

Path Clustering based on a Novel Dissimilarity

Function for Ride-Sharing Recommenders

Eleonora D’Andrea1, David Di Lorenzo2,*, Beatrice Lazzerini1, Francesco Marcelloni1, Fabio Schoen3

1Dept. of Information Engineering

University of Pisa

Largo L. Lazzarino, 56122 Pisa, Italy

eleonora.dandrea@for.unipi.it,
beatrice.lazzerini@unipi.it,

francesco.marcelloni@unipi.it

2Fleetmatics Research

Viale Mazzini 40, 50132 Florence,

Italy

david.dilorenzo@fleetmatics.com

3Dept. of Information Engineering

University of Florence

Via S. Marta 3, 50139 Florence, Italy

fabio.schoen@unifi.it

Abstract—Ride-sharing practice represents one of the possible

answers to the traffic congestion problem in today’s cities. In this

scenario, recommenders aim to determine similarity among

different paths with the aim of suggesting possible ride shares. In

this paper, we propose a novel dissimilarity function between

pairs of paths based on the construction of a shared path, which

visits all points of the two paths by respecting the order of

sequences within each of them. The shared path is computed as

the shortest path on a directed acyclic graph with precedence

constraints between the points of interest defined in the single

paths. The dissimilarity function evaluates how much a user has

to extend his/her path for covering the overall shared path. After

computing the dissimilarity between any pair of paths, we

execute a fuzzy relational clustering algorithm for determining

groups of similar paths. Within these groups, the recommenders

will choose users who can be invited to share rides. We show and

discuss the results obtained by our approach on 45 paths.

Index Terms—fuzzy relational clustering, mobility patterns,

path clustering, ride-sharing, smart cities.

I. INTRODUCTION

In recent years, the monitoring of city mobility has attracted
growing attention due to the increasing number of vehicles
(mainly private cars) causing, on the one hand, frequent traffic
congestions, bottlenecks and incidents, and, on the other hand,
pollution accounting for about 26% of CO2 emissions in
Europe [1]. Thus, a big effort has been recently done in the
context of smart cities to monitor and reduce vehicular traffic,
by improving the management of the transport networks and
analyzing the dynamics of a city. This analysis focuses on: i)
traffic dynamics, i.e., movements of vehicles in the road
network, and ii) social dynamics, i.e., movements or grouping
of people in the city, due to events and personal mobility
habits. The modeling of the former allows reducing traffic
congestion, addressing environmental, economic and social
needs, e.g., by providing real-time information about traffic
congestion and regulation, travel time estimations, incidents,
pollution levels, optimal route suggestions, parking availability

[2]-[4]. The modeling of the latter allows identifying social
gathering places, predicting the movements of people,
estimating user similarity based on shared stay points or
common paths [5]-[7]. In fact, e.g., the presence of repeated
traces in the same place can indicate both a social gathering
place (e.g., school, university) and a relationship between the
people to whom the traces correspond (e.g., classmates).

One of the possible solutions to improve mobility in smart
cities can be found in ride-sharing services. Ride-sharing is the
practice according to which at least two users share a portion of
a trip using the same vehicle [8]. Several car-sharing or online
ride-sharing services (e.g., BlaBlaCar1, RideshareOnline2) have
spread in recent years as an economical and easy-to-use form
of collaborative transportation system. Such services provide
societal and environmental benefits by reducing the number of
single-occupancy vehicles moving in the city. Direct economic
benefits for users are money savings in fuel, tolls, parking fees.
Benefits for the city are lower levels of traffic congestion and
pollution. Different ride-sharing systems exist, differing from
each other in some features such as the matching criterion
between rides or between users, or the kind of trip (regular,
commute, one-time, long-distance, short-distance, multi-hop,
etc.). Thus, rides can be matched based on the Origin
Destination (OD) matrix (by taking into account the origin
points and/or the destination points), the pick-up and drop-off
points of passengers, the keyword (cities, regions, etc.), users’
needs and constraints [8]. The main challenge of ride-sharing
systems is the effective recommendation, i.e., the efficient
matching between rides (or users, i.e., passengers and drivers),
by fulfilling the (often) conflicting objectives of meeting users’
needs, respecting origin and destination points, respecting
scheduling times, etc. [8]. In fact, when a user chooses a
transportation mode, he/she considers several aspects of the
ride: cost, travel time, flexibility, pick-up and drop-off points,
privacy, etc. Some of the above-mentioned aspects are difficult
to directly be controlled in public transport or long-distances
ride-sharing services, where often the constraints for the pick-
up/drop-off locations are not flexible for the user. On the
contrary, ride-sharing allows satisfying the door-to-door

1 BlaBlaCar. www.BlaBlaCar.com
2 RideshareOnline. www.RideshareOnline.com

This work is partially supported by the project “Metodologie e
Tecnologie per lo Sviluppo di Servizi Informatici Innovativi per le Smart

Cities”, funded by “Progetti di Ricerca di Ateneo - PRA 2015” of the
University of Pisa.

