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1 Introduction.

In this paper we will deal with a class of generalized fractional programming
problems whose objective function is the ratio of powers of affine functions
and whose feasible region is a polyhedron. There is no need to emphasize the
importance of fractional programming from both theoretical and applicative
point of view (see for all [8,10–12] and references therein).
The stated problem encompasses some particular cases that have been widely
studied in fractional programming literature such as the ratio between two
affine functions and the ratio of a linear and the power of an affine function
(see for instance [4,5]).
From a computational point of view, the suggested problem is a hard prob-
lem since it may have several local maximum points which are not global and
the set of optimal solutions may not be convex. For such a reason, we will
establish several properties of the objective function related to the existence
and the location of the maximum points and to the study of the pseudocon-
cavity of the objective function. This latter property will be a key tool of our
analysis; it is well known that if the objective function is pseudoconcave, then
local maximum points are global ones and therefore the problem can be solved
more easily with respect to the general case. However, the particular struc-
ture of the objective function and the theoretical properties of the problem
will allow us to suggest a simplex-like sequential method regardless the ob-
jective function is pseudoconcave or not. The proposed algorithm is based on
the so called “optimal level solutions” method which has been first conceived
for linear fractional problems by Cambini and Martein [1,2] and then applied
to solve generalized fractional problems. In his survey, Ellero [9] proposes a
unified framework encompassing several contributions of the literature; all of
them are based on the “optimal level solutions” method and they successfully
solve different classes of generalized fractional problems. More recent analyses,
following this approach, have been performed for solving rank-two problems
(see for example Cambini Sodini [6]) and rank-three ones (see for example
Cambini Sodini [5] and Carosi Martein [7]). At the best of our knowledge,
none of the existing contributions deals with the class under analysis in the
present paper.
To validate the suggested algorithm, computational tests have been peformed.
The algorithm has been implemented with the software MATLAB and vari-
ous instances have been randomly generated and solved, with a grand total
of 520000 problems. Both the pseudoconcave and the non-pseudoconcave case
have been considered. Computational results underline that in managing the
change of vertex in the iterative steps, the use of simplex table and pivot oper-
ations results to be very fast, allowing to solve large problems in a reasonable
time.
The paper will be organized as follows: in Section 2 the optimization problem
will be stated and its theoretical properties will be studied.
In Section 3 the maximal domain of pseudoconcavity will be investigated,
while the idea of the sequential method will be proposed in Section 4. Compu-
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tational results will be discussed in Section 5 and then concluding remarks will
be presented in Section 6. A detailed description of the algorithm is proposed
in the Appendix.

2 Statement of the problem and theoretical properties

Consider the following problem

P : sup f(x) =

(
cTx+ c0

)α
(dTx+ d0)β

s.t. x ∈ X = {x ∈ Rn : Ax = b, x ≥ 0} ⊂ D,
(1)

where α > 0, β > 0, D = {x ∈ Rn : dTx+ d0 > 0}, A is a real m× n matrix,
with rank[A] = m < n.
Throughout the paper will make the following assumptions (see Remark 1):

Assumption 1

i) c ∈ Rn \ {0}
ii) the parameters α and β are specified in order to guarantee the objective

function is well defined
iii) rank[c, d] = 2.

Remark 1 We are not going to consider c = 0, because in this case f turns
out to be both pseudoconvex and pseudoconcave on D and the sequential
methods for this class of functions have been already given (see for all [3,12]
and references therein).
As regard the parameters α and β, note that if cTx+ c0 ≥ 0 for every x ∈ X,
then the objective function is well defined for every α > 0. On the other hand,
if cTx + c0 assumes negative values on X, then (cTx + c0)α is well-defined if

and only if α =
p

q
, p, q ∈ N \ {0}, with the greatest common divisor between

p and q equal to 1 and q an odd number.
Moreover we assume that rank[c, d] = 2, because when the vectors c and d
are linearly dependent, it is easy to verify that the behavior of the function
reduces to the behavior of a one variable function.

Remark 2 The particular case α = 1 has been already dealt by Cambini [4],
thought no computational tests are present there. The general framework pro-
vided by Cambini Sodini in [6] encompasses Problem P when cTx + c0 is
positive in the feasible region. Therefore, there is only a partial intersection
between this paper and [6].

Remark 3 A very common approach in fractional programming relies on suit-
able transformations of the objective function which gets the problem easier
to be solved; following this approach, one could suggest to consider an ob-
jective function where only the numerator or the denominator is the power
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of an affine function, that is, we might consider f̄(x) =
(cTx+ c0)

α
β

dTx+ d0
or

g(x) =
cTx+ c0

(dTx+ d0)
β
α

. Unfortunately this approach is not in general appli-

cable to Problem P since cTx + c0 may change in sign on the feasible region
and hence the transformations do not lead to equivalent problems.

Problem P shares some nice theoretical properties with other classes of gener-
alized fractional programming problems (see for example [4,6,7]). Regardless
the parameter specifications of function f , if an optimal solution exists, it
belongs to a feasible edge; furthermore, if the supremum is not attained as
a maximum, then there exists an extreme direction along which the function
converges to the supremum. The proof of these results uses the following trivial
lemma.

Lemma 1 Let H be a subset of X.

If α =
p

q
, where p, q are odd numbers or if cTx+c0 ≥ 0, ∀x ∈ H, then problem

sup
x∈H

(
cTx+ c0

)α
is equivalent to L1 = sup

x∈H

(
cTx+ c0

)
; in any other case, we

have sup
x∈H

(
cTx+ c0

)α
= sup{L1, L2}, where L2 = sup

x∈H

(
−cTx− c0

)
.

