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ABSTRACT 

Palaeopropithecids, or ‘sloth lemurs’, are a diverse clade of large-bodied Malagasy 

subfossil primates characterized by their inferred suspensory positional behaviour. The most 

recently discovered genus of the family is Babakotia, and it has been described as more 

arboreal than Mesopropithecus, but less than Palaeopropithecus. In this paper we compared 

within-bone and between-bones articular and cross-sectional diaphyseal proportions of the 

humerus and femur of Babakotia to extant lemurs, Mesopropithecus and Palaeopropithecus 

in order to further our understanding of its arboreal adaptations. Additionally, we included a 

sample of apes and sloths (Choloepus and Bradypus) as functional outgroups composed of 

suspensory adapted primates and non-primates. Results show that Babakotia and 

Mesopropithecus both have high humeral/femoral shaft strength proportions, similar to extant 

great apes and sloths and indicative of forelimb suspensory behavior, with Babakotia more 

extreme in this regard. All three subfossil taxa have relatively large femoral heads, also 

associated with suspension in modern taxa.. However, Babakotia and Mesopropithecus (but 

not Palaeopropithecus) have relatively small femoral head surface area to shaft strength 

proportions suggesting that hind-limb positioning in these taxa during climbing and other 

behaviors was different than in extant great apes, involving less mobility. Knee and humeral 

articular dimensions relative to shaft strengths are small in Babakotia and Mesopropithecus, 

similar to those found in modern sloths and divergent from those in extant great apes and 

lemurs, suggesting more sloth-like use of these joints during locomotion. Mesopropithecus 

and Babakotia are more similar to Choloepus in humerofemoral head and length proportions 

while Palaeopropithecus is more similar to Bradypus. These results provide further evidence 

of the suspensory adaptations of Babakotia and further highlight similarities to both extant 

suspensory primates and non-primate slow arboreal climbers and hangers.  
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INTRODUCTION 

Palaeopropithecids or ‘sloth lemurs’ are a radiation of subfossil Malagasy primates 

closely related to the extant indriids and are represented by four genera: Mesopropithecus, 

Palaeopropithecus, Archaeoindris, and Babakotia (Jungers et al., 1991; Simons et al., 1992; 

Godfrey and Jungers, 2003; Karanth et al., 2005; Kistler et al., 2015). While saltatory 

locomotion is a hallmark of almost all living lemurs (Walker, 1974; Gebo and Dagosto, 1988; 

Oxnard et al., 1990), both large body size and limb proportions indicate that leaping was 

seldom used by palaeopropithecids, which instead exhibit many skeletal features indicative of 

slow climbing and suspension (Godfrey, 1988;  Jungers et al., 2002, Shapiro et al., 2005). 

Some of the first impressions of the palaeopropithecid fossils suggested for 

reconstructions of antipronogrady (especially in Palaeopropithecus, Shapiro et al., 1994) and 

referring to the clade as ‘sloth lemurs’.  More recent comparative analyses, however, have 

argued that they differ markedly from tree sloths (Order Pilosa) (Granatosky et al., 2014).  

While it is true that the hands of both sloth lemurs and tree sloths form hooks that are used 

for anchoring underneath branches, sloth hands and feet bear claws and are much more rigid 

than the hands and feet of sloth lemurs which possess long and curved proximal phalanges 

(Mendel, 1981, 1985a; Jungers et al., 1997).  Palaeopropithecids have very curved proximal 

phalanges and, as a group, values for their phalangeal curvature exceed those seen in African 

apes, spider monkeys, and siamangs, and some taxa even approach the extreme curvatures 

observed in orangutans (Jungers et al., 1997). A high degree of phalangeal curvature, together 

with many other derived aspects of the postcranial skeleton, such as body shape, long bone 

geometry, hallucal reduction, and axial skeletal anatomy indicate a antipronograde behavioral 

repertoire including suspension for the group as a whole (Jungers, 1980; Jungers et al., 1991; 

Shapiro et al., 1994; Wunderlich et al., 1996; Hamrick et al., 2000; Godfrey and Jungers, 
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2003; Shapiro et al., 2005; Patel et al., 2013a). Sloth lemurs, however, are also different from 

suspensory anthropoids, in particular hominoids, with regards to their overall morphology 

and likely in activity levels (Godfrey et al., 2006 and references therein; Walker et al., 2008; 

Hogg et al., 2015). For example, when the humerus and femur are adjusted for body size it is 

clear that large-bodied subfossil lemurs have relatively short and robust limbs different from 

other antipronograde anthropoids such as orangutans (Godfrey et al., 2006). 

The first skeletal remains of Babakotia radofilai were recovered in 1988 from 

Antsiroandoha, a cave in the Ankarana Range in the Northwest of Madagascar (Godfrey et al, 

1990). It was the first new genus of giant fossil lemur found since 1909 (Simons et al., 1992).  

Jungers and colleagues (1991) interpreted these early skeletal elements as belonging to a 

species with a significant component of suspensory behavior, especially hind-limb 

suspension. Later discoveries increased the material of Babakotia to at least five individuals 

resulting in an excellent representation of its entire skeleton, which further substantiated the 

suspensory adaptations of the genus. Of particular interest is the remarkably complete 

skeleton housed in the Division of Fossil Primates of the Duke University Lemur Center 

(specimen No. 10994). This specimen has complete humeri, radii, femora and tibiae, one 

clavicle and scapula, pelvis, most of the vertebral column, carpal and tarsal bones, 

metapodials, and proximal, intermediate and distal phalanges. 

While Palaeopropithecus shows adaptations for high-levels of suspension and is 

considered as a specialized inverted quadruped similar to living sloths, a different 

reconstruction has been made for Babakotia (and Mesopropithecus) (Godfrey, 1986; Jungers 

et al., 1997, 2002; Hamrick et al., 2000; Godfrey and Jungers, 2003; Godfrey et al., 2006; 

Granatosky et al., 2014).  Early studies suggested that Babakotia emphasized suspensory 

behaviors such as climbing and hanging, although its overall ability to hang below 
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superstrates was deemed to be less specialized than that of Palaeopropithecus, and could 

have possibly been more comparable to that of lorisids and orangutans among living 

primates, and/or to Mesopropithecus among subfossil lemurs (Jungers et al., 1991, 2002; 

Simons et al., 1992; Godfrey et al., 1995; Hamrick et al., 2000; Godfrey and Jungers, 2003; 

Shapiro et al., 2005). In a more recent analysis, researchers have found that both Babakotia 

and Mesopropithecus have relatively small semicircular canals, which have been correlated 

to slow, less agile locomotion, similar to what we see in living lorises, gorillas and 

orangutans (Spoor et al., 2007; Walker et al., 2008).  A consensus on the locomotor biology 

of Babakotia remains incomplete. 

