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Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with an

early-onset and a strong genetic component in their pathogenesis. According to genetic

and epidemiological data, ASD relatives present personality traits similar to, but not as

severe as the defining features of ASD, which have been indicated as the “Broader

Autism Phenotype” (BAP). BAP features seem to be more prevalent in first-degree

relatives of individuals with ASD than in the general population. Characterizing brain

profiles of relatives of autistic probands may help to understand ASD endophenotype.

The aim of this review was to provide an up-to-date overview of research findings on

the neurostructural and neurofunctional substrates in parents of individuals with ASD

(pASD). The primary hypothesis was that, like for the behavioral profile, the pASD

express an intermediate neurobiological pattern between ASD individuals and healthy

controls. The 13 reviewed studies evaluated structural magnetic resonance imaging

(MRI) brain volumes, chemical signals using magnetic resonance spectroscopy (MRS),

task-related functional activation by functional magnetic resonance imaging (fMRI),

electroencephalography (EEG), or magnetoencephalography (MEG) in pASD.The studies

showed that pASD are generally different from healthy controls at a structural and

functional level despite often not behaviorally impaired. More atypicalities in neural

patterns of pASD seem to be associated with higher scores at BAP assessment. Some

of the observed atypicalities are the same of the ASD probands. In addition, the pattern

of neural correlates in pASD resembles that of adult individuals with ASD, or it is specific,

possibly due to a compensatory mechanism. Future studies should ideally include a

group of pASD and HC with their ASD and non-ASD probands respectively. They

should subgrouping the pASD according to the BAP scores, considering gender as a

possible confounding factor, and correlating these scores to underlying brain structure

and function. These types of studies may help to understand the genetic mechanisms

involved in the various clinical dimension of ASD.
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INTRODUCTION

Autism Spectrum Disorders (ASD) are a set of early-onset
neurodevelopmental disorders that are characterized by a
disrupted development of brain connectivity with several
cascading effects on neuropsychological functions (Narzisi et al.,
2013; Kana et al., 2014). A clinical dyad, comprising social
communication difficulties and repetitive, stereotyped behavior
must be present for a diagnosis of ASD (American Psychiatric
Association, 2013). The exact cause of ASD is still unknown
(Levy et al., 2009). Although, only 20% of ASD cases can be
explained by a specific genetic cause, such as identifiable genetic
syndromes, genetic mutations or de novo copy number variants
(Jeste and Geschwind, 2014), recent twin studies estimate an
heritability between 64 and 91% (Tick et al., 2016), suggesting
an interaction between genetic vulnerability and environmental
factors (Rossignol et al., 2014).

Genetic epidemiological data suggest that personality traits
similar to, but not as severe as those of ASD, are also heritable
(Freitag, 2007). This group of “sub-threshold” features, which
are believed to be milder manifestations of ASD (Dell’Osso
et al., 2016), have been indicated as the broader autism
phenotype (BAP) (Piven et al., 1997). BAP includes peculiar
social, communication, and cognitive processes, strong persistent
interests, and rigid and aloof personality traits (Gerdts and
Bernier, 2011; Sucksmith et al., 2011). Interestingly, it was shown
that BAP traits are more prevalent in first-degree relatives of
individuals with ASD than in other groups, supporting the
hypothesis that ASD have a significant genetic component (Bailey
et al., 1998; Losh et al., 2008).

Kanner and Asperger were the first to report behavioral
features in parents that were similar in kind to those of their
autistic offspring. In particular, Kanner (1943) observed that
both first and second degree relatives of children with “early
infantile autism” had common characteristics of late speech,
mild obsessiveness and uninterest in people. Similarly, Asperger
(1944) described a group of parents of children with autism as
withdrawn, pedantic, eccentric, and loners, who had problems
relating to the outside world. Later studies have shown that
the expression of ASD traits in relatives concerns not only
behavioral traits, but also social cognition abilities (e.g., Baron-
Cohen and Hammer, 1997), neurocognitive functioning (e.g.,
Koczat et al., 2002) or biological dimensions (e.g., Lainhart et al.,
2006) and that these aspects could relate to or explain the clinical
presentation of the BAP.

The biological dimension of ASD has been largely investigated
in the last decades, thanks to the growing availability of
brain imaging techniques and analysis methods for in vivo
examination of brain structure and function. All in all, these
studies reported abnormal neuroanatomical and neurofunctional
profiles in individuals with ASD, suggesting a dysfunction of key
brain areas underlying the core impairments of ASD (Amaral
et al., 2008; Bellani et al., 2013a,b; Billeci et al., 2013; Calderoni
et al., 2014). As such, there has been great interest in evaluating
whether these neurological profiles also characterize the relatives
of autistic probands. Indeed, should the same brain abnormalities
of ASD patients be present in their direct relatives, their heritable

origin would be strongly supported together with their role as
endophenotypes of the disorder (Sullivan et al., 2003; Palmen
et al., 2005a). This is particularly true for studies exploring
correlations in parents. In fact, while sibling and twin studies are
suitable for detecting brain abnormalities under genetic control,
studies on parents allow mitigating the role of the shared (pre-
and perinatal) environment (Sullivan et al., 2003; Palmen et al.,
2005a). Thus, if brain abnormalities are observed in parents,
they are more likely to be of heritable origin and consequently
reflect endophenotypes of the disorder. To assess the strength of
this hypothesis, we provide here a critical revision of all studies
exploring the neuroanatomical and neurofunctional profile of
parents of individuals with ASD.

METHODS

To find papers concerning neuroimaging studies in parents
of individuals with ASD, a sensitive search strategy was
conducted in two relevant article databases: PubMed and
ScienceDirect. Search terms included database subject headings
for the concepts of pervasive developmental disorders (e.g.
“autism,” “autism spectrum disorder,” “pervasive developmental
disorders”), neuroimaging (e.g., “MRI,” “MRS,” “EEG,” “MEG”)
and parents (“parents,” “relatives,” “fathers,” “mothers,” “broader
phenotype”). The reference lists of the retrieved papers were
searched to identify additional articles.

