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The handling behavior of vehicles is an important property for its relation to performance
and safety issues. In 1970s Pacejka did the groundwork for an objective analysis introducing
the handling diagram and the understeer coefficient, based on a simplified single-track model.
In more recent years the understeer concept is still mentioned but the handling is actively
managed by Direct Yaw Control (DYC).

In this paper an accurate analysis of the vehicle handling is carried out, considering also the
effect of drive forces. This analysis brought to a new formulation of the understeer coefficient,
which is almost equivalent to the classical one, but it can be obtained by simple measures
on real vehicles. In addition, it relates the vehicle yaw torque to the understeer coefficient,
filling up the gap between the classical handling approach and the DYC.

A multibody model of a Formula SAE car was used to perform quasi-steady state simu-
lations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and
wheel drive arrangements were simulated and the results are discussed. In particular, the
handling behaviors of the rear wheel drive (RWD) and the front wheel drive (FWD) archi-
tectures were compared, finding an apparently surprisingly result: for the analyzed vehicle
the FWD is less understeering than for RWD.

The relation between the yaw torque and the understeer coefficient allowed to understand
this behavior and seems to be an useful tool in independent wheel drive control.

Keywords: vehicle dynamics; handling diagram; Formula SAE; understeer; wheel drive;
yaw control.

1. Introduction

The turning behavior of vehicles is a very important characteristic due to its strict
correlation with the vehicle safety and performance. The steady-state turning analy-
sis was introduced by Pacejka [1] in 1973, who defined the handling diagram and the
over/neutral/understeer (understeer coefficient in the following) concepts, which are be-
lieved as fundamental cornerstones in vehicle dynamics. The handling diagram depicts
the cornering behavior of the vehicle as a function of the sole lateral acceleration in the
whole operating range (from no lateral acceleration to the adherence limit). The under-
steer coefficient gives a measure of the wheel steering change as a function of the lateral
acceleration. This approach, which was developed on the basis of the single-track (or
bicycle) model, is very useful in most cases, even if it is confined to very small slip and
steering angles.
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More recently, a more general approach was proposed by Frendo et al. [2–4], who ex-
tended the concept of understeer, showing its dependence on both the lateral acceleration
and another parameter, e.g. the steering wheel angle, the vehicle speed or the turning
radius [2, 3]. In particular, they also discussed the influence of drive forces on the yaw
torque at steady state, as in the case of locked differential [4].

Even if in the technical literature there are many papers dealing with direct yaw control
(DYC), very few papers, beyond the ones cited above, deal with a through analysis of
the steady state turning behavior of a vehicle from a physical point of view. On the
contrary, many papers deal with non steady-state yaw control. The DYC consists in
imposing separately traction or braking forces to the different wheels to stabilize the
vehicle behavior. In [5], the β-method is introduced as a way of assessing the steering
effect on the yaw behavior of a vehicle as a function of the center of gravity side-slip
β. In particular, it was found that as the side-slip rises the vehicle becomes unstable
and the influence of steering on the yaw torque reduces. For this reason, Furukawa et
al. [6] proposed a method to control the side-slip angle based on 4 wheel steering (4WS)
and DYC. 4WS is very accurate before the tire lateral force saturation, whereas DYC is
effective also for high lateral accelerations. The β-method was also used by Bosch [7] in
the electronic stability program (ESP), which foresees the use of traction and braking
force to stabilize the vehicle.

Recently the capability of electric drive to control independently the torque at each
wheel with low time-lag, both in traction and braking, allowed to consider more accurate
strategies for DYC. Shino [8] proposed a DYC algorithm in order to maintain the vehicle
side slip constant and equal to 0 during dynamic maneuvers and verified it with numerical
simulations. Osborn et al. [9] determined, on the basis of Dugoff tire model [10], the
sensitivity of the vehicle yaw to the distribution of individual drive forces in an AWD. The
Dugoff model was also used by Piyabongkarn et al. [11] which concluded, considering the
yaw rate derivative in very a simplified model (without load transfers), that the rear drive
wheel induces oversteer. Considering steady state maneuvers, Liang et al. [12] proposed
a yaw moment control which maximizes the axle yaw moment due to longitudinal forces
without modifying the total traction (or braking) force. This method does not affect the
perception of driver in terms of longitudinal acceleration but, as stated in [13], due to
the scrub radius, the traction force can generate change in the steering wheel torque.