We will denote by L the supremum of the Problem P .
For the sake of completeness we state and prove the following theorem, though
the strategy of its proof is very similar to the ones given for the analogous
results in [4,6,7].

Theorem 1 Consider Problem P .
i) L is attained as a maximum if and only if there exists a feasible point x0

belonging to an edge of X such that f(x0) = L.
ii) If L is not attained as a maximum, then there exists an extreme direction
u and a feasible point x0 such that L = lim

t→+∞
f(x0 + tu).

Proof i) If the supremum L is attained as a maximum, then there exists a
feasible point x̄ such that L = f(x̄). Consider the problem

P̄ : max f(x), x ∈ X̄ = X ∩ {x ∈ Rn : dTx+ d0 = dT x̄+ d0}.

Obviously x̄ is an optimal solution of P̄ and from Lemma 1, P̄ is equivalent
to a linear problem. Therefore the maximum of P̄ is reached at a vertex x0 of
X̄ which necessarily belongs to an edge of X. The viceversa is obvious.
ii) Let {xn} ⊂ X be a sequence which converges to the supremum L and, for
any fixed xn, consider the following sequence of problems

Pn : sup
x∈Xn

f(x) =
(cTx+ c0)α

(dTx+ d0)β

where Xn = X ∩{x ∈ Rn : dTx+ d0 = dTxn + d0}. The following two exhaus-
tive cases occur:
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a) there exists n such that the supremum of Pn is +∞;
b) for every n the supremum of Pn is attained as a maximum.
a) Taking into account Lemma 1, problem Pn is equivalent to a suitable linear
problem whose feasible region is Xn, so that there exists a feasible point x0

and an extreme direction u along which the objective function goes to +∞.
Since it is dT (x0 + tu) + d0 = dTxn + d0 for every t ≥ 0, we have dTu = 0 so
that even the supremum of problem P is +∞ and lim

t→+∞
f(x0 + tu) = +∞.

b) From Lemma 1, problem Pn is equivalent to a suitable linear problem and
therefore the maximum is attained at a vertex yn of Xn which belongs to an
edge of X. Taking into account that f(yn) ≥ f(xn) we have lim

n→+∞
f(yn) = L.

Since X has a finite number of edges (in particular half-lines), there exists a
subsequence {ŷn} of {yn} contained in an edge of X.
Since L is not attained as a maximum, the sequence {ŷn} is necessary di-
vergent in norm and f(ŷn) 6= L ∀n. It follows that {ŷn} is necessarily con-
tained in a half-line x = x0 + tu, t ≥ 0, where x0 is a vertex of X and
u is an extreme direction. Let tn be such that ŷn = x0 + tnu. We have

lim
n→+∞

f(ŷn) = lim
tn→+∞

f(x0 + tnu) = L.

Whenever L is not attained as a maximum and α 6= β, the supremum is obvi-
ously either 0 or +∞. This fact is strictly related to the particular structure of
the objective function f . The following theorem completely characterizes the
value of L for Problem P.

Theorem 2 Consider Problem P .
Assume that the supremum L is not attained as a maximum and α 6= β.
i) L = 0 if and only if f(x) < 0 for every x ∈ X and there exists an extreme
direction u such that either dTu > 0 and α < β, or cTu = 0 and α > β.
ii) L = +∞ if and only if f assumes some positive values on X and there
exists an extreme direction u such that either dTu = 0 and α < β, or cTu 6= 0
and α > β.

Proof From i) of Theorem 1, there exists an extreme direction u such that

L = lim
t→+∞

(cTx0 + tcTu+ c0)α

(dTx0 + tdTu+ d0)β
. Since L is not attained as a maximum, cTu

and dTu cannot be contemporarily equal to zero. i) and ii) follow by computing
the limit.

Remark 4 Note that, when α = β, we have

L = lim
t→+∞

(cTx0 + tcTu+ c0)α

(dTx0 + tdTu+ d0)β
= lim
t→+∞

(
cTx0 + tcTu+ c0
dTx0 + tdTu+ d0

)α

so that L can assume any value, finite or not.
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3 On the maximal domains of pseudoconcavity

As we have just outlined, a key tool of our analysis is the pseudoconcavity of
the objective function. It is well known that if the objective function is pseu-
doconcave, then a critical point or a local maximum point is also a global one
and therefore Problem P can be solved more easily with respect to the general
case.
In what follows ∇f(x) and H(x) will denote the gradient and the Hessian
matrix of f evaluated at x, respectively.
For the sake of completeness, we recall the definition of a pseudoconcave func-
tion.

Definition 1 Let f be a real-valued differentiable function defined on a con-
vex set C ⊆ Rn. f is said to be pseudoconcave on C if and only if

∀x1, x2 ∈ C, f(x1) < f(x2)⇒ (x2 − x1)T∇f(x1) > 0.

In order to characterize the pseudoconcavity of f , we will use the following
second order characterization (see for all [3]).

Theorem 3 Let f be a twice differentiable function defined on an open convex
set O ⊆ Rn. Then, f is pseudoconcave on O if and only if the following two
conditions hold:
i) x ∈ O, v ∈ Rn, vT∇f(x) = 0⇒ vTH(x)v ≤ 0;
ii) If x0 ∈ O is a critical point, then x0 is a local maximum point for f on O.