* Please note that the view expressed by David Di Lorenzo, from

Fleetmatics, do not necessarily represent the views of the company.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80268734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

transportation needs of users [9].

The proposed ride-sharing recommender is tailored on the
urban context, where the several points of interest (POIs),
along a city path represent the desired pick-up or drop-off
locations for the users. We assume that users only need to be
picked-up or dropped-off at the POI location. Thus, the time
spent in each POI during the shared ride is negligible. In this
work, we focus on studying the relationship (in terms of
similarity) between users’ paths, with the aim of matching
similar rides by applying data mining techniques to improve
e.g., car-sharing or ride-sharing services, and friend-
recommendation and community-discovery systems.

Although some papers in the literature propose solutions for
ride-sharing [1], [10]-[14], to the best of our knowledge, a
standard method for determining the best ride-matching
method does not exist [12]. In this paper, we propose an
approach to group similar drivers, according to their preferred,
or most frequently travelled trips, with the aim of supporting
ride-sharing services [10]. Each user trip is defined in terms of
a set of POIs (origin, destination, and intermediate points)
forming a path in the city road network. More in detail, by
considering paths pairwise, i) we define a dissimilarity function
to determine how much two paths are close to each other; ii)
we compute, according to this function, the dissimilarity score
between pairs of paths; iii) we group the paths according to
their dissimilarity score, by means of a relational clustering
algorithm based on the well-known fuzzy c-means algorithm
[15]. Clustering refers to the process of grouping a set of
objects into clusters according to similarity. With respect to
other works in the literature related to ride-matching, the
novelty of the proposed work is the construction of a shared
path for each pair of paths. The shared path is the shortest path,
which visits all POIs of the two paths by respecting the order of
sequences within each path. The shared path is found by
computing the shortest path on a direct acyclic graph (DAG)
representing the connections between the POIs of the two paths
taken into account. Stated in other words, we aim to solve the
Sequential Ordering Problem (SOP), first formulated by
Escudero in [16]. SOP is a combinatorial optimization
problem, which consists of determining the minimum cost
Hamiltonian tour between a source node and a destination node
on a directed graph, satisfying a set of precedence constraints
between pairs of nodes. In this way, the user of path p1 can be
paired with the user of path p2 in order to share with him/her
the city ride at the minimal cost, in terms of additional distance
to be travelled. Such a system could be very useful to reduce
traffic in the city, as usual/frequent activities of citizens (e.g.,
grocery shopping, children pick-up and drop-off,
theatre/cinema/sport events attendance) often share the same
place or time. For the above reasons, it becomes easy to find
people with the same transport needs. Furthermore, to enforce
the order of sequences within each path is of the utmost
importance, e.g., in the case of paths such as {1. get out of
work, 2. pick-up children at school, 3. go home}, where severe
ordering constraints are present.

The paper is organized as follows. Section II reviews the
state of the art and the related work about dissimilarity
functions and ride-sharing recommenders. Sections III and IV
present the proposed system for path clustering, and the

experimental analysis, respectively. Finally, Section V provides
the conclusions.

II. STATE OF THE ART

In this section, first we provide the definition of some well-
known trajectory and path similarity functions, by highlighting
their weaknesses and strengths. Then, we recall some ride-
sharing recommenders proposed in the literature.

Similarity functions are used to evaluate the amount of
similarity between objects. The class of similarity functions
chosen, e.g., distance-based, statistical-based, point-based,
depends on the kind of object and context considered. In fact,
in the case of paths or trajectories, the function should take into
account also the underlying road network graph, and problems
such as graph connectivity, or compliance with the order in the
sequences. A trajectory of a moving object is expressed as a
series of discrete spatiotemporal points, taking into account
both the position in the road network, and the corresponding
time. A path instead can be considered as a spatial trajectory
that covers a trip from an origin point to a destination point,
and consists of a sequence of nodes and edges on a graph,
representing the road network [17]. Thus, similarity functions
between trajectories typically take into account position, time,
speed, and direction of the object, while in the case of paths,
only the spatial dimension is taken into account, i.e., the
starting node, the ending node, the length of the path, the
intermediate nodes, etc. The terms “trajectory” and “path” are
used in this paper in an interchangeable way, even though we
deal with path data mining.