Studies adhering to the following criteria were incorporated
in this review: (1) parents of individuals with ASD were
the population under study; (2) Magnetic Resonance
Imaging (MRI), Magnetic Resonance Spectroscopy (MRS),
Electroencephalography (EEG) and Magnetoencephalography
(MEG) were used to investigate neurostructural and
neurofunctional correlates in parents of individuals with
ASD; (3) empirical findings about neural substrates were
reported by the authors; (4) studies were published before March
30, 2016; (5) studies were published in an English peer-reviewed
journal.

RESULTS

Thirteen published studies meeting the inclusion criteria were
identified. Table 1 summarizes the studies included in this
review.

Structural MRI
Only three studies used sMRI to assess brain structure in parents
of autistic probands.

Rojas et al. (2004) assessed total brain, hippocampus, and
amygdala volumes in adults with ASD, parents of children with
ASD (pASD) and healthy controls (HC), defined as adults with
no personal or familial history of ASD. The left hyppocampus
was found significantly larger in the ASD group in comparison
to both the pASD and the HC group, and in the pASD group in
comparison to the HC group. In the three groups, hyppocampus
enlargement was more pronounced in males than in females. The
right amygdala was smaller in the ASD group in comparison
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TABLE 1 | Neuroanatomical and neurofunctional characteristics associated to the BAP in the parents of individuals with ASD.

Study (year) Participants (nr, M/F, mean

age ± SD in years)

BAP

Questionnaires

Method Results Correlations with BAP

scores and behavior

STRUCTURAL STUDIES

Rojas et al., 2004 15 ASD (6/9) 30.3 ± 9.1 None ROI manual

tracing (HYP, AMY

total brain)

ASD>pASD>HC left HYP –

17 pASD (15/2) 44.75 ± 4.4

17 HC (8/9) 43.6 ± 4.3 ASD<pASD, HC right AMY

Palmen et al., 2005a 38 pASD (19/19) 50.3 ± 3.4 AQ ROI

semi-automatic

tracing

No significant differences in

volume

Positive correlations between

AQ scores and intracranial

and ventricular volume in

pASD

40 HC (20/20) 52.0 ± 4.1

Peterson et al., 2006 23 pASD (8/15) 39.6 ± 6.0 None VBM pASD>HC in several GM

regions (i.e. right precentral

gyrus, right superior parietal

lobule, and superior temporal

gyri)

–

23 HC (8/15) 38.3 ± 6.4 pASC<HC anterior portion of

the left cerebellar hemisphere

fMRI STUDIES

Baron-Cohen et al.,

2006

12 pASD (6/6) M: 39.1 ± 6.0 None Visual Search Task

(EFT) and Emotion

Recognition Task

(ET)

Females>Males>Fathers =

Mothers in BA 19 in EFT task

Females>Males>Fathers=Mothers

in BA 21 e BA 44 in ET task

–

F: 37.3 ± 5.9

12 HC (6/6) M: 23.1 ± 0.6

F: 21.6 ± 0.8

Greimel et al., 2010 15 ASD (15/0) 14.9 ± 1.6 AQ Empathy:

other-task and

self-task

pASD<pHC AMY other-task No significant correlations

between brain activity and

AQ scores

pASD<pHC FG other-task

ASD<HC FG other-task and

self-task

Positive correlation between

FG activation and GEM score

in ASD

15 HC (15/0) 15.0 ± 1.4 ASD<HC IFG self-task

11 pASD (11/0) 43.9 ± 5.1

Positive correlation between

insula activation and BEES

score in pASD and pHC

9 pHC (9/0) 47.7 ± 5.3

Wilson et al., 2013 16 pASD (6/10) 43.7 ± 8.1 AQ Phonological

processing:

homophones vs

pseudohomophone

pASD>HC pseudohomophone Positive correlations between

IFG activation and CTOPP

scores in pASD and HC

several regions (i.e. IC, STG,

SMG, SMA, cerebellum)

18 HC (6/12) 41.0 ± 8.1 pASD<HC left STG and left

SMG phonological priming

Positive correlations between

IC activation and CTOPP

scores in pASD

(Continued)
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TABLE 1 | Continued

Study (year) Participants (nr, M/F, mean

age ± SD in years)

BAP

Questionnaires

Method Results Correlations with BAP

scores and behavior

Yucel et al., 2014 40 pASD (20/20) 40.6 ± 0.7 BAPQ Face processing pASD>HC AMY BAP+ >BAP−,HC LOC

MPAS-R

pASD>HC FG

15 BAP+ 40.9 ± 1.4 pASD<HC INS

25 BAP− 42.1 ± 1.28

20 HC (6/12) 39.8 ± 1.6

MRS STUDIES

Brown et al., 2013 13 ASD (9/4) 41.2 ± 6.9 AQ Level of Glu, NAA,

Cr in auditory

cortex

ASD>HC Glu, NAA, Cr Positive correlation,

uncorrected for multiple

comparisons, between left

NAA and the SRS and left

Glu and the AQ

SRS No differences between pASD

and ASD or HC

15 pASD (11/4) 41.0 ± 8.1

15 HC (6/9) 41.1 ± 6.8

EEG AND MEG STUDIES

Dawson et al., 2005 21 pASD (10/11) 38.5 ± n.d. None Face processing

ERPs

pASD<HC N170 right

amplitude to faces

Positive correlation between

N170 amplitude to faces and

WMS Immediate and Delay

task in HC

pASD<HC N170 latency

difference chairs-faces

21 HC (8/13) 38.9 ± n.d.

Rojas et al., 2008 11 ASD (9/2) 42.6 ± 5.1 None Auditory

stimulation

pASD,ASD>HC induced tGBR –

Evoked, induced

and total power

tGBR

pASD,ASD<HC evoked tGBR,

PLF, anterior-posterior

asymmetry

16 pASD (9/7) 31.5 ± 9.3

PLF tGBR No differences between pASD

and ASD

Source

Localization

16 HC (7/9) 43.1 ± 6.7

Rojas et al., 2011 21 pASD (7/13) 43.7 ± 7.3 AQ Auditory

stimulation

pASD<HC total and evoked

power, PLF ASSR

Negative correlation between

ASSR PLF and AQ

communication subscale

20 HC (6/15) 43.8 ± 6.9 SRS Evoked, induced

and total power

tGBR

No differences in tGBR

PLF tGBR Negative correlation between

tGBR and ASSR evoked

power and SRS scores

Evoked, induced

and total power

ASSR

PLF ASSR

McFadden et al.,

2012

23 pASD (8/15) 35.8 ± 10.0 None Language auditory

stimulation

pASD>HC evoked and total

gamma SMG, LOC

Significant but different

correlations between gamma

or beta activity and language

measures (expressive,

receptive, figurative language

and phonological processing)

in pASD and HC

(Continued)
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TABLE 1 | Continued

