*

. 50
1687 3, + Dy + 0,17 (0)

(c,+@d,) and G, =

are obtained.

4.3.5. Comparison with the method by Schapery aadd3on
For general laminated beams, Schapery and DavidSgrexpressed the mode | and Il

contributions to the energy release rate as follows
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G = (kNe+ kM) and G =—_(kN+ kM), 51

whereky, ky, ks, andk, are real coefficients, which depend on the stagkeguence, but not
on the load condition. The authors showed khats, andk, can be expressed as functions of
ki. The latter coefficient can be determined numdyidsy using the finite element method to
solve the particular problem of a delaminated b&saded with the following internal forces
(Fig. 22):

N,Z0, Q =0, M,=N,h;

(52)
N,=-N, Q=0, M,=Nh,.

Nim N ! ! | ! ! |
hl (‘_}_ — | N }__{ |
1 eD'C—{ < b C |
h, Nih l o—— ?5 = M | F— — ‘ﬁg
(—4 =
N1 | | T
hy | | ;
| ]

Fig. 22 Load condition analysed via the finite elementhoétby Schapery and Davidson [17].

Schapery and Davidson [17] analysed a number @scasncluding both homogeneous
and bimaterial beams — and found that the valuds afe always close to zero. Hence, they
concluded that further study would have been nergds assess whether assumiqg 0
could be a good approximation to evaluate the moaolaiributions without resorting to finite
element calculations. In this respect, by compalgg. (27) and (51) — regardless of the

contribution of shear forces —, it can be seentti@present method is equivalent to Schapery

and Davidson’s method if the following expressians assumed for their coefficients:

— — fuN fwM_fqu(pN — — fuM
k,=0, kz—\/ " , k=f,, and krm (53)

Interestingly, by substituting Egs. (52) into thgeessions in Appendix C, it is found that
N.=N, Q=0 M.=0. (54)

Then, by substituting Egs. (54) into (27), the maamtributions are found as

1
G =0 and G :E fuN NZ ‘ (55)
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which means that, according to the present methedyroblem of figure 22 is a case of pure

mode Il fracture.

5. Discussion

The predictions of the present method for the gnezpase rate and mode mixity have
been compared to those of the elastic-interfaceetr{88] and local method [11, 22] for
homogeneous and bimaterial delaminated beams.

For the axial force and bending moment load cdkes;ompared methods furnish the
same results for the energy release rate. Thistisurprising for the local method, which uses
beam theory to computg, except for the contribution of shear forces, whiepends also on
the root rotations [22, 23]. For the elastic-inted model, this result can be explained by
observing that for an infinitely long beam subjekcte axial forces and bending moments, the
elastic interface furnishes an additional termh®d¢ompliance, which does not depend on the
delamination lengtha. Therefore, this contribution vanishes when défgrating the
compliance with respect tto obtain the energy release rate according tevéieknown
formula by Irwin and Kies [66]. Instead, the cobtriion toG stemming from shear forces
depends on the values of the elastic-interfacetaantss which are in turn related with the
roots rotations (disregarded by the present appjodnyway, when the (dimensionless)

interface constantgy, and /,, go to infinity, the predictions of the elastiderface model

converge to those of the present method.

As concerns the mode mixity, the predictions ofghesent method agree qualitatively
with both the elastic-interface model and localmet However, differences in the values of
the angley have been obtained. Such differences are mosy ke to the simplifying
assumptions on which the present method is basedpredictions of the elastic-interface

model tend towards those of the present methokeaimterface constantg,, and ., ,

increase and converge to the present methogifer 1/, — +oo (rigid interface limit case).

6. Conclusions

A method has been presented to calculate the enelgpse rate and mode mixity of
laminated beams of rectangular cross section Wwithugh-the-width delaminations.
According to classical lamination theory and Timasko beam kinematics, the axial, shear,
and bending deformabilities, as well as the bendxignsion coupling, have been taken into

account. The kinematics of an elementary crack tirdwas been analysed by defining the
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crack-tip displacement rates as the relative degpteents occurring at the crack tip per unit
increase in crack length. Such newly defined gtiasthave been used to compute the crack-
tip forces. Furthermore, by adapting the virtualcér closure technique to the present context
and assuming a suitable two-step process of cladube crack, the energy release rate and
its mode | and Il contributions have been deterchine

Results for homogeneous and bimaterial delaminagadhs have been presented and
compared to the predictions of the elastic-intefamdel [35] and local method [11, 22].
Perfect agreement between the compared methodsekasbtained for the energy release
rate due to axial forces and bending moments. Milifterences have been obtained for the
shear force load case.