The dissimilarity between objects, represented by a set of
numerical attributes, is usually measured with point-based
distances, e.g., Lp-norm distance metric (Euclidean distance for
p = 2). The drawbacks of Lp-norm distance metrics are: i) the
impossibility to define a distance between trajectories of
different lengths, ii) the bad management of outliers, and iii)
the missing management of time-shifted trajectories. Thus, Lp-
norm distance metric is not well-suited for trajectories or paths.
The edit distance metric [18] is defined on two strings as the
minimal number of operations needed (e.g., deletion,
substitution, insertion, etc.) to transform one string into the
other. Several variants of the edit distance suited for
paths/trajectories, have been proposed: i) the edit distance on
real sequence [19] captures the similarity in shape between two
trajectories; ii) the longest common subsequence (LCS) [11] is
based on the matching of two sequences by stretching and
rearranging the elements in time and space. The inter-cluster
distance metric is used to represent the distance between paths
represented as clusters of points. Examples of inter-cluster
metrics are the maximum and the minimum [17]. The dynamic
time warping metric [20] allows measuring the similarity
between two temporal sequences, which may vary in time or
speed. The drawback of this measure is its inefficiency for
noisy data, its strength is the chance to be applied to trajectories
of different lengths. According to the perimeter-based metric,
the similarity between two paths p1 and p2 corresponds to the
perimeter of the region formed by the two paths and the
shortest path from the starting node of p1 and the starting node
of p2, and the shortest path from the ending node of p1 and the
ending node of p2 [17]. This metric is well suited to compute

the similarity based on the starting and the ending nodes.

Most of the similarity functions described above are not
suited to work with paths defined on a graph. Other similarity
metrics handle only standalone trajectories [17], or are not able
to compare paths of different length, or with different sampling
frequencies. In this paper, we propose a novel dissimilarity
function that tries to overcome the above-mentioned problems.
The intuition behind this function is to consider as dissimilarity
measure the additional road that needs to be travelled by the
user of a given path to visit also the POIs of another path: if the
length of this additional road is small, then the effort requested
to the user for the ride sharing is negligible.

In the literature we can find several systems that can be
used as ride-sharing recommenders. Ying et al. [21] propose a
novel similarity measure between GPS trajectories, which takes
into account the semantics of trajectories in order to develop a
friend recommender. In [1], the authors propose a
recommender capable of identifying opportunities for ride-
sharing. The system collects GPS mobility data, identifies
users’ routine behaviors by employing text mining techniques,
and finally discovers similarities among rides. He et al. [10]
propose an intelligent routing scheme for carpooling
recommendation. The system extracts frequent routes of users,
searches for qualified riders and generates a commonly
accepted route, which minimizes the driving distance, the
walking distance, and the travel costs. Xiao et al. [7] estimate
the similarity between users according to the semantic location
histories extracted from GPS traces, with the aim of enabling
friend and location recommendation. In [11], the authors tackle
the ride-matching problem and perform an automatic
classification of similar trajectories using the nearest neighbor
classifier, and the LCS as similarity function between
trajectories, and by allowing stretching in time and translating
in space. In [12], the authors identify suitable matches between
users based on preferred characteristic (age, gender, smoking
preferences, pet restrictions, etc.) and by satisfying constraint
such as, vehicle occupancy, waiting time to pick-up, number of
connections, detour distance. In [14], the authors propose a
dynamic ride-sharing system for taxis, by employing a shortest
path algorithm and a dynamic matching criterion. Each trip is
defined in terms of only the origin and destination points, and
the constraints about waiting times.

Hence, the ride-matching criterion proposed in this paper is
based on the geographic dissimilarities (distances) of the POIs
composing the trips and not merely on the OD matrix, i.e., we
take into account also trips containing intermediate stops along
it. This means that paths belonging to the same region, city,
district, or area of a city (as in our case) will be matched
according to the distances of POIs. In addition, with the
proposed ride-matching criterion, the starting/ending points of
the paired paths do not have to be the same or very close in
space: they can be anywhere in the city. Then, the clustering
will tend to group paths based only on their real similarity.

III. THE PROPOSED SYSTEM FOR PATH CLUSTERING

In this section, we describe the proposed system for path
clustering, which exploits a novel dissimilarity function
between pairs of paths, and a relational fuzzy clustering
algorithm based on the classical fuzzy c-means [15]. The

dissimilarity function evaluates how much two paths are
dissimilar by exploiting a well-known algorithm for computing
the shortest path on edge-weighted directed acyclic graphs
(DAG). The algorithm, described in [22], is simpler and faster
than the classical Dijkstra's algorithm.

The architecture of the proposed system is shown in Fig. 1.
The digital map, which is exploited to represent the city road
network and the positioning of people and vehicles in the city,
is the one provided by the well-known Open Street Map
(OSM)3 framework for digital maps. OSM is an open source,
free-license project aimed at collecting geographic data to
create freely available maps of the world with free content. A
digital map is a graph (V, E) composed of a set of vertices V,
defined as GPS positions, and by a set of edges E, each one
defined in terms of length, bearing and endpoint vertices. With
this structure, a road is described as the conjunction of
consecutive edges (also called segments) identified in
correspondence with intersections, changes in bearing of the
road, traffic lights, pedestrian crossings, and other relevant
points. The use of the digital map of the city will allow
computing the travel distances between different points of the
map according to the road network constraints (one-ways,
limited traffic zones, etc.).

Fig. 1. The architecture of the proposed system for path clustering.