Study (year) Participants (nr, M/F, mean

age ± SD in years)

BAP

Questionnaires

Method Results Correlations with BAP

scores and behavior

Evoked, induced

and total power

gamma and beta

pASD>HC evoked and total

gamma SMG, LOC

28 HC (12/16) 38.7 ± 6.3

PLF gamma and

beta

pASD>HC left lateralization

Buard et al., 2013 12 ASD (?/?) 28.3 ± 13.3 None Picture-naming

task

ASD<HC high-gamma in right

STG, evoked

high-beta/low-gamma in left

IFG and PLF beta in OCC

No significant correlation

between MEG measures and

language scores

14 pASD (?/?) 37.9 ± 5.9

Evoked, induced

and total power

gamma and beta

pASD>HC high-gamma in left

STG and evoked

high-beta/low-gamma in left

FG

35 HC (?/?) 34.2 ± 11.9

PLF gamma and

beta

ASD>HC connectivity

between IFG and FG and

between STG and OCC in both

gamma and beta band

Granger Causality

BAP, Broader Autism Phenotype; ASD, Autism Spectrum Disorders; HC, healthy controls; pASD, parents of individuals with ASD; SD, standard deviation.

AQ, Autism Quotient; BEES, Balanced Emotional Empathy Scale; BAPQ, Broad Autism Phenotype Questionnaire; MPAS-R, Modified Personality Assessment Schedule —Revised;

SRS, Social Responsiveness Scale.

ROI, region of interest; VBM, voxel-based morphometry; EFT, “Adult Embedded Figures” test; ET, “Reading the Mind in the Eyes” (or Eyes) test; Glu, glutamate; NAA, n-acetyl aspartate

+ n-acetyl aspartyl; Cr, phosphocreatine and creatine; ERPs, evoked response potentials; tGBR, transient gamma-band response; ASSR, auditory steady-state response; PLF, phase

locking factor; CTOOP, Comprehensive Test of Phonological Processing; WMS, Wechsler Memory Scale.

HYP, hippocampus; AMY, amygdala; GM, gray matter; BA, Broadmann area; FG, fusiform gyrus; IFG, inferior frontal gyrus; IC, insular cortex, STG, superior temporal gyrus, SMG,

supramarginal gyrus; SMA, supplementary motor area; INS, insula; LOC, lateral occipital cortex; OCC, occipital lobe.

to both the pASD and the HC group, while no significant
differences were found between pASD and HC. No differences
were detected in the total brain volume among the three
groups.

Palmen et al. (2005a) compared couples of pASD with
known increased brain volumes with HC couples for volume
differences in total brain, cortical lobes, cerebral and cortical
gray matter (GM) and white matter (WM), cerebellum, and
ventricles. The overt aim of the study was to investigate
whether the cerebral enlargement observed in ASD probands
(Palmen et al., 2005b) extended also to parents, and in this
case whether fathers and mothers were equally affected and
if the same regions, as those of the autistic probands, were
interested in the enlargement. The authors found no group
or gender differences in any of the brain volumes, including
the volume of intracranium, total brain, GM and WM of the
cerebrum, frontal, temporal, parietal, and occipital GM and
WM, cerebellum, third and lateral ventricle. Nevertheless, within
the pASD group significant positive correlations were found
between the Autism Quotient (AQ) (Baron-Cohen et al., 2001a)
scores and intracranial and ventricular volumes, suggesting that
autistic traits might be associated to an enlargement in these
structures.

In the third study, Peterson et al. (2006) compared regional
GM volume in pASD and in HC, reporting an increase in several
GM regions in pASD (e.g., superior temporal gyri, inferior and
middle frontal gyri, superior parietal lobule, anterior cingulate).
A single large relative decrease was observed in the anterior
portion of the left cerebellar hemisphere in pASD compared with
HC. Males showed increased GM compared with females in both
groups, while no between-group differences respect to gender
emerged.

It is worth noting that in the three above mentioned
studies three different procedures were applied for data analysis.
Specifically, Rojas et al. (2004) used manual tracing for
selecting hippocampus and amygdala, Palmen et al. (2005a)
applied a semi-automatic procedure to obtain a segmentation
of the brain in the structure of interest and Peterson et al.
(2006) applied an approach based on voxel-based morphometry
(VBM).

Magnetic Resonance Spectroscopy
Only one study used Magnetic Resonance Spectroscopy (MRS)
to assess brain chemistry in parents of individuals with ASD
(Brown et al., 2013). The aim of the study was therefore to
determine whether the parents of ASD patients show higher
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levels of Glutamate (Hyperglutamate Theory) as compared to
controls (Fatemi, 2008). The level of Glutamate (Glu), together
with other potentially interesting molecules, including n-acetyl-
aspartate (NAA), choline (Cho), myoinositol (mI) and creatine
(Cr), was measured in the auditory cortex of subjects with ASD,
pASD and HC. BAP traits in pASD were assessed by AQ and
by Social Responsiveness Scale (SRS) (Constantino, 2002). While
ASD subjects had increased levels of Glu compared with both
pASD and HC, no differences were found between pASD and
HC. Although not significantly different, the mean levels of
the explored molecules in the pASD group were found to be
intermediate between the HC and the ASD group. A significant
positive correlation between left NAA and the SRS as well as
between left Glu and the AQ was observed, but these correlations
did not remain significant after multiple comparison correction.
Both ASD and pASD did not exhibit sex differences in any of the
MRS measures.