According to Theorem 3, we have to analyze the behavior of the Hessian
matrix on the directions which are orthogonal to the gradient and we have to
establish whether the critical points are maximum points. With respect to the

introduced fractional function f(x) = (cT x+c0)α

(dT x+d0)β
, we get:

∇f(x) =
(cTx+ c0)α−1

(dTx+ d0)β+1

(
(dTx+ d0)αc− (cTx+ c0)βd

)
(2)

H(x) =
(cTx+ c0)α−2

(dTx+ d0)β+2

((
dTx+ d0

)2 (
α2 − α

)
ccT−

αβ
(
cTx+ c0

) (
dTx+ d0

) (
cdT + dcT

)
+
(
cTx+ c0

)2 (
β2 + β

)
ddT

)
(3)

Let us preliminary observe that the only points where f might not be differen-
tiable are the zeros of the function. Moreover, whenever f is differentiable, the
linear independence of c and d implies that the critical points of the function
coincide with its zeros. Whenever f assumes some positive values, the zeros of
the functions are not maximum points and therefore f is not pseudoconcave.
On the other hand, in every subset of D where f is not positive, then the
zero points are the maximum points. In this light, we will study the maximal
domains of pseudoconcavity of f on the sets S+ = {x ∈ D : f(x) > 0} and
S− = {x ∈ D : f(x) < 0}. Consider the sets C+ = S+∩{x ∈ Rn : cTx+c0 > 0}
and C− = S+ ∩ {x ∈ Rn : cTx+ c0 < 0}; the following theorem holds.
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Theorem 4 Consider function f together with Assumptions 1.
The following statements hold:
i) f is pseudoconcave on S− if and only if α ≥ β.
ii) f is pseudoconcave on C+ and on C− if and only if α ≤ β.

Proof Let us first observe that the linear independence of vectors c and d
implies that f has no critical points on S+ and S−. Referring to condition i)
in Theorem 3, let v 6= 0 be a direction such that ∇f(x)T v = 0; we have

cT v =
β

α

(cTx+ c0)

(dTx+ d0)
dT v,

vTH(x)v =
β

α

(cTx+ c0)α

(dTx+ d0)β+2
(α− β)(dT v)2. (4)

Consequently vTH(x)v ≤ 0 for every x ∈ S− if and only if α − β ≥ 0, and i)
holds.
Consider now the set S+; vTH(x)v ≤ 0 for every x ∈ S+ if and only if
α − β ≤ 0. If there exists x ∈ D such that cTx + c0 = 0, then S+ may be
not convex, and hence we consider the convex open sets C+ and C−. If either
C+ = ∅ or C− = ∅, then the thesis immediately follows. In the case C+

and C− are both non-empty, i.e. {x ∈ Rn : cTx + c0 = 0} ∪ S+ = D, f is
pseudoconcave on the two convex sets C+ and C− if and only if α ≤ β.

The particular structure of function f allows us to easily characterize the
maximal domains of the pseudoconvexity too.

Theorem 5 Consider function f together with Assumptions 1.
The following statements hold:
i) f is pseudoconvex on C+ and on C− if and only if α ≥ β.
ii) f is pseudoconvex on S− if and only if α ≤ β.

Proof It is sufficient to recall that f is pseudoconvex if and only if −f is
pseudoconcave.

Remark 5 Observe that when α = β, f is pseudolinear on the sets S−, C+

and C−.

Theorem 5 allows us to specify i) of Theorem 1 for some subclasses of the
problem.

Theorem 6 Assume one of the following conditions holds:
i) α ≤ β and X ⊂ S−;
ii) α ≥ β and X ⊂ C+;
iii) α ≥ β and X ⊂ C−.
If the supremum of problem P is attained as a maximum, then there exists a
vertex of X which is a maximum point.

Proof From Theorem 5, f is pseudoconvex on X. The result follows from the
properties of pseudoconvex functions (see for all [3]).
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4 Sequential method

The proposed sequential method distinguishes the case where f is pseudocon-
cave on the feasible region X from the case where f is not pseudoconcave on
X. In the first case, local optimal solutions are global ones and this property
allows us to solve problem P very fast, while in the second case we have to
keep track of all the local optimal solutions the algorithm finds. In both cases,
the procedure benefits from the particular structure of the objective function,
it splits the feasible region X and, consistently, it separately looks for the op-
timal points in the following subsets of X (of course, some of them might be
empty):

1. X> = {x ∈ X : cTx + c0 ≥ 0}, that is the set where the numerator is
non-negative;

2. X+
< = {x ∈ X : cTx + c0 ≤ 0, f(x) ≥ 0}, that is the set of feasible points

where the numerator is non-positive and function f is non-negative;
3. X−< = {x ∈ X : cTx + c0 ≤ 0, f(x) ≤ 0}, that is the set where function f

is non-positive.

Looking for the optimal solution of P restricted to X> is equivalent to look
for the optimal solution on X ∩ C+; similarly, if a maximum point of f on
X+
< exists, it belongs to X ∩ C− and it is also the maximum of the function