A user POI trip is defined in terms of a set of POIs that
should be visited by the user in the given order. The set of POIs
includes the path’s origin and destination points, and the stops
along it. These locations can be expressed with the name of the
place, the complete address, or directly in terms of GPS
positions (latitude and longitude). Such POIs are aligned on the
road network of the digital map during the map-matching phase
of the module “Map-matching” in Fig. 1. More in detail, this
operation translates each POI with the corresponding GPS
coordinates, and then matches the coordinates with the closest
OSM map segment, by exploiting the Graph Hopper API for
Java4. We do not discuss the details related to map-matching
the POIs on the digital map, since it is not the focus of this
paper. The resulting path is described as a sequence of GPS
positions (corresponding to segments on the digital map).

3 Open Street Map. www.openstreetmap.org/
4 Graph Hopper Route Planner. www.graphhopper.com/

user’s POIs user’s POIs

 Paths Paths Pairwise paths similarity

computation

Path clustering

User’s POIs

 Digital

map

 User’s

path

Map-matching

Dissimilarity

matrix

Clusters of paths

and users

matching

http://www.openstreetmap.org/

The module “Pairwise paths similarity computation”
evaluates the similarity between pairs of paths. Given a set of
paths Φ = {p1, …, pP}, with P being the number of paths in Φ,

we define two paths 𝑝𝛼 and 𝑝𝛽, in Φ, as 𝑝𝛼 = {𝑎1
(𝛼)

, … , 𝑎𝑄𝛼

(𝛼)
},

and 𝑝𝛽 = {𝑎1
(𝛽)

, … , 𝑎𝑄𝛽

(𝛽)
}, with Q and Q being the number of

relevant POIs in 𝑝𝛼 and 𝑝𝛽, respectively. We define the

dissimilarity value D, between p and p as the additional

length, with respect to path p, to be travelled by user of path

p to visit the POIs of both paths, respecting the given orders of

the POIs in paths p and p. Similarly, the dissimilarity value

D, between p and p corresponds to the additional length,

with respect to path p, to be travelled by user of path p to visit
the POIs of both paths, respecting the given orders of the POIs

in paths p and p.

More formally, D, is computed as:

 𝐷𝛼,𝛽(𝑝𝛼 , 𝑝𝛽) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝛼 ∪ 𝑝𝛽) − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝛼) 

where 𝑝𝛼 ∪ 𝑝𝛽 is the shortest shared path travelled by the user

of path p for visiting each point of paths p and p, preserving

the order of the visited POIs in p and p, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝛼 ∪ 𝑝𝛽) is

the length of the shared path 𝑝𝛼 ∪ 𝑝𝛽 , and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝛼) is the

length of path p.

𝐿𝑒𝑛𝑔𝑡ℎ(𝑝𝛼) is computed as the sum of the distances

between consecutive points in p:

 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝛼) = ∑ 𝑑𝑖𝑠𝑡(𝑎𝑘
(𝛼)

, 𝑎𝑘+1
(𝛼)

)
𝑄𝛼−1
𝑘=1  

where 𝑎𝑘
(𝛼)

 and 𝑎𝑘+1
(𝛼)

 are two consecutive POIs of path p, and

𝑑𝑖𝑠𝑡(𝑎𝑘
(𝛼)

, 𝑎𝑘+1
(𝛼)

) is the length of the shortest path between 𝑎𝑘
(𝛼)

and 𝑎𝑘+1
(𝛼)

 computed on the map by using the Graph Hopper

API. Thus, 𝑑𝑖𝑠𝑡(𝑎𝑘
(𝛼)

, 𝑎𝑘+1
(𝛼)

) corresponds to the real travel

distance between 𝑎𝑘
(𝛼)

 and 𝑎𝑘+1
(𝛼)

 on the city road network. The

dissimilarity function in (1) respects the coincidence axiom,
that is, 𝐷𝛼,𝛽(𝑝𝛼 , 𝑝𝛽) = 0 if and only if 𝑝𝛼 = 𝑝𝛽. On the

contrary, the symmetry property is not satisfied, that is,

D,  D, .

The computation of 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝛼 ∪ 𝑝𝛽) is not trivial since we

have to determine the shortest path travelled by the user of path

p for visiting each point of the paths p and p, preserving the

order of the visited POIs in p and p. To this aim, we build an
edge-weighted DAG. The graph has 𝑁 = 𝑄𝛼 ∙ (𝑄𝛽 + 1) +
(𝑄𝛼 + 1) ∙ 𝑄𝛽 + 1 nodes defined as follows:

 𝑄𝛼 ∙ (𝑄𝛽 + 1) nodes of type 𝑋𝑖,𝑗, with i = 1, …, Q,

and j = 0, …, Q;

 (𝑄𝛼 + 1) ∙ 𝑄𝛽 nodes of type 𝑌𝑖,𝑗 with i = 0, …, Q, and

j = 1, …, Q;

 1 destination node D corresponding to the end of the
shared path.