In terms of vehicle performance, several efforts have been done in order to use the
longitudinal forces to increase the lateral acceleration limit by simultaneously exploiting
the four wheels maximum adherence, optimizing the lateral and longitudinal forces [14–
16].

In almost all the cited papers the focus was on the vehicle yaw control and strongly sim-
plified models were often used for both tire behavior and vehicle dynamics. In this paper,
a new approach is proposed to relate the useful steady state analysis (handling diagram
and understeer coefficient) to the yaw torque. In particular an alternative expression of
the understeer coefficient is obtained starting from quasi-steady state maneuvers which
can be easily performed on actual vehicles. The new understeer coefficient formulation is
based on the knowledge of the trajectory curvature time derivative or of the yaw torque
deriving from all the tire forces.

Some simulations were carried out in order to validate such new expression of the
understeer coefficient. A 15-dof multibody model of a Formula SAE car [17] was used to
perform the simulations, which consisted in constant longitudinal and constant steering
rate maneuvers. The PAC2002 [18] model which considers the combined tire slips was
used to simulate the tire forces. Several vehicle configurations were chosen to highlight
the influence of car set-up on the yaw torque and on the understeer coefficient, including
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the effect of rear or front drive.
Some new concepts are also derived, which may be considered in the yaw control

strategies.

2. Vehicle dynamic equilibrium

Nowadays the dynamic analyses of vehicles are performed with complex models which
take into account many details of the vehicle dynamics, even if many basic concepts can
be understood with simplified model. For this reason, before performing the multibody
simulations described in Section 5, the double-track model shown in Fig. 1 is considered.
This model is needed to write the dynamic equations of the vehicle, which are used to
draw the handling parameters as the understeer coefficient in both the classical and the
new formulation.

The scheme refers to a left turn and an all-wheel drive vehicle. This model is composed
of one rigid body (no suspension kinematics is considered) moving on the plane and
having 3 dof. The origin of the reference frame is assumed in correspondence of the
projection of the vehicle center of mass G on the horizontal plane. The vehicle wheelbase
is l, the front track is t1 and the rear track is t2. The distance along the x-axis between
the front [rear] axle and G is called a1 [a2]. The wheels steer angles are δij , where the
first subscript i identifies the axle (i = 1 is front, i = 2 is rear) and the second subscript
j identifies the side (j = 1 is left, j = 2 is right). The rear wheels are not assumed to
steer.

Figure 1 shows also the forces and the moments acting on each wheel. In particular the
longitudinal tire forces are called Xij , the lateral tire forces are called Yij . In this model,
the forces are supposed to be applied in the center of the tire contact patch and the self-
aligning moments Mij are taken into account to consider the real point of application of
the lateral forces. Since the vehicle motion is assumed plane and the yaw rate r is not
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Figure 1. Double-track vehicle model - Dimensions and forces.
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Figure 2. Double-track vehicle model - Kinematics and slip angles.

0, it is possible to define the instantaneous center of velocity C. The velocity V of G is

V = rk̂× CG = ûi + v̂j (1)

where î, ĵ, k̂ are the unit vectors along x, y and z axes, and u and v are the longitudinal
and lateral velocity respectively. The side-slip angle β, computed in G, is

β = arctan
(v
u

)
(2)

and similarly the side-slip angle βij can be computed at each wheel considering the
longitudinal and lateral velocity at each point (Fig. 2). The slip angles αij are finally
computed as follows

αij = δij − βij . (3)

The trajectory curvature ρ, which is the reciprocal of the turning radius R represented in
Fig. 2, can be computed starting from the yaw rate and the longitudinal speed as follows

ρ =
r

u
. (4)

The longitudinal, lateral and yaw equilibrium of the vehicle are expressed by

m(u̇−βρu2) = X = X11 cos δ11 +X12 cos δ12 +X21 +X22−Y11 sin δ11−Y12 sin δ12 (5a)

m(β̇u+u̇β+ρu2) = Y = Y11 cos δ11+Y12 cos δ12+Y21+Y22+X11 sin δ11+X12 sin δ12 (5b)
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J(ρ̇u+ u̇ρ) = N = (Y11 cos δ11 + Y12 cos δ12 +X11 sin δ11 +X12 sin δ12)a1 − (Y21 + Y22)a2+