(−cT x−c0)α

(dT x+d0)β
on X ∩ C−. Moreover, whenever there exists a zero of f on X−<

this is obviously the maximum point and no further analysis is needed; if f
is always negative on X−< , then X−< = X ∩ S−. Therefore, once we have pre-
liminarly checked that the maximum point is not a zero of f , we can restrict
our analysis on the sets C+, C− and S−. This restriction is extremely helpful
since, on those sets f is either pseudoconcave or pseudoconvex (see Section 3).
Of course either S− 6= ∅ or C+∪C− 6= ∅ and in case both C+ C− are nonempty,
the maximum point of f will be computed by comparing the maximum value
of f on C+, C−. The procedures which find the maximum points of f on C+,
C− and S− are based on the “optimal level solutions” method introduced by
[1].
Roughly speaking, the basic idea of this method consists in “slicing” the fea-
sible region according to the possible values the denominator may assume.
For each value of the denominator, the maximum of a suitable function (in
most cases the numerator) is computed; this is done by solving a parametric
problem where the parameter varies according to the value of the denomina-
tor on the feasible region. For each value of the parameter, the solutions of
the parametric problem are called “optimal level solutions” and the maximum
value of the original function is found among them. Quoting [2], the algorithm
“generates a sequence of finite optimal level solutions x1, x2..., xk, which cor-
responds to increasing levels of the original objective function”; then either
the maximum point does not exist or it coincides with the last point of the
sequence”. This approach has been first conceived for linear fractional prob-
lems and then applied to suggest several sequential methods for generalized
fractional programming (see for example Ellero [9] and Cambini Martein [2]
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and references therein, Cambini Sodini [5,6] and Carosi Martein [7]).
Referring to problem P, it is worth noticing that the denominator function
dTx+ d0 is lower bounded on X, so that the linear problem

Pd : min
x∈X

(dTx+ d0)

has optimal solutions. Let θmin be the minimum value of Pd.
Consider now the linear program

Pc̄ : max {c̄Tx+ c̄0, x ∈ K ∩ {x : dTx+ d0 = θmin}

where K can be C+ or C− or S− and

c̄Tx+ c̄0 =

{
cTx+ c0 if K = C+ or K = S−

−cTx− c0 if K = C−

Assume that the supremum of Pc̄ is finite and let x0 be a vertex of X which
is an optimal solution of Pc̄. Starting from x0, we suggest an algorithm for
determine a local maximum point (if one exists) for problem P .
Consider the linear parametric problem

P (θ) : ψ(θ) = max (c̄Tx+ c̄0, x ∈ K(θ) = K ∩ {x : dTx+ d0 = θmin + θ}

where θ ∈ Θ = {θ : K(θ) 6= ∅} = [0, θmax − θmin], and θmax may be +∞.
We have

max
x∈K

f(x) = max
θ∈Θ

max
x∈K(θ)

f(x).

Setting h(θ) = max
x∈K(θ)

f(x), it results

max
x∈K

f(x) = max
θ∈Θ

h(θ), h(θ) =
ψ(θ)α

(θmin + θ)β
.

If h increases (decreases), then the function f increases (decreases) so that
a local maximum of h corresponds to a local maximum of f . The sequential
method determines a local maximum point for h (if one exists).
The idea is the following: initialize the procedure with θ0 = 0 so that the
vertex x0 is an optimal solution of P (θ0), then denote by B0 the set of indices
associated with the basic variables and set x0 = (xB0

, 0). It’s worth remarking
that, with respect to problem P , P (θ) has the additional constraint dTx+d0 =
θmin + θ. This leads to the introduction of an additional slack variable xn+1.
According to the idea of the “optimal level solutions” method, for any value
of θ, every optimal solution of P (θ) is binding to the parametric constraint,
so that there exists a basic optimal solution (xB0

, 0) such that the variable
xn+1 is non-basic. With a little abuse of notation, we will refer to (xBk , 0) as a
basic solution of P . Applying sensitivity analysis we find (xB0(θ), 0) = (xB0 +
θuB0 , 0) which is optimal for P (θ) for every θ belonging to the stability interval
[θ0, θ1] = {θ : xB0

(θ) ≥ 0}. If h′(θ0) ≤ 0, then (xB0
, 0) is a local maximum for

h and it corresponds to a local maximum point for P . If h′(θ0) > 0 and there
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exists θ̃ ∈ [θ0, θ1] such that h′(θ̃) = 0, then (xB0(θ̃), 0) is a local maximum point
for h and it corresponds to a local maximum for P . In this latter case the local
maximum point of P belongs to an edge of X. In any other case, for θ > θ1

the feasibility is lost and it is restored by applying an iteration of the dual
simplex algorithm. We find a new stability interval and we repeat the analysis.
Proceeding in this way we develop a finite sequence of basis Bk, k = 0, 1, ...
and a finite numbers of stability intervals [θk, θk+1], k = 0, 1, ....
With the usual notations, corresponding to the basis Bk, we have:
x(θ) = (xBk(θ), 0) = (xBk + θuBk , 0), ψ(θ) = c̄TBkxBk + θc̄TBkuBk + c̄0, θ ∈
[θk, θk+1] so that

h(θ) =

(
c̄TBkxBk + θc̄TBkuBk + c̄0

)α
(θmin + θ)β

, θ ∈ [θk, θk+1] (5)

h′(θ) =

(
c̄TBkxBk + θc̄TBkuBk + c̄0

)α−1

(θmin + θ)β+1

(
θ(α− β)c̄TBkuBk + ξBk

)
, θ ∈ [θk, θk+1]

(6)
where ξBk = αc̄TBkuBkθmin − β(c̄TBkxBk + c̄0).
When f is pseudoconcave (see subprocedure Visit1 in the Appendix), a local

maximum point θ̂k of h corresponds to a global maximum for P . In the pseu-
doconvex case (see subprocedure Visit2 in the Appendix),we look for another

value θ̃k of θ such that h(θ̃k) = h(θ̂k). The uniqueness of θ̃k > 0 is guaran-
teed by the pseudoconvexity of h, together with lim

θ→+∞
h(θ) = 0 (if α < β) or

lim
θ→+∞

h(θ) = +∞ (if α > β). We make a jump setting dTx+d0 = θmin + θ̃k so

that the procedure goes on by considering the following parametric problems:

P̃ (θ) : ψ(θ) = max (c̄Tx+ c̄0), x ∈ X(θ) = X ∩{x : dTx+d0 = θmin + θ̃k + θ}

where θ ∈ [0, θmax − θ̃k − θmin].