The nodes of type Xi,j and Yi,j are associated with,

respectively, the POIs 𝑎𝑖
(𝛼)

 of path p and the POIs 𝑎𝑗
(𝛽)

 of path

p and indicate the progress achieved in completing the shared

path. More in detail, staying in node Xi,j of the DAG means that

the shared path has just visited the POI 𝑎𝑖
(𝛼)

 of path p and has

already visited all the previous POIs 𝑎1
(𝛼)

, … , 𝑎𝑖−1
(𝛼)

 of path p

and the POIs 𝑎1
(𝛽)

, … , 𝑎𝑗
(𝛽)

 of path p. Similarly, staying in node

Yi,j means that the shared path has just visited the POI 𝑎𝑗
(𝛽)

 of

path p and has already visited all the previous POIs

𝑎1
(𝛽)

, … , 𝑎𝑗−1
(𝛽)

 of path p and the POIs 𝑎1
(𝛼)

, … , 𝑎𝑖
(𝛼)

 of path p.

The graph contains N + 2 edges. The weight associated

with each edge is the minimal distance computed on the road

network between the considered POIs. N edges are built

according to the following rules:

 𝑋𝑖,𝑗 → 𝑋𝑖+1,𝑗 , with weight 𝑑𝑖𝑠𝑡(𝑎𝑖
(𝛼)

, 𝑎𝑖+1
(𝛼)

)

 𝑋𝑖,𝑗 → 𝑌𝑖,𝑗+1 , with weight 𝑑𝑖𝑠𝑡(𝑎𝑖
(𝛼)

, 𝑎𝑗+1
(𝛽)

)

 𝑌𝑖,𝑗 → 𝑋𝑖+1,𝑗 , with weight 𝑑𝑖𝑠𝑡(𝑎𝑗
(𝛽)

, 𝑎𝑖+1
(𝛼)

)

 𝑌𝑖,𝑗 → 𝑌𝑖,𝑗+1 , with weight 𝑑𝑖𝑠𝑡(𝑎𝑗
(𝛽)

, 𝑎𝑗+1
(𝛽)

)

The last 2 edges connect the nodes 𝑋𝑄∝,𝑄𝛽
 and 𝑌𝑄∝,𝑄𝛽

 with

the destination node D and have a weight equal to 0.

The shared path is computed as the shortest path on the
DAG using the code included in the library algs45 for Java. For

each pair of paths p and p, two shared paths are computed.

The first one (𝑝𝛼 ∪ 𝑝𝛽) starts from point 𝑎1
(𝛼)

 (corresponding

to node X1,0 in the DAG) and is travelled by user of path p; the

second one (𝑝𝛽 ∪ 𝑝𝛼) starts from 𝑎1
(𝛽)

 (corresponding to node

Y0,1 in the DAG) and is travelled by user of path p. Both the
shared paths end in the destination node D of graph DAG.

Fig. 2 shows an example with two paths: p with 𝑄∝ = 3 ,
and p with 𝑄𝛽 = 2 . The user of path p leaves home, drops-

off children at school, and finally goes to work; the user of path

p, e.g., a teacher of the same school, leaves home and reaches
the school. Fig. 3 shows the corresponding DAG built for the
pair of paths. The DAG has 18 nodes and 20 edges. We
compute the dissimilarity value for each pair of paths in Φ. We

obtain a PP dissimilarity matrix of values D, computed
according to (1), and representing the mutual relationship
between pairs of paths.

Then, in module “Path clustering”, similar paths are
grouped by means of a relational clustering algorithm,
according to the pairwise dissimilarity value. We employ as
relational clustering the ARCA (Any Relational Clustering
Algorithm) algorithm proposed in [15]. This algorithm

considers each path p as an object described by P features,

where each feature  corresponds to the value of dissimilarity

between p and p. Thus, the relational clustering problem is
transformed into an object clustering problem, which is tackled
by adopting the well-known fuzzy c-means clustering
algorithm [23]. ARCA partitions the dataset by minimizing the
Euclidean distance between each path (described by the P
dissimilarity values) belonging to a cluster and the prototype of
the cluster. ARCA has proved to be more stable and effective

5 http://algs4.cs.princeton.edu/code/

than popular fuzzy relational clustering algorithms proposed in
the literature. In this paper, we adopt the cosine distance in
place of the Euclidean distance for coping with the high-
dimensionality of the objects. The cosine distance is computed
as the angle between the feature (dissimilarity value) vectors
representing the objects (in our case, the paths).

Fig. 2. An example of two paths (p: Home-School-Work, and p: Home-
School).

Fig. 3. The corresponding DAG built for the pair of paths in Fig. 2. Please

note that, for the sake of simplicity, we show the weights only on four edges,

but all the weights are computed as explained in the text.

IV. EXPERIMENTAL ANALYSIS

In this section we describe the case study adopted to
evaluate the proposed system. We first generated 45 paths in
different areas of the city of Pisa. Then, we computed the
dissimilarity between these paths and applied the ARCA
clustering algorithm. Finally, we analyzed the clusters
obtained.