+(X12 cos δ12 −X11 cos δ11)t1/2 + (X22 −X21)t2/2+

+(Y11 sin δ11 − Y12 sin δ12)t1/2− (M11 +M12 +M21 +M22),

(5c)

where m is the vehicle mass and J is the yaw moment, X, Y and N are the sum of
longitudinal forces, lateral forces and yaw moments respectively, evaluated with respect
to the vehicle reference frame introduced in Fig. 1. The aerodynamic forces, the tire
rolling resistance forces and the road slope are neglected. In addition to the planar
equilibrium, also the load transfer and the combined non-linear longitudinal and lateral
tire characteristics have to be considered. These expression can be found in [19] and are
considered in the multibody analysis. Indeed, Eq. 5 can not be solved analytically but
some preliminary general observations can be done.

3. Understeer gradient and yaw torque for constant speed maneuver

3.1. Understeer gradient

Starting from the previous Eq. 5 and assuming the lateral acceleration ay and the steering

angle δw as state variables, the steady-state map (β̃, ρ̃) can be computed considering
steady state conditions (u̇ = β̇ = ρ̇ = 0). The gradients of β̃ and ρ̃ can be defined
following [19]

∇β̃ =

(
∂β̃

∂ay
,
∂β̃

∂δw

)
= (βy, βδ) (6a)

∇ρ̃ =

(
∂ρ̃

∂ay
,
∂ρ̃

∂δw

)
= (ρy, ρδ) . (6b)

Considering the curvature gradient ∇ρ̃, it can be demonstrated [19] that

ρy = −1

l

∂(α1 − α2)

∂ay
= −1

l

∂(δ − lρ)

∂ay
= −K

l
(7a)

ρδ =
τ

l
, (7b)

where K is the understeer coefficient as introduced by Pacejka [1] and τ is the gear ratio
of the steering system, which, for simplicity, is assumed equal for the internal and the
external front wheel (parallel steering)

τ =
δ11

δw
=
δ12

δw
. (8)
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3.2. Yaw torque analysis

In order to simplify the analysis and to span the whole lateral acceleration range, this
analysis deals with quasi-steady state conditions. In particular, constant speed (u̇ = 0,
u = const.) and constant steering wheel rate maneuvers (δ̈w = 0, δ̇w = const.) are con-
sidered. It is worth noting that this maneuver is representative of many normal driving
operations. Indeed, in normal driving, the vehicle speed is imposed by the throttle re-
quest and the speed varies on the basis of engine response and vehicle inertia, with a
relatively long time constant. On the contrary the steering angle of the front wheels is
directly applied by the driver by the steering wheel and its response is faster. Under
these conditions, the inertial terms of Eq. 5 are

−mβρu2 = X̃ (9a)

m(β̇u+ ρu2) = Ỹ (9b)

Jρ̇u = Ñ . (9c)

It is worth noting that, even if the speed is constant and no aerodynamic or tire rolling
resistance forces are considered, the resultant of the longitudinal forces X̃ is not zero due
to the effect of the slip angle β.

Considering the yaw moment equation (Eq. 9c), the total curvature derivative ρ̇ can
be expressed as follows

ρ̇ =
dρ (t, ay(t), δ(t))

dt
=
∂ρ

∂t
+

∂ρ

∂ay

day
dt

+
∂ρ

∂δw

dδw
dt

. (10)

In the previous equations, if the steering wheel speed is low, the quasi-steady state
condition is verified, then, the partial derivative ∂ρ

∂t can be neglected and the partial
derivative terms defined in Eq. 7a and Eq. 7b can be used to obtain

ρ̇ ' −K
l
ȧy +

τ

l
δ̇w. (11)

The term ȧy can be obtained starting from the lateral acceleration definition for constant
speed maneuvers

ȧy =
d(β̇u+ ρu2)

dt
= β̈u+ ρ̇u2 ' ρ̇u2 (12)

where in normal driving conditions it can be reasonably assumed that β̈u � ρ̇u2. Sub-
stituting Eq. 12 in Eq. 11, a new definition of the understeer coefficient can be obtained

K ' 1

u2

(
τ δ̇w
ρ̇
− l

)
, (13)
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which can be written in an alternative way as a function of the yaw torque Ñ