Ruff (2002) and others (e.g., Marchi, 2010) have demonstrated that locomotor 

behavior affects both long bone articular dimensions and strength of their diaphyses. 

Articular surface morphology can influence how compressive loads are transmitted across 

joints as well as determining a joint range of motion and its stability (Godfrey et al., 1991; 

Rafferty and Ruff, 1994; Hamrick et al., 2000; Drapeau, 2008).  The cross-sectional 

geometric (CSG) properties of long bone diaphyses provide information about how limbs are 

loaded in compression, bending and torsion (Rubin and Lanyon, 1982; Demes et al., 2001). 

Accordingly, the inclusion of articular dimensions and CSG properties can provide a 

quantitative and biomechanically-based method for reconstructing locomotor behavior in 

fossil primates. In particular, it helps to distinguish animals with locomotor patterns that 

emphasize more cautious movement, and therefore potentially reduced diaphyseal loading, 

from more active species, and taxa with greater joint excursion from those with more 

restricted limb positions (Ruff, 1988; Runestad, 1994). Different locomotor behaviors can 

also influence the loading of forelimbs relative to the hind limbs. For example, animals that 

include a significant amount of suspensory activity in their locomotor repertoire should have 
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relatively stronger forelimbs than animals that emphasize leaping. In turn, leaping animals 

should have relatively stronger hind limbs. Previous studies have found that the ratio of 

humeral to femoral cross-sectional diaphyseal strength is highest in suspensory primates such 

as great apes (Schaffler et al., 1985; Ruff, 2002) and among non-suspensory primates it is 

lower in leaping specialists (Demes and Jungers, 1993; Runestad, 1994; Ruff, 2002).  

In a study of humeral and femoral lengths and articular areas, Godfrey et al. (1995) 

found that palaeopropithecids are characterized by long humeri and short robust femora and 

have relatively small humeral heads and large femoral heads, characteristics that occur 

outside the order Primates and are generally associated with slow climbing and hind-limb 

suspension. In particular, the authors found that the smaller palaeopropithecids, i.e. 

Mesopropithecus and Babakotia, are more similar to two-toed sloths (Choloepus) than to 

three-toed sloths (Bradypus) in humerofemoral head and length proportions while 

Palaeopropithecus more closely matches Bradypus. However, this study did not include 

cross-sectional diaphyseal properties, which as noted above could give additional information 

on limb bone loadings.   Although CSG properties of subfossil lemur long bones have been 

previously reported for studies on body mass reconstructions (Jungers et al., 2005), they have 

yet to be used in analysis to interpret locomotor behavior. 

The aim of this paper is to compare within-bone and between-bone articular and 

cross-sectional diaphyseal proportions of the humerus and femur of Babakotia radofilai to a 

sample of extant lemurs, other palaeopropithecids, great apes and tree sloths in order to better 

understand the positional behavior of this subfossil lemur and to assess the previously 

proposed directional morphocline within palaeopropithecids (Palaeopropithecus more 

specialized for suspensory adaptations, Mesopropithecus the least derived, and Babakotia 

somewhere in the middle). Suspensory and quadrupedal great apes were included here 

Page 7 of 57

John Wiley & Sons

Journal of Morphology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8 

 

because they have been argued to be the best primate functional equivalent of Babakotia 

(Jungers et al., 1997).  Suspensory tree sloths were also included because they provide the 

best non-primate functional equivalent of Babakotia (Godfrey and Jungers, 2003 and 

references therein) and the inclusion of non-primate mammals in the study of primate 

functional morphology can provide a more robust test of hypotheses related to locomotor 

adaptations (e.g., Patel and Carlson, 2008; Patel et al., 2013b). In particular, the inclusion of 

sloths in comparative analyses of Babakotia can provide independent evidence regarding to 

the suspensory adaptations of this subfossil lemur because sloths are phylogenetically distant 

from primates (Springer et al., 2004). This is particularly important because interspecific 

comparative analyses used to identify locomotor adaptations can lead to false positive results 

when traits exhibit a strong phylogenetic signal (O’Neill and Dobson, 2004). Accordingly, 

phylogenetic comparative methods (PCMs) have been used in this study to assess the 

importance of phylogeny in the results obtained.  

For this study we made the following four predictions: 1. suspensory apes and sloths 

should exhibit larger articular proportions than saltatory lemurs (Godfrey, 1988); 2. 

palaeopropithecids should have articular and diaphyseal characteristics of the humerus and 

femur more similar to those of sloths and apes than to those of extant lemurs (Godfrey, 1988; 

Godfrey et al., 1995); 3. Babakotia should show suspensory adaptations intermediate 

between those of Mesopropithecus and Palaeopropithecus (Jungers et al., 1997; Shapiro et 

al., 2005); and 4. Mesopropithecus and Babakotia should be more similar to Choloepus while 

Palaeopropithecus should be more similar to Bradypus in humerofemoral head and length 

proportions (Jungers et al., 1997; Hamrick et al., 2000; Shapiro et al., 2005). 

 

MATERIALS AND METHODS 
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The sample 

 The comparative sample used in this study is composed of 115 nonhuman extant 

primates (Indri, Propithecus, Eulemur, Lemur, Varecia, Gorilla, Pan and Pongo), 45 tree 

sloths (Choloepus and Bradypus) and seven sub-fossil lemur specimens attributed to 

Mesopropithecus and Palaeopropithecus (Table 1 and Table S1). In addition to newly 

acquired data specifically for this project, we also obtained previously published data from 

several sources (see Table 1). Data for Babakotia radofilai were obtained from an almost 

complete specimen (catalogue number 10994; new data) and other two fragmentary 

specimens (catalogue numbers 11801 and 11824; previously collected by Rafferty, 1996) 

housed at the Division of Fossil Primates of the Duke University Lemur Center (DLC), 

Durham, North Carolina. All included specimens in this study are from adult individuals 

(males and females pooled) with no signs of pathology in the skeleton. For each individual 

we collected data from a single humerus and a femur. Approximately equal numbers of right 

and left bones were measured. 