With respect to the mode mixity, qualitative agreathas been found between the
compared methods, but some quantitative differehage emerged. Such differences are
most likely due to the simplifying assumptions dniat the present method is based. Taking
into account some of the disregarded effects (@ations, Poisson’s effeatic) could
probably help improve the accuracy of the presesthod. Furthermore, it has been observed
that the results of the elastic-interface modeleoge to those of the present method for the
limit case of a rigid interface, but is deduce@iocompletely independent way.

For general laminated beams, applications to samestandard delamination toughness
tests have been illustrated. Lastly, the presemhodgehas been compared to the method by

Schapery and Davidson [17]. The two methods tutri@be equivalent if the coefficierk

defined in [17] is taken equal to zero. The preseethod nevertheless represents an

improvement as it considers the effects of sheaef not included in [17].
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Appendix A. Equivalent stiffnesses of alaminated beam

The present study considers laminated beams ofansectangular cross section of
width B and heightH =2h (Fig. Al). A reference syste@yzis fixed in the cross-section
plane with the origin at the geometric centre @f $lection and thg andz-axes aligned with

the width and height directions, respectively. Beam is made of layers (or laminae) of
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different materials and thicknesses. €Y, E®, ..., E™ and GY

OGP, ..., GY respectively
be the longitudinal Young’s moduli and shear moduli ofrtheyers. Furthermore, let

z,, Z,..., z be the ordinates of the top and bottom surfaceéseofayers.

gE)E” 0
hy g = L9 ¥
H +<+— 12) ?
h coe Zn 5
= 2 ) ()
z Ex . Gz
B

Fig. Al. Cross section of the laminated beam.

According to classical lamination theory [48], theninated beam can be modelled as a

homogeneous beam with the followiaguivalent stiffnesses

A=Y EN(z-7.), B=3Y B (#- )

£ 1o (A1)
C :_ZGSX)(Zi - 4—1)' and D :_Z F;i) (2‘ 2—1 )

6= 33

In particular, A, B,C, andD , respectively denote thextensional stiffnesbending-

extension coupling stiffngsshear stiffnessandbending stiffnesper unit width of the
laminated beam. Inversion of the constitutive ld@vshe beam leads to define the
correspondingquivalent compliances
a:Lz’ b:_iz' C:i, and d:L2 (AZ)

AD-B AD-B C AD-B

Appendix B. End-loaded laminated cantilever beam

Let us consider a laminated cantilever beam oftlebgloaded at its free end by an axial
force, N, a shear forceQ, and a bending moment] (Fig. B1). A reference syste®zxis

fixed in the principal plane of the beam with thiegm at the clamped end and th@xis
aligned with the longitudinal direction. Letandw denote the axial and transverse

displacements of the beam centreline, respectiaglg @ the cross-section rotation, positive
if counter-clockwise. LetA, B,C, andD be the equivalent stiffnesses of the beam per unit

width and leta, b,c,andd be the corresponding compliances.
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A B,C,D

- M
_N>§

SRE

¢

u
Z
L Iw

Fig. B1. Laminated cantilever beam loaded at its end.

The internal forces in the beam are
N(X=N, ®=Q and M(x= M- QL= X. (B1)

Using the compatibility equations and inverse ctutste relationships for the laminated

beam, the following relationships are obtained:

dx B

dw 1 1
aN+bM), y=—+@p=—cQ, and k=—=—pN+d M), B2
( ) ¥ v Q e Bb ) (B2)
whereB is the width of the cross section. By substitutigs. (B1) into (B2) and integrating

with respect tox (and also considering the boundary conditionbatctamped ends =0),

the generalised displacements of the beam cerdrelin
1] — — X —
u(x):—{aNx—bq L——j x+b M%,
B 2
2
W(x) == bR + G c+d(L-ﬁj_X -d XL and (83)
B 2 3)2 2

&) :%{bﬂx—dé( L—gj x+d K/Ix},

are obtained as functionsxfin particular, the generalised displacementhatdaded end,

x=L, are
2
g=2LN-Ploiblm
B 2 B
2 2
W=——LN+1(CL+—1d Ej@—d—L M, and (B4)
28 Bl 3 2B
2
s=2n-9E 5.9k g
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Appendix C. Crack-tip forces asfunctions of the internal forces
By substituting Egs. (9) into (16), after some a&tions, the crack-tip forces,

I/lNl + I/2N2+ I/3( M1+ M 2)