Observe that if P̃ (θ) does not have solutions, then x(θ̂k) is a global maximum
point for P .
The following example aims at clarifying the idea of the procedure, pointing
out that the analyzed problem may admit several local maximum points which
are not global ones and that the algorithm is able to find the global maximum
point. In the Appendix, the whole algorithm will be described in detail.

Example 1 Consider the function f(x) =
(x1 + x2 + 1)3

(3x1 + 2x2 + 1)2
and the feasible

region X = {x ∈ R2 : x1 + 6x2 ≤ 30, 3x1 + 8x2 ≤ 45, x1 ≥ 0, x2 ≥ 0}.
Let’s preliminary observe that the numerator is positive on X, so that X = C+;
we get θmin = 1 and θmax = 45. Consider the parametric problem

Pθ : max {x1 + x2 + 1, x ∈ C+ ∩ {x : 3x1 + 2x2 ≤ θ}

The point (0, 0) is the optimal level solution for P0 and the associate basic so-
lution is x(θ) = (0, 1

2θ, 30−3θ, 45−θ, 0)T whose stability interval is F = [0, 10].
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We get h(θ) =

(
−1− 1

2θ
)3

(θ + 1)2
. θ = 0 is a local maximum point for h and hence

(0, 0) is local maximum for f with f(0, 0) = 1. Looking for a point such that
h(θ) = h(0) we find θ̃ = 1 +

√
5 ∈ F ; therefore, we go to the adjacent ver-

tex (0, 5) whose associated basis is x(θ) =
(

3
8θ −

15
4 ,

45
8 −

1
16θ, 0,

45
4 θ −

5
8θ, 0

)
.

The incumbent optimal value is now f(0, 5) = 1.785. The new stability in-

terval is F = [10, 18] and we get h(θ) =

(
23
8 + 5

16θ
)3

(θ + 1)2
. As h′(θ) > 0 for

θ > 77
5 ∈ F , θ = 10 is a local maximum point for h; h assumes the value

h(10) even in θ̃ w 23.9073 /∈ F and θ̃ < θmax. By performing an iteration
of the dual algorithm we restore feasibility and we obtain the basic solution
x(θ) =

(
5.6255 + 4

9θ, 3.5154− 1
6θ,

5
9θ + 3.2819θ, 0, 0

)
. The updated value of

θmax is 45−23.9073 = 21.0927 and the new stability interval is F = [0, 21.0927].

The updated function h is h(θ) =
(10.141 + 5

18θ)
3

(θ + 24.9073)2
which is increasing for

θ ≥ 0. Therefore the vertex corresponding to θ = 21.0926 = θmax is a local
maximum point whose corresponding value is 1.9357. Since we have reached
θmax and 1.9357 > 1.785, the vertex (15, 0) is the optimal solution for Problem
P.

5 Computational results

The previously described procedures have been fully implemented with the
software MATLAB 8.5 R2015a on a iMac OSX Yosemite computer having 16
Gb RAM and an i7 quad core processor at 3.5 GHz. Within the procedures,
the linear problems have been solved by using the Gurobi 6.0 or the Cplex
12.6 numerical engines.
Various instances have been randomly generated and solved, with a grand to-
tal of 520000 problems solved.
Six different pairs of α and β have been used to consider pseudoconcavity
and/or pseudoconvexity properties.
Matrix A ∈ Rm×n and vectors c, d ∈ Rn, b ∈ Rm have been randomly gener-
ated with components in the interval [-10,10] by using the “randi()” MATLAB
function (integer numbers generated with uniform distribution). The value
d0 ∈ R has been chosen in order to have function dTx + d0 positive over the
feasible region. Three different values of c0 ∈ R have been chosen in order to
have function cTx + c0 either positive or negative or changing sign over the
feasible region.
The results of the computational test are collected in the following three ta-
bles. The provided values tell how long the algorithm worked to solve the
various instances for the various considered cases. Specifically speaking, Table
1 provides the needed average number of iterations, Table 2 provides the aver-
age spent CPU times (given by the “cputime” MATLAB command), Table 3
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provides the average spent real times (given by the “tic” and “toc” MATLAB
commands). In this light, notice that:

– “X>” denotes the case of regions X such that cTx+ c0 ≥ 0 ∀x ∈ X;
– “X<” denotes the case of regions X such that cTx+ c0 ≤ 0 ∀x ∈ X;
– “X<>” denotes the case of regions X where ∃x1, x2 ∈ X such that cTx1 +
c0 < 0 and cTx2 + c0 > 0;

– “m×n” represents the dimension of matrix A in the considered problems;
– “num” represents the number of randomly generated problems solved for

the corresponding dimension m× n;
– the pairs of α and β provide the parameters chosen for the objective func-

tion.

