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Abstract 

Polymeric binders for solid propellants are usually based on hydroxyl-terminated 

polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic 

polyethers represent an interesting alternative, but may have poorer mechanical properties. 

Polybutadiene-polyether copolymers may join the advantages of both. Four different ether-

butadiene-ether tri-block copolymers were prepared and azidated starting from halogenated 

and/or tosylated monomers and using HTPB as initiator. The presence of the butadiene block 

complicates the azidation step and reduces the storage stability of the azidic polymer. 

Nevertheless, the procedure allows modifying the binder properties by varying the type and 

the lengths of the energetic blocks. 
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1. Introduction 

In the most common propellant formulations, the solid ingredients are mixed with a polymer, 

which is subsequently cast cured to give an elastomeric network. The polymer binder acts by 

wetting the solid thus providing a void-free matrix that allows the formulation to be cast into 

large and irregular cases [1]. The polymer provides mechanical integrity to the final product 

and, together with a plasticiser, ensures safety during handling, since it absorbs and dissipates 

energy from hazardous stimuli that may happen during storage and transportation [2]. The 

most commonly used binder is hydroxy-terminated polybutadiene (HTPB) cross-linked with 

isocyanates to give a polyurethanic network. Alternatively, carboxy-terminated polybutadiene 

and hydroxyl-terminated polyethers have been also suggested [2]. HTPB is used worldwide 

and its success from the mechanical and safety point of view is well known and recognized. 

However, from the propellant point of view, due to its inert character, there are many cases 

when it is just a dead weight, which does not contribute to the overall energy output and limits 

the performance of the composition unless there is a high solids loading. On the other hand, 

high solids loadings induce processing and vulnerability problems. Therefore, the main goal 

of binder research is to find a formulation that reduces vulnerability, shock and impact 

insensitivity without lowering performance. A possible approach is to substitute HTPB with 

alternative materials, such as the so-called energetic-polymers, that act as binder and at the 

same time contribute to the output energy. The simplest way to achieve this result is the 

inclusion of functional groups (such as nitro (NO2), nitrate (NO3) or azide (N3)), which may 

increase the internal enthalpy of formation of the formulation and/or improve the overall 

oxygen balance. Of course, this has to be done by preserving all the main requirements of a 

binder, which should [3]: 

(a) be a liquid with a good processability at the mixing temperatures (30-60 °C); 
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(b) be curable, with minimum evolution of heat at 40-80 °C and give an elastomeric 

network with good mechanical properties; 

(c) have a glass transition temperature possibly below -40 °C; 

(d) be compatible with all the other ingredients of the formulation. 

During the last decades, several energetic binders have been synthesized and here we will 

mention only the most promising ones, but the interested reader may find detailed information 

and a much longer list in the reviews by Agrawal [4], Provatas [2], Badgujar et al. [5], Sikder 

and Sikder [6] and Gaur et al. [7]. 

The first idea that comes to mind is the introduction of a limited quantity of energetic groups 

directly into HTPB. The early studies to produce nitrated HTPB (NHTPB) suggested a 

nitromercuration-demercuration route, [8], while later on Colclough et al. [1] started from 

epoxidation of HTPB and then reacted N2O5 with epoxide groups to form dinitrate esters. Of 

course, the level of nitration affects also thermal stability and mechanical properties and the 

authors suggested that a nitration corresponding to 10% of double bonds gives a good 

compromise between energy output, mechanical properties and miscibility with energetic 

plasticizers. 

Alternatively, the energetic binders may have a chemical structure completely different from 

HTPB and the most studied one are those containing nitro or azidic groups. In the first case, 

popular polymers derives from cationic polymerization of 3,3-(nitratomethyl) methyl oxetane 

3-nitratomethyl-3-methyl oxetane (NIMMO) and glycidyl nitrate (GLYN). Again, the OH-

terminated chains are able to crosslink into polyurethane rubbers. By comparing these nitrated 

polymers, Agrawal [4] suggested that NHTPB has the lower production cost, while the other 

two have better performances. In the case of azidic functionalities, there is a slightly longer 

list of candidates, but the most studied one is glycidyl azide polymer (GAP). GAP has been 

employed also as a plasticizer [4] and several publications may be found concerning its 
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synthesis as well as its thermal behavior and explosive properties [9-25]. The GAP synthesis 

was first described in a patent filed in 1972 by Vandenburg [26] who did azidation of 

polyepichlorohydrin (PECH) by using sodium azide in dimethylformamide. Twenty years 

later, Frankel et al. described a semi-industrial production in USA, sponsored by the Air 

Force Astronautic Laboratory [27]. The PECH was obtained by polymerization of 

epichlorohydrin (ECH) by using glycerol as the initiator to give a triol polymer easily cross-

linkable with isocyanates. In the following decades, the synthetic route has not changed 

significantly and sodium azide remains the preferred reagent. The azidation can be performed 

in different organic solvents and in water [27, 28]. In the first case, the reaction is much faster 

and in dimethyl sulphoxide (DMSO) it is reported to occur at 90-95°C within 12- 18 h. In 

water, the use of a phase transfer catalyst is necessary and the reaction may take several days 

before completion at comparable temperatures. Nevertheless, the two processes give GAP of 

comparable quality. PECH may be in linear, star or branched form depending on the catalyst, 

initiator and operating conditions. Consequently, the number of hydroxyl functionalities per 

chain can be modulated in a wide range of values. Moreover, PECH is now commercially 

available as well as GAP. Starting from GAP, several alternative organic azides have been 

developed in the last years and the use of the azido group is gaining more and more attention 

since it has also other advantages like i.e. reducing the flame and smoke in exhaust gases, thus 

making the propellant formulations more eco-friendly [5]. Some examples of suggested 

polymeric azides are poly(3,3 bis(azidomethyl)oxetane-co-ε-caprolactone) [29], 3,3 

bis(azidomethyl)oxetane-tetrahydrofuran [30, 31] and polyglycidylazide-b-poly(azidoethyl 

methacrylate) [32]. Among the proposed ones, the polyoxetanes, first synthesized by Manser 

[33-35], gained an important role in the field of energetic binders. Manser started from 

monomers such as 3-nitratomethyl-3-methyl oxetane (NIMMO), 3,3-bis-

(azidomethyl)oxetane (BAMO) and its analog monofunctional 3-azidomethyl-3-methyl 
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oxetane (AMMO). Later on, he also described the synthesis of many different oxetanes with 

cubyl and carboranyl groups, but the difficult syntheses involved have so far precluded their 

evaluation in large-scale formulations [1]. In the case of BAMO and AMMO, a chlorinated or 

tosylated monomeric precursor was azidated and then subjected to cationic ring-opening 

polymerization (CROP) by using a diol and a Lewis acid as catalyst. The classical Active 

Chain End (ACE) mechanism proceeds by donation of a proton from initiator to the oxetane, 

which then propagates with more oxetane monomers until the chain is terminated either with 

water or alcohol to give the hydroxy-terminated polymer. The number of hydroxyl 

functionalities per chain should theoretically coincide with those of the alcohol used as 

initiator. 