Functional MRI (fMRI)
The first study that evaluated the BAP in pASD through fMRI
technique was performed by Baron-Cohen et al. (2006). In this
investigation, the authors used the visual search task “Adult
Embedded Figures Test” (EFT) (Witkin et al., 1962), and the
advanced emotion recognition task test “Reading the Mind in the
Eyes” (or Eyes) (ET) (Baron-Cohen et al., 2001b) in order to see if
the parents showed the same atypical brain function observed in
the autistic children (Baron-Cohen et al., 1999; Ring et al., 1999).
They also preliminarily explored the influence of sex on brain
functioning during these two tasks in a small sample of six males
and six females. Results indicated that pASD showed atypical
brain activity compared with HC; moreover sex differences in
neural underpinnings of both tests were found. As far as the
EFT task is concerned, pASD showed less activity in the visual
cortex while a reduced activity in the mid-temporal gyrus, and
the inferior frontal gyrus was observed using the ET task.

As regards sex differences in the EFT, female controls
displayed increased activity in middle occipital gyrus than male
controls while both mothers and fathers showed even less activity
in this area than sex-matched controls. In the ET, female controls
exhibited more activity in the left medial temporal gyrus and
left dorsolateral prefrontal cortex than male controls, while both
mothers and fathers of children with ASD showed a brain
activity similar to that of male controls. Mothers and fathers
had comparable brain activation. One of the region identified as
atypically activated in the ET task (B44) overlaps with a region
previously identified as involved in “theory of mind” (Frith and
Frith, 1999).

Greimel et al. (2010) explored in ASD boys and in their
fathers (pASD) aspects related to the social domain of ASD,
and in particular to the mechanism of empathy. Two aspects
of empathy were evaluated related to (1) inferring how another
person feels (other-task), and (2) responding appropriately to
emotions of others (self-task). Comparison groups consist of
age-matched typically developing boys (HC) and their fathers
(pHC). Brain activation was analyzed in three predefined ROIs,
the fusiform gyrus (FG), the inferior frontal gyrus (IFG) and
the AMY and correlations with behavioral traits were evaluated.

Empathic abilities were assessed by the Griffith EmpathyMeasure
(GEM) in ASD and by the Balanced Emotional Empathy Scale
(BEES) in pASD.

Despite a normal performance in reference to the number of
correct/incorrect responses and even a faster response than pHC,
pASD showed an abnormal brain activation. Specifically, both
boys with ASD and their fathers obtained reduced anterior FG
activation during the other-task, and boys with ASD additionally
exhibited reduced FG activation during the self-task compared
to HC. Interestingly, the activation within the FG occurred
outside the well-known fusiform face area leading to exclude that
differences of activation detected in this area were ascribable to a
deficit in face processing. This hypothesis was corroborated also
by the recording of the gaze during the fMRI task that showed
an intact gaze pattern in scanning faces both in the adolescents
with ASD and in their fathers. A diminished activation was
also found in AMY in fathers of boys with ASD compared
to control fathers when inferring others’ emotions from weak
cues, while in the ASD group this result was only obtained at
an uncorrected threshold. The author hypothesized that fathers
activated strategies to compensate for FG and AMY dysfunction.
An involvement of the mirror neuron system (MNS) was also
observed mainly in the ASD adolescents who showed a reduced
activation of the IFG during the self-task. In both pASD and ASD
groups a significant correlation between behavioral measures of
empathy and brain activation was detected: specifically, in the
ASD group the correlation was significant with activation of FG
while in the pASD group with activation of the insula. However,
no significant correlation was found between brain activity and
AQ scores in pASD.

Together with social impairments, language dysfunction is
another well-known hallmark of ASD. Extending the boundaries,
language ability, specifically phonological processing ability, has
been proposed to be one of six candidate BAP traits (Dawson
et al., 2002).

Wilson et al. (2013) explored the neural correlates of
phonological processing ability in a group of parents of children
with ASD and in a group of age-matched controls. The task
proposed consisted of prime-target word pairs differing in
terms of their phonological relatedness including both word-
word homophone and pseudoword-word pseudohomophone.
Brain activation was also correlated with a behavioral measure
of phonological processing ability obtained by the non-word
repetition subtest of the Comprehensive Test of Phonological
Processing (CTOPP) (Wagner et al., 1999).

Despite non-significant differences in terms of task
performances and CTOPP scores and low AQ scores, pASD
showed significantly higher hemodynamic responses than
controls for pseudohomophone compared with homophone
priming. Several cortical regions were involved in this abnormal
activation, including the left anterior insular cortex (IC),
the bilateral cerebellum and thalamus, left postcentral gyrus,
precentral gyrus, and supplementary motor area (SMA), right
superior temporal gyrus (STG) and supramarginal gyrus
(SMG): interestingly, most of these regions had been previously
implicated in language processing (Baddeley, 1992; Ackermann
and Riecker, 2004; Hickok and Poeppel, 2007; Ghosh et al.,
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2008). Significant positive correlations were also observed
between greater hemodynamic response and CTOPP in right
STG, left IFG and IC in pASD and in several regions in controls
(i.e. bilateral occipital gyrus, parietal lobule, postcentral gyrus,
lingual gyrus, and IFG).

Moreover, parents of boys with ASD exhibited increased
hemodynamic suppression in response to phonological priming
compared with controls in several cortical regions including
both the left lateralized STG and SMG. Both groups expressed
a significant left lateralization in the ROI selected for the analysis.

The more recent fMRI study conducted in parents of
individuals with ASD investigated neural substrates of face
processing (Yucel et al., 2014). This is the only study which subset
the parents on BAP traits. Specifically, in order to investigate
the characteristics of a specific endophenotype linked to social
behavior, the parents were classified in a group having “aloof
personality” (BAP+) and a group having “non-aloof personality”
(BAP−). The classification was based on the Broad Autism
Phenotype Questionnaire (BAPQ) and the Modified Personality
Assessment Schedule—Revised (MPAS-R) specifically designed
to determine the presence or absence of “aloof personality.” Using
two face activation paradigms, one based on facememory and the
other based on emotional matching, the authors found that pASD
had a higher activation of AMY and FG and a lower activation of
right insula compared with HC, while no significant difference
in activation was observed between BAP+ and BAP− in these
regions. Conversely, BAP+ and BAP− parents significantly differ
in terms of activation of the lateral occipital cortex (LOC).
Indeed, BAP+ parents showed a bilateral hyper-activation in the
LOC compared with both BAP− and HC.