Table 1 Computational Results - Number of Iterations

α = 2 α = 3 α = 1/3 α = 3 α = 5 α = 1/2
X m× n num β = 3 β = 5 β = 3/4 β = 2 β = 3 β = 1/4

60× 80 10000 14.975 13.992 11.449 24.09 25.117 26.693
90× 120 10000 28.41 26.67 22.055 42.529 43.946 46.222
120× 160 6000 45.02 42.513 35.508 64.054 65.963 68.801
150× 200 3000 63.738 60.41 51.052 87.237 89.418 92.587

X> 180× 240 1500 85.995 81.829 69.635 114.65 117.76 121.8
210× 280 800 110.78 105.8 90.756 144.72 148.09 152.98
240× 320 500 138.3 132.38 114.69 176.44 181.3 185.17
270× 360 400 167.78 160.55 139.71 212.22 216.62 222.72
300× 400 300 187.81 180.02 157.7 235.72 239.42 247.73
60× 80 10000 14.96 34.227 11.448 33.774 33.752 N/A
90× 120 10000 28.205 56.751 21.933 56.193 56.169 N/A
120× 160 6000 44.93 82.066 35.474 81.491 81.464 N/A
150× 200 3000 64.85 109.45 51.81 108.74 108.72 N/A

X< 180× 240 1500 87.719 140.96 71.106 140.34 140.31 N/A
210× 280 800 111.45 175.05 91.269 174.15 174.1 N/A
240× 320 500 140.14 211.23 115.48 210.26 210.19 N/A
270× 360 400 166.16 251.62 139.91 250.27 250.22 N/A
300× 400 300 197.39 277.1 165.33 275.91 275.85 N/A
60× 80 10000 40.655 19.518 33.886 26.337 26.874 N/A
90× 120 10000 73.385 35.427 62.572 45.484 46.184 N/A
120× 160 6000 112.99 54.776 98.049 67.763 68.682 N/A
150× 200 3000 157.74 76.171 138.72 92.211 93.495 N/A

X<> 180× 240 1500 209.53 101.64 186.31 120.93 122.08 N/A
210× 280 800 264.98 129.45 237.45 151.82 153.27 N/A
240× 320 500 327.87 159.02 295.38 184.1 185.21 N/A
270× 360 400 390.28 192.71 354.08 221.26 222.92 N/A
300× 400 300 442.73 213.75 403.29 243.59 245.71 N/A

The obtained results point out the behavior of the solution algorithm with
respect to the problems dimension. In particular, it is worth noticing that:

– the algorithm utilizes the generalized concavity/convexity property of the
objective function as a stopping criterion thus improving the performance;

– the algorithm manages real parameters α and β, and the results confirm
that the solution method works well with rational parameters α and β;

– the use of simplex table and pivot operations in managing the change
of vertex iterative steps results to be very fast, allowing to solve large
problems in a reasonable time.
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Table 2 Computational Results - CPU Times (secs)

α = 2 α = 3 α = 1/3 α = 3 α = 5 α = 1/2
X m× n num β = 3 β = 5 β = 3/4 β = 2 β = 3 β = 1/4

60× 80 104 0.12946 0.12595 0.10419 0.21701 0.22619 0.23989
90× 120 104 0.59795 0.56572 0.46822 0.89632 0.92548 0.97628
120× 160 6000 1.881 1.7805 1.4852 2.6598 2.7401 2.8663
150× 200 3000 4.3986 4.1721 3.5202 5.9859 6.1353 6.3704

X> 180× 240 1500 9.5089 9.048 7.699 12.608 12.951 13.422
210× 280 800 19.676 18.766 16.05 25.58 26.204 27.12
240× 320 500 38.797 37.117 32.203 49.312 50.63 51.887
270× 360 400 58.221 55.555 48.417 73.319 74.812 77.085
300× 400 300 98.047 93.7 82.047 122.73 124.62 129.06

60× 80 104 0.13449 0.29982 0.10439 0.29546 0.2956 N/A
90× 120 104 0.59791 1.2012 0.46498 1.1903 1.1896 N/A
120× 160 6000 1.8816 3.4383 1.4832 3.4173 3.4167 N/A
150× 200 3000 4.4548 7.5747 3.5571 7.5319 7.5308 N/A

X< 180× 240 1500 9.7143 15.622 7.8548 15.564 15.56 N/A
210× 280 800 19.862 31.147 16.255 31.019 31.038 N/A
240× 320 500 39.485 59.338 32.505 59.067 59.077 N/A
270× 360 400 57.624 87.299 48.395 86.811 86.81 N/A
300× 400 300 103.62 145.09 86.889 144.59 144.42 N/A

60× 80 104 0.35994 0.17525 0.30215 0.23642 0.241 N/A
90× 120 104 1.5546 0.75564 1.3259 0.96344 0.9779 N/A
120× 160 6000 4.7353 2.3036 4.1074 2.8295 2.8673 N/A
150× 200 3000 10.88 5.2769 9.5609 6.3573 6.4427 N/A

X<> 180× 240 1500 23.226 11.274 20.643 13.339 13.467 N/A
210× 280 800 47.132 23.022 42.209 26.941 27.211 N/A
240× 320 500 92.218 44.629 82.921 51.535 51.874 N/A
270× 360 400 135.3 66.833 122.56 76.469 77.04 N/A
300× 400 300 231.45 111.57 210.66 127.03 128.03 N/A

It is also worth comparing the obtained results with the ones published in [6]:

– the algorithm in [6] does not manage feasible regions of the kind X< or
X<>;

– in [6] the change of vertex iterative steps are made numerically by means of
the use of the “linsolve()” MATLAB command, this allows to solve a wide
class of problems but is inherently slower than the simplex table approach
proposed in this paper.