Locomotor categories 

 Locomotor behaviors are defined as follows for the extant lemurs: 1. quadrupedal, 

with some leaping (Eulemur and Lemur) (Gebo, 1987; Dagosto, 1994; 2013; Demes et al., 

2000); 2. quadrupedal, with frequent hind-limb suspension (Varecia) (Gebo, 1987; Pereira et 

al., 1988); 3. vertical clinging and leaping [VCL] (Indri and Propithecus) (Gebo and 

Dagosto, 1988; Warren and Crompton, 1997; Fleagle, 2013; Demes et al., 2000).  Indriids 

(especially Propithecus) are vertical clingers and leapers, but they are also skilled hangers 

engaging in bimanual, bipedal, and tripedal suspension, and even occasional brief arm 

swinging. The locomotor behaviors of the great apes are the same as described in Ruff 

(2002), i.e., quadrupedal knuckle- or fist-walking, climbing, and suspension. Sloth locomotor 
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behavior is defined in this study as fore- and hind-limb suspension and climbing (Mendel, 

1985a; Adam, 1999; Nyakatura, 2012; Toledo et al., 2012). Mesopropithecus and 

Palaeopropithecus locomotor behavior is defined in this study as fore- and hind-limb 

suspension and climbing (Jungers et al., 1997). 

Table 1 about here 

Articular dimensions 

Linear dimensions and CSG properties of the humeral and femoral diaphysis and 

articulations are listed in Table 2 and illustrated in Supplementary Figures S1 and S2. 

Articular dimensions were chosen to represent the major dimensions of the proximal and 

distal articular surfaces and used as input in geometric formulae for calculating total surface 

areas of the humeral and femoral heads as well as the humeral distal articular and femoral 

condylar surface areas. The estimation of articular surfaces using formulae based on 

modelling of surfaces as ovals, rectangles, partial spheres, and cylinders has been utilized 

previously (Runestad, 1997; Egi, 2001; Ruff, 2002). Direct comparisons of geometric 

estimations and measurements from latex molds taken from the same articulations performed 

on humeral and femoral articulations of primates and nonprimate mammals have been shown 

to be accurate (Rafferty, 1996; Wunderlich, 1999).  

 

Table 2 about here 

 

Cross-sectional geometry 

Cross-sectional geometric (CSG) properties were measured at 40% (mid-distal) of 

bone length for the humerus and at 50% (mid-shaft) of bone length for the femur, with 

lengths as defined in Ruff (2002) and illustrated in Supplementary Figure S2. The CSG 
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properties used in this study were the polar second moment of area (J) for the humerus, and 

the antero-posterior (A-P) second moment of area (Ix) for the femur. J is proportional to 

torsional strength and twice average bending strength, and Ix is proportional to A-P bending 

strength. J was used for the humerus because the typical orientation of the bone and the strain 

developed during locomotion in primates are expected to be highly variable (Swartz et al., 

1989; Demes et al., 2001). Although recent studies have found in quadrupedal lemurs that 

peak M-L forces of the hind limb occasionally exceeded peak fore-aft forces (Carlson et al., 

2005), the primary direction of bending during active quadrupedal locomotion is expected to 

be in the A-P plane, based on the orientation of the hind limb and in-vivo strain gauge 

measurements in quadrupeds (e.g., Carter et al., 1981; Demes et al., 2001). Therefore, to 

distinguish species that engage more frequently in running and leaping (e.g. lemurs) than in 

suspension (great apes and sloths), Ix is used as a measure of diaphyseal strength in the 

femur. CSG properties and their abbreviations are listed in Table 2. 

For part of the lemur comparative sample used here (data from Demes and Jungers, 

1993), humeral CSG properties were calculated at 50%, rather than 40%, of bone length. In a 

previous study (Runestad, 1994), CSG properties for many lemur species including VCL and 

quadrupedal lemurs were collected at both 40% and 50% of humeral bone length. These data 

were used to calculate a correction factor to apply to the lemur humeral data collected by 

Demes and Jungers (1993): humerus 40% J = 0.9403 * humerus 50% J + 0.2621 (J in mm4) 

(r2 = 0.99; %SEE = 6.34; n = 32). 

Peripheral quantitative computed tomography (pQCT) (Ferretti et al., 1996) was used 

to obtain cross-sectional images of Babakotia specimen DPC 10994 at 40% of humerus and 

50% of femur length.  The pQCT data were collected at the Center for Functional Anatomy 

and Evolution, Johns Hopkins University School of Medicine (Baltimore, MD).  
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Digital cross-sectional images were obtained with medical CT-scanning for the great 

ape sample (see Ruff, 2002, for details) and part of the sloth sample (see Patel et al., 2013b, 

for details).  For part of the lemur sample (data from Demes and Jungers, 1993) cross-

sectional images were obtained through biplanar radiography alone by modeling the cortical 

contours as concentric ellipses (the ellipse model method, EMM). For the other portion of the 

lemur and sloth samples, the two fragmentary Babakotia specimens (DPC 11801 and 11824) 

and the Mesopropithecus and Palaeopropithecus specimens (data from Rafferty, 1996) cross-

sectional images were obtained using external molds combined with biplanar radiographic 

measurement of cortical thickness (the latex cast method, LCM).  While previous studies 

have argued that the CT method is the method of choice to obtain CSG properties (O’Neill 

and Ruff, 2004), the LCM yields reasonably accurate results (within 5% of CT values for all 

properties except medullary area). O’Neill and Ruff (2004) found that results obtained with 

the EMM are also highly correlated to the ones obtained with the CT method. However, 

EMM can overestimate properties, especially in bones whose cross sections highly depart 

from circularity (i.e. the tibia). The authors proposed a correction for CSG properties 

obtained with EMM that they found to work reasonably well only for the femoral mid-shaft, 

where cross sections do not highly depart from circularity; the equations were also specific to 

humans. However, Rafferty (1996) used both the LCM and EMM for part of her lemur 

sample (Indri, Propithecus and Varecia), and those data were used here to calculate 

regression equations to correct EMM data obtained from Demes and Jungers (1993). The 

regression equations for correction of cross-sectional properties of the humerus and femur 

are:   

Hum J (LCM) = Hum J (EMM) * 1.0862 + 12.5559 (r2 = 0.94; %SEE = 8.1; n = 24);  

Fem Ix (LCM) = Fem Ix (EMM) * 1.069 + 14.3107 (r2 = 0.98; %SEE = 12.0; n = 24);  

Fem J (LCM) = Fem J (EMM) * 1.0703 – 0.2574 (r2 = 0.99; %SEE = 7.3; n = 24). 