K ' 1

u2

(
τ δ̇wJu

Ñ
− l

)
. (14)

Equation 13 allows to evaluate the understeer coefficient on the basis of δ̇w and ρ̇, e.g. by
using an encoder on the steering wheel and two accelerometers in two different positions
of the vehicle or, alternatively, an encoder and a gyro sensor. It is worth noting that, using
Eq. 13, the understeer coefficient can be measured experimentally without requiring an
accurate vehicle model or the knowledge of the tire characteristics. In addition, in many
cases, the understeer coefficient is computed starting from the values of the slip angles,
which can be computed only if the vehicle side-slip angle β is known (Eq. 3). Using Eq. 13
the measure of β, which is difficult to be acquired, is no more necessary.

Equation 14 is very important since it opens-up the possibility to control the vehicle
turning behavior actively, since it relates the classical definition of understeer to the
yaw torque. Indeed, when a target value K̄ of understeer is assumed, by measuring the

steering wheel speed
¯̇
δw, the actual understeer coefficient is assessed by Eq. 13, the yaw

torque variation ∆N can be controlled proportionally to the understeer coefficient error

∆N = ky(K̄ −K) (15)

where ky is a parameter to be tuned, which depends on the specific vehicle parameters.
The torque control following the logic proposed in Eq. 15 can be used both for vehicle
performance and vehicle safety.

4. Drive force effect on the yaw torque

In the classical steady-state analysis, the influence of drive forces on the yaw torque is
neglected because the problem is linearized and it is assumed that, even if the steering
wheel angle is not zero, the drive forces act longitudinally with respect to the vehicle
reference frame defined in Fig. 1. If a locked differential is considered the influence of drive
forces arises explicitly [4]. However, even if the differential is open and FWD or AWD
vehicles are considered, the drive forces influence also the lateral and yaw dynamics.

Indeed, the longitudinal equilibrium stated in Eq. 9a shows that, if ρ and β are not
zero, the drive forces are required to keep the speed constant. In addition, considering
the lateral equilibrium Eq. 5b, it is worth noting that, in FWD and AWD, a part of the
drive forces contributes to the lateral equilibrium. Finally, considering Eq. 5c, in addition
to the usually considered contribution of the tire lateral forces and self-aligning moment
TY (Eq. 16a), other terms contribute to the yaw equilibrium. In particular, in FWD and
AWD the front wheel drive forces produce the yaw moment Tf (Eq. 16b), while in the
case of non-open differentials, the yaw torque Td (Eq. 16c) due to the difference along
the x-axis between right and left longitudinal forces has to be considered. In general:

TY = (Y11 cos δ11 + Y12 cos δ12)a1 − (Y21 + Y22)a2 + (Y11 sin δ11 − Y12 sin δ12)t1/2+

−(M11 +M12 +M21 +M22)

(16a)
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Tf = (X11 sin δ11 +X12 sin δ12)a1 (16b)

Td = (X12 cos δ12 −X11 cos δ11)t1/2 + (X22 −X21)t2/2 (16c)

It is worth noting that the sign of Tf is always positive in left turn maneuver. On the
contrary, the sign of Td can not be predicted easily and its effect is discussed deeply in
[4]. Similar considerations could be done in right turn. In any case, Tf is concordant with
the steering angle and the yaw rate.

These yaw torques, which are produced by the drive forces, are usually neglected in
the steady-state analysis but affect the vehicle handling, especially for high steering and
lateral acceleration values, as it will be shown.

5. Multibody simulation

In order to perform skid maneuvers and to verify the new formulation of understeer
coefficient given in Eq. 13, a multibody model of a Formula SAE car, already developed
by the authors in MSC Adams View environment and presented in [17], was used. The
effects on the vehicle turning behavior of set-up parameters (i.e. front/rear roll stiffness)
and drive architecture were simulated.

5.1. Model description

The model has 15 degrees of freedom (dof): 6-dof are related to the sprung mass motion,
4-dof to the wheels rotation, 4-dof to the suspensions motion and 1-dof to the steering
wheel rotation. The wheelbase is 1580 mm, the front track is 1210 mm, the rear track is
1110 mm and the vehicle mass, including the driver, is 285 kg. The center of mass inertia
tensor is principal and the yaw moment of inertia J is 163 kgm2.