The molecular weight can be adjusted by changing monomer feed rates and the ratio of diol to 

Lewis acid, but of course a post-polymerization chain elongation by using di-isocyanates is 

always possible. Unfortunately, the ACE mechanism has some disadvantages e.g. a lack of 

molecular weight control and product reproducibility, poor initiator incorporation and 

formation of cyclic oligomers [36]. For these reasons, an Activated Monomer Mechanism 

(AMM), which involves the concept of living polymerization, where the OH-terminated 

polymer reacts with an “active” monomer, may be preferable since it avoids the formation of 

unstable and highly active cationic propagating species and favors the molecular weight 

control and reproducibility of the results. Side reactions, including cyclization, are strongly 

reduced in AMM and well-defined linear products can be obtained [7]. However, it must be 

emphasized that it is not easy to drive the reaction toward the desired mechanism and often 

both mechanisms may be present at the same time [37, 38]. 

It is important to introduce another aspect, related to safety during the synthetic process. In 

contrast to the above-mentioned polymers, the low molecular weight azide monomers are 

highly dangerous and may explode without apparent reasons during handling. In addition, the 
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polymerization of energetic monomers requires careful control of reaction conditions since 

initiators may not be compatible with the energetic groups. Consequently, this polymerization 

is seen as an advanced technology and high-risk approach. Alternative to azidation-

polymerization is the polymerization-azidation route, where the azidation step follows that of 

polymerization of the chlorinated-tosylated monomers. This is a low- tech., low-risk 

approach, but gives less opportunity to tailor the final properties of the polymer and suffers 

from the usual complications of modifying a macromolecule [36]. Taking into account the 

risks associated to the scale up for an industrial production, researchers are nowadays aiming 

toward the polymerization followed by azidation. With regard to the three candidate repeating 

units, BAMO is the one with the higher N content (50%w) followed by GA (42 w %) and 

AMMO (33%w). However, BAMO is a symmetric monomer and gives a crystalline 

homopolymer that cannot be used as energetic binder, but is suitable to provide the hard block 

of an energetic thermoplastic elastomer [7, 39]. In contrast, GA and AMMO are non-

symmetric and provide amorphous character to the polymer. Therefore, the best solution to 

combine the amorphous character and the high energetic content seems to be the random 

copolymerization of BAMO with either GA or AMMO introduced in the minimum quantity 

necessary to break up the crystallization ability of the polymer. Barbieri et al described the 

synthesis of polyAMMO (PAMMO) and polyBAMO (PBAMO) homopolymers starting from 

the chlorinated and brominated precursors and followed by azidation with sodium azide in 

DMF [40]. In the same paper, poly(GA-r-BAMO) copolymers were also synthesized by using 

different molar ratios between the two repeating units. Later on, the GA/BAMO = 75/25 

molar ratio was considered as the optimal one and the effects of different operating conditions 

on copolymer characteristics were investigated [37]. Even though the operating conditions 

were set to favor a living character of the polymerization, the final product resulted in 

combined AMM and ACE mechanism. In particular, the latter is responsible for the formation 
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of cyclic oligomers, which of course do not contribute to the formation of the binder network, 

but may be tolerated in the formulation since they behave as plasticizers perfectly miscible 

and compatible with the binder. The polymers were also subjected to preliminary 

characterizations in lab-scale propellant formulations [41, 42]. The same research group 

studied also the use of the tosylated precursor of AMMO to prepare PAMMO [43] and 

p(AMMO-r-BAMO) copolymers [38]. 

Pisharat et al. choose to produce a thermoplastic elastomer and prepared a poly(BAMO-b-

GA-b-BAMO) block copolymer by using hydroxyl terminated PECH as initiator for the 

polymerization of the chlorinated precursor of BAMO. The azidation was then performed by 

using NaN3 in DMF [39]. 

Another possible strategy is the joining of HTPB and energetic binders, in order to keep the 

advantages of both components. However, as it is easily predictable, due to their different 

composition and polarity, HTPB and the azidic polyethers are not compatible and the mixture 

is destined to phase separation [44]. Nonetheless, Manu et al. prepared blends of HTPB and 

GAP and determined their glass transition after cross-linking with isocyanates [44]. The glass 

transition temperatures were evaluated through differential scanning calorimetry (DSC) and, 

even though the reported spectra are not easy to interpret, the authors claim that the blends 

show a “dominant single glass transition” that indicates a micro-heterogeneous morphology 

of the interpenetrating network. This result is somehow in agreement with those reported by 

Mathew et al. who did a mechanical and thermal characterization of cross-linked GAP/HTPB 

networks [45]. The glass transition temperatures were evaluated by dynamic mechanical 

analysis and it was found that blends prepared with GAP content up to 30% showed a single 

transition in the loss tangent trace. Very recently, Ding et al. used a triazole curing system as 

alternative to the traditional isocyanates, starting from GAP and a propargyl-terminated 

polybutadiene, under the catalysis of cuprous chloride at ambient temperature [46]. 
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Nonetheless, it is not advisable to use HTPB and GAP or another azidic polymer in a simple 

blend that may separate before the curing process, thus giving the risk of inhomogeneity in 

the final product. A possible solution could be the use of a compatibilizer, which may be, e.g. 

a diblock copolymer made with the two components, but the best way to limit the problem of 

phase separation is the covalent bonding of the two polymers to form block copolymers. In 

block copolymers, usually the incompatibility between the blocks leads to a biphasic structure 

where the dispersed phase is organized in nanoscale blocks that may arrange in several 

configurations that have been widely studied both from the experimental and theoretical point 

of view [47]. Zhou et al. made a simulation study of the morphologies of GA-b-PB and GA-b-

PB-b-GA di- and tri-block copolymers and concluded that there is a narrow range of 

compositions where a “bicontinuous” phase may form and improve the overall mechanical 

properties [48, 49]. Since after copolymerization, the polybutadiene block does not contain 

the OH terminal groups, in the above sentence and in what follows it is indicated as PB, while 

HTPB refers to the unreacted OH terminated homopolymer. 

The GAP/HTPB block copolymers have been synthesized and characterized by a few research 

groups. Eroğlu et al. first described the grafting of GAP onto HTPB, via free radical 

mechanism, by using a GAP “macroinitiator” obtained by reacting the azidic polymer with 

4,4' azo bis(4-cyanopentanoyl chloride) [50]. Later on, Murali and Raju used the same 

procedure and made a detailed characterization of the graft copolymer, which exhibited two 

distinct glass transition temperatures at -74 and -36 °C, corresponding to the PB and GA 

blocks respectively [51]. 