Page 12 of 57

John Wiley & Sons

Journal of Morphology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

13 

 

 

Statistical analysis 

To assess differences in proportions among extant and fossil species we compared 

natural log (ln) ratios of bone properties. First, the variables were subjected to a principal 

component analysis (PCA) to evaluate how well these variables as a whole separate taxa 

within living species and between living species and subfossil lemurs. The subfossil sample 

was grouped a priori and each taxon was entered as separate OTUs into the PCA. Second, 

comparisons of humeral and femoral proportions between species among the complete 

sample were carried out using Tukeys multiple comparison tests. Box-plots were used to 

graphically represent data distributions. Subfossil lemur sample sizes were small and often 

made up of a single individual for a particular variable. Therefore, subfossils were evaluated 

relative to the comparative living samples through visual comparison with group distributions 

in the box-plots and by using: (a) comparative group means and standard deviations when the 

subfossil sample size equaled one, with the distance between the specimen and each extant 

group expressed as the number of SDs from that group’s mean (see Ruff, 2002); and (b) 

Mann-Whitney U-tests and Kruskal-Wallis analysis of rank when more than one subfossil 

individual was available. All statistical analyses were performed using STATISTICA 7. 

 

Phylogenetic comparative method 

In order to apply phylogenetic comparative methods (PCM) in our data analysis, we 

built a composite phylogeny based on molecular and morphological data using the software 

Mesquite, version 3.03 (Maddison and Maddison, 2015). For extant primate taxa, we utilized 

the consensus tree of the primate dataset (Version 3) of the 10kTrees Project (Arnold et al. 

2010). Adding the sloth species present in our dataset to the primate phylogeny created two 

problems: (a) the need to set the divergence time between sloths and primates; and (b) the 
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need to draw a time-tree of extant sloth species. Regarding the timing of origin and 

diversification of placental mammals, there has been much controversy, stemming from the 

apparent disagreement between the fossil record (the first crown placentals are found in 

Paleocene deposits, and most modern placental orders appear in the fossil record by the 

beginning of the Eocene) (Alroy, 1999; Benton et al., 2015) and many molecular clock 

studies. Some of these studies place the origin of crown placentals at more than 100 Ma (in 

the Early Cretaceous) (Kumar and Hedges, 1998; Bininda-Emonds et al., 2007; Meredith et 

al., 2011), while others place it in the Late Cretaceous (Kitazoe et al., 2007). In the present 

study we used 90 Ma as the dating of the primate-sloth divergence, in concordance with some 

recent studies that combined an extensive molecular dataset with multiple fossil calibrations 

in a Bayesian framework to get a precise mammal time-tree that also shows good 

concordance with the fossil record (dos Reis et al., 2012). Unfortunately, there are only a few 

studies on the reconstruction of a time-calibrated tree for all modern sloth species: for our 

composite phylogeny, we decided to use the Bininda-Emonds et al. (2007) mammal 

supertree. Although this study shows generally older dates for the origin of placental orders 

than those indicated by more recent analyses, the dating of the divergence between the sloth 

genera Choloepus and Bradypus (32.1 Ma) falls well within the confidence interval reported 

in dos Reis et al. (2012) and it is in agreement with the dating of the oldest sloth fossils 

(Octodontotherium, an Oligocene sloth more closely related to Choloepus than to Bradypus) 

(Raj Pant et al., 2014). 

The phylogenetic placement of the subfossil lemurs considered in our study (family 

Palaeopropithecidae) is based both on morphological (Jungers et al., 1991; Godfrey and 

Jungers, 2003) and molecular (ancient DNA) data (Karanth et al., 2005; Kistler et al., 2014). 

Palaeopropithecidae is considered a sister group to Indriidae, with the clade Lepilemuridae + 

Cheirogaleidae (not included in our analysis) more closely related to Indriidae than 
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Lemuridae. Within Palaeopropithecidae, Mesopropithecus is the most basal genus, with 

Babakotia and Palaeopropithecus (due to the absence of Archaeoindris in the study). 

Unfortunately, Palaeopropithecus is at present the only sloth lemur genus for which ancient 

DNA has been extracted and analyzed (Karanth et al., 2005; Kistler et al., 2014), and there 

are no pre-Quaternary Malagasy fossil lemurs yet; so, in our composite phylogeny, branch 

lengths have been derived somewhat arbitrarily for sloth lemurs, assuming an even 

distribution of divergence events in the subtree comprising Mesopropithecus, Babakotia and 

Palaeopropithecus. This subtree was grafted in the composite phylogeny halfway through the 

branch connecting Indriidae with the common ancestor of the Indriidae + (Lepilemuridae + 

Cheirogaleidae) clade, resulting in the final phylogeny shown in Figure 1. 

To examine the distribution of our sample in the multidimensional morphospace of 

diaphyseal proportions of long bones, we used a phylogenetic principal component analysis 

(pPCA).  A pPCA is useful to take into account phylogenetic non-independence among taxa, 

and it can help to assess whether our measurements could be explained by functional 

similarities or by phylogenetic closeness (Revell, 2009; Polly et al., 2013). We performed the 

analysis in the R environment, using the function 'phyl.pca' in the package 'phytools' (Revell, 

2012) for the pPCA. We used a data set formed by mean values of our measurements for 

each species as the input data matrix, and our composite phylogeny as the input tree. The 

optimal fit Pagel's λ (Pagel, 1999) was estimated, and then used to scale branch lengths for 

the input phylogeny. 

Fig. 1 about here 

 

RESULTS 

Tables 3 and 4 present descriptive statistics for all extant and subfossil species, 

Supplementary Tables S2-S5 present statistical comparisons between extant species. 

Page 15 of 57

John Wiley & Sons

Journal of Morphology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 

 

Tables 3 and 4 about here 

Principal component analysis 

 A principal component analysis (PCA) was conducted on 12 variables (Fig. 2a; Table 

5). The first two components explain 79.8% of the total variance where PC1 and PC2 account 

for 45.6% and 24.2%, respectively. Variable loadings for PCs 1 and 2 are presented in Table 

5.  

All of the variables significantly contribute to the observed variation. Scores on PC1 

are highly correlated (loading > 0.65) with humeral to femoral length, strength, and head 

dimensions, and with femoral articular to shaft strength proportions (Table 5). Among extant 

primates, scores on PC1 largely reflect degree of forelimb suspensory versus leaping 

behavior, with more suspensory taxa having relatively longer and stronger humeri and larger 

articular surfaces relative to shaft strength. Quadrupedal lemurs are roughly in between VCL 

and suspensory taxa (Fig. 2a).  Among the two sloth taxa, Bradypus aligns more closely with 

suspensory apes, while Choloepus is intermediate between apes and more quadrupedal and 

VCL taxa. Sloth lemurs have PC1 scores close to those of suspensory species (with 

Babakotia comparable to Bradypus and African apes, while Mesopropithecus is comparable 

to Choloepus, African apes and Varecia). 