The steering wheel is connected to the front wheels by a rack-pinion system which
guarantees parallel steering in the whole operating range. Both front and rear suspension
architecture is double non-parallel A-arm with push rod and tunable anti-roll bar. The
tires characteristics, which were supplied by the Formula SAE Tire Test Consortium, are
imported as PAC2002 parameters [18] and include the vertical, lateral, drive, self-aligning
and combined effects.

The traction and braking torques can be imposed separately to each wheel.

5.2. Maneuvers and vehicle configurations description

A constant speed and constant steering wheel rate maneuver was considered. The target
speed value was 15 m/s, whereas the steering wheel rate δ̇w was kept constant at 2 deg/s
in order to perform quasi-steady state maneuvers.

The speed was imposed as a target value uT and a proportional control was developed
in order to act on the total torque T supplied to the drive wheels as follows

T = k(uT − u) (17)

where u is the measured speed of the center of mass of the vehicle and k is the torque
gain which was set to 7500 Ns.
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The torque was computed for each wheel as follows

T1j = ν
T

2
(18a)

T2j = (1− ν)
T

2
(18b)

where ν is the front to rear traction ratio.
Four vehicle configurations were considered:

• rear wheel drive, medium roll stiffness on both front and rear axles (reference config-
uration - RWD-m);

• rear wheel drive, high roll stiffness on front axle and low roll stiffness on rear axle
(more understeering than reference - RWD-u);

• rear wheel drive, low roll stiffness on front axle and high roll stiffness on rear axle
(more oversteering than reference - RWD-o);

• front wheel drive, medium roll stiffness on both front and rear axles (FWD-m).

Each simulation started with the vehicle in straight line at constant speed (u = 15
m/s, δw = 0) and then the steering wheel angle started increasing. For each simulation
it was verified that the speed was kept almost constant and equal to the reference value
uT (with variations below 1%), as proved by Fig. 3. Each simulation was interrupted
when the lateral acceleration of the sprung mass started decreasing, meaning that the
adherence limit was reached.
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Figure 3. Actual vehicle speed (a) and steering wheel (b) time history.

6. Results

The lateral acceleration time history is shown in Fig. 4 for all the simulations. Even if the
simulations were performed with the same vehicle and only set-up and drive architecture
were changed, the handling behavior is considerably different between each configuration.
In particular, considering as reference the RWD-m set-up, the FWD-m and RWD-o
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Figure 4. Lateral acceleration time history.

configurations reach higher lateral acceleration values in a shorter time, while RWD-u
reaches the lowest lateral acceleration value.

A more effective representation of the vehicle handling is given in Fig. 5 where the
classical handling diagram, as introduced in [1], is shown. The understeer coefficient was
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Figure 5. Handling diagram.

then computed differentiating the handling diagram profile with respect to the lateral
acceleration

K =
∂(α1 − α2)

∂ay
(19)

and its profile is shown in Fig. 6. The RWD vehicle set-ups behaves as it could be
predictable: the most understeering is the RWD-u while the least, among the RWD
ones, is the RWD-o. This difference is due to the different axle load transfer for the
two set-ups: the RWD-u set-up has more load transfer on the front axle and the front
axle characteristic is worse [19] than the rear axle one. For this reason the understeer
coefficient is higher along the whole acceleration range. The opposite happens for the
RWD-o. The reference vehicle, RWD-m, has an halfway behavior.
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Figure 6. Understeer coefficient.

The understeer coefficient profile for the FWD-m is rather surprisingly: it is almost
0 in the whole lateral acceleration range, proving that, for the considered vehicle, this
configuration is the least understeering among the ones considered. This is in contrast
with what is usually found in the literature, but it is supported by the torque analysis
proposed in the Section 7.

In addition to the classical way of computing the understeer coefficient, the new formula
presented in Eq. 13 was used to compute K. It is worth noting that, for the considered
maneuver, all the parameters, apart from ρ̇, enclosed in Eq. 13 are constant. For this
reason ρ̇ was measured in the multibody model and its profile is shown in Fig. 7.
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Figure 7. Time-derivative of the curvature ρ.

