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Abstract 

A method is presented for the analysis of laminated beams with general stacking sequences and arbitrarily 

located, through-the-width delaminations. First, the relative displacements and concentrated forces at the crack 

tip are determined based on classical lamination theory and Timoshenko beam kinematics. Next, new quantities, 

called crack-tip displacement rates, are defined as the relative displacements per unit increase in crack length. 

The previously computed quantities are then used to calculate the energy release rate and its mode I and II 

contributions via an adaptation of the virtual crack closure technique. Results for homogeneous and bimaterial 

delaminated beams are presented and compared to the predictions of other methods in the literature. Lastly, 

applications to some non-standard delamination test specimens are illustrated. 
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Nomenclature 

a (half) crack length 

a, a1, a2 extensional compliances of laminate and sublaminates 

A, A1, A2 extensional stiffnesses of laminate and sublaminates 

A, B cross sections defining the crack-tip segment 

b, b1, b2 bending-extension coupling compliances of laminate and sublaminates 

b0 unbalance parameter 

B laminate width 

B, B1, B2 bending-extension coupling stiffnesses of laminate and sublaminates 

c, c1, c2 shear compliances of laminate and sublaminates 

C, C1, C2 initial crack-tip point positions 

C, C1, C2 shear stiffnesses of laminate and sublaminates 
C initial crack-tip cross section 

d, d1, d2 bending compliances of laminate and sublaminates 

D crack-tip point after elementary crack growth 

D, D1, D2 bending stiffnesses of laminate and sublaminates 
D crack-tip cross section after elementary crack growth 

Ex, Ez Young’s moduli in the x- and z-directions 

Ex
(1), Ex

(2), …, Ex
(n) Young’s moduli of the layers of a laminated beam 

fuM, fuN, fwQ, fφM, fφN flexibility coefficients 

F1, F2, …, F9 integration constants for the elastic interface model 

G energy release rate 

Gc fracture toughness 
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GI, GII, GIII  modal contributions to the energy release rate 

Gzx shear modulus in the zx-plane 

Gzx
(1), Gzx

(2), …, Gzx
(n) shear moduli of the layers of a laminated beam 

h, h1, h2 half thicknesses of laminate and sublaminates 

H, H1, H2 thicknesses of laminate and sublaminates 

i layer index 

k1, k2, k3, k4 coefficients by Schapery and Davidson [17] 

kx, kz elastic-interface constants 

L laminated beam length 

M, M1, M2, M3 bending moments in laminate and sublaminates 

M1
C, M2

C sublaminates bending moments in segment SC 

Ma, Ms antisymmetric and symmetric bending moments 

MC crack-tip bending moment 

MC
I, MC

II mode I and mode II crack-tip bending moments 

M  applied bending moment on cantilever beam 

1M , 2M  applied bending moments in the DCB-UBM test 

n number of layers 

N, N1, N2, N3 axial forces in laminate and sublaminates 

N1
C, N2

C sublaminates axial forces in segment SC 

Na, Ns antisymmetric and symmetric axial forces 

NC crack-tip axial force 

NC
I, NC

II mode I and mode II crack-tip axial forces 

N  applied axial force on cantilever beam 

O origin of reference system 

P applied load in the ADCB test 

Pd, Pu downward and upward loads in the MMB test 

Q, Q1, Q2, Q3 shear forces in laminate and sublaminates 

Q1
C, Q2

C sublaminates shear forces in segment SC 

Qa, Qs antisymmetric and symmetric shear forces 

QC crack-tip transverse force 

QC
I, QC

II mode I and mode II crack-tip transverse forces 

Q  applied shear force on cantilever beam 

S, S0 crack-tip segment before and after elementary crack growth 

SC crack-tip segment with crack-tip forces applied 

t1, t2 thicknesses of layers in the MMB test with doublers 

u, u1, u2 axial displacements of laminate and sublaminates 

uC1, uC2 axial displacements of points C1 and C2 

u  free-end axial displacement of cantilever beam 

w, w1, w2 transverse displacements of laminate and sublaminates 

wC1, wC2 transverse displacements of points C1 and C2 

w  free-end transverse displacement of cantilever beam 

x, y, z coordinates 

z0, z1, …, zn ordinates of the top and bottom surfaces of layers 

α laminate number 

α1, α2, α3 coefficients of characteristic equation 

∆a crack length increment 

∆u, ∆w, ∆φ crack-tip relative displacements 

ε, ε1, ε2 mid-plane axial strains of laminate and sublaminates 
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φ, φ1, φ 2 cross sections’ rotations of laminate and sublaminates 

φC1, φC2 cross sections’ rotations of points C1 and C2 

φ  free-end cross-section rotation of cantilever beam 

γ, γ1, γ2 shear strains of laminate and sublaminates 

η sublaminates thickness ratio 

κ, κ1, κ2 curvatures of laminate and sublaminates 

µ1, µ2, µ3, µ4 parameters used to express the crack-tip forces 

µx, µz dimensionless elastic-interface constants 

ν1, ν2, ν3, ν4 parameters used to express the crack-tip forces 

νzx Poisson’s ratio in the zx-plane 

ρu, ρw, ρφ crack-tip displacement rates 

ρu
C, ρw

C, ρφ
C crack-tip displacement rates in segment SC 

ρu
I, ρw

I, ρφ
I mode I crack-tip displacement rates 

ρu
II, ρw

II, ρφ
II mode II crack-tip displacement rates 

σ0 peak normal interfacial stress 

τ0 peak tangential interfacial stress 

ψ mode-mixity angle 

Ω1, Ω2, Ω3 roots of characteristic equation 

  

ADCB asymmetric double cantilever beam 

AMMB asymmetric mixed-mode bending 

DCB double cantilever beam 

DCB-UBM double cantilever beam loaded with uneven bending moments 

LEFM linear elastic fracture mechanics 

MMB mixed-mode bending 

VCCT virtual crack closure technique 

1. Introduction 

Delamination is one of the most common and insidious failure modes for composite 

laminates. Interlaminar cracks propagating at the interface between two adjacent laminae may 

originate from different causes and lead to global failure of a laminate. A huge number of 

experimental, analytical, and numerical studies have been devoted to this problem during the 

last decades [1–5]. 

The analysis of delamination is commonly conducted in the context of fracture mechanics. 

In particular, based on linear elastic fracture mechanics (LEFM), the energy release rate, G, is 

the most used parameter to predict the initiation and growth of delamination cracks. On one 

hand, analytical and numerical models are developed to compute the expected values of G in 

laboratory specimens or real structural components [6, 7]. On the other hand, experimental 

techniques are used to assess the critical energy release rate, or interlaminar fracture 

toughness, cG , of specific materials [8]. The analysis is however complicated by the fact that 

delamination cracks usually propagate under a mix of the three basic fracture modes (I or 

opening, II or sliding, and III or tearing) and the fracture toughness depends on the mode 
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mixity (a measure of the relative amounts of fracture modes). The energy release rate turns out 

to be the sum of three modal contributions, I II III, , andG G G , that the theoretical models 

should be able to predict. Besides, experimental testing should be carried out to determine the 

delamination toughness not only in pure fracture modes, but also under mixed-mode 

conditions. To this aim, several alternative theoretical models and experimental techniques 

have been developed. Their results, however, appear sometimes conflicting. Ducept et al. [9] 

conducted tests on symmetric and asymmetric delamination specimens. They analysed their 

experimental results based on the global method [10], local method [11], and virtual crack 

closure technique (VCCT) [12, 13], obtaining significant differences. Also, Harvey et al. [14, 

15] observed relevant discrepancies between different fracture mode partitioning theories in 

the interpretation of experimental results. 

In this paper, attention is focused on laminated beams containing delaminations under I/II 

mixed-mode conditions. This problem was analysed in a pioneering work by Pook [16], who 

used plate theory to calculate the energy release rate and the mode I and II stress intensity 

factors for several configurations of homogeneous and isotropic beams and plates with mid-

plane delaminations. Williams [10] used beam theory to compute the energy release rate and 

the mode I and II contributions for homogeneous beams with delaminations located at 

arbitrary depth. Williams’ global method assumes that fracture mode I is produced when 

opposite bending moments act on the two sublaminates into which the laminate is split; 

besides, mode II is assumed when the delaminating sublaminates have equal curvatures. Such 

assumptions, however, lead to incorrect results if the sublaminates have different thicknesses. 

To overcome this drawback, Schapery and Davidson [17] proposed a method based on 

classical laminated plate theory, where the mode mixity depends on a numerical parameter to 

be determined via finite element analysis. Independently, Nilsson and Storåkers [18] analysed 

layered plates and discussed several alternatives for the partitioning of fracture modes. 