 Principal component 2 accounts for 24.2% of the variance and is strongly correlated 

with humeral head surface area relative to humeral shaft strength (loading = 0.795). The 

second PC separates sloths (with relatively small humeral heads) from all living primates (see 

also Table 3). Distal humeral articular surface size relative to shaft strength is also small in 

sloths, and has a relatively high loading (0.65) on PC2.  Both Babakotia and 

Mesopropithecus have PC2 scores similar to those of sloths and distinct from those of the 
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extant primate sample.  A plot of the averages of the principal component scores for each 

species is shown in Supplementary Figure S3.  

Tables 5 about here 

Phylogenetic Comparative Method 

 In the pPCA (Fig. 2b), the first two principal components collectively account for 

87.4% of the variation within the sample. PC1 accounts for 71.9% of the variation; scores on 

this axis are highly correlated (loadings  > 0.90 in absolute value) with relative humeral 

strength and length (compared to the femur). PC1 clearly separates VCL and quadrupedal 

lemurs on the one hand, and more suspensory taxa on the other. There is a generally good 

correlation between PC1 score and degree of suspensory abilities (except for the highly 

suspensory two-toed sloths, with a PC1 score similar to that of the relatively less specialized 

African apes; Fig. 2b).  

The second principal component accounts for 15.5% of the variance, and is strongly 

correlated only with the humeral head SA relative to humeral shaft strength (loading = 0.97 in 

absolute value). PC2 scores are very similar throughout the sample (they do not separate 

lemurs from African apes and three-toed sloths), with two interesting exceptions within the 

highly suspensory taxa: orangutans (with low PC2 scores) and two-toed sloths (with high 

PC2 scores). Both Babakotia and Mesopropithecus have PC2 scores similar to those of two-

toed sloths and distinct from those of all other taxa included in our analysis. 

Tables 6 about here 

Within-bone proportions  

Babakotia shows low values for humeral head and distal articular surface to shaft 

strength proportions (Tables 3 and Supplementary Table S2). In the comparison of humeral 
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head SA to shaft strength, Babakotia falls below extant primates, in the lower interquartile 

range of Choloepus and in the lower quartile of Bradypus distributions (Fig. 3a; Table 3). 

Mesopropithecus is very close to Babakotia while Palaeopropithecus falls higher, in the 

middle range of Bradypus and overlapping with many extant primates. For humeral head S-I 

breadth to midshaft strength (Fig. 3b), Babakotia falls in the lower quartile range of VCL, 

quadrupedal lemurs, chimpanzees and Bradypus, and is the upper quartile range of 

Choloepus. Group means results corroborate these findings (Table 7). Mesopropithecus falls 

close to Babakotia while Palaeopropithecus shows relatively higher values than the other 

two fossil lemurs, though significance is not reached. For distal humeral SA and M-L breadth 

to shaft strength proportions (Figs. 3c,d), Babakotia falls lower than extant primates and 

closer to the distributions of sloths. Only data for M-L breadth to shaft strength proportions 

are available for Mesopropithecus and Palaeopropithecus, which show that all 

Palaeopropithecidae fall close to Babakotia (Fig. 3d).  

 Fig. 3 and Table 7 about here 

 For femoral proximal articular (head SA and S-I breadth) to femoral shaft strength 

proportions, orangutans and Bradypus are associated with the highest values, followed by 

Varecia and Choloepus, and then by all the other extant primates (Figs. 4a,b; Table 3). In the 

box-plot of femoral head SA to shaft strength, Babakotia is associated with lower proportions 

than sloths and orangutans and close to the VCL distribution. The Kruskal-Wallis test shows 

a significant difference with Bradypus and orangutans (Table 3). For femoral S-I breadth to 

shaft strength, the three Babakotia specimens for which we have data for fall close to the 

distributions of Varecia, African apes and Choloepus, are higher than VCL and quadrupedal 

lemurs, and are lower than Bradypus and orangutans (Figs. 4b). No statistically significant 

results were found with any of the living groups, possibly because of small sample size (n = 
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3). Mesopropithecus falls in the interquartile range of Babakotia, while Palaeopropithecus 

shows higher values for femoral proximal articular to femoral shaft strength proportions and 

significantly higher than gorillas, chimpanzees and VCL for femoral S-I breadth to shaft 

strength (Supplementary Table S2). 

Extant lemurs and orangutans show the highest values for femoral condyle SA to 

femoral shaft strength, followed by African great apes, Bradypus and Choloepus. Babakotia 

falls lower than extant primates (Fig. 4c) and in between the distributions of Choloepus and 

Bradypus (Table 7). If condyle M-L breadth is used in this proportion, great apes display the 

largest proportions, followed by Bradypus and extant lemurs. Choloepus is again associated 

with the lowest values (Tables 3 and Supplementary Table S2). The Babakotia distribution 

falls close to the middle of the Choloepus and VCL lemur distributions and in the lower 

quartile range of quadrupedal lemurs, Varecia and Bradypus distributions, and differences 

never reach significance compared to living species (Table 3). Mesopropithecus falls in the 

lower part of the Choloepus distribution and close to Babakotia, while Palaeopropithecus 

shows higher values than the other palaeopropithecids for this variable.  

Fig. 4 about here 

Between-bone proportions 

Lemurs are associated with a weaker and shorter humerus, relative to the femur, than 

great apes and sloths (Fig. 5; Supplementary Table S4). Orangutans and sloths are instead 

associated with a relatively more robust and longer humerus. Babakotia has a relatively 

(compared to the femur) robust humerus, falling close to the middle of the Bradypus and 

orangutan distributions (Fig. 5a). Data in Table 8 corroborate this finding. Mesopropithecus 

shows a humerus relatively more robust than those of extant lemurs but less robust than 
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Babakotia, and close to the mean of Choloepus and in the upper interquartile range of 

chimpanzees (Table 8). Babakotia (and Mesopropithecus) has a relatively long humerus, 

close to the distribution of great apes and just below the interquartile range of gorillas, though 

shorter than orangutans and Bradypus. 

Fig. 5 and Table 8 about here 

 The box-plot of humeral head SA to femoral head SA shows high overlap among 

species (Fig. 6a). Orangutans display the highest proportions (although not significantly 

different from gorillas, Table S5) and Choloepus and VCL lemurs the lowest (although not 

significantly different from Varecia, Supplementary Table S5). With the exception of 

orangutans, all species are associated with relatively greater femoral head SA than humeral 

head SA (humeral/femoral ratio < 1.0). Babakotia shows a relatively (to the femur) large 

humeral head articular surface compared to the extant sample (Fig. 6a, Table 8). 