Alternatively, the hydroxyl functionalities of HTPB may start the polymerization of a suitable 

monomer, thus directly giving a tri-block copolymer with PB as the central block. This was 

done for ECH almost contemporarily by Vasudevan and Sundararajan [52] and by 

Subramanian [53]. The main difference in the two procedures is the azidation step, done by 
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using NaN3, in DMSO or in a mixture of dimethylacetamide and toluene. Similarly, Reddy et 

al. used HTPB as the central block and polymerized BAMO on it [54]. It is worth nothing that 

in this case the azidation followed by polymerization was chosen. 

In this work, the same idea of using HTPB as the polyalcohol that starts the ionic 

polymerization was followed to prepare block copolymers to be subsequently azidated. As 

already pointed out, the azidation of ether precursors can be performed by using many 

different operating conditions and solvents. However, in this case we found that the 

unsaturated polybutadiene middle block may lead to an undesired cross-linking that impedes 

the subsequent use as binder. Therefore, it has been necessary to test different precursors, 

solvents and reaction temperatures to obtain appropriate operating conditions to solve this 

problem. A mixture of dimethylacetamide (DMAc) and toluene, as suggested by Subramanian 

[53], showed to be suitable to limit the cross-linking problems during azidation. Four block 

copolymers were then prepared by using the same procedure: 1) GAP-PB-GAP copolymer 

starting from a tosylated glycidol, 2) GA/BAMO-PB-GA/BAMO copolymer from ECH and 

3,3-bis-(Brome methyl)oxetane (BBrMO, the brominated precursor of BAMO), 3) 

GA/BAMO-PB-GA/BAMO copolymer from tosylated glycidol (GT) and BBrMO and 4) 

AMMO-PB-AMMO copolymer starting from 3-tosyloxymethyl-3-methyl oxetane (TMMO). 

Therefore, polymers 2 and 3 are equal, with the difference just in the precursors. The first 

polymer (GAP-PB-GAP) was already synthesized by Vasudevan and Sundararajan [52] and 

by Subramanian [53], but starting from different precursors, while, to our knowledge, the 

other two polymers have not been described yet in the scientific literature. The synthetic 

pathways are described in Figure 1 (preparation of the monomers starting from the 

commercial products) and Figure 2 (synthesis of the polymeric precursors). In all cases, a 

polymeric non-energetic precursor was prepared and subsequently azidated. 
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All the monomers and polymers were characterized by Fourier Transfer Infra Red (FTIR) 

analysis and Nuclear Magnetic Resonance (NMR). The thermal behavior of the polymers was 

evaluated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis 

(TGA). 

 

 

2. Materials and methods 

2.1. Materials 

All the chemicals, unless differently stated, were purchased at Sigma Aldrich. N,N 

dimethylacetamide (99%), toluene (99,8%), dimethyl sulfoxide (DMSO) (99.7%), 

dimethylformamide (DMF) (99.8%), methanol (99.9%), ethanol (99.9%), sodium azide 

(>99.5%), boron trifluoride tetrahydrofuranate (BTF THF), triethylamine (TEA) (≥99%), 3-

hydroxy-methyl-3-methyloxetane (HMMO) (98%), glycidol (G) (96%), toluene-4-sulfonyl 

chloride (TsCl) (≥99%), sodium chloride (>99%), sodium hydroxide (>98%), sodium 

carbonate anhydrous, sodium bicarbonate (>99.7%), magnesium sulfate (>99.5%), 

phosphorus pentoxide, hydrochloric acid, potassium hydroxide were used as received. 

Diethyl-ether, 3-bromo-2,2-bis(bromomethyl)propanol (BrBBrMP) from Chemos GmbH, was 

used as received. Dichloromethane (DCM) was dried with P2O5 and distilled at 40°C and 1 

atm, ECH and butanediol were distilled under reduced pressure. HTPB was Poly bd® R-

45HTLO by Cray Valley, with the following main properties: viscosity = 8000 mPa.s at 23 

°C, hydroxyl value = 0.84 meq/g, hydroxyl functionality = 2.4-2.6 OH groups/chain, glass 

transition temperature = -75 °C. 2,2'-Methylenebis(6-tert-butyl-4-methylphenol) used as anti-

oxidant was VulKanox BKF by Lanxess. 
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2.2. Synthesis of monomers 

2.2.1. Glycidyl tosylate GT 

The synthesis was performed according to a procedure described by Nakabayashi et al [55]. A 

250 mL flask, was fed with 50 mL of anhydrous toluene and 4.2 mL of TEA. In a beaker, a 

solution of 5.42 g TsCl in 12 mL of toluene was also prepared. The flask and the beaker were 

then conditioned at -15°C for 1.5 h. Then, the flask was fed with 2 mL of distilled G and drop-

wise with the TsCl solution. At the end of the feeding, the system was maintained at -15 °C 

for 24 h, filtered and distilled. The remaining liquid was dropped in cold petroleum-ether thus 

forming a white suspension that crystallizes at -15 °C. The GT was obtained with a 98.6% 

yield, as white anhydrous crystals. 

 

2.2.2. 3,3-bis(bromomethyl)oxetane (BBrMO) 

A 1L three-necked round bottom flask, fitted with a reflux condenser, a nitrogen inlet and a 

mechanical stirrer set at 180 rpm was fed with 50 g di BrBBrMP and 100 mL of ethanol. The 

flask was then immersed in a water bath set at 6±1 °C and 100 mL of a 1.77 M solution of 

NaOH in ethanol were added drop by drop in about 0.5 h. Once all the NaOH solution was 

fed to the reactor, the bath temperature raised to 70 °C and the solution was kept under 

stirring for further 1 h. Then, the solution was cooled to room temperature, filtered under 

reduced pressure (6500 Pa) and mixed with 50 mL of DCM. The organic phase was washed 

several times with distilled water and BBrMO was finally obtained after distillation at 30,000 

Pa and 61 °C, with a 93.0 % yield. 

 

2.2.3. 3-tosyloxymethyl-3-methyl oxetane (TMMO) 

The synthesis was performed in the solid state, according to a procedure described by Kazemi 

et al [56]. A mortar was fed with 31.8 g of anhydrous Na2CO3, 10.2 g of HMMO 
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(Na2CO3/HMMO=3/1 molar ratio) and manually milled with a pestle for about 7 min. Then 

28.7 g of TsCl (TsCl/HMMO=1.5/1 molar ratio) where added and milled for another 23 min. 

Finally, 28.05 g of KOH were added (KOH/HMMO=5/1 molar ratio) and milled for about 50 

min to remove the unreacted TsCl. The whole reaction was conducted in a glove box under 

nitrogen atmosphere. The obtained solid was added to 200 mL of diethyl-ether and filtered 

several times. The obtained clear liquid phase was finally subjected to distillation at 48°C and 

8500 Pa thus inducing the crystallization of TMMO that was obtained with a 40 % yield. 

 

The structure and purity of all monomers was verified by Fourier transform infrared 

spectroscopy (FTIR) and by nuclear magnetic resonance (1H-NMR). 