Neurophysiology (Electroencephalography
and Magnetoencephalography)
The first electrophysiological study in pASD was performed by
Dawson et al. (2005) who evaluated event-related brain potentials
to face and non-face stimuli. Specifically, upright and inverted
faces or chairs were presented to a group of pASD and HC and
N170 amplitude and latency was measured at the inferior right
and left posterior temporal regions. While HC showed the typical
pattern of higher right than left N170 amplitude in response to
faces (Bentin et al., 1996), pASD exhibited reduced right N170
amplitude resulting in bilaterally distributed brain activity to
faces. In addition, HC had the expected faster N170 response
to upright faces compared to upright chairs (Itier et al., 2006),
while pASD showed no differences in latency in response to the
two types of stimuli. Abnormalities in brain activity in pASD
compared to controls were also associated to lower performances
in behavioral tests (face recognition and object memory).

Subsequent studies explored brain activity in pASD in
response to different stimuli using magnetoencephalography
(MEG), focusing on high-frequency bands.

First, Rojas et al. (2008) investigated both evoked and
induced components of the transient gamma-band response
(tGBR), elicited by auditory stimulation in subjects with ASD,
in pASD and in a comparison group of healthy subjects. Source
localization of the data was performed on MRI data acquired

on the subjects enrolled in the study (Peterson et al., 2006).
In addition to evoked and induced power, the authors also
computed the phase locking factor (PLF) as a measure of phase
consistency across trials.

Both pASD and the ASD groups showed bilaterally higher
induced tGBR response compared with controls, while evoked
tGBR was found bilaterally reduced in the same comparison.
The PLF was also bilaterally reduced in both the pASD and the
ASD group compared with HC. Moreover, both the pASD and
the ASD group had a reduced anterior-posterior asymmetry of
the magnetic sources compared with controls. In this study, no
differences between pASD and ASD were found: such findings
could be attributable to the low statistical power, but could
also suggest that parents had the familial liability relevant to
gamma-band disturbances.

Later, Rojas et al. (2011) extended the results of their previous
work analyzing not only the tGBR component of gamma-
band power, but also the auditory steady-state response (ASSR),
in response to auditory stimulation. A group of pASD was
compared with a control group of HC. In this study, authors
also correlated MEG results with scores indicative of BAP−traits
(AQ and SRS). The group of pASD exhibited reduced evoked
power, total power (left hemisphere) and PLF (left hemisphere)
of the ASSR component relative to the HC group. However, the
authors were not able to replicate their previous findings relative
to tGBR (Rojas et al., 2008), as they did not found any significant
differences between pASD and HC.

Interestingly, an inverse correlation between ASSR PLF
and the AQ communication subscale was found in pASD,
confirming an association of gamma-band activity to perception
of speech sounds and lexicality (Kaiser, 2004; Basirat et al.,
2008). An inverse correlation was also observed in pASD between
SRS scores and tGBR and ASSR gamma-band evoked power
suggesting an indirect relationship between auditory gamma-
band dysfunction and social traits of ASD.

In another investigation (McFadden et al., 2012), gamma-
band response was analyzed in pASD and in HC in response
to auditory language stimuli, rather than to simple auditory
stimuli. In this contest, beta band activity was also examined
since it has been suggested to be involved in language processing
(Shahin et al., 2009). While in the previous two investigations
(Rojas et al., 2008, 2011) pASD showed decreased evoked
gamma-band response compared with HC, in this study pASD
exhibited increased evoked power. In addition, there was an
increase in pASD of total gamma power compared with controls.
Source localization analysis showed that this increase was mainly
localized in the SMG, in the lateral occipital cortex (LOC), and in
the FG.

Beta evoked activity was also found increased in pASD
compared with controls mainly in SMG, but also in LOC and
FFG possibly reflecting differences in cognitive function during
language processing. While in both groups the task generally
elicited left lateralized responses, pASD showed greater left
lateralization than controls, confirming also in this case an
atypical lateralization of the brain in pASD. Significant but
different correlations were found between gamma or beta band
activity and language measures.
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Gamma and beta band responses were also assessed in pASD
compared with HC during a picture-naming task (Buard et al.,
2013). Subjects were instructed to sub-vocalize (to reduce motion
artifacts) the name of the object depicted in the image they
were shown. Due to their involvement in language function and
in visual processing, FG, STG, IFG and occipital lobe (OCC)
were considered as the regions of interest. As in the three
previous studies (Rojas et al., 2008, 2011; McFadden et al., 2012),
evoked and induced power together with PLF were computed.
In addition, Granger causality function, as a measure of effective
connectivity among the activated regions, was measured.

Interestingly, the ASD group and the pASD showed different
patterns of activation both in gamma and beta bands. While the
ASD group exhibited reduced evoked high-gamma activity in
the right STG, increased evoked high-beta/low-gamma in the left
IFG and reduced PLF beta in the OCC, the pASD group showed
increased evoked high-gamma in the left STG and evoked high-
beta/low-gamma in the left FG.

Functional connectivity abnormalities were only observed in
the ASD group compared with the control group: specifically,
over-connectivity was found in the left hemisphere between
IFG and FG and between STG and OCC in both gamma and
beta band. This altered functional connectivity from anterior
to posterior language and visual areas may partially explain the
impaired activation of these regions in the ASD group, ascribable
to alterations in long-range neural synchronization.

DISCUSSION

The main leading hypothesis tested in this review is that pASD
present with a number of neuroanatomical and neurofunctional
characteristics observed in individuals with ASD, but to
a lesser extent. This hypothesis is supported by previous
studies demonstrating intermediate levels of biochemical,
immunological, morphological and neuropsychological
endophenotypes/biomarkers in pASD (Ruggeri et al., 2014).

In some cases, the results of the studies, using different
methodological approaches, have supported the primary
hypothesis, while in other cases different results have emerged.

Are pASD Different from HC?
All of the 13 reviewed studies compared the pASD with a sample
of HC.

(a) No differences in total brain volumes between pASD and
controls were found in any of the three sMRI studies (Rojas
et al., 2004; Palmen et al., 2005a; Peterson et al., 2006). This
finding is not surprising when considering that even within
the ASD population many/most adults, unlike children, do
not differ from controls in overall brain volume. Indeed,
there is increasing evidence that brain growth trajectory is
abnormal in subjects with ASD and that they have differences
in the timing of both initiation and cessation of overall brain
growth, resulting in larger brain volumes during childhood
followed by later normalization (Courchesne et al., 2001,
2003; Dawson et al., 2007).