Mesopropithecus displays very similar proportions to Babakotia for this variable. When S-I 

breadths are considered in this proportion, the distribution of groups is generally similar to 

that for humeral to femoral shaft strength, with great apes highest followed by Bradypus, 

Varecia and the other lemurs (Figs. 6b,c). The only exception is Choloepus, which shows 

relatively lower values for these proportions, close to extant lemurs. Babakotia and 

Mesopropithecus are associated with African apes and Bradypus for these proportions 

(Tables 4 and 8). 

For distal humeral/femoral proportions, in general we observe an increase of values 

from lemurs to great apes to sloths (Fig. 6d). Although differences between closely related (in 

terms of locomotor behavior) genera may not be significant, they become significant when 

more distant groups are considered. For example, Bradypus is always significantly greater for 

all distal humeral/femoral proportions than African great apes, and African great apes are 
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always significantly greater than VCL lemurs (Supplementary Table S5). Babakotia is 

generally associated with the relatively largest distal interlimb proportions of any extant 

primate included in the comparison (Fig. 6d). Data in Table 8 corroborate these findings, with 

Babakotia being within 1 SD from the mean of both Bradypus and Choloepus for two out of 

three proportions. Mesopropithecus shows values very similar to Babakotia for the variables 

available for comparison.  

Fig. 6 about here 

DISCUSSION 

The aim of this paper was to further characterize the functional morphology of the 

subfossil lemur Babakotia radofilai by investigating the cross-sectional and articular surface 

properties of the humerus and femur, and by comparing it to extant primates and sloths 

involved in different locomotor behaviors. Given that we used phylogenetically disparate 

taxa, ranging from lemurs to sloths, we needed to test for the presence of a phylogenetic 

signal in our results. The pPCA performed on 12 variables gave a result very similar to the 

one obtained by the traditional PCA analysis. The similarities are more evident by comparing 

the plots obtained from the averages of the principal component scores for each species 

(Supplementary Fig. S3) with the pPCA plot (Fig. 2a). The observable differences in the two 

analyses can be eliminated by rotating the pPCA plot by 180  against the x-axis: the resultant 

is a distribution of taxa overlapping the PCA plot obtained with the averages of the principal 

component scores for each species. Therefore, we can assume with confidence that the 

groupings observed in this study are not simply a product of phylogenetic relationship, and 

can be interpreted in terms of the different locomotor behaviors in the taxa analyzed. 

The principal component analysis defines clusters of species that correspond well to 

their locomotor groups. Within extant primates, there is a clear trend along PC1 between 
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more and less suspensory taxa.  Although Choloepus falls between African apes and VCLs 

on PC1, sloths are distinguished from all primates by their low position on PC2.  

Remarkably, each group that displays highly specialized suspensory abilities (Bradypus, 

Choloepus and orangutan) occupies a different position in the morphospace defined by PC1 

and PC2, reflecting differences in humeral articular (proximal and distal) and cross-sectional 

diaphyseal proportions. The two genera of subfossil lemurs considered in the analysis fall 

clearly in the suspensory region of the morphospace, with Babakotia very similar to 

Bradypus, and Mesopropithecus to Choloepus. 

 

The first prediction of this study is partially supported by the results. As predicted, 

more suspensory primates exhibit larger articular to shaft strength proportions than lemurs. 

However, sloths do not always display this pattern.  

Humeral head S-I breadth to shaft strength proportions separate leaping primates from 

suspensory primates. In particular, VCL and quadrupedal lemurs (but not Varecia) show 

smaller proportions (less shoulder mobility) than apes. The reason why Varecia has broader 

humeral articulations (i.e. more mobility) both proximally and distally than the other lemurs 

may be found in the fact that Varecia spends more time than other lemurs hanging 

underneath branches (Gebo, 1987; Pereira et al., 1988). 

While humeral head S-I breadth to shaft strength proportions are useful in separating 

extant primates and sloths on the basis of locomotory expectations, proximal and distal SA, 

as well as distal M-L breadth to shaft strength proportions are not as good. Studies conducted 

on apes and cercopithecoid primates have proposed that humeral articular breadths (both 

proximally and distally) are better indicators of shoulder and elbow mobility than humeral 

Page 22 of 57

John Wiley & Sons

Journal of Morphology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

23 

 

articular areas to shaft strength proportions, because of different head orientation (torsion) in 

different primates (for humeral head SA proportions) and the way SA is calculated (for distal 

humeral SA proportions) (see Ruff, 2002 for a more detailed explanation). It appears that 

these proportions are also not useful in locomotor reconstructions when lemurs and sloths are 

included in the analysis. Indeed, sloths (Evans and Krahl, 1945) and lemurs (Miller, 1932) 

are characterized by a low level of humeral torsion, unlike suspensory apes, suggesting that 

similar factors may apply. It is also possible that forelimb suspension creates relatively high 

loads on the humeral diaphysis (e.g., see Swartz et al., 1989), as well as the need for greater 

shoulder mobility, and thus that humeral head/shaft strength proportions are not unusually 

high in more suspensory species. Both sloths and more suspensory primates do have strong 

humeral compared to femoral diaphyses, as shown here. 

Sloths may also employ different mechanisms to achieve high mobility in the 

shoulder. For example, several morphological characteristics of the pectoral girdle of sloths, 

such as lax joint capsules, a shallow glenoid fossa, small scapula, etc. (Nyakatura, 2012) 

allow for extreme mobility, but they do not require a large humeral head. It is therefore 

necessary to take into consideration all these structures in future studies to completely 

understand the degree of mobility of the shoulder.  

Lemurs (quadrupedal runners and VCL taxa) display the lowest femoral head to shaft 

strength proportions, while sloths and especially Bradypus (engaged in suspensory behavior) 

are associated with relatively higher femoral head proportions, similar to those of orangutans. 