 

2.3. Polymerizations 

As stated above, the block copolymers formed through the growing of the energetic segments 

on each end of preformed HTPB, act as initiator. The catalyst and operating conditions were 

set in order to favor the cationic ring opening polymerization by AMM. In all the 

polymerizations, the quantities of BTF THF and HTPB were such that the molar ratio 

between BTF THF and the OH functionalities of the polymer was equal to 2/1, while the 

molar ratio between monomers and OH functionalities was equal to 50/1. Table 1 reports the 

quantities used for a typical polymerization of each block copolymers, being in the last 

column indicated the theoretical N3 content after azidation, calculated from the hypothesis of 

100 % yield in both the polymerization and azidation reactions. The polymerization procedure 

was as follows: A 1L three-necked round bottom flask , fitted with a reflux condenser, a 

nitrogen inlet and a mechanical stirrer set at 120 rpm was fed with 80 ml of DCM, 0.72 mL of 

BTF THF, about 4 g of HTPB and maintained 2 h under stirring at room temperature. Then, 

the reactor was covered with aluminum foil, immersed in a water bath at 20±0.5 °C and the 
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monomers, previously dissolved in 30 mL of DCM, were added drop-wise to the reactor 

through a dropping funnel. From the end of the monomer feeding, the reaction mixture was 

kept in the same conditions for 20 h (120 h when using tosylated monomers) and then 

hydrolyzed with 400 mL of an aqueous solution of NaCl (10% w). The mixture was 

maintained under vigorous stirring for further 2 h and then the organic and aqueous phases 

were separated. The aqueous phase was washed with DCM, subsequently recovered and 

added to the organic phase. The organic phase was washed once with a water/methanol = 

50/50 v/v solution to remove unreacted monomers and catalyst, then several times with the 

aqueous solution of NaCl, dried with MgSO4, filtered and distilled at 45 °C, under vacuum 

(6500 Pa) in order to remove all the DCM. All the polymers were obtained with a 95-97 % 

yield. 

 

2.4 Azidation of the polymeric precursors 

The azidation was conducted with the well-known second-order reaction with SN2 type 

mechanism, by using sodium azide and a polar solvent. This technique of azidation is almost 

“universal” and in the last decades many researchers, which tested several solvents and 

operating conditions as well as many different leaving groups, described it. In our research 

group, it was previously used to substitute chlorine, bromine and tosyl groups, in either DMF 

or DMSO, with temperatures ranging from 90 up to 150 °C [37, 38, 40, 43]. Pisharat and Ang 

azidated PECH in DMF, at 120 °C for 12h [39], while Manser suggested DMSO at 80 °C also 

for the azidation of the oxetanic monomers [33]. Many other examples of azidic compounds 

can be found in the literature, with DMF and DMSO the most used solvents. However, we 

found that neither DMF nor DMSO were suitable for the azidation step, because before 

obtaining the complete azidation of the polymers, an incipient cross-linking reaction was 

observed, thus leading to partially soluble materials. This happened in several attempts made 
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at testing temperatures ranging from 100 to 130 °C. The addition of small quantities of 

Vulkanox BKF as antioxidant only reduced the phenomenon. Since this procedure is well 

established and was already tested several times in our laboratory for GAP, BAMO and 

PAMMO polymers and copolymers, which never caused such inconvenience, the cross-

linking must be correlated with the presence of the unsaturations in the polybutadiene middle 

block. However, Vasudevan and Sundararajan, which used DMSO at 105 °C for 10 h, did not 

describe the cross-linking problem in their work [52]. In our case, the use of a toluene/DMAc 

mixture, as suggested by Subramanian [53], in combination with small quantities of Vulkanox 

BKF, gave good results and was adopted for all azidations. 

A typical azidation procedure was as follows: About 2 g of polymeric precursor were 

dissolved in 100 ml of DMAc/toluene (50/50 v/v) solution and fed in a 250 mL three-necked 

round bottom flask, fitted with a reflux condenser, a nitrogen inlet and a magnetic stirrer. 

After adding a small quantity of Vulkanox BKF (about 1% by weight with respect to the 

polymer), the flask was immersed in an oil bath set at 90±1 °C and conditioned for 30 

minutes. Then, NaN3 was added in 10% molar excess with respect to the stoichiometric 

quantity and the temperature of the bath raised to 95 °C while maintaining the system under 

constant stirring. Periodically, samples were taken from the reactor and subjected to FTIR 

analysis to evaluate the degree of azidation. Once the IR spectra reached a stationary “state”, 

the reaction medium was filtered under vacuum in order to remove the formed sodium salt’s 

and the unreacted sodium azide. The reaction time strongly varied depending on the 

monomeric precursors (Table 2). 

The solution was then washed several times with an aqueous solution of NaCl (10 % w) in 

order to complete the salts removal. The aqueous phases resulting from the washings were 

mixed together and washed with DCM to remove possible traces of polymer, while the 

organic phase was dried with MgSO4, filtered again and distilled at 45 °C, under vacuum 
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(1000 Pa) in order to remove all the organic solvents. A small quantity (about 1.5 % by 

weight) of Vulkanox BKF was finally added to the polymer before storage. All the azidated 

copolymers were obtained with a yield higher than 95%. 

The structure and purity of all synthesized polymers (before and after azidation) was checked 

by FTIR and NMR, while their thermal properties were determined by DSC and TGA. 

 

2.5. Characterization of the monomers and polymers 

Fourier transform infrared spectroscopy was performed on a Bruker Tensor 27 and nuclear 

magnetic resonance (1H-NMR, 13C-NMR) on a VXR300 and INOVA600 instruments. 

Chemical analysis and FTIR Chemical Imaging were carried out by Spectrum Spotlight FTIR 

Imaging System from Perkin Elmer. Chemical imaging analysis, in transmittance mode, 

allowed combining optical microscopy and infrared analysis of micro and macro areas of thin 

films prepared by solvent evaporation on a microscope slide. The morphological analysis was 

performed also by a LEICA DM LB fluorescence microscope. The molecular weight 

distributions of the polymers were measured from solution in CHCl3 (4 mg/mL) by using a 

Gel Permeation Chromatography (GPC) apparatus Jasco PU-1580, equipped with PL 

Mesopore column, calibrated with low polydispersity polystyrene standards. 

Thermogravimetric analysis (TGA) was done by using a TA Q500 apparatus, under nitrogen 

atmosphere, with a heating rate of 10°C/min until 600 °C and using samples of about 5 mg. 

Thermal properties were studied by differential scanning calorimetry (DSC) performed with a 

Pyris 1 scanning calorimeter from Perkin Elmer, by using aluminum pans. The sample mass 

was in the range of 3-5 mg and spectra were collected from 50 °C at a heating rate of 

10°C/min, until 350 °C. 