6 Conclusion

A class of generalized fractional programming problems is studied: the pro-
posed objective function is the ratio of powers of affine functions and the
feasible region is a polyhedron, not necessarily bounded. Despite its general-
ity, the problem can be efficiently solved by means of a simplex-like method.
The proposed algorithm has been implemented and validated by solving vari-
ous instances, with a grand total of 520000 problems. The numerical tests have
pointed out that the suggested algorithm benefits from the generalized convex-
ity properties of the problem. It can also be underlined that, in managing the
change of vertex iterative steps, the use of simplex table and pivot operations
results to be very fast, allowing to solve large problems in a reasonable time.
Moreover, unlike the standard linear fractional case, in the pseudoconcave
case, the optimal value may not be attained at a vertex.
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Table 3 Computational Results - Real Times (secs)

α = 2 α = 3 α = 1/3 α = 3 α = 5 α = 1/2
X m× n num β = 3 β = 5 β = 3/4 β = 2 β = 3 β = 1/4

60× 80 104 0.038445 0.03621 0.030776 0.061092 0.063556 0.067042
90× 120 104 0.16137 0.15191 0.12738 0.23795 0.24551 0.25831
120× 160 6000 0.49226 0.46577 0.39143 0.69058 0.71108 0.7427
150× 200 3000 1.1362 1.0781 0.91434 1.5382 1.576 1.635

X> 180× 240 1500 2.4205 2.304 1.9665 3.2015 3.2875 3.4054
210× 280 800 5.0267 4.7959 4.1094 6.5247 6.6835 6.9148
240× 320 500 9.9537 9.5244 8.2744 12.638 12.973 13.294
270× 360 400 14.787 14.11 12.311 18.604 18.979 19.554
300× 400 300 24.883 23.777 20.837 31.125 31.6 32.718

60× 80 104 0.038359 0.080028 0.030789 0.078864 0.078844 N/A
90× 120 104 0.16003 0.31279 0.12652 0.30989 0.30969 N/A
120× 160 6000 0.49122 0.88434 0.39087 0.87883 0.87866 N/A
150× 200 3000 1.1492 1.9353 0.92373 1.9241 1.9238 N/A

X< 180× 240 1500 2.4708 3.9529 2.0052 3.9375 3.9365 N/A
210× 280 800 5.0731 7.9267 4.1618 7.8935 7.8989 N/A
240× 320 500 10.128 15.185 8.3509 15.112 15.116 N/A
270× 360 400 14.632 22.117 12.302 21.993 21.994 N/A
300× 400 300 26.289 36.75 22.063 36.627 36.582 N/A

60× 80 104 0.098159 0.049703 0.083661 0.066276 0.067521 N/A
90× 120 104 0.40829 0.20187 0.35058 0.25601 0.25976 N/A
120× 160 6000 1.2229 0.6009 1.0649 0.7357 0.74532 N/A
150× 200 3000 2.7863 1.3615 2.4551 1.6361 1.6576 N/A

X<> 180× 240 1500 5.8831 2.8683 5.2364 3.3901 3.422 N/A
210× 280 800 12.003 5.8801 10.759 6.8767 6.9459 N/A
240× 320 500 23.608 11.45 21.24 13.215 13.301 N/A
270× 360 400 34.289 16.97 31.073 19.411 19.556 N/A
300× 400 300 58.646 28.308 53.396 32.228 32.48 N/A

Acknowledgements We would like to thank the anonymous referees and Prof. Alberto
Cambini for their helpful comments and discussions.

Appendix

In this appendix a detailed description of the algorithm is presented. In partic-
ular, the main procedure is aimed to initialize the process and to split the visit
of the feasible region with respect to the sign of the linear function cTx+ c0.
As we need to follow different steps according to the generalized convexity
property of f , we will distinguish two subprocedures: Visit1 finds maximum
points when f is pseudoconcave, while Visit2 deals with the pseudoconvex
case. It’s worth remarking that we consider the case α 6= β, since for α = β,
solution methods have been already proposed (see for instance [5]).
Denote by xb an incumbent maximum point of P and by Ub the incumbent
optimal value of P. Set:

Cmax = sup
x∈X

(cTx+ c0) Cmin = inf
x∈X

(cTx+ c0)

θmin = min
x∈X

(dTx+ d0) θmax = sup
x∈X

dTx+ d0

X< = {x ∈ X : cTx+ c0 < 0}

We are ready to present the main algorithm and the two subprocedures Visit1
and Visit2; to get them more readable, some comment rows have been added.
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Main algorithm.

Compute Cmax and Cmin

Ub = −∞ and xb = ∅
If CminCmax ≤ 0, then

] The optimal value of f is at least 0 ]

Ub = 0 and xb is a zero of cTx+ c0 on X
end if
If Cmax > 0, then

] we find the optimal solution of f on C+ ∩X ]

if α > β, then
] In this case f is pseudoconvex ]

if Cmax = +∞, then supP = +∞, STOP
else [xb, Ub] =Visit2(xb, Ub, c, c0, C

+)
end if

else
] In this case f is pseudoconcave ]

[xb, Ub] =Visit1(xb, Ub, c, c0, C
+)

end if
else

if (Cmax)α > 0, then
] In this case X = X<; we find the maximum of f on C− ∩X.

In P (θ) we substitute cT x+ c0 with −(cT x+ c0) ]

if α > β, then [xb, Ub] =Visit2(xb, Ub,−c,−c0, X<) ]Pseudoconvex case]

else [xb, Ub] =Visit1(xb, Ub,−c,−c0, X<) ] Pseudoconcave case ]

end if
end if

end if
If Cmin < 0

] we find the optimal solution of f on X< ]

if (Cmin)α > 0 and Cmax > 0, then
] In this case f is positive and the numerator changes sign. We have already found

the maximum value on C+ ∩X. We find the optimal value of f on X< ∩X and we

find the global optimum by comparing the two values. ]

if α > β, then [xb, Ub] =Visit2(xb, Ub,−c,−c0, X<)
else [xb, Ub] =Visit1(xb, Ub,−c,−c0, X<)
end if

else if Ub < 0, then
] f is always negative, in this case X ⊂ S− ]

if α < β then [xb, Ub] =Visit2(xb, Ub, c, c0, X<) ] Pseudoconvex case ]

else [xb, Ub] =Visit1(xb, Ub, c, c0, X<) ] Pseudoconcave case ]

end if
end if

end if

end Main algorithm
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function [xb, Ub] = Visit1(xb, UB,C,C0,W ) ] Pseudoconcave case. ]