These results are in line with those found in the past using only external diaphyseal 

dimensions (Godfrey, 1988; Godfrey et al., 1995). The relatively (to midshaft strength) large 

femoral head proportions found in Varecia, which are not significantly different from those 

of suspensory great apes and Choloepus, can be explained on the basis of what we know of 

its locomotor behavior. Lemurs, in particular VCL taxa (Fleagle and Anapol, 1992; Demes 
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and Jungers, 1993), engage in somewhat restricted A-P oriented movement of the hip joint 

and do not need a large surface at that joint (Godfrey, 1988). Though, Varecia spends much 

time hanging with the hind limbs from branches (Gebo, 1987; Pereira et al., 1988), as 

orangutans and sloths do (Mendel, 1981, 1985a; Meldrum et al., 1997). The large femoral 

head SA of orangutans has been associated with a high level of hip abduction during their 

locomotor postures (Ruff, 1988; 2002). It is therefore possible that the relatively large 

femoral head SA observed in Varecia and sloths may also be associated with high levels of 

hip abduction employed in their hind-limb suspensory behavior. Indirect evidence for this 

explanation comes from VCL lemurs. Although indriids (especially Propithecus) are vertical 

clingers and leapers, larger-bodied species like Indri indri are also skilled hangers, engaging 

in bimanual and especially bipedal suspension, using highly abducted hip postures in a 

variety of activities (Furnell, 2013). Indeed, if we separate Indri indri from the other VCLs of 

this study (results not shown here) we observe that their femoral head diameters are higher 

than the other VCL lemurs and close to Varecia.  Although we propose that the larger 

femoral head proportions of Varecia may be a consequence of their bipedal suspension, 

experimental and behavioral studies of Varecia (and VCL lemurs and sloths) locomotion are 

needed to further test this hypothesis. 

Sloths show the lowest distal femoral surface area/shaft strength values of the extant 

species analyzed, and lower femoral distal M-L breadth proportions than great apes but 

similar to extant lemurs. The large distal femoral articular proportions of great apes are 

associated with the high knee-joint mobility necessary in antipronograde locomotion 

(Tardieu, 1981; Godfrey, 1988; Ruff, 1988). The lower femoral distal M-L breadth 

proportions of lemurs are instead usually associated with the lower mobility necessary in 

quadrupedalism and leaping behaviors (Tardieu, 1981). The low values of both distal femoral 

surface area and M-L breadth proportions found in sloths may mean that they adapt a 
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different strategy to increase mobility at the level of the knee joint which does not include a 

large distal femoral articulation. In fact, it has been found that sloth knee joints are 

characterized by lax joint capsule that allow rotation up to 45° of the leg over the thigh when 

the leg is flexed 90° (Mendel, 1985b). More detailed studies of the anatomy of sloth femoral 

articulations is warranted to further elucidate these relationships. 

As expected, high humeral to femoral strength and length proportions are associated 

with the biomechanical constraints of vertical climbing (Cartmill, 1974; Godfrey, 1988) and 

are indicators of slow climbing and suspension (Godfrey, 1988; Godfrey et al., 1995). 

Therefore, lemurs show the relatively least robust and shortest humeri while orangutans and 

sloths show the relatively most robust and longest humeri. 

For humeral to femoral articular proportions, a pattern of increase from less 

suspensory to more suspensory animals is present within extant primates (Fig. 5). Sloths, 

especially Choloepus, do not follow the pattern as well for proximal articular interlimb 

properties, related to their unusually small humeral heads. Distally, interlimb articular 

proportions follow the pattern observed for interlimb strength proportions, steadily increasing 

from more saltatory to more suspensory primates. For distal proportions, sloths follow the 

expected pattern, showing the largest relative values among the species studied, indicating 

highly suspensory animals. 

 

The second prediction of this study is also only partially supported. Babakotia and 

Mesopropithecus display humeral articular to shaft strength proportions that are lower than 

great apes and extant lemurs and more similar to those of sloths. Palaeopropithecus is instead 

more similar to extant great apes and Bradypus for this trait. Also taking into account the low 

usefulness of three out of four parameters in the humerus in locomotor reconstructions (see 
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above) these results agree with expectations indicating suspensory adaptations for 

palaeopropithecids more similar to sloths and great apes than to extant lemurs. 

Contrary to expectations, Babakotia and Mesopropithecus are associated with 

relatively small femoral head surface area to shaft strength proportions, similar to the 

condition observed for VCL primates. Large proximal femoral articular proportions are 

generally associated with high mobility at the hip joint (Fleagle, 1976; Godfrey, 1988; Ruff, 

2002), so the small femoral head surface area of Babakotia and Mesopropithecus would 

suggest a lower degree of mobility at the level of the hip joint than living suspensory 

primates, possibly indicating a different climbing mechanism with less emphasis on hip 

abduction. Interestingly, Palaeopropithecus is similar in this regard to highly suspensory 

primates and sloths, in agreement with results from other parts of the skeleton that indicate 

for this genus the highest level of suspensory adaptations among Palaeopropithecidae 

(Godfrey, 1988; Godfrey et al., 1995; Jungers et al., 1997; Hamrick et al., 2000; Shapiro et 

al., 2005).  However, there is some overlap between African apes and VCL primates - and 

therefore Babakotia and Mesopropithecus - for this variable. What differentiates most 

arboreal and terrestrial living primates and sloths here is the S-I diameter of the femoral head, 

which is larger in more suspensory primates and sloths. For this variable, Babakotia and 

Mesopropithecus group more clearly with suspensory great apes and, to some extent, with 

Choloepus.  In a previous study, Ruff (2002) found that relative femoral head surface area 

better distinguished between more and less suspensory species than femoral head breadth 

among anthropoid primates, and attributed this to the increased capacity for hip abduction 

with an increase in articular depth (also see Jenkins and Camazine, 1977; Ruff, 1988; 

MacClatchy, 1996).  In broader taxonomic comparisons this distinction may not apply in the 

same way, possibly due to different orientation of the femoral head surface relative to the 

acetabulum or other factors (a similar phenomenon was noted in comparisons of humeral 
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head surface area versus breadth between hominoids and cercopithecoids, where humeral 

head breadth was a better locomotor discriminator due to the effects of varying humeral 

torsion – see above and Ruff, 2002). In the present comparative context, relative femoral head 

breadth is more clearly associated with locomotor behavior, and in this respect Babakotia and 

Mesopropithecus are more similar to suspensory taxa. 

Babakotia shows relatively lower distal femoral surface area values than extant 

primates, similar to sloths, and low femoral distal M-L breadth proportions, close to 

Choloepus and living prosimians and lower than Bradypus and great apes. Mesopropithecus 

is similar to Babakotia, while Palaeopropithecus shows higher values closer to African apes. 

Babakotia (and Mesopropithecus) shows therefore a combination of unique traits in the 

femur: the proximal articulation displays a low surface area similar to extant prosimians, but 

a breadth similar to African apes, whereas the distal femoral articulation is more similar to 

sloths (and in particular Choloepus), characterized by a small and M-L compressed knee 

joint. This latter characteristic may mean that Babakotia had less M-L mobility at the level of 

the knee, as extant lemurs have, or that Babakotia had a relaxed knee-joint capsule as extant 

sloths have, or both. In both knee and some hip articular proportions, though, Babakotia does 

not group with extant great apes, again suggesting different hind-limb positioning during 

climbing and other locomotor behavior. 