An elasticity theory approach was instead proposed by Suo and Hutchinson [11], who 

considered the problem of a semi-infinite crack between two homogeneous and isotropic 

elastic layers subjected to axial forces and bending moments. According to their local method, 

the energy release rate is computed based on beam theory, while the mode mixity is obtained 

by solving a plane elasticity problem. Suo [19] extended the local method to orthotropic 

materials by using the concept of orthotropy rescaling [20, 21]. Li et al. [22] and Andrews 

and Massabò [23] added the effects of shear forces for isotropic and orthotropic materials, 

respectively. In a recent paper, Li et al. [24] use classical beam theory and fitting of finite 
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element results to reproduce Suo and Hutchinson’s predictions for the mode mixity. They also 

present an interesting discussion on the relationship between the concentrated crack-tip forces 

of the beam-theory model and the singular stress distributions of the elasticity solution. 

A different approach to the problem was proposed by Allix and Ladevèze [25], who 

modelled delamination by considering an elastic interface between the separating layers of a 

laminate. Subsequently, elastic-interface models were used many other authors [26–35]. 

Elastic-interface models can be regarded as particular cases of the more general class of 

cohesive-zone models [36–39]. Based on such models, the work of cohesive tractions 

(corresponding to the energy release rate of LEFM) is calculated based on the values of the 

interfacial stresses at the delamination front. 

Most methods in the literature are limited to homogeneous or bimaterial beams. Only a few 

authors consider laminated beams. Amongst these, Carlsson et al. [40] and Lundsgaard–

Larsen et al. [41] used classical lamination theory to analyse sandwich beams. Rask and 

Sørensen [42] proposed evaluating the J integral for multidirectional laminated specimens 

from the measures of beam curvatures and bending moments. Wang and Harvey and co-

workers proposed an orthogonal decomposition method to partition fracture modes in 

laminated beams [43–45]. 

The aim of this paper is to retrieve the spirit of Williams [10] and set up a method to 

calculate the energy release rate and mode mixity based solely on beam theory. Williams’ 

assumptions on fracture mode partitioning are replaced by new assumptions, which hold also 

for laminates with delaminations not placed on the mid-plane. Furthermore, the proposed 

method applies not only to homogeneous and isotropic beams, but also to laminated beams 

with general stacking sequences, including those with bending-extension coupling. 

The mechanical model underlying the present method is on purpose kept as simple as 

possible in order to obtain simple analytical expressions for all the quantities of interest. This 

is done at the risk of affecting the accuracy of results, but in the hope that the proposed 

approach could help to shed light on a subject, which still raises some controversy in the 

literature. For instance, it is assumed that the delaminating sublaminates are perfectly clamped 

at the crack-tip cross section. Indeed, it is well known that taking into account the so-called 

root rotations [46] could be crucial to get accurate predictions of experimental test results (in 

particular, in terms of the displacements and deformations of laboratory specimens). 

Moreover, the present method is based on Timoshenko beam kinematics [47], which assumes 

that plane cross sections remain plane and undeformed, but may rotate freely with respect to 

the beam centreline. Thus, the present model unavoidably disregards some strain 
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contributions (for instance, those related to the Poisson effect), which would require an 

elasticity approach to be taken into account. As a consequence, it is expected that the results 

of the present method – in particular, for the mode mixity – may differ from those of more 

complex analytical and numerical methods in the literature. Nonetheless, the present method 

can serve as a benchmark for the validation of more complex methods in the limit case where 

classical beam theory assumptions are fulfilled (see, in what follows, the comparison with the 

elastic-interface model). Advantages of the proposed method compared to other ones include 

also the following: 

(i) laminated beams with arbitrary stacking sequences can be analysed, including those with 

bending-extension coupling; instead, most methods in the literature are limited to 

homogeneous and isotropic beams; 

(ii)  analytical expressions are obtained for the energy release rate and its mode I and II 

contributions; there is no need to resort to finite element analyses, numerical calculations, 

or numerical parameters given in tabulated form; 

(iii)  shear forces and the effects of shear deformability are taken into account, which may be 

particularly relevant for composite laminates; 

(iv) the method can be used for the design and data reduction of non-standard delamination 

toughness tests, i.e. tests on multidirectional laminated specimens with possibly 

asymmetric delaminations. 

The structure of the paper is the following. In Section 2, a laminated beam is considered 

with a general stacking sequence and an arbitrarily located, through-the-width delamination. 

Attention is focused on a crack-tip segment, namely an infinitesimally short portion of the 

beam including one of the delamination crack tips. Based on classical lamination theory [48] 

and Timoshenko beam kinematics [47], the relative displacements occurring at the crack tip 

(after an elementary crack growth) and the concentrated forces acting at the crack tip (prior to 

the elementary crack growth) are determined. Furthermore, new quantities, called crack-tip 

displacement rates, are defined as the relative displacements per unit increase in crack length 

[49]. In Section 3, the crack-tip displacement rates are used to calculate the energy release rate 

and its modal contributions via an adaptation of the virtual crack closure technique [13, 50]. 

Section 4 presents results for homogeneous and bimaterial delaminated beams. The present 

method is compared to the elastic-interface model [35] and the local method [11, 22]. Also, 

applications to some non-standard delamination test specimens with general stacking 

sequences are illustrated. Discussion of the obtained results follows in Section 5. 
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2. Static and kinematic analysis of a crack-tip segment 

2.1. Delaminated laminated beam and crack-tip segment 

Let us consider a laminated beam of length L, thickness 2=H h , and width B, with an 

arbitrarily located, through-the-width delamination of length 2a (Fig. 1). A Cartesian 

reference system Oxyz is fixed with the origin at the geometric centre of one of the end 

sections of the beam, the x-axis in the longitudinal direction, the y- and z-axes aligned with 

the width and height directions, respectively. It is assumed that geometry, material properties, 

restraints, and loads are such that the beam can be modelled as a planar beam in the Ozx-

plane. Within such assumptions, the beam can be made of layers of different materials and 

thicknesses and/or fibre-reinforced laminae with different orientations. Quite general stacking 

sequences are allowed by the present model, including those with bending-extension 

coupling, provided that the laminate and the sublaminates resulting from delamination are 

free from out-of-plane effects (e.g. torsion, out-of-plane shear, etc.). As an example, many 

symmetric and non-symmetric angle-ply and cross-ply laminates can be analysed. 

 

Fig. 1. Delaminated laminated beam and crack-tip segment. 

Attention is now restricted to a crack-tip segment, defined as an infinitesimally short 

portion of the beam included between two cross sections, A and B, located immediately 

behind and ahead of the delamination crack tip, C (Fig. 2). The crack-tip segment can be 

thought of as an assemblage of three short laminates, connected to each other at the crack-tip 

cross section, C (Fig. 2a): the upper and lower parts of the delaminated beam, denoted as 

sublaminates No. 1 and 2, respectively, and the undelaminated part, denoted as laminate No. 

3. The sublaminate thicknesses are indicated with 1H  and 2H . Besides, in order to simplify 

some of the forthcoming expressions, the half thicknesses, 1 1 / 2h H=  and 2 2 / 2h H= , are 

introduced. 

According to classical lamination theory [48], a laminated beam can be modelled as a 

homogeneous beam, provided that equivalent stiffnesses are defined (see also Appendix A). 
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Hence, let αA , αB , αC , and αD  respectively denote the extensional stiffness, bending-

extension coupling stiffness, shear stiffness, and bending stiffness per unit width of the three 

laminates (Fig. 2b). Here, the subscript {1, 2, 3}∈α  refers to the laminate number. 

 

Fig. 2. Crack-tip segment: (a) laminated beam; (b) assemblage of equivalent homogeneous beams. 

The internal forces are defined as the resultant forces acting on the laminate centrelines. 

Accordingly, the axial force, shear force, and bending moment are denoted with Nα , Qα , and 

Mα , respectively (Fig. 3). It is assumed that no external loads are applied on the crack-tip 

segment, which therefore will be in equilibrium under the action of the internal forces only. In 

the limit case of a crack-tip segment of vanishing length, the internal forces in laminate No. 3 

turn out to be 

3 1 2 3 1 2 3 1 2 1 2 2 1, , and .N N N Q Q Q M M M N h N h= + = + = + − +  (1) 

 

Fig. 3. Internal forces and generalised displacement convention. 