(b) More inconsistent findings were reported for the single brain
structures. While Palmen et al. (2005a) found no differences
between pASD and HC groups in any of the volumes
considered, including cortical lobes, cerebral GM and WM,
cerebellum, and ventricles, increased volumes were found in
the left hippocampus (Rojas et al., 2004) or in a number of
GM regions (Peterson et al., 2006). The different approach
in analyzing brain regions (global brain structures—Palmen
et al., 2005a—vs. focal structures—Rojas et al., 2004—vs.
whole brain approach—Peterson et al., 2006) prevents a
comparison among studies. Overall, the inconsistency of
these results reflects that of the studies on subjects with
ASD (Ameis and Catani, 2015). Methodological differences
between investigations and the potential for heterogeneity of
underlying brain alterations in ASD likely contribute to the
inconsistency of these results.

(c) Functional studies showed some atypicalities in face
processing, empathy and language/auditory processing in
pASD compared with HC.

Face

The study by Dawson et al. (2005) support the social motivation
impairment showing an abnormal N170 response to faces both
in its latency and amplitude with a pattern resembling that
observed for subject with ASD (Apicella et al., 2013). Yucel et al.
(2014) observed an increased activation in pASD compared with
controls during an emotion recognition task in regions that are
specialized for face processing, i.e., the fusiform gyrus and the
amygdala.

Empathy

An opposite pattern was found by Greimel et al. (2010) who
explored empathy during the presentation of emotional stimuli
in pASD and found a decreased activation in the same regions.
It is possible that the two different types of task lead to
different brain activations. Moreover, the different results could
be explained by the fact that the sample of Greimel study is
composed of males only who are generally less empathic than
females (Klein and Hodges, 2001), and therefore process emotion
to a lesser extent than females. In addition it is worth noting that
Yucel et al. (2014) found a decreased activation of the insula,
which is known to be linked to empathic abilities (Carr et al.,
2003) as also suggested by the positive correlation found in
Greimel et al. (2010) between insula activation and the BEES.
Emotion recognition impairments in pASD also emerged from
the study of Baron-Cohen et al. (2006) who observed a decreased
activation in the left IFG of pASD compared with controls during
an emotion recognition test.

Language

Wilson et al. (2013) showed that pASD compared with HC
exhibit a greater hemodynamic response to pseudohomophones
respect to homophones and an enhanced hemodynamic
suppression in response to phonological priming. Interestingly,
Peterson et al. (2006) observed both cerebellar enhancements and
reductions, although in different cerebellar regions than those
differently activated in the phonological task, and larger left STG
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and SMGGM volumes in pASD relative to HC. These regions are
known to be involved in language and phonological processing
(Turkeltaub and Coslett, 2010) and to be functionally impaired
in ASD (Mostofsky et al., 2009).

Abnormalities associated to language processing have been
shown also by MEG studies, mainly associated to gamma-band
response. In particular, gamma-band deficit, which has been
suggested as a biomarker of ASD (Jamal et al., 2013; Rojas and
Wilson, 2014), exists also in pASD, and abnormalities seem to
extend also to the beta band. In ASD individuals, dysfunctional
gamma-band response has been associated with GABAergic
inhibitory deficits (Hussman, 2001; Fatemi et al., 2009).
Conversely, multiple evidences suggest an increased neuronal
excitability in ASD, involving a higher than normal serum
glutamate (Shinohe et al., 2006), and increased metabotropic
glutamate receptor expression (Fatemi et al., 2011). Overall, these
evidences have been summarized in the excitation/inhibition
imbalance (EI) theory of ASD (Rubenstein andMerzenich, 2003).

Rojas et al. (2008, 2011) explored gamma band response to
auditory stimulation in pASD. Induced response has been found
increased in pASD (Rojas et al., 2008), while evoked response and
PLF were decreased (Rojas et al., 2011) compared with HC in
response to simple auditory stimulus. However, more complex
stimuli activate a different pattern as observed in subsequent
investigations (McFadden et al., 2012; Buard et al., 2013). In
both these studies, pASD showed an increased evoked gamma
band response compared with HC, which extended also to beta
band in Buard et al. (2013). The different findings among these
studies might be explained by the different level of complexity
of the tasks: specifically, subjects were requested to be engaged
in higher order cognitive processes including language and
sustained attention (McFadden et al., 2012; Buard et al., 2013), or
only passive listening to a simple auditory stimulus was required
(Rojas et al., 2008, 2011).

The studies exploring auditory/language processing suggest
that when pASD are involved in higher cognitive function they
activate a higher brain response compared to that of controls,
possibly as a compensatory mechanism in absence of behavioral
impairment. In the study by Wilson et al. (2013) the greater
hemodynamic responses in the parent group might reflect the
heavier demands requested by the pseudohomophone primes
on phonological recoding and working memory skills compared
with homophone primes, and it can be interpreted as an index
of more effortful processing during this task. Analogously, in
the studies by McFadden et al. (2012) and Buard et al. (2013)
the increase in gamma and/or beta could reflect a greater
cognitive effort in phonology and receptive language tasks, which
determine an abnormal synchronous activation of language
networks (Jerbi et al., 2009).

It is worth noting that functional abnormalities at a
neural level in pASD are not always associated to behavioral
impairments. For example Greimel et al. (2010) found a
non-compromised empathic ability in an emotion recognition
task while Wilson et al. (2013) found no difference in terms
of phonological processing (CTOPP scores) between pASD
and HC. Conversely in the study by Dawson et al. (2005)
the authors found that neurofunctional abnormalities and

neuropsychological performances in pASD were associated,
suggesting that pASD are more compromised at a neural level
than at a behavioral level.

How Are Parents of Individuals with ASD
Compared to Other Individuals with ASD?
Only five of the 13 studies addressed the question of the overlap
between pASD and other individuals with ASD (Rojas et al., 2004,
2008; Greimel et al., 2010; Brown et al., 2013; Buard et al., 2013).
All reported similarities in some aspects of brain structure and
function consistent with the hypothesis of a continuum of some
ASD features expressed in pASD, with milder but qualitatively
similar brain alterations to those detected in ASD.