 

3. Results and discussion 

Page 15 of 48

URL: http://mc.manuscriptcentral.com/uegm  Email: james.short@cecd.umd.edu

Journal of Energetic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

16 

 

3.1. Chemical characterization (IR – NMR) 

 

IR and NMR spectra were recorded for all monomers, precursors and polymers synthesized in 

this work. In order to limit the number of figures, we report only two H-NMR spectra, 

showing the comparison between GT/BBrMO-PB-GT/BBrMO and GA/BAMO-PB-

GA/BAMO in the range corresponding to the tosyl group signals (Figure 3). 

With regard to the IR spectra, they are reported in Figures 4 and 5, showing the main peaks 

involved in the azidation process. In all cases, but one, azidation appeared to be quantitative. 

The only polymer without complete substitution of the leaving groups is AMMO-PB-AMMO, 

where the peaks relative to the tosyl group are clearly visible even after 140 h of azidation 

reaction. A quantitative evaluation of the residual tosyl groups indicates a degree of azidation 

close to 50 %. The peaks highlighted in the figures are: 554 cm-1 = N3 bending, 670 cm-1 = C-

Br stretching, 744 cm-1 = C-Cl stretching, 1190 cm-1 = SO2 symmetric stretching, 1280 cm-1 = 

N3 symmetric stretching, 1363 cm-1 = SO2 asymmetric stretching, 1600 cm-1 = aromatic C=C 

vibration, 2100 cm-1 = N3 asymmetric stretching. 

From the reaction times reported in Table 2, it can be concluded that the azidation of the tosyl 

group is the bottleneck of the reported synthetic strategies. This is somehow unexpected, 

because the tosyl is a good leaving group. However, it should be considered that the group is 

attached to a polymeric chain, so there are several aromatic rings close one to each other and 

this may determine a high steric hindrance as well as a low mobility of the chains even when 

in solution. In the case of the GT/BBrMO copolymer, probably the alternation of GT and 

BBrMO groups allows sufficient mobility of the chain, so that a complete azidation was 

obtained in a short time. Therefore, even if potentially better than halogen atoms, the tosyl 

group may determine a slowing down of the azidation kinetics and also limits the maximum 

degree of azidation obtainable within the reaction times adopted in this work. 
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An interesting point concerning FTIR is that a comparison of the GA-PB-GA spectrum 

(labeled as N. 6 in Figure 5) with the corresponding one reported in the paper by Subramanian 

[53] clearly shows that in the latter the N3 peak is significantly smaller. This means that the 

synthetic procedure adopted in this work enables formation of copolymers with a significantly 

higher azide content. 

With regard to the characterization of the copolymers, during the revision process it was 

asked if the alcohol moieties in the HTPB chain were really used as the primary initiator site 

rather than adventitious moisture. In the latter case, we would have obtained the polyether 

instead of a block copolymer. Therefore, depending on the primary initiator, the final product 

may contain block copolymer, polyether and HTPB. Block copolymer alone is the desired 

product, with all HTPB used as initiator and no moisture involved. A mechanical mixture of 

block copolymer and polyether will form if both HTPB and moisture act as initiator. A 

mechanical mixture of block copolymer and HTPB is obtained if HTPB is only partially used 

as initiator. A mechanical mixture of HTPB and polyether is the worst case, with no HTPB 

used as initiator. And so on, with other combinations possible. To clarify this point, we can 

start from the above-described incompatibility between the ether and butadiene blocks [44], 

which leads to a macroscopic phase separation when blended. For this reason, the 

morphologies of the polymeric precursors were compared with those of the mechanical blends 

prepared from the polymers constituting the single blocks. For this purpose, the ether blocks 

were appositely synthesized, by using the same synthetic strategy described for the block 

copolymers, simply substituting HTPB with butanediol. Particular care was taken in order to 

assure the use of identical operating conditions during polymerizations (reagent purity, 

volumes, solvent quantities and so on). The mechanical blends (MB) were prepared by 

solvent evaporation from a DCM solution where HTPB and polyether were added in 

quantities corresponding to the composition calculated from the yields of the copolymer 
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synthesis. Moreover, MB and copolymers were subjected to fluorescence microscopy and 

Spectrum Spotlight FTIR Imaging. As an example of the obtained results (qualitatively 

similar for all the synthesis and corresponding MB), Figure 6 shows the images and spectra 

recorded for PGT and HTPB. The MB is on the left hand side of the Figure and the product of 

the synthesis (named product in what follows) is on the right hand side. The fluorescence 

microscopies of MB (Figure 6a) and the product (Figure 6b) are completely different. The 

latter is quite homogeneous and shows some area with slightly different fluorescence 

intensity, but no visible phase separation. In contrast, the MB is markedly biphasic, with dark 

roundish drops dispersed in a bright matrix. A comparison of these images with those (not 

reported) of the homopolymers suggests that the dark phase corresponds to HTPB. However, 

the dark phase and brightness inhomogeneity may also derive from voids and/or variations of 

the sample thickness. Therefore, the samples were analyzed by Spectrum Spotlight FTIR 

Imaging, which uses optical microscopy (Figures 6c and 6d) and allows building a chemical 

maps (Figures 6e and 6f). The maps represent the normalized peak area between 2980 and 

2700 cm-1 (stretching of aliphatic C-H bonds). This peak is present in both polyether and 

HTPB, but its intensity is significantly higher in the latter. Therefore, the grey level in the 

map reflects the composition of the sample: a high HTPB content corresponds to white color 

in the map. Figure 6e shows areas with markedly different grey level and confirms that the 

round domains of MB are mainly composed of HTPB. In contrast, Figure 6f does not show 

any significant variations in grey level. Moreover, the arrows indicate the spectra recorded in 

correspondence of the “+” symbols reported in Figures 6e and 6f. The two spectra on the left 

hand side differ one from each other and result similar to those of the polyether and HTPB 

homopolymers (not reported). In contrast, the right hand side spectra are very similar, even if 

recorded in areas corresponding to the maximum possible difference in grey scale. Based on 

the IR spectra and maps, we can conclude that the shadows and apparent inhomogeneity 

Page 18 of 48

URL: http://mc.manuscriptcentral.com/uegm  Email: james.short@cecd.umd.edu

Journal of Energetic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

19 

 

observable in Figures 6b, 6d and 6f do not correspond to significant variation in chemical 

composition. Therefore, we can exclude that the reaction product is a mechanical mixture of 

HTPB and polyether. 