A. Path Generation

The 45 paths used in the experimental analysis were
randomly generated in the road network of the city of Pisa,
Italy (corresponding to an area of about 70 km2). The paths
belong to about 3 main areas of the city and have a length
ranging from 150 m to 3 km (we recall that we focus on urban
ride-sharing, thus the length of the paths may be shorter with
respect to traditional inter-city ride-sharing systems). For the

aim of this paper, they represent an example of the most
frequent or usual paths of users moving in the city by car, in the
time interval of about 1 hour. In fact, the aim is to analyze trips
with similar temporal constraints, i.e., users with similar needs,
and moving approximately in a similar area. Each path
consists, e.g., of a set of Q POIs (e.g., school, grocery,
department store, drugstore) or other relevant points (e.g., user
home, user work place) for the user of the path. The value of Q
ranges from 2 (meaning that the path is defined only in terms of
its origin and destination points) to 5. Each POI can be
provided as the name of the place, the complete address, or
directly by means of its GPS coordinates. The POIs are then
map-matched and translated in GPS coordinates.

B. Clustering of Paths

We computed the elements of the PP dissimilarity matrix
and applied the ARCA algorithm. As usual, we set the
fuzzification coefficient of the fuzzy c-means to 2. We
executed the ARCA algorithm with c = 2, c = 3, and c = 4
clusters. We employed a well-known cluster validity index, i.e.,
the Xie-Beni index [24], to determine the optimal number of
clusters. In fact, a typical practice suggested in [25] is to
consider as the optimal number of clusters the first minimum of
the Xie-Beni index. The first minimum for the Xie-Beni index
was found for c = 3 clusters, as shown in Fig. 4. Paths having
high membership degree (larger than 𝜔 = 0.5) to one cluster
(say cluster v), and low membership degrees to the remaining
clusters are associated with cluster v.

Fig. 4. The Xie-Beni index values.

Table I shows the results (in terms of membership degrees)
of the execution of the ARCA clustering algorithm, with the
number c = 3 of clusters identified by the Xie-Beni index. Figs.
5-7 show, respectively, the 3 clusters of paths on the city map.
The respective positioning of the 3 areas of the city, i.e., the
clusters to which approximately the paths belong, can be easily
determined thanks to the star symbol, indicating the city center.
Please note that some paths close to the boundary of the figures
may start/end out of the figure. As the table shows, the higher
membership degree is always greater than 0.75 for all the paths
except for 3 paths, namely paths #20, #23, and #24, where all
the membership values are lower than 𝜔. These three paths
were assigned to no cluster. By observing the paths on the map
(Fig. 6 for path #23 and Fig. 7 for paths #20 and #24), we can
note that paths #20, #23 and #24 are very short paths i.e., they
have a length lower than 200 m and are quite far from the other
paths.

The results show that the Path clustering module
successfully performs the clustering of paths. In fact, as done in
other papers [26], to obtain the “ground truth” clustering

Home

Home

School

Work

X1,0

X2,0

X3,0

Y3,1

Y3,2

Y1,1

Y2,1

D

Y1,2X2,1

X2,2

X3,2

X3,1 Y2,2

Y0,1

X1,1 Y0,2

X1,2

00

2 3 4
0.082

0.084

0.086

0.088

0.09

0.092

0.094

Number of clusters

X
ie

-B
e
n
i
in

d
e
x

results, we manually labelled the paths as belonging to 3 areas
of the city, and then we checked the labelling with the
clustering performed by the system.

TABLE I. MEMBERSHIP DEGREES OF EACH PATH TO THE THREE

CLUSTERS.