In particular, structural (Rojas et al., 2004) and spectroscopy
(Brown et al., 2013) studies revealed a brain endophenotype in
pASD intermediate between ASD patients and HC. Specifically,
Rojas et al. (2004) found that hippocampus enlargement
interested also pASD, but to a lesser extent than ASD individuals.
Vice-versa, the amygdala was smaller in ASD patients compared
to pASD. Brown et al. (2013) showed that the mean levels of
the explored molecules in the parent group were intermediate
between ASD individuals and HC. However, these findings were
not statistically significant possibly due to the small sample size
and/or to the low scores at the AQ and the SRS of the pASD
subjects.

The fMRI study exploring the neural correlates of empathy
(Greimel et al., 2010) reported a reduced activation in the right
anterior fusiform gyrus in both adolescents with ASD and pASD
compared to age and IQ matched controls. Finally, using EEG
a reduced early auditory gamma-band response shared by both
adults with ASD and pASD in comparison to HC was detected
(Rojas et al., 2008).

Several other patterns of brain activity were not shared by
pASD and ASD patients, potentially suggesting a lesser role of
these aspects as endophenotypes of the disorder. For example, in
the same fMRI study exploring empathy (Greimel et al., 2010),
reduced amygdala activity was found in pASD but not in ASD.
Also, using MEG during a picture naming task, Buard et al.
(2013) found that gamma-band activity showed opposite profiles
in pASD and in ASD subjects relative to controls, being increased
in the former and reduced in the latter.

All in all, the limited number of studies addressing this
question does not allow for definitive conclusions although it
seems to be conceivable that some aspects of brain structure and
function are shared by pASD and ASD patients, supporting their
possible role as endophenotype of the disorder.

How Are Parents of Individuals with ASD
Compared to Their Probands?
The study by Greimel et al. (2010) was the only one that enrolled
both the probands and their fathers to explore the transmission of
neural substrates. The results confirmed the primary hypothesis
of a neurofunctional pattern in pASD intermediate between
HC and ASD. In particular, pASD showed an abnormal neural
activation during the other-task similar to their probands,
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expressed by a reduced hemodynamic response in FG – a tempo-
occipital brain region primarily involved in face processing-.
Conversely, unlike their probands, pASD showed a normal
response during the self-task. It is of interest that a reduced
activation of regions previously associated to the MNS, namely
IFG, was found in ASD probands but not in their fathers. These
results support the hypothesis that FG dysfunction in ASD is
genetically influenced (Polk et al., 2007).

Are the Neurostructural and
Neurofunctional Alterations Reported in
Parents of Individuals with ASD
Specifically Related to BAP Features?
Six of the reviewed studies (Palmen et al., 2005a; Greimel et al.,
2010; Rojas et al., 2011; Brown et al., 2013; Wilson et al., 2013;
Yucel et al., 2014) assessed the BAP characteristics of the pASD
applying instruments such as the AQ, the BAPQ or the SRS.
Significant correlations between scores at the questionnaires
and the brain structural and functional indexes were found in
almost all these studies. In particular, Palmen et al. (2005a)
found a significant positive correlation between AQ scores and
intracranial and ventricular volume in pASD, while Brown et al.
(2013) found a significant, uncorrected, positive correlation
between left NAA and the SRS and left Glu and the AQ. Both
studies did not report significant differences in pASD compared
to HC (Palmen et al., 2005a; Brown et al., 2013); however, the
fact that pASD scored very low at questionnaires assessing BAP
could represent a possible bias leading to negative findings.
Interestingly, in both studies a positive correlation between
neurostructural results and BAP features was found, suggesting
that enlarged brain volume or increased Glu level respectively
could still be associated to the autistic phenotype.

Notably, Wilson et al. (2013) found significant differences in
brain activation during a language task in the pASD sample,
despite low scores at the AQ. This result could suggest that
deficits in neural substrates of language processing could be
associated with autistic traits, confirming it as one of the core
impairment of ASD.

This is confirmed by the investigation of Rojas et al.
(2011) in which a negative correlation between ASSR PLF and
AQ communication subscale as well as between SRS scores
and tGBR/ASSR evoked power was observed. ASSR PLF and
evoked power were found decreased in pASD compared to
HC: therefore, it can be argued that deficits in auditory gamma
band are correlated to problems in communications (AQ) and
socials skills (SRS). Despite the authors did not find significant
differences regarding tGBR, a significant correlation between
SRS scores and this feature was observed in pASD suggesting a
possible association with the autistic phenotype, as proposed in
their previous study (Rojas et al., 2008).

Greimel et al. (2010) did not find any significant correlation
between brain activation and AQ in pASD, while a brain-
behavior relationship was detected with empathic scores (BEES).

The paper by Yucel et al. (2014) was the only one subgrouping
the parent sample according to BAP traits. Interestingly, the
authors observed that while an atypical activation of face

processing regions was common to both groups of parents,
BAP+, but not BAP− parents showed an hyper-activation of
lateral occipital cortex. The hyper-activation of LOC in BAP+
could reflect an aberrant “compensatory” activation of these
regions in BAP+ parents. These data suggest that while neural
circuitry abnormalities in the regions specific for face processing
are necessary for the occurrence of the BAP, they are not sufficient
to result in autism-related social behavior.

Overall, these findings suggest a possible link between the
subclinical dimension of BAP and neurobiological expression of
brain function and structure.

Does Gender Influence Neurostructural
and Neurofunctional Results in Parents of
Individuals with ASD?
Previous studies have reported sex differences in brain in healthy
populations and these processes have shown to differ in people
with ASD. In particular, sexual dimorphism in brain regions that
are crucial to language and social abilities has been proposed (Lai
et al., 2013; Retico et al., 2016).

Understanding cerebral gender differences is important,
among other reasons, to explain the increased vulnerability of
males to ASD. Few studies have explored gender differences in
pASD in order to investigate the heritability of sex differences in
brain structures and function.