Moreover, a phase separation is observable also while adding very small quantities of HTPB 

to the product. This excludes also that the product could be a mechanical mixture of block 

copolymer and HTPB. The last proof that all HTPB was used to build the polyether blocks 

comes from an extraction with n-hexane. The mechanical blend was immersed in n-hexane, 

and stirred vigorously at room temperature for a few minutes, after which a consistent part of 

the blend showed to be immiscible with the solvent. Then, the hexane-phase was recovered 

and the solvent evaporated. The resulting polymeric phase was HTPB alone. The same 

procedure was followed for the copolymer and, in that case, no HTPB was recovered after 

hexane evaporation. 

The presented results demonstrate that HTPB worked as initiator for the polyether, but leave 

the doubt that the ether could polymerize starting from the above-mentioned water moieties. 

This possibility is validated from the fact that the addition of small quantities of polyether to 

the synthesis product did not give phase separation (contrary to what happened while adding 

HTPB). Unfortunately, this hypothesis could not be verified with solvent extraction, because 

we did not find a solvent selective toward the ether phase. Several polar solvents were tried, 

but all of them partially dissolved the HTPB, probably due to its OH functionalities. A more 

enhanced extraction procedure was necessary and the GPC column showed to be useful. 

As an example, Figure 7 shows the GPC analysis of HTPB and GT-PB-GT copolymer. The 

weight molecular weight distribution of the copolymer resulted bimodal, and the curve was 

subjected to deconvolution (dashed lines). The obtained results are summarized in Table 3 

and show that the right hand peak of the copolymer has a molecular weight slightly higher 

than HTPB. In contrast, the left hand peak has a very low molecular weight, thus 
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remembering the values usually associated with the formation of cyclic oligomers composed 

of 3-5 repeating units [40]. Therefore, the correct interpretation of the GPC is that the high-

molecular weight peak is the block copolymer, while the low-molecular weight peak is due to 

the presence of polyether not linked to HTPB and grown from OH functionalities of different 

origin. The synthesis product is a mechanical mixture of block copolymer and polyether, thus 

both HTPB and some adventitious moisture worked as initiator. The polyether content was 

calculated from the area of the peaks and the results are reported in the last column of Table 3. 

In all cases, the oligomer content is around 20 % by weight of the total amount. 

We can thus affirm that all the HTPB chains acted as initiator for the polymerization, but 

some of the OH moieties present in the reaction medium did the same and led to the 

formation of polyether chains not covalently linked to the polybutadiene. The product thus 

contains polyether oligomers that are difficult to separate from the copolymer. Nevertheless, 

if these oligomers are linear, they should be OH functionalized and participate to the curing 

with isocyanates while forming the polymeric network that constitutes the final binder. 

Otherwise, in case they are cyclic oligomer, they will act as plasticizers in the binder 

formulation. 

 

 

3.2 Thermal characterization (DSC – TGA) 

In the scientific literature there is a long list of papers that analyze the thermal decomposition 

of polymers (especially GAP) containing the azidic functionalities, alone or after curing and 

addition of plasticizers [17, 20, 21, 23, 25, 31, 57]. Usually, the easiest way to determine the 

thermal stability of this kind of polymers is by TGA and DSC analysis. However, due to the 

violent kinetics of decomposition, it may not be easy to obtain reliable and reproducible 

results. Selim et al., in the case of GAP, used 2-3-mg samples, and kept the ramp rates in the 
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range of 0.2-5°C/min since a greater amount of polymer or higher heating rate lead to 

explosion during the decomposition experiment [14]. In all cases, while subjected to a 

temperature sweep procedure, the azidic polymers degrade in a two-stage process. The first 

one, occurring at about 240-270 °C, is exothermic and corresponds to the abstraction of N3 

groups from the polymeric chain. The second one, partially overlapped with the first one, but 

shifted to higher temperatures, generally occurs without significant heat release and 

corresponds to the progressive decomposition of the remaining polymeric chain. In one of the 

first and most cited work, Kubota and Sonobe suggested that the first process corresponds to 

the release of a nitrogen molecule from the N3 group, with the formation of a nitrile C≡N 

bond [58]. The following studies confirmed that the decomposition starts with the initial 

rupture of N-N2 bond, with elimination of molecular nitrogen. Then, rearrangement to a 

polymeric imine and/or acrylonitrile following elimination of hydrogen molecule has been 

proposed. In the final products of decomposition, gaseous (N2, CO, HCN, NH3, CH2O, CH4, 

C2H2, C2H4, CH3CHO, CH2CHCHNH, CH3CHNH, H2O etc.) and larger molecules as 

benzene, pyrrole and furan have been identified [18, 23, 24]. However, in all cases, the weight 

loss experimentally measured during the first stage is higher than the theoretical one based on 

sole N2 release. This is due to the above-mentioned partial overlapping with the incipient 

second stage of decomposition, but also to the occurrence of other, parallel reactions during 

the first stage. Various mechanisms and possible involved reactions have been proposed by 

analyzing the residual solid and the evolved gases during decomposition. As an example, 

Eroĝlu and Güven used FTIR and observed that the decrease of N3 content was accompanied 

by the appearance of signals related to N-H bending, -C=N-C-H, - C=N-C-C, and N-H 

stretching. At the same time, the signal of the C-O-C ether bridge remained unchanged thus 

suggesting that the main chain was not yet involved in the decomposition process. Based on 

these observations, a mechanism based on the formation of intra and inter-molecular cross-
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linking was suggested for the first stage of degradation [13]. Reshmi et al. used DSC and 

TGA coupled with pyrolysis gas chromatography–mass spectrometric technique and showed 

that during its first stage of decomposition, 1,6-bis (azidoacetoyloxy) hexane preferentially 

forms the corresponding diimine by elimination of N2 [59]. Then, at higher temperatures, 

there is formation of diimines by elimination of CO2, diols through elimination of CO and 

HCN and diene due to CO2 and CH2NH elimination. The photodegradation under ultraviolet 

(UV) irradiation was also investigated by Sahu et al. [15] and by Wang et al. [19]. The latter 

combined a tunable synchrotron vacuum ultraviolet photoionization and molecular-beam 

sampling mass spectrometry and observed that the UV radiation lowered the onset of the 

thermal decomposition of GAP and caused the appearance of a larger number of free radical 

species, compared to thermal decomposition alone. 

The DSC and TGA analysis are reported in Figures 8-10 and summarized in Tables 4 and 5. In 

both Tables, Ti and Tf indicate the initial and final temperatures of the degradation step. The 

produced heat and weight loss are reported after normalization with respect to both the total 

weight and the theoretical N3 content of the polymer. In Table 5, ∆w is the weight loss with 

respect to the total initial mass and ∆w N3 (%) is the weight loss compared to the theoretical 

one expected if all azidic groups release one N2 molecule. Finally, Wr is the residual weight at 

the end of the test (600 °C). The DSC traces are reported only for the azidic polymers. It is 

useful to underline that such high temperatures have only scientific interest, not practical, 

because the behavior of the polymers in propellant will not be the same as in the individual 

state due to the oxidizer presence around. 