Let uα  and wα  respectively denote the axial and transverse displacements of the laminate 

centreline, and αφ  their cross-section rotation, positive if counter-clockwise (Fig. 3). In line 

with the Timoshenko beam theory [47], the axial strain, shear strain, and curvature are 
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respectively defined as 

, , and .= = =+du dw d

dx dx dx
α α α

α α α α
φε γ φ κ  (2) 

According to classical lamination theory [48], the internal forces and strain measures can 

be related as follows: 

( ), , and ( ),= + = = +N B Q B M Bα α α α α α α α α α α α αε κ γ ε κA B C B D  (3) 

or, by inversion of Eqs. (3), 

1 1 1
( ), , and ( ),= + = = +N M Q N M

B B Bα α α α α α α α α α α α αε γ κa b c b d  (4) 

where 

2 2 2

1
, , , and= = − = =

− − −
α α α

α α α α
α α α α α α α α α α

D B A
a b c d

A D B A D B C A D B
 (5) 

are the extensional compliance, bending-extension coupling compliance, shear compliance, 

and bending compliance, respectively. Note that if the sublaminates are uncoupled (which is 

the case for homogeneous and unidirectional laminates), 0=αB  and 0=αb , so that Eqs. (3)–

(5) can be conveniently simplified. 

2.2. Crack-tip relative displacements 

Let us now consider an elementary crack growth, whereby the delamination crack 

increases its length by a small amount, ∆a , under constant external loads. The initial crack-

tip segment, S , where the crack tip is located at point C (Fig. 4a), transforms into a new 

segment, 0S , where the crack tip moves to a new position, D, while point C splits into two 

points, C1 and C2, belonging to sublaminates No. 1 and 2, respectively (Fig. 4b). The cross 

section passing through point D is denoted with D. It is assumed that the internal forces acting 

on cross sections A and B do not change appreciably with the elementary crack growth, but 

points C1 and C2 generally undergo non-zero relative displacements (Fig. 5). The crack-tip 

relative displacements are defined as follows: 

2 1 2 2 2 1 1 1

2 1 2 1

2 1 2 1

( ) ( ),

, and

,

C C

C C

C C

u u u u h u h

w w w w w

φ φ

φ φ φ φ φ

∆ = − = − − +
∆ = − = −
∆ = − = −

 (6) 

where 1Cu  and 2Cu  are the axial displacements of points C1 and C2, respectively, 1Cw  and 
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2Cw  are the corresponding transverse displacements, and 1Cφ  and 2Cφ  are the cross-section 

rotations. In particular, u∆  is the crack-tip sliding displacement, w∆  is the crack-tip opening 

displacement, and φ∆  is the crack-tip relative rotation. 

 

Fig. 4. Elementary crack growth: (a) initial crack-tip segment; (b) new crack-tip segment. 

 

Fig. 5. Deformed crack-tip segment after the elementary crack growth. 

The crack-tip relative displacements are here evaluated by assuming that the two 

delaminating sublaminates deform as cantilever beams of length ∆a , clamped at cross section 

D and loaded by the internal forces, N1, Q1, M1 and N2, Q2, M2, at the cross sections passing 

through points C1 and C2. From the solution of the auxiliary problem of a laminated cantilever 

beam loaded at its end (see Appendix B), it is easily shown that 
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1 1 1 2 2 2 2 1 1 1 2 2 2 21 1

21 1 2

1 2 2 1 1 2 21

1
[( ) ( ) ( ) ( ) ] ,

1
, and( )

1
( ) ,

∆ + − − + + − − ∆≅

∆ ≅ ∆−

∆ ≅ − + − ∆

u h N h N h M h M a
B

w aQ Q
B

N N M M a
B

φ

a b a b b d b d

c c

b b d d

 (7) 

where powers of ∆a  of order higher than one have been neglected. 

The clamped-end assumption for the sublaminates is a quite strong assumption, that will 

affect the results. Nevertheless, this assumption is made here for the sake of simplicity. A 

possible improvement to the model could be obtained by considering the root rotations, for 

instance, by introducing rotational springs at the sublaminate end sections [46]. 

2.3. Crack-tip displacement rates 

The crack-tip displacement rates are defined as the crack-tip relative displacements per 

unit increase in crack length [49]: 

0 0 0
lim , lim , and lim .u w
a a a

u w

a a aφ
φρ ρ ρ

∆ → ∆ → ∆ →

∆ ∆ ∆= = =
∆ ∆ ∆

 (8) 

In particular, uρ  is the crack-tip sliding displacement rate, wρ  is the crack-tip opening 

displacement rate, and φρ  is the crack-tip relative rotation rate. By substituting Eqs. (7) into 

(8), the crack-tip displacement rates turn out to be 

1 1 1 2 2 2 2 1 1 1 2 2 2 21 1

21 1 2

1 2 2 1 2 21 1

1
[( ) ( ) ( ) ( ) ],

1
, and( )

1
( ).

u

w

h N h N h M h M
B

Q Q
B

N N M M
Bφ

ρ

ρ

ρ

= + − − + + − −

= −

= − + −

a b a b b d b d

c c

b b d d

 (9) 

By substituting Eqs. (3) into (9), and expressing the laminate stiffnesses as functions of the 

compliances through inversion of Eqs. (5), the following expressions are also obtained: 

1 2 1 1 2 2 1 2 1 2, , and ,u wh h φρ ε ε κ κ ρ γ γ ρ κ κ= − + + = − = −  (10) 

which show that the crack-tip displacement rates are a measure of the difference in strains at 

the crack tip between the two delaminating sublaminates. The crack-tip displacement rates 

describe the kinematics of an elementary crack growth. They will be used in the following to 

calculate the energy release rate and partition fracture modes. It is interesting to note that the 

first of Eqs. (10) – by recalling also Eqs. (8) – turns out to be very similar to the expression 
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used by Carlsson et al. [40] to evaluate the tangential relative displacement of the crack faces 

of a double cantilever beam (DCB) sandwich specimen. Also, it is worth mentioning that 

similar quantities have been tacitly used by Schapery and Davidson [17]. 

2.4. Crack-tip forces 

The initial crack-tip segment S  (prior to the elementary crack growth) can be obtained by 

superimposing the segments 0S  (after the elementary crack growth) and CS , where suitable 

self-equilibrated pairs of axial forces, NC, shear forces, QC, and bending moments, MC, are 

applied at points C1 and C2 (Fig. 6). Such crack-tip forces can be regarded as the forces acting 

at the crack tip prior to crack propagation. These are different from the internal forces acting 

on the crack-tip segment prior to crack growth, which are applied on the sublaminate 

centrelines. The axial and bending components, NC and MC, were introduced by Schapery and 

Davidson [17]. Harvey and Wang [44] considered also the shear component, QC. Li et al. [24] 

interpreted the crack-tip forces as the resultants of the singular stress fields at the crack tip of 

the plane elasticity solution. 

 

Fig. 6. The initial crack-tip segment S as the superposition of segments S0 and SC. 

The intensities of the crack-tip forces can be determined by observing that the crack-tip 
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relative displacements resulting from the superposition of segments 0S  and CS  should all be 

equal to zero. This is equivalent to impose the annihilation of the superimposed crack-tip 

displacement rates. Now, the internal forces in segment CS  turn out to be 

1 1 1 1

2 2 2 2

, , and ;

, , and .

C C C
C CC C

C C C
C CC C

N N Q Q M M N h

N N Q Q M M N h

= − = − = − −

= = = −
 (11) 

Hence, by substituting Eqs. (11) into (9), the crack-tip displacement rates in CS , 

, , and ,C C C
u uN uM C w wQ C N C M CCf N f M f Q f N f Mφ φ φρ ρ ρ= − − = − = − −  (12) 

can be computed. In Eqs. (12) the flexibility coefficients, 

2 2
1 2 1 1 2 2 1 1 2 2

1 2 1 1 2 2

1 2

1 2

1
( 2 2 ),

1
( ),

1
, and( )

1
( ),

uN

uM N

wQ

M

f h h h h
B

f f h h
B

f
B

f
B

φ

φ

= + + − + +

= = + + −

= +

= +

a a b b d d

b b d d

c c

d d

 (13) 

have been introduced. The flexibility coefficients describe the deformability of the crack-tip 

segment. In passing, it is noted that similar quantities have been defined within a finite 

element framework in a revised formulation of the VCCT [51]. 

To annihilate the crack-tip relative displacements in S , it is necessary that 

0, 0, and 0.C C C
u u w w φ φρ ρ ρ ρ ρ ρ+ = + = + =  (14) 

Hence, by substituting Eqs. (12) into (14), the crack-tip displacement rates, 

, , and ,u uN uM C w wQ C N C M CCf N f M f Q f N f Mφ φ φρ ρ ρ= + = = +  (15) 

are determined as functions of the crack-tip forces. It is noted that the coefficient uMf  (equal 

to Nfφ  by virtue of Betti’s reciprocity theorem) introduces a coupling between CM  and uρ  

and, vice versa, between CN  and φρ . This coupling vanishes for symmetrically delaminated 

beams with uncoupled sublaminates (for which 1 2 0= =b b  and 1 1 2 2h h=d d ) and, more 

generally, for delaminated laminated beams such that 1 1 1 2 2 2h h+ = − +b d b d . 