Figure 8 shows the comparison between the understeer coefficient computed following
the classical formulation, which assumes the knowledge of the tire slip angles, and the
new formulation, which assumes the knowledge of the sole curvature time-derivative ρ̇.
The differences between the two ways of computing the understeer parameter are almost
null, and it is due to the quasi-steady state hypothesis (Eq. 10) and to the simplification
made in Eq. 12 (β̈u = 0).
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Figure 8. Comparison between the understeer coefficient computed considering the classical (black) and new (red)

formulation.

It is worth noting that, in real vehicles, the measure of the tire slip angle is difficult to
perform, while the curvature time derivative can be obtained with conventional gyros or
accelerometers.

7. Yaw torque discussion

In this section the RWD-m and FWD-m simulations will be considered, in order to
infer the influence of drive force on the vehicle handling behavior. Indeed, as stated in
Eq. 5c, the drive forces affects both the yaw torque and the lateral dynamics. Section
4 distinguished three different contributions to the yaw torque: TY , Tf and Td. TY is
present in all the drive architectures, while the effect of Tf appears only if FWD or AWD
are considered. Finally, Td is present only in vehicle with non-open differential and this
case is not discussed in this paper.

Figure 9 shows the yaw torque contributions for both RWD-m and FWD-m. The yaw
torque due to the lateral force for RWD-m is almost constant up to 12 m/s2 and then start
decreasing due to the saturation of the front axle characteristic provoking understeer.
Concerning FWD-m, the yaw torque due to lateral force start decreasing for lower values
of lateral acceleration, since the front tire are undertaken in both longitudinal and lateral
slip, but the torque Tf due to the drive force start increasing simultaneously. Indeed as
the lateral acceleration rises, both the drive force and the steering wheel angle rises,
provoking the increment of Tf .

The total yaw torque Ñ is shown in Fig. 10: concerning RWD-m its profile is identical
to the Ty profile since Tf = 0, while for FWD-m it is almost constant within all the
lateral acceleration range, provoking a less understeering behavior to the vehicle.

In order to furtherly support the results, the center of mass trajectory is shown in
Fig. 11(a) where it is remarkable that the FWD-m vehicle drives a tighter trajectory un-
der the same maneuver conditions. The path length of the FWD-m maneuver is shorter,
since it is interrupted earlier as shown in Fig. 4, even if in correspondence of higher a
lateral acceleration value. This is also confirmed by the steering wheel profile shown in
Fig. 11 where, if the lateral acceleration is above 10 m/s2, the steering wheel angle is
lower for FWD-m than RWD-m

It is worth remarking that these results strongly depend on the combined characteristic
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Figure 9. Yaw torque due to lateral (a) and drive forces(b) versus lateral acceleration.
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of the tire model, since both the longitudinal and the lateral force have to be considered
simultaneously.

8. Conclusions

In this paper a new formulation of the understeer coefficient was proposed. This is ob-
tained in the case of constant speed maneuver and it is based on the knowledge of the
steering wheel rate and the yaw rate time derivative. The main advantage of this for-
mulation is that these quantities can be easily acquired in real vehicles with encoders,
accelerometers or gyros which, in many cases, are already present in the vehicle. Indeed,
considering the classical formulation, the tire slip angle are required which are difficult
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Figure 11. Center of mass trajectory (a) and steering wheel versus lateral acceleration (b).

to measure.
The effectiveness of the new formulation was proved with a multibody model, which was

previously developed by the authors. In particular, the understeer coefficient computed
following the classical method was compared to the one computed by the new method
for different vehicle set-ups. No appreciable difference was found.

The new formulation allowed also to discuss about the relationship between the yaw
torque and the understeer coefficient in an objective way. An alternative expression
of the understeer coefficient, which is explicitly related to the vehicle yaw torque, was
proposed. In the authors opinion, this formulation could be a base to develop yaw torque
control which can keep the desired value of the understeer coefficient within the whole
acceleration range.

Finally, basing on the yaw torque analysis, the influence of the drive architecture on
the vehicle turning behavior was discussed. Apparently surprisingly it was found that,
for the analyzed vehicle, the FWD architecture is less understeering than the RWD one.
Indeed, even if the yaw torque due to the lateral forces in FWD decreases more quickly
as the acceleration rises then in RWD, the yaw torque torque due to driving forces rises.

These results confirm the relationship between the understeer coefficient and the yaw
torque presented in this paper, which can be used in yaw torque control to enhance
vehicle performance and safety.
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