As already stated, the N3 group decomposition is responsible for the exothermic peak 

observed in DSC and the first weight loss in the TGA thermograms. However, this 

decomposition may follow different pathways and be partially superposed to other 

degradation phenomena, which depend not only on the operating conditions, but also on the 
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polymer structure. Therefore, the weight loss and energy release during this stage are 

unequivocally determined in the literature. As an example, in the case of GAP, the following 

values (here expressed as J/g of N3) were reported: 4,352 [13], 4,835 [14] and 6,166 [21], 

representing the heat of formation of the azido group around 8500 J/g of N3 [27]. In our case, 

the decomposition is probably “complicated” by the presence of the butadiene block that may 

interact with the formed species. The enthalpies reported in Table 4 are substantially in 

agreement with those reported in the literature. The value obtained for the AMMO-PB-

AMMO copolymer confirms the estimation of about 50% substituted tosyl groups. Moreover, 

in the spectrum of this polymer there is the superposition with a second peak (centered at 

about 275 °C) that corresponds to the exothermic degradation of the tosyl group and well 

visible in the spectra of the tosylated precursor (not reported here). 

With regard to TGA (Figures 9 and 10), a first general observation is that all the azidated 

copolymers, but AMMO-PB-AMMO, have a significant residual weight at 600 °C (see last 

column of Table 5). In contrast, the precursors show a much lower final weight and HTPB 

alone has almost no residual weight at the same final temperature. This difference between 

azidated polymers and precursors suggests that during thermal decomposition some chemical 

interactions may occur between the azidic functionalities and the butadiene backbone. 

Probably, this is strictly connected with the above-mentioned tendency of the copolymers to 

cross-link during azidation and subsequent storage. It may be supposed that the first 

decomposition products interact with the butadiene main chain and form a highly cross-linked 

network that slows down the degradation process at higher temperatures. Of course, the 

explanation of different behavior of the AMMO-PB-AMMO copolymer can be based on its 

low degree of azidation. This difference among azidated copolymer and non-energetic 

precursors is coherent with the shape of the TGA curves. The precursors show a two-step 

degradation, well separated by a horizontal plateau. A comparison with the HTPB curve 
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suggests that the first step is relative to the ether block, while the second one is the butadiene 

block. The azidic copolymers show again a two-step degradation, but differently shaped. The 

first step, already attributed to the N3 functionality, is sharp, while the second one corresponds 

to a gradual weight loss that extends in a wide temperature range and ends at about 500 °C. 

Again, AMMO-PB-AMMO copolymer is the only one with an intermediate behavior (curve 8 

in Figure 10 shows three distinct steps). 

The weight losses during the first decomposition step are higher than expected if each N3 

functionality releases one nitrogen molecule (Table 5). This confirms that the main chain is 

already subjected to other degradation phenomena (mainly ascribable to the ether block) that 

superpose to the degradation of the azidic functionalities. 

A last point to be underlined is that polymers 2 and 3 in Figure 9 have very slight differences 

in the TGA and DSC curves, which is a further confirmation of their substantial equivalence. 

The AMMO-PB-AMMO copolymer is the one that shows the lower enthalpy release during 

decomposition of the azidic functionalities. This is in accordance with the already observed 

incomplete substitution of the tosyl functionalities with the azidic ones. From DSC and FTIR 

we already calculated that this corresponds to about one-half of the theoretical azidic 

functionalities. However, this value must be analyzed by taking into account also the TGA 

curves. The TMMO-PB-TMMO precursor shows two very distinct and sharp peaks 

corresponding to the degradations of the ether and butadiene blocks. However, the weight loss 

(16.6 %) associated to the latter is higher than the theoretical value (8.0%) corresponding to a 

100% conversion during polymerization, thus suggesting that the TMMO blocks may be 

shorter than expected. Therefore, with respect to the expected structure, the AMMO-PB-

AMMO copolymer may have both shorter ether blocks and incomplete degree of tosyl 

functionalities. After N3 decomposition, the weight loss of the azidic copolymer shows two 

partially superposed consecutive steps related to ether and HTPB blocks degradation. 
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4. Conclusions 

The synthesis of ether-butadiene-ether energetic block copolymers was done by a classical 

cationic homo and co-polymerization of oxetanes and oxiranes, using HTPB as diol-initiator 

and followed by the azidation process. Four copolymers were synthesized, with the external 

linear blocks constituted by azido homo and copolymers. Probably due to the presence of 

water moieties, a small amount of polyether oligomers not linked with HTPB were also 

obtained as undesired side products. With respect to the corresponding polymers prepared by 

using a low molecular weight, saturated diol, such as i.e. 1-4 butanediol, the use of HTPB 

complicates the synthetic procedure, since the azide could have a side reaction with the 

double bonds to cause some species, which could lead to cross-linking. This may lead to the 

formation of a cross-linked block copolymer, which, of course, is not suitable as polymeric 

binder for solid propellants. The cross-linking phenomenon may happen either during the 

polymerization, azidation or purification steps, or also during prolonged storage at room 

temperature. This restricts the range of operating conditions available for the synthetic 

process, limiting the suitable solvents, as well as the temperatures and duration of the 

reactions and purification procedures. Moreover, the addition of an anti-ageing compound to 

the final product and the storage in an inert and dark atmosphere is necessary. The tosyl group 

may slow down the kinetics of the azidation step and may also lead to incomplete 

substitution. In conclusion, the synthesis of these azidic copolymers with an internal 

unsaturated block is not simple and presents several drawbacks not easy to manage. 

Nevertheless, the appropriate choice of the operating conditions allows these drawbacks to be 

partially overcome and results in a versatile tool for the synthesis of polymeric binders, whose 

properties can be modulated by changing the type and length of the ether blocks. 
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Figure captions 

Figure 1  Synthesis of the monomers. G = Glycidol; GT = glycidol tosylate; HMMO = 3-

hydroxy-methyl-3-methyloxetane; TMMO = 3-tosyloxymethyl-3-methyl oxetane; 

BrBBrMP = 3-bromo-2,2-bis(bromomethyl)propanol; BBrMO = 3,3-

bis(bromomethyl)oxetane. 

Figure 2  Synthesis and azidation of the block copolymers. 

Figure 3  H-NMR spectra of: (1) GT/BBrMO-PB-GT/BBrMO and (2) GA/BAMO-PB-

GA/BAMO from (1). 

Figure 4  FT-IR spectra of: 1) GT/BBrMO-PB-GT/BBrMO; 2) GA/BAMO-PB-GA/BAMO 

from 1; 3) GA/BAMO-PB-GA/BAMO from 4; 4) ECH/BBrMO-PB-

ECH/BBrMO. 

Figure 5  FT-IR spectra of: 5) GT-PB-GT; 6) GA/PB/GA; 7) TMMO-PB-TMMO; 8) 

AMMO-PB-AMMO. 