Lastly, by inversion of Eqs. (15), the crack-tip forces, 
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, , and ,M u uM uN N uw
C C C

uN M uM N wQ uN M uM N

f f f f
N Q M

f f f f f f f f f
φ φ φ φ

φ φ φ φ

ρ ρ ρ ρρ− −
= = =

− −
 (16) 

are obtained as functions of crack-tip displacement rates. The crack-tip forces can also be 

expressed as functions of the internal forces in the sublaminates, as explained in Appendix C. 

3. Energy release rate and fracture mode partitioning 

3.1. Energy release rate 

The energy release rate, G, is the decrease of potential energy of the system spent in the 

crack growth process, per unit area of new surface created. According to Irwin [52], the 

energy spent to produce an extension of the crack is equal to the work done to close the crack 

by the forces acting on the crack faces prior to crack extension. In analogy with the VCCT 

used in finite element analyses [12, 13], the work of closure can be defined as the work done 

by the crack-tip forces on the corresponding relative displacements. Hence, 

0

1
lim ( ).

2 C C C
a

G N u Q w M
B a

φ
∆ →

= ∆ + ∆ + ∆
∆

 (17) 

Schapery and Davidson [17] used an equation similar to Eq. (17), but without the shear 

term, CQ w∆ . This term is needed here because, according to the Timoshenko beam theory 

[47], there are three independent, generalised displacement components. 

By recalling the definition of the crack-tip displacement rates, Eqs. (8), the energy release 

rate becomes 

1
( ).

2 C u C w CG N Q M
B φρ ρ ρ= + +  (18) 

Furthermore, by substituting Eqs. (15) into (18), the energy release rate can be expressed in 

terms of the crack-tip forces, 

2 2 21
( ) ,

2 uN C N uM C C M C wQ CG f N f f N M f M f Q
B φ φ = + + + +   (19) 

or, by substituting Eqs. (16) into (18), in terms of the crack-tip displacement rates, 

2 2 2( )1
.

2
M u N uM u uN w

uN M N uM wQ

f f f f
G

B f f f f f
φ φ φ φ

φ φ

ρ ρ ρ ρ ρ − + +
= + −  

 (20) 

Eqs. (18)–(20) offer three equivalent ways to compute the energy release rate for a given 

problem. In practice, once the internal forces at the cross sections behind and above of the 
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crack tip are known, Eqs. (9) furnish the crack-tip displacement rates. Then, the crack-tip 

forces can be determined from Eqs. (16) and G obtained via Eqs. (18) or (19). Alternatively, 

the energy release rate can be directly obtained from Eq. (20). 

3.2. Fracture mode partitioning 

Delamination cracks generally propagate under a mix of fracture modes. In I/II mixed-

mode problems, the energy release rate is the sum of two modal contributions, 

I II ,G G G= +  (21) 

respectively corresponding to fracture modes I (opening) and II (sliding). By inspection of 

Eqs. (18)–(20), it is not obvious how to identify the contributions of fracture modes I and II. 

On one hand, it is intuitive that the terms depending on QC and wρ  should contribute only to 

GI (incidentally, such terms are relevant only if shear deformability is taken into account); on 

the other hand, the terms depending on NC, MC and uρ , φρ  are strongly tied one another and, 

hence, contribute to both fracture modes. It is also noted that this coupling depends on the 

flexibility coefficient uM Nf fφ= , which is generally non-zero in the case of asymmetric 

delamination cracks. 

Here, the partitioning of fracture modes is based on the following simple kinematic 

assumption: pure mode I fracture occurs when the crack-tip sliding displacement, u∆ , is 

equal to zero (or, equivalently, when the corresponding crack-tip displacement rate 0uρ = ). 

The modal contributions to the energy release rate can then be computed in a way similar to 

that proposed elsewhere for the VCCT [50]. 

Let us imagine that the relative displacements between the crack faces are closed in an 

ideal two-step process. In the first ideal step, corresponding to the mode II contribution, 

suitable axial forces, II
CN , are applied at points C1 and C2, while neither shear forces, nor 

bending moments are applied at the same points (Fig. 7a). The intensity of II
CN  should be such 

as to exactly close the gap in the x-direction, u∆ , produced by the elementary crack growth. 

In practice, the first of Eqs. (15) can be used to determine II
CN  as the axial force producing a 

crack-tip sliding displacement rate equal to uρ . To sum up, in the first ideal step the following 

crack-tip forces are applied: 

II II II, 0, and 0.u
C C C

uN

N Q M
f

ρ= = =  (22) 
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Substitution of Eqs. (22) into (15) shows that the aforementioned crack-tip forces produce 

the following crack-tip displacement rates: 

II II II, 0, and .N
u u w u

uN

f

f
φ

φρ ρ ρ ρ ρ= = =  (23) 

Eqs. (23) indicate that in the first ideal step, the gap between the crack faces in the x-

direction is completely closed, the gap in the z-direction is left unchanged, while the relative 

rotation may be partly decreased or increased depending on the sign of the coupling flexibility 

coefficient, Nfφ . 

In the second ideal step, corresponding to mode I, the remainders of the crack-tip forces, 

I II I I, , and ,C C C C C C CN N N Q Q M M= − = =  (24) 

are applied at points C1 and C2 (Fig. 7b). By substituting Eqs. (24) into (15) and recalling Eqs. 

(16) and (22), the crack-tip displacement rates produced by such crack-tip forces are 

determined as follows: 

I I I0, , and .N
u w w u

uN

f

f
φ

φ φρ ρ ρ ρ ρ ρ= = = −  (25) 

 

Fig. 7. Crack closure forces: (a) mode II; (b) mode I. 

According to Eqs. (25), in the second ideal step, the gap in the x-direction (already closed 

in the first step) is left unchanged, while the gap in the z-direction is closed. Furthermore, 

from Eqs. (23) and (25) it follows that I II
φ φ φρ ρ ρ+ = , which means that the relative rotation 

between the crack faces vanishes as a result of the application of the crack-tip forces in the 

two ideal steps. Thus, the two ideal steps correspond to the complete closure of the crack. 

The modal contributions to the energy release rate can now be determined by considering 

the work of closure done by the systems of crack-tip forces, Eqs. (22) and (24), on the 
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corresponding crack-tip displacement rates, Eqs. (23) and (25). To this aim, it is worth noting 

that the two systems of crack-tip forces are energetically orthogonal, which means that their 

mutual work is zero [50, 51]. Note also that IICN  is in general distinct from NC, but if 

0uM Nf fφ= =  then u uN Cf Nρ =  and II
C CN N= . Eqs. (13) show that this happens when the 

unbalance parameter 0 1 2 1 1 2 2 0h h= + + − =b b b d d . This condition includes, as special cases, 

homogeneous and unidirectional laminates with symmetrically located delaminations. 

By substituting Eqs. (22)–(25) into (18), and recalling Eqs. (16), the energy release rate 

contributions corresponding to fracture modes I and II, 

2 2 2

I II

( )1 1 1
and ,

2 2
uN N u w u

uN uN M uM N wQ uN

f f
G G

B f f f f f f B f
φ φ

φ φ

ρ ρ ρ ρ −
= + = −  

 (26) 

are determined. By substituting Eqs. (15) into (26), the modal contributions can also be 

expressed as functions of the crack-tip forces: 

2
2 2

I II

( )1 1
and .

2 2
uN M uM N uN uM CC

C wQ C
uN uN

f f f f f N f M
G M f Q G

B f B f
φ φ−  +

= + = 
 

 (27) 

Eqs. (26) and (27) show that both GI and GII are non-negative quantities, in line with their 

physical meaning [50, 51]. Furthermore, the above equations reveal the conditions for having 

pure fracture modes: pure mode I (II 0G = ) is obtained when 0uρ =  (as per the initial 

assumption on fracture mode partitioning), while pure mode II ( I 0G = ) occurs when both 

0CM =  and 0CQ =  (the latter condition is relevant only if shear deformability is taken into 

account). It is worth noting that the above conditions coincide with those obtained by Harvey 

and Wang [44] by using the Timoshenko beam theory [47]. Also, the above result is in line 

with the observation by Li et al. [24] that pure mode I cannot correspond to 0=CN , as this 

resultant force could vanish even if the distributed shear stresses at the crack tip are non-zero. 