#path

Membership

degree to

#cluster 1

Membership

degree to

#cluster 2

Membership

degree to

#cluster 3

#cluster

1 0.99148994 0.00244746 0.00606259 1

2 0.95490033 0.00812565 0.03697400 1

3 0.99559369 0.00150113 0.00290516 1

4 0.99201985 0.00274745 0.00523269 1

5 0.98793974 0.00374690 0.00831334 1

6 0.00995498 0.01044541 0.97959959 3

7 0.00914573 0.00626595 0.98458831 3

8 0.02743599 0.00504299 0.96752101 3

9 0.00965743 0.01033874 0.98000382 3

10 0.01611162 0.00338497 0.98050339 3

11 0.07048132 0.76873916 0.16077950 2

12 0.02730657 0.03161453 0.94107889 3

13 0.06333103 0.78077246 0.15589650 2

14 0.06443096 0.78260220 0.15296682 2

15 0.06288524 0.77353835 0.16357640 2

16 0.94718076 0.00764978 0.04516944 1

17 0.77291616 0.02740858 0.19967525 1

18 0.99148761 0.00270049 0.00581188 1

19 0.97500981 0.00632495 0.01866522 1

20 0.48950549 0.05669654 0.45379795 -

21 0.01002262 0.97290460 0.01707276 2

22 0.01366032 0.96555733 0.02078234 2

23 0.43597302 0.45759169 0.10643527 -

24 0.10679680 0.42155047 0.47165272 -

25 0.13720656 0.01773537 0.84505806 3

26 0.00822758 0.97995014 0.01182227 2

27 0.00824899 0.98008631 0.01166469 2

28 0.01119239 0.97208018 0.01672742 2

29 0.00303132 0.99229453 0.00467413 2

30 0.11954798 0.81440203 0.06604997 2

31 0.86424369 0.03422620 0.10153010 1

32 0.02184706 0.01402594 0.96412698 3

33 0.01261069 0.97105932 0.01632998 2

34 0.00509321 0.98744987 0.00745690 2

35 0.05099951 0.08574314 0.86325734 3

36 0.97332568 0.00725452 0.01941979 1

37 0.05350623 0.87537348 0.07112027 2

38 0.01251605 0.96792623 0.01955771 2

39 0.97596058 0.01075760 0.01328180 1

40 0.06791020 0.76752092 0.16456887 2

41 0.00582395 0.98424635 0.00992969 2

42 0.01182435 0.96959419 0.01858145 2

43 0.88935471 0.03789428 0.07275099 1

44 0.00195688 0.99508776 0.00295535 2

45 0.00656585 0.98616225 0.00727189 2

C. Recommendation of rides

Once the clusters have been determined, we can exploit
them for a ride-sharing recommender. Indeed, paths belonging
to the same cluster are likely to be quite close to each other.
This means, for instance, that a driver can share her/his car
with other users who travel along paths belonging to the same
cluster, with acceptable deviations. The recommender can try
to match the users registered to the service starting from the
least dissimilar paths in the cluster. In addition, the proposed
matching criterion, since it is based on the clustering of paths,

provides groups, not simply pairs, of similar, i.e., near, paths,
by increasing the possibilities for the users to share a ride.
Obviously, it is always possible to select the best matching pair
of paths in a group by checking the lowest dissimilarity score
value.

V. CONCLUSIONS

We have presented a system for clustering similar paths in a
city road network, with the aim of supporting ride-sharing
recommendation. Users of paths belonging to the same cluster
can be likely interested in ride-sharing. The ride-matching
criterion is based on the values of a novel dissimilarity function
between pairs of paths. The dissimilarity function computed on

two paths p and p measures the length of the minimal

additional distance to be travelled by the user of path p to visit

all POIs of path p and p, by respecting the precedence
constraints between the points of each path. The problem can
be formulated and solved as a Sequential Ordering Problem,
aimed to find the shortest path that satisfies the precedence
constraints. Then, a fuzzy relational clustering algorithm is
employed for determining groups of similar paths, based on the
dissimilarity values between paths. We have discussed the
application of our system to 45 paths in the city of Pisa and
have shown that it is able to cluster these paths successfully.

As future work, we are going to implement the developed
system on a cloud computing architecture, with the aim of
guaranteeing elasticity and scalability. Further, we are planning
to evaluate the user satisfaction by explicit feedbacks from the
users of the service.

REFERENCES

[1] N. Bicocchi and M. Mamei, “Investigating ride sharing

opportunities through mobility data analysis”, Pervasive and

Mobile Comp., vol. 14, pp. 83–94, 2014.

[2] N. Pelekis, I. Kopanakis, M. Gerasimos, I. Ntoutsi, G.

Andrienko and Y. Theodoridis, “Similarity search in trajectory

databases”, in Proc. Int. Symp. Temporal Representation and

Reasoning (TIME), Alicante, Spain, 2007, pp. 129–140.

[3] G. Anastasi, M. Antonelli, A. Bechini, S. Brienza, E. D’Andrea,

D. De Guglielmo, P. Ducange, B. Lazzerini, F. Marcelloni and

A. Segatori, “Urban and social sensing for sustainable mobility

in smart cities”, in Proc. IFIP/IEEE Int. Conf. Sust. Internet and

ICT for Sustain. (SustainIT), Palermo, Italy, 2013, pp. 1–4.

[4] E. D'Andrea, P. Ducange, B. Lazzerini and F. Marcelloni, “Real-

Time Detection of Traffic From Twitter Stream Analysis”, IEEE

Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2269–2283, 2015.

[5] Y. Zheng, L. Zhang, X. Xie and W.-Y. Ma, “Mining interesting

locations and travel sequences from GPS trajectories”, in Proc.

18th Int. Conf. World Wide Web (WWW), Madrid, Spain, 2009,

pp. 791–800.

[6] T.M.T. Do and D. Gatica-Perez, “Contextual conditional models

or smartphone-based human mobility prediction”, in Proc. 2012

ACM Conf. Ubiquitous Comp. (UbiComp), Pittsburgh,

Pennsylvania, 2012, pp. 163–172.