N. =
c v,
Q. = 1(31 : C2Q2 and (C1)
2
M, = AN 2N, M, 1M
Vs

are obtained as functions of the internal forcethesublaminates. In Egs. (C1), the following
constant parameters are used:

v, =a,(d,+d,)—-by(b,+b,)+bdh,

v, =-a,(d,+d,)+b,(b,+b,)+bdh,

v,=bd,-bd, +ddh,

v, =(a,+a,)(d,+d,)-(b,+b,)*+2(bd ,~b g )h+dd b’

(C2)

and

H=-ab,+ab,-a(dh,-d h) +b21h1_b b ¢h+h)+bd hh,

H, =-ab,+ab,+a,(dh,~-d h) +b22 h-bb {h+ h)-bd hh, (C3)
=(a,+a,)d,~by(b,+b))+bd h,~bd(h+h)+dd hh,

Hy :_(a1+a2)d2+b2(b1+b2) +b9 hl_bg £h+ h)_d Q2hn'
The above expressions simplify significantly if the sublaminatesincoupled in bending-

extension b, =b, =0), in which case

(dl + d2)(a1Nl _azNz) +d1d 2h( M1 + Mz)

Nc =

(&, +a,)(d, +d,) +dd h’ ’
Q. = GR=CQ g (C4)
C, +C
v = —(dh-dh)@N -a,N)+(@+a)d,M-d M) +dd f(hM- hM)

(@ +a,)(d, +d,) +d d j’

Appendix D. Elastic-interface model

Liu et al.[35] have developed a general solution for thesstianalysis of adhesively
bonded joints. Their mechanical model consistsvof homogeneous and isotropic, shear-
deformable beams [47], partly connected by anielagerface, in turn made of distributed

normal and tangential springs. Their model candeslalso for delaminated laminates, if the
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interface is interpreted as a conventional meamstount for the laminate transverse
deformability and not as representative of a plajdayer of adhesive. The solution by lat
al. [35] holds for beams of finite length. Here, tlodusion is presented for a semi-infinite
bimaterial beam subjected to axial forces, sheaek) and bending moments (Fig. D1). This

solution has been used for the comparisons showBeation 4 of this paper.

N1

hy M2 Qz1 | EPG2
H <~ — |- ———— — . —. _—
2h N2 %
2

Fig. D1. Elastic-interface model of a semi-infinite bimaaébeam.

Let EP, G andE®, G!? respectively be the Young’s modulus and shear usdf

the upper and lower beams. The equivalent stifesesan be computed from Egs. (35) and

the compliances from Egs. (5). Lief andk, respectively be the elastic constants of the

distributed springs in the tangential and normeg¢ations. The normal and tangential

interfacial stresses attain peak values at theelbadoss section, whose values turn out to be

o,=F+F,+F, and

3 1Q3/2 Q.llz H
Z —— _(C1+C2) |I_| +(d1+dz)F Fi+F7’

Z 1

(b1)

whereb, =d,h, —dh, is the unbalance parameter (here, assubged0), H =H, + H, is the
total thicknessF,, F,, F,, andF, are integration constants, afy, Q,, andQ, are the roots of

the dimensionless characteristic equation,
Q*-aQ’+a,Q-0a,=0, (D2)
where

a, =[ k(8 +a, +d,ff +d, i) + k(c,+c) | H,
@, =[ kK, (c,+c,)(@ +a,+d ff +d 1) + k(d +d )| H', and (D3)
ay =k [ (8 +a,)(dy+d,) +d d,(h + h)* | HE.
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The integration constants;, F,, F,, andF, F, F,, are calculated from the boundary

conditions depending on the applied loads,

B3| 19 H?
N1:b_0;{k_z H?2 (C +C2)+(d +d2)_|}: BF,
2 H a+a
=B F+B 2 E,
A=B2 et [d (h 1) ”} 7
3 2 2
M, = B3 L (v +(d, v |-+ BAR TR
b,| k, H Q, Q. d,(h, +h,)’
2 (D4)
B3| 1Q H
N2 :_b— :1|:k—?_(c +C2)+(d +d2)—li||: +BF9,
- a+ta
Q,=-B + and
ZQM [d (h +h,) Q}
3 2 2
=By || 2 - (40 + (4, +d )|+ Do+ p BT TA
= k H Q] Q d,(h, +h;)
From the peak values of the interfacial stres$espiodal contributions,
10; 17}
G ==—% and == D5
ok G =3k (D5)

are determined. Lastly, the total energy releateaiad mode-mixity angle are computed

from Eqgs. (21) and (29), respectively.
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