By recalling Eqs. (10), it is also possible to determine expressions for GI and GII as 

functions of the strain measures in the delaminating sublaminates, 

2 2
1 2 1 2 1 1 2 2 1 2

I

2
1 2 1 1 2 2

II

[ ( ) ( )] ( )1 1
and

2

( )1
.

2

uN N

uN uN M uM N wQ

uN

f f h h
G

B f f f f f f

h h
G

B f

φ

φ φ

κ κ ε ε κ κ γ γ

ε ε κ κ

 − − − + + − = + −  

− + +=

 (28) 

Eqs. (28) shed some light on the discussion about the relationship between modal 
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contributions and curvatures of the delaminating sublaminates [16–18, 42]. In particular, it is 

apparent that equal curvatures (1 2κ κ= ) do not necessarily imply mode II fracture. On the 

other hand, opposite curvatures (1 2κ κ= − ) correspond to mode I fracture, provided that the 

sublaminates have also equal axial strains (1 2ε ε= ) and thicknesses (1 2h h= ). 

In I/II mixed-mode fracture problems, the mode mixity can be characterised by the phase 

angle of the complex stress-intensity factor [6]. Here, the mode-mixity angle is defined as 

II

I

arctan ,
G

G
ψ = ±  (29) 

where the ±  sign has to be taken equal to the sign of II
CN  or uρ . 

4. Results 

4.1. Homogeneous beams 

For homogeneous beams, the sublaminate stiffnesses are 

35 1
, 0, , and ,

6 12x zx xE H G H E Hα α α α α α α= = = =A B C D  (30) 

where xE  and zxG  respectively are the longitudinal Young’s modulus and shear modulus of 

the material. The subscript 1=α  denotes the upper sublaminate, 2α =  denotes the lower 

one. In what follows, also the elastic modulus in the transverse direction of the beam, zE , will 

be used (for isotropic materials, x zE E= ). By substituting Eqs. (30) into (5), (9), (13), and 

(20), the energy release rate, 

2 23 3
1 2 1 2 1 2 1 2 1 2

2 3 2
1 2 1 2

2 2 2
1 2 1 2

2 3 3 3
1 2

3

2 5

( )
,

1

6

   
= ++ − −   

   

 ++ − 


+

+


x zx

x

H H H H N N H H Q Q

B E H H H H B G H H H

M M M M

B E H H

G

H

 (31) 

is obtained as a function of the internal forces in the delaminating sublaminates. Likewise, 

from Eqs. (26), the mode I and II contributions, 
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( )
2 2

2 1 2 1 2 1 2 1 2
1 22 3 2

1 2 1 2

2

1 2 1 2 1 2
1 22 3 2 2

1 2

2 2

1 2 1 2 1 2 1 2
2 2 2 2

1 2 1 2

I

II

3 3

8 5

3 33

2

1 9

8

and

,
2

   
− − −   

   

 + +− 


= + +



   
− +

+

   
   

= +

x zx

x

x x

H H N N H H Q Q
H H

B E H H H B G H H H

H H H H H H
M M

B E H H H

H H N N H H M M

B E H H H B E H H H

G

G

 (32) 

are determined as functions of the internal forces. 

It can be shown that Eq. (31) is equivalent to the expressions by Williams [10], except for 

a term stemming from the moment balance of axial forces. However, the modal contributions 

given by Eqs. (32) are different from Williams’ expressions because of the different 

underlying assumptions. 

4.1.1. Load cases 

In the following Sections, results for homogeneous beams will be presented and compared 

to the predictions of the elastic-interface model, where the two delaminating sublaminates are 

modelled as Timoshenko beams connected by an elastic interface [35] (see also Appendix D). 

Furthermore, the predictions of the local method [11, 22] will be shown for reference. In order 

to consider all possible load conditions, the general load system acting on the crack-tip 

segment is decomposed into the sum of three elementary load conditions, respectively 

corresponding to axial forces, shear forces, and bending moments applied to the delaminating 

sublaminates (Fig. 8). In turn, the elementary load conditions are decomposed into the sum of 

three symmetric load cases, where 

1 2 1 2 1 2, , and ,
2 2 2s s s

N N Q Q M M
N Q M

+ − −= = =  (33) 

and three antisymmetric load cases, where 

1 2 1 2 1 2, , and .
2 2 2a a a

N N Q Q M M
N Q M

− + += = =  (34) 
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Fig. 8. Load decomposition for homogeneous beams. 

It is worth noting that the symmetric and antisymmetric load cases correspond to fracture 

modes I and II, respectively, for laminates with symmetrically placed delaminations, but 

result in mixed-mode fracture in general. In what follows, the effects of axial forces, shear 

forces, and bending moments will be examined separately. For the sake of illustration, the 

Poisson’s ratio is assumed as 0.3=zxν  and the shear modulus computed as 

/ [2(1 )]= +zx x zxG E ν . 

4.1.2. Effect of axial forces 

Figure 9 shows the energy release rate, G, produced by axial forces as a function of the 

sublaminate thickness ratio, 1 2/H Hη = . As customary in the literature [22, 23], G is non-

dimensionalised with respect to the applied load and the geometric and material parameters of 

the problem in order to make results independent of units of measurement. Without loss of 

generality, here and in the following, attention is restricted to the case [0,1]η ∈ . For both 

symmetric (Fig. 9a) and antisymmetric (Fig. 9b) axial forces, the energy release rate turns out 

to be a decreasing function of η  in the considered interval. The elastic-interface model [35] 

and local method [11] furnish for G the same results of the present method. Note that for the 
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symmetric load case, 0G =  for 1η = , which means that uniform traction does not produce 

fracture propagation in a symmetrically delaminated laminate. 

           

Fig. 9. Dimensionless energy release rate due to (a) symmetric and (b) antisymmetric axial forces. 

Figure 10 shows the mode-mixity angle, ψ, produced by axial forces as a function of η . 

The plot is valid for both the symmetric and antisymmetric load cases. Actually, for axial 

forces, the mode mixity turns out to have the same dependency on the sublaminate thickness 

ratio in both cases. Results are presented for the present method (red, continuous curve), the 

elastic-interface model (orange, dashed curves), and the local method (blue, dotted curve). 

The results of the elastic-interface model depend on the values of the constants of the 

tangential and normal distributed springs, xk  and zk . The figure shows four curves 

corresponding to four values (1, 10, 100, and 1000) of the dimensionless elastic-interface 

constants, /x zxxk H Gµ =  and /z z zk EHµ = . Note that as xµ  and zµ  increase, the predictions 

of the elastic-interface model tend towards those of the present method, to which they 

converge asymptotically for µ µ= → +∞x z  (rigid interface limit case). The predictions of the 

local method are approximately equal to those of the elastic-interface model for 10x zµ µ= =  

and [0.1,1]∈η . Major differences among the compared methods are observed for the smaller 

values of η . For 0η →  (thin film limit case), the present method predicts mixed-mode 

fracture with 30= °ψ . This result is qualitatively consistent with the local method, which 

however predicts a different value of 52.1= °ψ . Instead, the elastic-interface model predicts 

pure mode II fracture ( 90= °ψ ), regardless of the values of the interface constants. 

Interestingly, this latter result is consistent with the analysis of the peel test by De Lorenzis 

and Zavarise [53]. Lastly, it is noted that for 1η =  (symmetric delamination), all the 

compared methods yield 90ψ = ° , which means that if the fracture propagates (0G > ) then it 

does in mode II. 
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Fig. 10. Mode-mixity angle due to (symmetric and antisymmetric) axial forces. 

4.1.3. Effect of shear forces 

Figure 11 shows the energy release rate, G, produced by shear forces as a function of η . 

As for the axial force load case, G is non-dimensionalised with respect to the parameters of 

the problem. All the compared methods predict the energy release rate to be a decreasing 

function of η  in the considered interval. For the elastic-interface model, four curves are 

shown, corresponding to four values (1, 10, 100, and 1000) of the dimensionless interface 

constants, xµ  and zµ . As the interface constants increase, the predictions of the elastic-

interface model tend towards those of the present method, to which they converge 

asymptotically in the limit case of a rigid interface. Note that for the antisymmetric load case 

(Fig. 11b), the present method predicts 0G =  for 1η =  (uniform shear does not produce 

fracture propagation in a symmetrically delaminated laminate), but the compared methods 

predict 0G > . This is likely because the other methods make different assumptions on the 

deformation of the crack-tip cross section. 
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Fig. 11. Dimensionless energy release rate due to (a) symmetric and (b) antisymmetric shear forces. 