] with respect to the calls in the main algorithm, C will be either c or −c, C0 will be either

c0 or −c0, while W will be either C+ or X<. ]

ended = false
] “ended” will take value true as soon as the iterative cycle “while” has to be stopped ]

Determine θmin and solve
P̂c : max (CTx+ C0), x ∈ X ∩W ∩ {x : dTx+ d0 = θmin}
If α ≤ β and P̂c has no optimal solutions, then supP = +∞, STOP
else

determine θmax, let θmax = θmax − θmin

let x0 be an optimal solution of P̂c ] it is also an optimal solution of

P̂ (θ0) : max (CT x+ C0), x ∈ X ∩W ∩ {x : dT x+ d0 = θ0} with θ0 = θmin.]

set k = 0
while not(ended) do

Determine the stability interval [θk, θk+1] associated with the opti-
mal solution x(θk) = (xBk + θkuBk , 0) of P (θk)
Compute h′(θk)
If h′(θk) ≤ 0, then

if Ub < h(θk), then Ub = h(θk), xb = x(θk) end if
] the optimal value is updated and the incumbent optimal point xb corre-

sponds to a vertex of the feasible region ]

ended = true

else θ̃ =
ξBk

(β − α)cTBkuBk
if θk < θ̃ ≤ θk+1 then

if Ub < h(θk), then Ub = h(θk), xb = x(θk) end if
] the optimal value is updated, xb does not correspond to a vertex ]

ended=true
else

if α > β and θk+1 = +∞, then ended = true, STOP: supP = 0
] In this case f is always negative and there exists an extreme direction

d and a point x0 such that lim
t→+∞

(
cT x0 + tcTu+ c0

)α
(dT x0 + tdTu+ d0)β

= 0 ]

else
If θk+1 ≥ θmax, then

if Ub < h(θk+1), then Ub = h(θk+1), xb = x(θk+1) end if
] the optimal value is updated and the incumbent optimal point xb

corresponds to θmax, that is to a vertex of the feasible region ]

ended = true
else

let i such that xBki + θk+1uBki = 0
Perform a pivot operation by means of the dual simplex
algorithm, set k = k + 1

end if
end if

end if
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end if
end do
end if

end function Visit1

function [xb, Ub] = Visit2(xb, Ub, C, C0,W ) ] Pseudoconvex case. ]

] with respect to the calls in the main algorithm, C will be either c or −c, C0 will be either

c0 or −c0, while W will be either C+ or X<. ]

Determine θmax

If α < β and θmax = +∞, then supP = 0, STOP
else

ended = false
] “ended” will take value true as soon as the iterative cycle “while” has to be

stopped]

if θmax = +∞, then θmax = BigM end if
determine θmin and set θmax = θmax − θmin

solve P̂c : max (CTx+ C0), x ∈ X ∩W ∩ {x : dTx+ d0 = θmin}
let x0 be an optimal solution of P̂c ] it is also an optimal solution of

P̂ (θ0) : max (CT x+ C0), x ∈ X ∩W ∩ {x : dT x+ d0 = θ0} with θ0 = θmin.]

set k = 0
while not(ended) do

determine the stability interval [θk, θk+1] associated with the opti-
mal solution x(θk) = (xBk(θk), 0) = (xBk + θkuBk , 0) of P (θk)
compute h′(θk)
if h′(θk) < 0, then
] x(θk) is a local maximum point for f ]

if Ub < h(θk), then Ub = h(θk), xb = x(θk) end if
if h′(θ) < 0,∀θ > θk, then ended=true, STOP
] the optimal value is updated and the incumbent optimal point xb corre-

sponds to θk, that is to a vertex of the feasible region ]

else
] x(θk) is a local maximum point, maybe different from the global one.]

] jump ]

find θ̃k such that h(θk) = h(θ̃k)

if θ̃k ≤ θk+1, then
] the value of f increases up to θk+1, x(θk) is a local maximum point]

if Ub < h(θk+1), then Ub = h(θk+1), xb = x(θk+1) end if
] the optimal value is updated and the incumbent optimal point xb

corresponds to θk+1 ]

if θk+1 = θmax, then ended=true
else

let i be such that xBi + θk+1uBki = 0
perform a pivot operation by means of the dual simplex
algorithm and find a new basis solution x(θk+1)
set k = k + 1
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end if
else

if θ̃k > θmax, then
if Ub < h(θk), then Ub = h(θk), xb = x(θk) end if
] the optimal value is updated and the incumbent optimal point

xb corresponds to θk ]

ended=true
else
] feasibility is lost. It has to be restored by solving a new parametric

problem P̂c ]

θmax = θmax − θ̃k, θ = θ + θ̃k, h(θ) = h(θ + θ̃k)
solve
P̂c : max (CTx+ C0)

x ∈ X ∩W ∩ {x : dTx+ d0 = θmin + θ̃k}
end if

end if
end if

else
if θk+1 = θmax, then

ended=true
] the optimal value is updated and the incumbent optimal point xb

corresponds to θk ]

if Ub < h(θk+1), then Ub = h(θk+1), xb = x(θk+1) end if
else

let i be such that xBi + θk+1uBki = 0
performing a pivot operation by means of the dual simplex
algoritm and find a new basis solution x(θk+1)
set k = k + 1

end if
end if

end do
end if
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