Figure 6  GT-HTPB. Fluorescence microscopy of MB (a) and synthesis product (b); optical 

microscopy of MB (c) and synthesis product (d); chemical map of MB (e) and 

synthesis product (f). FTIR spectra corresponding to the positions indicated by the 

+ symbols in (e) and (f). 

Figure 7  GPC analysis of HTPB and GT-PB-GT copolymer. The dashed lines represent the 

deconvolution peaks of the GT-PB-GT distribution. 

Figure 8  DSC traces of the first decomposition step for the azidated copolymers. 

Figure 9  TGA analysis of HTPB, GA/BAMO-PB-GA/BAMO copolymers and their 

respective precursors. 

Figure 10  TGA analysis of HTPB, GA-PB-GA, AMMO-PB-AMMO copolymers and their 

respective precursors. 
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Table 1 - Composition of the reaction mixtures for the polymerizations. 

polymer 
HTPB 

(g) 

(mole) 

BBrMO 

(g) 

(mole) 

ECH 

(g) 

(mole) 

GT 

(g) 

(mole) 

TMMO 

(g) 

(mole) 

BTF THF 

(g) 

(mole) 

DCM 

(mL) 

N3 

(w%) 

GT-PB-GT 1.5 

5.3·10
-4

 
- - 

13.65 

0.06 
- 

0.336 

0.0024 
110 35 

GT/BBrMO-PB-GT/BBrMO 1.48 

5.3·10
-4

 

3.6 

0.015 
- 

10 

0.044 
- 

0.336 

0.0024 
110 38 

ECH/BBrMO-PB-ECH/BBrMO 
3.99 10.0 11.4 - - 

0.91 

0.0065 
110 38 

TMMO-PB-TMMO 0.99 

3.5·10
-4

 
- - - 

10.1 

0.039 

0.21 

0.0015 
110 28 
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Table 2 – Reaction time for the azidation of the copolymers. 

monomeric 

precursor 
GT GT/BBrMO ECH/BBrMO TMMO 

Azidation 

time (h) 
140 22 16 140 
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Table 3. GPC results. Mn= number average molecular weight; Mw= weight average molecular weight. 

polymer Mn 

 

(g/mole) 

Mw 

 

(g/mole) 

Mn 1
st
 peak 

(g/mole) 

Mw 1
st
 peak 

(g/mole) 

Mn 2
nd

 peak 

(g/mole) 

Mw 2
nd

 peak 

(g/mole) 

Polyether content 

(% wt) 

HTPB 4700 11400 - - - - - 

GT-PB-GT 1400 6230 1180 1340 6770 14850 21 

ECH/BBrMO-PB-ECH/BBrMO 610 13420 550 810 6650 15200 22 

GT/BBrMO-PB-GT/BBrMO 860 4990 750 1340 6930 14330 20 

TMMO-PB-TMMO 1850 9430 900 1020 7060 16200 15 
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Table 4 – DSC data corresponding to the first decomposition step. 

Polymer 
Ti 

(°C) 

Tf 

(°C) 
∆H 

(J/g) 

∆H 

(J/g N3) 

GA-PB-GA 205 270 1,380 3,940 

GA/BAMO-PB-GA/BAMO 

from 

ECH/BBrMO-PB-ECH/BBrMO 

175 240 1,740 4,575 

GA/BAMO-PB-GA/BAMO 

from 

GT/BBrMO-PB-GT/BBrMO 

210 270 1,875 4,940 

AMMO-PB-AMMO 175 255 630 2,250 
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Table 5 – TGA data for energetic polymers and corresponding precursors. 

Polymer 

N3 degradation 

Wr Ti-Tf 

(°C) 
∆w 

(%) 

∆w N3 

(%) 

HTPB    0.5 

GT-PB-GT    4.7 

GA-PB-GA 210-280 47 201 15 

ECH/BBrMO-PB-ECH/BBrMO - -  2.2 

GA/BAMO-PB-GA/BAMO 

from 

ECH/BBrMO-PB-ECH/BBrMO 

175-275 41.2 164 24.1 

GT/BBrMO-PB-GT/BBrMO    6.1 

GA/BAMO-PB-GA/BAMO 

from 

GT/BBrMO-PB-GT/BBrMO 

200-275 43.8 175 25.6 

TMMO-PB-TMMO    6.3 

AMMO-PB-AMMO 159-250 12.5 70 4.2 

 

 

Page 38 of 48

URL: http://mc.manuscriptcentral.com/uegm  Email: james.short@cecd.umd.edu

Journal of Energetic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 1 - Synthesis of the monomers. G = Glycidol; GT = glycidol tosylate; HMMO = 3-hydroxy-methyl-3-
methyloxetane; TMMO = 3-tosyloxymethyl-3-methyl oxetane; BrBBrMP = 3-bromo-2,2-

bis(bromomethyl)propanol; BBrMO = 3,3-bis(bromomethyl)oxetane.  

81x76mm (300 x 300 DPI)  
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Figure 2 - Synthesis and azidation of the block copolymers.  
272x183mm (300 x 300 DPI)  
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Figure 3 - H-NMR spectra of: (1) GT/BBrMO-PB-GT/BBrMO and (2) GA/BAMO-PB-GA/BAMO from (1).  
227x174mm (300 x 300 DPI)  
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Figure 4 - FT-IR spectra of: 1) GT/BBrMO-PB-GT/BBrMO; 2) GA/BAMO-PB-GA/BAMO from 1; 3) GA/BAMO-
PB-GA/BAMO from 4; 4) ECH/BBrMO-PB-ECH/BBrMO.  

207x144mm (300 x 300 DPI)  
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Figure 5 - FT-IR spectra of: 5) GT-PB-GT; 6) GA/PB/GA; 7) TMMO-PB-TMMO; 8) AMMO-PB-AMMO.  
207x144mm (300 x 300 DPI)  
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Figure 6 GT-HTPB. Fluorescence microscopy of MB (a) and synthesis product (b); optical microscopy of MB 
(c) and synthesis product (d); chemical map of MB (e) and synthesis product (f). FTIR spectra 

corresponding to the positions indicated by the + symbols in (e) and (f).  

175x249mm (300 x 300 DPI)  
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Figure 7 GPC analysis of HTPB and GT-PB-GT copolymer. The dashed lines represent the deconvolution 
peaks of the GT-PB-GT distribution.  
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Figure 8 DSC traces of the first decomposition step for the azidated copolymers.  
210x148mm (300 x 300 DPI)  
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Figure 9 TGA analysis of HTPB, GA/BAMO-PB-GA/BAMO copolymers and their respective precursors.  
286x199mm (300 x 300 DPI)  
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Figure 10 TGA analysis of HTPB, GA-PB-GA, AMMO-PB-AMMO copolymers and their respective precursors.  
286x199mm (300 x 300 DPI)  
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