Figure 12 shows the mode-mixity angle, ψ, produced by shear forces as a function η . The 

present method predicts 0ψ = °  (mode I fracture) for both the symmetric (Fig. 12a) and 

antisymmetric (Fig. 12b) load cases, for all values of η . This means that, according to the 

present method – based on the Timoshenko beam theory – shear forces do not contribute to 

IIG  [54]. Instead, both the elastic-interface model [35] and local method (in the version by Li 

et al. [22]) predict generally non-zero values for the mode-mixity angle. However, at least for 

the symmetric load case, the values of ψ  are very small (note the different axis scales in 

figures 12a and 12b). The predictions of the elastic-interface model (curves are plotted for xµ  

and zµ  equal to 10, 100, 1000, and 104) tend towards those of the present method as 

µ µ= → +∞x z  (rigid interface limit case). The trends predicted by the local method appear 

qualitatively similar to those of the elastic-interface model, but quantitatively different. For 

1η =  (symmetric delamination), both the elastic-interface model and local method predict 

0ψ = °  (mode I fracture) under symmetric shear loads and 90ψ = °  (mode II fracture) under 

antisymmetric shear loads. 
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Fig. 12. Mode-mixity angle due to (a) symmetric and (b) antisymmetric shear forces. 

4.1.4. Effect of bending moments 

Figure 13 shows the energy release rate, G, produced by bending moments as a function of 

η . As for the previous load cases, G is non-dimensionalised with respect to the parameters of 

the problem. For both symmetric (Fig. 13a) and antisymmetric (Fig. 13b) loads, the energy 

release rate is a decreasing function of η  in the considered interval. The elastic-interface 

model [35] and local method [11] furnish for G the same results of the present method. 

           

Fig. 13. Dimensionless energy release rate due to (a) symmetric and (b) antisymmetric bending moments. 

Figure 14 shows the mode-mixity angle, ψ, produced by symmetric and antisymmetric 

bending moments as a function of η . For the elastic-interface model, four values (1, 10, 100, 

and 1000) of the dimensionless interface constants, xµ  and zµ , are considered. Comments to 

figure 14 are similar to those applying to figure 10 (axial force load case). For 0η →  (thin 

film limit case), the present method agrees qualitatively with the local method in predicting 

mixed-mode fracture, although they yield different values for ψ  (60° and 37.9°, respectively). 
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The elastic-interface model predicts 0= °ψ  (mode I fracture), regardless of the values of the 

interface constants. This result is again consistent with the analysis of the peel test by De 

Lorenzis and Zavarise [53]. Lastly, it is noted that for 1η =  (symmetric delamination), all the 

compared methods yield 0ψ = °  (mode I fracture) for symmetric loads and 90ψ = °  (mode II 

fracture) for antisymmetric loads. 

           

Fig. 14. Mode-mixity angle due to (a) symmetric and (b) antisymmetric bending moments. 

4.2. Bimaterial beams 

Bimaterial beams, namely laminated beams made of two different materials (Fig. 15), are 

now considered. For simplicity, each material is supposed to be homogeneous and isotropic. 

Furthermore, it is assumed that the two sublaminates have equal thicknesses (1 2H H h= = ) in 

order to focus on the effects of the mismatch in the elastic moduli. 

 

Fig. 15. Delaminated bimaterial beam. 

The sublaminate stiffnesses are the following: 

(1) (1) (1) 3
1 1 1 1

(2) (2) (2) 3
2 2 2 2

5 1
, 0, , and ;

6 12
5 1

, 0, , and ,
6 12

x zx x

x zx x

E h G h E h

E h G h E h

= = = =

= = = =

A B C D

A B C D
 (35) 
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where (1)
xE  and (1)

zxG  respectively are the Young’s modulus and shear modulus of the upper 

sublaminate, (2)
xE  and (2)

zxG  are the corresponding quantities of the lower sublaminate. By 

substituting Eqs. (35) into (5), (9), (13), and (26), the mode I and II contributions to the 

energy release rate, 

(1) (2)2 (1) (2)

(2) (1)

2
(2) (1) (2) (1)

1 2 1 2(1) (2) (1) (2)
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1 1
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G

 
− + + + 

=


 (36) 

are obtained as functions of the internal forces. The total energy release rate can be obtained 

by summing the two modal contributions given by Eqs. (36). It can be shown that the 

resulting expression for G would be identical to the one by Suo and Hutchinson [11], for axial 

forces and bending moments, and to that by Andrews and Massabò [23], if also shear forces 

are considered (apart from a term stemming from root rotations, not considered here). 

Obviously, the modal contributions turn out to be different because of the different 

assumptions on fracture mode partitioning. 

For the sake of illustration, four load cases are considered: antisymmetric axial forces, 

symmetric shear forces, symmetric and antisymmetric bending moments (Fig. 16). The 

Poisson’s ratio is assumed as 0.3=zxν  and the shear modulus computed as 

( ) ( ) / [2(1 )]= +zx x zxG Eα α ν , where {1, 2}α ∈ . 
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Fig. 16. Load cases for bimaterial beams: (a) antisymmetric axial forces; (b) symmetric shear forces; (c) 

symmetric bending moments; (d) antisymmetric bending moments. 

Figure 17 shows the mode-mixity angle as a function of the ratio between the Young’s 

moduli of the upper and lower sublaminates, (2) (1)/x xE E . The results of the present method are 

compared to those of the elastic-interface model [35] for three values of the dimensionless 

interface constants, (1)/ zx x xH Gkµ =  and (1)/z xz H Ekµ = . It is noted that the predictions of the 

elastic-interface model tend towards those of the present method as µ µ= → +∞x z  (rigid 

interface limit case). For reference, also the predictions of the local method [11, 22] are 

plotted. The general trends are qualitatively similar, but differ quantitatively. 
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Fig. 17. Mode-mixity angle for bimaterial beams: (a) antisymmetric axial forces; (b) symmetric shear forces; (c) 

symmetric bending moments; (d) antisymmetric bending moments. 

4.3. Laminated beams 

For laminated beams with general stacking sequences, the energy release rate and mode 

mixity must be calculated by using the expressions of Section 3. The resulting general 

expressions are quite lengthy and will not be given here. However, as far as the total energy 

release rate is concerned, it can be shown that the present method yields exactly the same 

expression obtained by Schapery and Davidson [17] for the axial loads and bending moments 

contributions. Also, the expressions for the energy release rate obtained by Bao et al. [21] and 

Lundsgaard–Larsen et al. [41] for sandwich specimens can be retrieved. 

By way of example, the method will be applied to some non-standard laboratory tests used 

to measure the delamination toughness of composite laminates: 

- the asymmetric double cantilever beam (ADCB) test; 

- the double cantilever beam loaded with uneven bending moments (DCB-UBM) test; 

- the asymmetric mixed-mode bending (AMMB) test; 

- the mixed-mode bending (MMB) test with doublers. 

Lastly, a comparison with the method by Schapery and Davidson [17] will be made. 

4.3.1. Asymmetric double cantilever beam (ADCB) test 

In the asymmetric double cantilever beam test, a laminated specimen with an initial 

delamination of length a is loaded by two opposite forces of equal intensity, P (Fig. 18). The 

mode mixity originates from the geometric and/or material asymmetry of the loaded arms of 

the specimen [31, 55]. 
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Fig. 18. Asymmetric double cantilever beam test. 

The internal forces at the crack-tip cross section of an ADCB test specimen are 

1 1 1

2 2 2

0, , ;

0, , .

N Q P M Pa

N Q P M Pa

= = =
= = − = −

 (37) 

By substituting Eqs. (37) into (9), the crack-tip displacement rates, 

1 2 1 1 2 2 1 21 2( ), , and ( ),( )u w

Pa PaP
h h

B BB
φρ ρ ρ= + + − = + = +b b d d d dc c  (38) 

are determined. Then, from Eqs. (13) and (16) the crack-tip forces, 

0, , and ,C C CN Q P M Pa= = =  (39) 

are obtained. Lastly, from Eqs. (27) the mode I and II contributions to the energy release rate, 

22 2 2
1 2 1 2 21

I 1 2 1 22 2 2 2
1 2 1 1 2 2 1 1 2 2

2 2 2
1 2 1 1 2 2

II 2 2 2
1 2 1 1 2 2 1 1 2 2

( )
( ) and

2 2 2 2

( )
,

2 2 2

h hP a P
G

B h h h h B

P a h h
G

B h h h h

 + + −= + − + + + + − + + 

+ + −=
+ + − + +

b b d d
d d c c

a a b b d d

b b d d
a a b b d d

 (40) 

are calculated. The sum of the two modal contributions yields the total energy release rate, 

2
2

1 21 22
( ) .

2

P
G a

B
 = + + + d dc c  (41) 

It can be verified that, if the delaminating sublaminates are uncoupled (1 2 0= =b b ) and 

shear deformability is neglected (1 2 0= =c c ), then Eqs. (40) yield the same results computed 

by the elastic-interface model [31] in the limit case of a rigid interface (µ µ= → +∞x z ). 