[7] X. Xiao, Y. Zheng, Q. Luo and X. Xie, “Finding similar users

using category-based location history”, in Proc. 18th

SIGSPATIAL Int. Conf. Advances Geo. Inf. Syst. (GIS), San

Jose, CA, 2010, pp. 442–445.

[8] M. Furuhata, M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

and S. Koenig, “Ridesharing: The state-of-the-art and future

directions”, Transp. Research Part B: Methodological, vol. 57,

pp. 28–46, 2013.

[9] M. Piórkowski, “Collaborative transportation systems”, in Proc.

2010 IEEE Wireless Comm. and Networking Conf. (WCNC),

Sydney, Australia, 2010, pp. 1–6.

[10] W. He, K. Hwang and D. Li, “Intelligent Carpool Routing for

Urban Ridesharing by Mining GPS Trajectories”, IEEE Trans.

on Intelligent Transp. Syst., vol. 15, no. 5, pp. 2286–2296, 2014.

[11] M. Vlachos, G. Kollios and D. Gunopulos, “Discovering similar

multidimensional trajectories”, in Proc. 18th Int. Conf. Data

Eng. (ICDE), San Jose, CA, 2002, pp. 673–684.

[12] D. Teodorović and M. Dell’Orco, “Mitigating Traffic

Congestion: Solving the Ride-Matching Problem by Bee Colony

Optimization”, Transp. Planning and Technology, vol. 31, no. 2,

pp. 135–152, 2008.

[13] K. Ghoseiri, A. Haghani, and M. Hamedi (2011, January), Real-

time rideshare matching problem. Final Report UMD-2009-05.

Mid-Atlantic Universities Transportation Center, US.

[14] C. Tian, Y. Huang, Z. Liu, F. Bastani, and R. Jin, “Noah: a

dynamic ridesharing system”, in Proc. 2013 ACM SIGMOD Int.

Conf. Manage. Data (SIGMOD), New York, NY, 2013, pp.

985–988.

[15] P. Corsini, B. Lazzerini and F. Marcelloni, “A new fuzzy

relational clustering algorithm based on the fuzzy C-means

algorithm”, Soft Computing, vol. 9, no. 6, pp. 439–447, 2005.

[16] L.F. Escudero, “An inexact algorithm for the sequential ordering

problem”, European J. of Operational Research, vol. 37, no. 2,

pp. 236–249, 1988.

[17] Q. Lu, F. Chen and K. Hancock, “On path anomaly detection in

a large transportation network”, Computers, Env. and Urban

Syst., vol. 33, no. 6, pp. 448–462, 2009.

[18] V. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals”, Soviet Physics—Doklady vol. 10, no.

10, pp. 707–710, 1966.

[19] L. Chen, M. T. Özsu and V. Oria, “Robust and fast similarity

search for moving object trajectories”, in Proc. 2005 ACM

SIGMOD Int. Conf. Manage. of Data (SIGMOD), Baltimore,

MD, 2005, pp. 491–502.

[20] D. Berndt and J. Clifford, “Using dynamic time warping to find

patterns in time series”, in Proc. AAAI ‘94 Workshop Knowl.

Discovery in Databases, Seattle, WA, 1994, pp. 229–248.

[21] J.J.-C. Ying, E.H.-C. Lu, W.-C. Lee, T.-C. Weng and V.S.

Tseng, “Mining user similarity from semantic trajectories”, in

Proc. 2nd SIGSPATIAL Int. Workshop Location Based Social

Networks (LBSN), San Jose, CA, 2010, pp. 19–26.

[22] R. Sedgewick and K. Wayne, Algorithms, 4th Edition. Addison-

Wesley Professional, Boston, MA, 2011.

[23] J.C. Bezdek, Pattern Recognition With Fuzzy Objective

Function Algorithms. Springer-Verlag US, 1981.

[24] X.L. Xie and G. Beni, “A validity measure for fuzzy clustering”,

IEEE Trans. Pattern Anal., Mach. Intell., vol. 13, no. 8, pp.

841–847, 1991.

[25] M. Setnes and R. Babuška, “Fuzzy relational classifier trained

by fuzzy clustering”, IEEE Trans. Syst., Man, and Cybernetics,

Part B: Cybernetics, vol. 29, no. 5, pp. 619–625, 1999.

[26] G.-P. Roh and S.-W. Hwang, “Nncluster: An efficient clustering

algorithm for road network trajectories”, in Proc. 15th Int. Conf.

Database Systems Adv. App. (DASFAA), Tsukuba, Japan, 2010,

pp. 47-61.

Fig. 5. Paths corresponding to cluster #1. (The underlying map is provided by Google®).

http://www.sciencedirect.com/science/article/pii/0377221788903335
http://www.sciencedirect.com/science/journal/03772217

Fig. 6. Paths corresponding to cluster #2 and path #23. (The underlying map is provided by Google®).

Fig. 7. Paths corresponding to cluster #3 and paths #20 and #24 (The underlying map is provided by Google®).