From a structural point of view, it was observed that males,
both pASD and HC had increased total, hippocampal and
amygdala volumes (Rojas et al., 2004), as well as GM (Peterson
et al., 2006) compared to pASD and HC females, but this
difference did not contribute to between-groups differences.
Brown et al. (2013) investigated gender differences in MRS
measures both in ASD and pASD and did not find any differences
as well. Conversely, Baron-Cohen et al. (2006) found significant
differences in brain function related to gender. In particular,
their results support the hypothesis of the “Extreme Male
Brain Theory” of ASD, according to which “the male brain is
programmed to systemize and the female brain to empathize”
(Benenson, 2003). Indeed, both mothers and fathers showed an
activation even lower than that of male controls in regions were
female controls had a higher activity. The results of this study
may suggest a genetic component of the hyper-masculinization
of the brain.

Do Parents of Individuals with ASD Express
an Atypical Lateralization of the Brain?
In typical development, lateralization of brain function underlies
specialized cognitive and behavioral processes (Mesulam, 1990).
In particular, several pieces of evidence exist about a left
lateralization in language regions (Knecht et al., 2000), and
right lateralization in attentional regions (Corbetta and Shulman,
2011) in the majority of individuals with typical development.
Atypical lateralization in brain structure and function has been
associated with ASD (Conti et al., 2016); more specifically,
reduced left lateralization or reversed lateralization of brain
structure and function in core language regions and in the WM
tracts that connect them has been shown in ASD using different
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techniques (Kleinhans et al., 2008; Lange et al., 2010; Seery et al.,
2013).

Whether the pattern of lateralization related to language
processing observed in subjects with ASD is the same in their
parents is not clear from the reviewed studies.

In Wilson et al. (2013), hemispheric lateralization analysis did
not indicate greater right hemispheric language dominance in
the pASD: in fact, both pASD and HC showed left lateralization
across the selected ROIs. McFadden et al. (2012) found that
pASD showed even an increased left lateralization than controls.
Rojas et al. (2011) showed that differences in ASSR response
in pASD was restricted to the left hemisphere, however across
groups the tGBR and ASSR evoked power was increased in
the right hemisphere. Rojas et al. (2008) highlighted a peculiar
pattern of asymmetric activation in control subjects in which the
activation of the right hemisphere was anterior to that of the left
hemisphere. This pattern was not observed in ASD and was mild
in pASD.

Yucel et al. (2014), observed in the face processing task a
significant effect of hemisphere. Specifically, FG showed greater
activation in right than left hemisphere in BAP+ compared
with BAP− and HC, and right amygdala was more active than
left in BAP+ compared with BAP−. Since right lateralization
was observed specifically in BAP+ pASD, a compensatory

mechanism of activation in these regions could be hypothesized
for this subgroup of parents. Additional support for this
interpretation can be found in the investigation of Rojas et al.
(2004) on the basis of which pASD has reduced right amygdala
volume compared withHC: it may be possible that to compensate
the reduction of volume an abnormal high activation is required.

CONCLUSIONS AND FUTURE
DIRECTIONS

Although, results are often unclear and contradictory, some
general considerations can be done:

(i) pASD differ fromHC both at a structural and functional level
and these neural abnormalities are not always associated with
behavioral impairments;

(ii) The neural pattern in pASD seems to be intermediate
between HC and ASD probands;

(iii) More atypicalities in neural patterns of pASD seem to be
associated with higher autistic traits;

(iv) The pattern of neural correlates in pASD resembles that of
adult individuals with ASD or it is specific to pASD, possibly
due to a compensatory mechanism;

(v) The gender might influence the results.

FIGURE 1 | Recommendations for future studies assessing the broader autism (endo)phenotype.
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In conclusion, our review reports findings that are often non-
replicated, preventing a univocal interpretation of the results.

In order to elucidate the brain structural and functional
underpinnings in pASD and their potential role as
endophenotype, several aspects should be considered when
planning future studies (Figure 1).

First, neuroimaging studies should be ideally include a group
of pASD and HC with their ASD and non-ASD probands,
respectively. Second, a family-behavioral genetic design should
be adopted in order to analyze the behavioral features as well
as the genetics not only of the probands, but also of the
parents and the siblings, and to link these data to underlying
brain structure and function. Third, behavioral assessment
as well as BAP traits evaluation should be performed using
standardized questionnaires and tests in order to subgroups
the probands and their relatives according to the obtained
scores and to investigate a possible correlation between brain
abnormalities and BAP traits and/or behavioral impairments.
Fourth, multimodal imaging techniques could also be adopted
to better elucidate brain correlates of BAP. For example,
the integration of neuroimaging data with neurophysiological
signals (EEG and MEG) offers advantages of both high
spatial and temporal resolution (Ingalhalikar et al., 2012;
Berman et al., 2016). The application of these methods also
in pASD probands could provide new insights into the
endophenotype of ASD. Fifth, since gender can influence
neural substrates, this factor needs to be carefully taken into
account when grouping samples and interpreting the results.
Indeed, brain endophenotypes could be related to differences
in the developmental, psychiatric, and medical endophenotypes
between males and females with ASD. These research findings
may in turn help the clinical assessment and treatment of ASD
and the search for possible etiologies (Rubenstein et al., 2015).
Sixth, studies on the BAP could also benefit of the assessment
of multiple endophenotypes/biomarkers in parallel by collecting,
in addition to neuroimaging data, immunological, biochemical,
or neuropsychological data and evaluating the cross talk among
the different modalities (Ruggeri et al., 2014). Seventh, the
inclusion of samples with other neurodevelopmental disorders
rather than ASD can help to disentangle the specific from
the non-specific endophenotypes associated to each condition.

Indeed brain alterations have been found in relatives of probands
with Attention Deficit/Hyperactivity Disorder—ADHD—(Casey
et al., 2007; Hale et al., 2010; Poissant et al., 2014; Rapin et al.,
2014), language impairments (Plante, 1991; Ors et al., 2002) and
learning or intellectual disabilities (Mannerkoski et al., 2009). In
particular, previous literature suggests that there are cognitive
and brain endophenotypes common to ASD and ADHD and
that studying the similarities and differences between these two
disorders might be a powerful research approach to increase our
understanding of their pathophysiology (Rommelse et al., 2011).
Finally the use of multivariate approaches, based for example
on machine learning (Retico et al., 2014; Segovia et al., 2014),
can provide more insightful results than the traditional statistical
analysis methods.

In conclusion, these types of implementations may help
to better elucidate the hereditary mechanisms involved in the
various clinical dimension of ASD.
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