4.3.2. Double cantilever beam loaded with uneven bending moments (DCB-UBM) test 

Sørensen et al. [56] have proposed a modified DCB test, where the specimen is loaded by 

bending moments, 1M  and 2M  (Fig. 19). Loading by moments instead of forces has several 

advantages: (i) the whole range of mode mixities (from pure mode I to mode II) can be tested 
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by varying the load ratio, 1 2/M M ; (ii) delamination growth is stable during the test for all 

mode mixities; (iii) the test results are independent of the delamination length (which can be 

difficult to measure in some circumstances); (iv) shear deformability does not influence the 

test results. For symmetric specimens, the symmetric and antisymmetric parts of the applied 

loads respectively correspond to fracture modes I and II. If the specimen is not symmetric 

about the delamination plane, then an additional source of mode mixity is given by the 

geometric and/or material asymmetry of the loaded arms. For the sake of simplicity, a 

symmetrically delaminated specimen is considered here ( 1 2=a a , 1 2= −b b , 1 2=c c , 1 2=d d , 

and 1 2h h= ). 

 

Fig. 19. Double cantilever beam loaded with uneven bending moments test. 

The internal forces at the crack-tip cross section of a DCB-UBM test specimen are 

1 1 1 1

2 2 2 2

0, 0, ;

0, 0, .

N Q M M

N Q M M

= = =
= = =

 (42) 

By substituting Eqs. (42) into (9), the crack-tip displacement rates, 

1 1 1 2 1 21 1

1 1
( )( ), 0, and ( ),u wh M M M M

B Bφρ ρ ρ= + + = = −b d d  (43) 

are determined. Then, from Eqs. (13) and (16) the crack-tip forces, 

1 1 1
2 21 12

1 1 1 1 1

1 1
( ), 0, and ( )

2 2 2
,C C C

h
N M M Q M M M

h h

+= + = = −
+ +

b d
a b d

 (44) 

are obtained. Lastly, from Eqs. (27) the modal contributions to the energy release rate, 

2
2 21 1 1 1

I 2 II 21 12 2 2
1 1 1 1 1

( )1
( ) and ( ) ,

4 4 2

h
G M M G M M

B B h h

+= − = +
+ +

d b d
a b d

 (45) 

are calculated. 

4.3.3. Asymmetric mixed-mode bending (AMMB) test 

In the mixed-mode bending (MMB) test, a laminated specimen with an initial delamination 
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of length a is loaded simultaneously by an upward load, uP , and a downward load, dP  (Fig. 

20). By suitably changing the relative intensities of the applied loads, a range of mode 

mixities can be tested [57]. The test is standardised for unidirectional laminated specimens 

with symmetric delaminations by ASTM [58], but has been used also for multidirectional and 

asymmetric specimens [9], bimaterial specimens [59, 60], multidirectional laminates [32, 33, 

61], sandwich plates [62], and asymmetric adhesively bonded joints [63, 64]. In all the 

aforementioned cases, where there is geometric and/or material asymmetry about the 

delamination plane, the partitioning of fracture modes does not correspond to the 

decomposition of the applied loads into the symmetric and antisymmetric parts, as it does for 

symmetrically delaminated specimens. Unfortunately, this point appears not to have been 

fully appreciated in the literature with a few exceptions [32, 33, 61]. The present method 

furnishes a way to determine the mode I and II contributions to the energy release rate for 

asymmetric MMB test specimens within the context of beam theory. 

 

Fig. 20. Asymmetric mixed-mode bending test. 

The internal forces at the crack-tip cross section of an AMMB test specimen are 

1 1 1

2 2 2

0, , ;

1 1
0, , .

2 2

u u

d u d u

N Q P M P a

N Q P P M P P a

= = =

 = = − = − 
 

 (46) 

By substituting Eqs. (46) into (9), the crack-tip displacement rates, 

1 2 1 1 2 2 2 2 2 1 2 2

1 2 2

( ), ( )
2

a

( ) ,
2

(nd ,
2

)

du d u
u w

u d

P a P a P
h h h

B B B
P a P a

B B

P

B

φ

ρ ρ

ρ

= − =

=

+ + − − + −

−+

b b d d b d c c c

d d d
 (47) 

are obtained. Such quantities can then be used to calculate the energy release rate and its 

modal contributions via Eqs. (20) and (26), respectively. However, the resulting general 

expressions are quite lengthy and will not be given here. 
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4.3.4. Mixed-mode bending (MMB) test with doublers 

Reeder et al. [65] have proposed to reinforce mixed-mode bending test specimens (of 

thickness 22t ) experiencing premature bending failure by adding ‘doublers’, i.e. externally 

bonded sheets of stiffer material (of thickness 1t ). The result is an MMB specimen, where the 

sublaminates are bimaterial beams with bending-extension coupling (Fig. 21). 

 

Fig. 21. Mixed-mode bending with doublers test. 

The sublaminate equivalent stiffnesses turn out to be 

( )

(1) (2) (1) (2)
1 2 1 2 1 2 1 2

(1) (2) (1) 2 2 (2) 2 2
1 2 1 2 1 2 1 1 2 2 2 1

1
, ( ) ,

2
5 1

, and ( 3 ) ( 3 ) ,
6 12

x x x x

zx zx x x

E t E t E E t t

G t G t E t t t E t t t

= = + = − = − −

 = = + = = + − + 

A A B B

C C D D
 (48) 

while the compliances can be calculated via Eqs. (5). By observing that the specimen is 

symmetric about the delamination plane (1 2=a a , 1 2= −b b , 1 2=c c , 1 2=d d , and 1 2h h= ), the 

crack-tip displacement rates, Eqs. (47), can be simplified as follows: 

1 1 1 1 1

4 (4
,

)
( ), and .

2 2 2
du u

u w
ddP P P

B
h

B

a P P a

B φρ ρ ρ+ − −= = =b d c d  (49) 

By substituting Eqs. (49) into (26), and recalling Eqs. (13), the mode I and II contributions 

to the energy release rate, 

2 2 2 2
2 1 1 1

I 1 1 II2 2 2
1 1 1 1 1

(4 ) ( )
( ) and ,

16 16 2
u ddP P a h

G a G
B B h h

P−= + =
+ +

+b d
c d

a b d
 (50) 

are obtained. 

4.3.5. Comparison with the method by Schapery and Davidson 

For general laminated beams, Schapery and Davidson [17] expressed the mode I and II 

contributions to the energy release rate as follows: 
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( ) ( )2 2

I 1 2 II 3 4

1 1
and ,

2 2C C C CG k N k M G k N k M
B B

= + = +  (51) 

where k1, k2, k3, and k4 are real coefficients, which depend on the stacking sequence, but not 

on the load condition. The authors showed that k2, k3, and k4 can be expressed as functions of 

k1. The latter coefficient can be determined numerically by using the finite element method to 

solve the particular problem of a delaminated beam loaded with the following internal forces 

(Fig. 22): 

1 1 1 1 1

2 1 2 2 1 2

0, 0, ;

, 0, .

N Q M N h

N N Q M N h

≠ = =
= − = =

 (52) 

 

Fig. 22 Load condition analysed via the finite element method by Schapery and Davidson [17]. 

Schapery and Davidson [17] analysed a number of cases – including both homogeneous 

and bimaterial beams – and found that the values of 1k  are always close to zero. Hence, they 

concluded that further study would have been necessary to assess whether assuming 1 0k =  

could be a good approximation to evaluate the modal contributions without resorting to finite 

element calculations. In this respect, by comparing Eqs. (27) and (51) – regardless of the 

contribution of shear forces –, it can be seen that the present method is equivalent to Schapery 

and Davidson’s method if the following expressions are assumed for their coefficients: 

1 2 3 40, , , and .uN M uM N uM
uN

uN uN

f f f f f
k k k f k

f f
φ φ−

= = = =  (53) 

Interestingly, by substituting Eqs. (52) into the expressions in Appendix C, it is found that 

1, 0, 0.C C CN N Q M= = =  (54) 

Then, by substituting Eqs. (54) into (27), the modal contributions are found as 

2
I II 1

1
0 and ,

2 uNG G f N
B

= =  (55) 
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which means that, according to the present method, the problem of figure 22 is a case of pure 

mode II fracture. 

5. Discussion 

The predictions of the present method for the energy release rate and mode mixity have 

been compared to those of the elastic-interface model [35] and local method [11, 22] for 

homogeneous and bimaterial delaminated beams. 

For the axial force and bending moment load cases, the compared methods furnish the 

same results for the energy release rate. This is not surprising for the local method, which uses 

beam theory to compute G, except for the contribution of shear forces, which depends also on 

the root rotations [22, 23]. For the elastic-interface model, this result can be explained by 

observing that for an infinitely long beam subjected to axial forces and bending moments, the 

elastic interface furnishes an additional term to the compliance, which does not depend on the 

delamination length, a. Therefore, this contribution vanishes when differentiating the 

compliance with respect to a to obtain the energy release rate according to the well-known 

formula by Irwin and Kies [66]. Instead, the contribution to G stemming from shear forces 

depends on the values of the elastic-interface constants, which are in turn related with the 

roots rotations (disregarded by the present approach). Anyway, when the (dimensionless) 

interface constants, xµ  and zµ , go to infinity, the predictions of the elastic-interface model 

converge to those of the present method. 

As concerns the mode mixity, the predictions of the present method agree qualitatively 

with both the elastic-interface model and local method. However, differences in the values of 

the angle ψ  have been obtained. Such differences are most likely due to the simplifying 

assumptions on which the present method is based. The predictions of the elastic-interface 

model tend towards those of the present method as the interface constants, xµ  and zµ , 

increase and converge to the present method for µ µ= → +∞x z  (rigid interface limit case). 

6. Conclusions 

A method has been presented to calculate the energy release rate and mode mixity of 

laminated beams of rectangular cross section with through-the-width delaminations. 

According to classical lamination theory and Timoshenko beam kinematics, the axial, shear, 

and bending deformabilities, as well as the bending-extension coupling, have been taken into 

account. The kinematics of an elementary crack growth has been analysed by defining the 
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crack-tip displacement rates as the relative displacements occurring at the crack tip per unit 

increase in crack length. Such newly defined quantities have been used to compute the crack-

tip forces. Furthermore, by adapting the virtual crack closure technique to the present context 

and assuming a suitable two-step process of closure of the crack, the energy release rate and 

its mode I and II contributions have been determined. 

Results for homogeneous and bimaterial delaminated beams have been presented and 

compared to the predictions of the elastic-interface model [35] and local method [11, 22]. 

Perfect agreement between the compared methods has been obtained for the energy release 

rate due to axial forces and bending moments. Minor differences have been obtained for the 

shear force load case. 

With respect to the mode mixity, qualitative agreement has been found between the 

compared methods, but some quantitative differences have emerged. Such differences are 

most likely due to the simplifying assumptions on which the present method is based. Taking 

into account some of the disregarded effects (root rotations, Poisson’s effect, etc.) could 

probably help improve the accuracy of the present method. Furthermore, it has been observed 

that the results of the elastic-interface model converge to those of the present method for the 

limit case of a rigid interface, but is deduced in a completely independent way. 

For general laminated beams, applications to some non-standard delamination toughness 

tests have been illustrated. Lastly, the present method has been compared to the method by 

Schapery and Davidson [17]. The two methods turn out to be equivalent if the coefficient 1k  

defined in [17] is taken equal to zero. The present method nevertheless represents an 

improvement as it considers the effects of shear forces, not included in [17]. 
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Appendix A. Equivalent stiffnesses of a laminated beam 

The present study considers laminated beams of constant, rectangular cross section of 

width B and height 2H h=  (Fig. A1). A reference system Oyz is fixed in the cross-section 

plane with the origin at the geometric centre of the section and the y- and z-axes aligned with 

the width and height directions, respectively. The beam is made of n layers (or laminae) of 
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different materials and thicknesses. Let (1) (2) ( ), , , n
x x xE E E…  and (1) (2) ( ), , , n

zx zx zxG G G…  respectively 

be the longitudinal Young’s moduli and shear moduli of the n layers. Furthermore, let 

0 1, , , nz z z…  be the ordinates of the top and bottom surfaces of the layers. 

 

Fig. A1. Cross section of the laminated beam. 

According to classical lamination theory [48], the laminated beam can be modelled as a 

homogeneous beam with the following equivalent stiffnesses: 

( ) ( ) 2 2
1 1

1 1

( ) ( ) 3 3
1 1

1 1

1
( ), ( ),

2

5 1
( ), and ( ).

6 3
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i i
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G z z E z z

− −
= =

− −
= =

= − = −

= − = −

∑ ∑

∑ ∑

A B

C D

 (A1) 

In particular, , , , andA B C D , respectively denote the extensional stiffness, bending-

extension coupling stiffness, shear stiffness, and bending stiffness per unit width of the 

laminated beam. Inversion of the constitutive laws for the beam leads to define the 

corresponding equivalent compliances, 

2 2 2

1
, , , and .= = − = =

− − −
D B A

a b c d
AD B AD B C AD B

 (A2) 

Appendix B. End-loaded laminated cantilever beam 

Let us consider a laminated cantilever beam of length L, loaded at its free end by an axial 

force, N , a shear force, Q , and a bending moment, M  (Fig. B1). A reference system Ozx is 

fixed in the principal plane of the beam with the origin at the clamped end and the x-axis 

aligned with the longitudinal direction. Let u and w denote the axial and transverse 

displacements of the beam centreline, respectively, and φ  the cross-section rotation, positive 

if counter-clockwise. Let , , , andA B C D  be the equivalent stiffnesses of the beam per unit 

width and let , , , anda b c d  be the corresponding compliances. 
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Fig. B1. Laminated cantilever beam loaded at its end. 

The internal forces in the beam are 

( ) , ( ) , and ( ) ( ).N x N Q x Q M x M Q L x= = = − −  (B1) 

Using the compatibility equations and inverse constitutive relationships for the laminated 

beam, the following relationships are obtained: 

1 1 1
( ), , and ( ),

du dw d
N M Q N M

dx B dx B dx B

φε γ φ κ= = + = + = = = +a b c b d  (B2) 

where B is the width of the cross section. By substituting Eqs. (B1) into (B2) and integrating 

with respect to x (and also considering the boundary conditions at the clamped end, 0x = ), 

the generalised displacements of the beam centreline, 
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are obtained as functions of x. In particular, the generalised displacements at the loaded end, 

x L= , are 

2

2 2
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Appendix C. Crack-tip forces as functions of the internal forces 

By substituting Eqs. (9) into (16), after some calculations, the crack-tip forces, 

1 1 2 2 3 1 2

4

21 1 2

1 2

1 2 3 41 2 1 2

4
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, and
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Q Q
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+ + +=
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=

c c
c c

 (C1) 

are obtained as functions of the internal forces in the sublaminates. In Eqs. (C1), the following 

constant parameters are used: 
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and 
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The above expressions simplify significantly if the sublaminates are uncoupled in bending-

extension ( 1 2 0= =b b ), in which case 
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Appendix D. Elastic-interface model 

Liu et al. [35] have developed a general solution for the stress analysis of adhesively 

bonded joints. Their mechanical model consists of two homogeneous and isotropic, shear-

deformable beams [47], partly connected by an elastic interface, in turn made of distributed 

normal and tangential springs. Their model can be used also for delaminated laminates, if the 
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interface is interpreted as a conventional means to account for the laminate transverse 

deformability and not as representative of a physical layer of adhesive. The solution by Liu et 

al. [35] holds for beams of finite length. Here, the solution is presented for a semi-infinite 

bimaterial beam subjected to axial forces, shear forces, and bending moments (Fig. D1). This 

solution has been used for the comparisons shown in Section 4 of this paper. 

 

Fig. D1. Elastic-interface model of a semi-infinite bimaterial beam. 

Let (1) (1),x zxE G  and (2) (2),x zxE G  respectively be the Young’s modulus and shear modulus of 

the upper and lower beams. The equivalent stiffnesses can be computed from Eqs. (35) and 

the compliances from Eqs. (5). Let xk  and zk  respectively be the elastic constants of the 

distributed springs in the tangential and normal directions. The normal and tangential 

interfacial stresses attain peak values at the loaded cross section, whose values turn out to be 
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where 0 1 1 2 2= −b d dh h  is the unbalance parameter (here, assumed 0 0≠b ), 1 2H H H= +  is the 

total thickness, 1 2 3 7, , , andF F F F  are integration constants, and 1 2 3, , andΩ Ω Ω  are the roots of 

the dimensionless characteristic equation, 

3 2
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The integration constants, 1 2 3 7 8 9, , , and , ,F F F F F F , are calculated from the boundary 

conditions depending on the applied loads, 
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From the peak values of the interfacial stresses, the modal contributions, 

2 2
0 0

I II

1 1
and ,

2 2

σ τ
= =

z x

G G
k k

 (D5) 

are determined. Lastly, the total energy release rate and mode-mixity angle are computed 

from Eqs. (21) and (29), respectively. 
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