As expected, Babakotia shows a relatively (to the femur) strong humerus, similar to 

what is observed for orangutans and Bradypus. This suggests a highly suspensory, probably 

antipronograde positional behavioral adaptation for the subfossil lemur, as already suggested 

by previous studies (Jungers, 1980; Jungers et al., 1991; Shapiro et al., 1994; Wunderlich et 

al., 1996; Jungers et al., 1997; Hamrick et al., 2000; Godfrey and Jungers, 2003; Shapiro et 

al., 2005; Patel et al., 2013a). Although displaying among the relatively longest humeri 

compared to the living primate sample, Babakotia (and Mesopropithecus) has a humerus 
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relatively shorter than Bradypus and orangutans, and closer to that of African great apes, 

indicating climbing and suspensory tendencies similar to African apes but not as extreme as 

in Bradypus. 

Large humeral head SA relative to femoral head SA values are normally associated 

with suspensory adaptations within primates (Godfrey, 1988). Species with long femora and 

short humeri also tend to have large femoral heads and small humeral heads, while species 

with relatively long humeri show the opposite pattern (Godfrey et al., 1995). Among 

palaeopropithecids and sloths, however, humerofemoral length and head indices are poorly 

correlated (Godfrey et al., 1995). This may also in part explain why proximal forelimb to 

hind limb proportions in sloths do not follow the pattern observed for forelimb to hind limb 

shaft strength. Because of these confounding factors, care must be taken in interpreting 

forelimb to hind limb proximal articular proportions. With this in mind, we observe that 

interlimb proximal articular proportions point to suspensory adaptations in the proximal 

humerus of Babakotia, although it is not possible to establish if this was more ape-like or 

Bradypus-like.  

Babakotia (no interlimb comparative data for Mesopropithecus and 

Palaeopropithecus are available) have relatively large distal humeral articulations and are 

more similar to sloths than to any extant primate included in the comparison. This 

characteristic therefore points toward sloth-like suspensory adaptations for Babakotia with 

high mobility at the level of the elbow joint (Nyakatura, 2012). 

 

The third prediction is also only partially supported. Palaeopropithecus always shows 

higher suspensory adaptations among palaeopropithecids, as expected. Babakotia and 

Mesopropithecus though do not always follow the expected pattern. While Mesopropithecus 

shows in general the least suspensory adaptations concerning interlimb proportions (no 
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interlimb comparative data for Palaeopropithecus are available) as predicted, the pattern is 

not consistent for within-bone proportions, where Babakotia and Mesopropithecus are often 

very similar and sometimes Mesopropithecus shows higher suspensory adaptations than 

Babakotia. The very small sample size for the subfossil lemurs may be the reason why the 

pattern expected and obtained by other studies is not found in the present study. More limb 

bones are necessary to satisfactorily test these relationships. To this purpose, the newly 

discovered site in Tsimanampetsotsa National Park, Madagascar (Rosenberger et al., 2015) 

may provide a good opportunity to increase the samples for taxa included in this study. 

 

Finally, the fourth prediction is generally supported.  Mesopropithecus and Babakotia 

are more similar to Choloepus and Palaeopropithecus is more similar to Bradypus, both in 

humerofemoral head and length proportions, once again pointing to a more extreme 

antipronograde suspensory locomotory adaptation in Palaeopropithecus as compared to 

Babakotia and Mesopropithecus, as found in previous studies (Godfrey, 1988; Godfrey et al., 

1995; Jungers et al., 1997; Hamrick et al., 2000; Shapiro et al., 2005).   

 

Slow climbers (both primate and non-primate mammals) use their hind limbs as 

anchors on precarious supports and are characterized by a short femur and highly mobile hip, 

knee and ankle joints (Mendel, 1981, 1985a,b; Godfrey, 1988; Runestad, 1997). The present 

study of cross-sectional and joint properties of the humerus and femur shows that Babakotia 

shares many traits with living slow climber mammals, in particular with tree sloths and 

orangutans, in agreement with previous studies on postcranial skeletal anatomy (Godfrey, 

1986; Jungers et al., 1997, 2002; Hamrick et al., 2000; Godfrey and Jungers, 2003; Godfrey 

et al., 2006; Granatosky et al., 2014) and with studies conducted on the semicircular canal 

system (Walker et al., 2008) which found that both Babakotia and Mesopropithecus have 
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small semicircular canals correlated to slow, less agile locomotion (Spoor et al., 2007). 

However, the results of the present study allow us to outline a more detailed picture of the 

postcranial adaptations of Babakotia which may help to further our understanding of the 

locomotory adaptations of the palaeopropithecid family in general. 

Given that palaeopropithecids and sloths differ in hand and foot anatomy (Mendel, 

1981, 1985a, Jungers et al., 1997), and given that palaeopropithecids likely differed from 

suspensory anthropoids in activity levels (Godfrey et al., 2006, Walker et al., 2008; Hogg et 

al., 2015), it is not unexpected that not a single primate or non-primate (sloth) analogue has 

been found to describe sloth lemurs perfectly. Babakotia appears as a primate with 

antipronograde adaptations similar to orangutan and Choloepus, with high mobility at the 

level of the hip joint, though with a femoral head surface not as large as in more suspensory 

primates and sloths, and sloth-like small humeral articulations and M-L compressed distal 

femoral articulations.  

 

CONCLUSIONS 

 Babakotia radofilai has been described as a moderately large primate that emphasized 

suspensory and climbing behaviors, convergent to some extent to what we see in tree sloths. 

The aim of this study was to further investigate postcranial adaptations of this sub-fossil 

lemur by comparing within-bone and between-bone articular and cross-sectional diaphyseal 

proportions of its humerus and femur to a sample constituted by extant Malagasy lemurs, 

great apes, tree sloths and other palaeopropithecids. Results show that: 

1. More suspensory extant primates generally display larger articular proportions than 

extant lemurs. Sloths do not always conform to this pattern, showing relatively small 

knee and humeral articular proportions. 
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2. In general, Babakotia, Mesopropithecus and Palaeopropithecus show articular and 

diaphyseal characteristics more similar to extant sloths and great apes than to extant 

lemurs, pointing to their suspensory adaptations. Babakotia and Mesopropithecus 

have relatively large femoral heads, similar to more suspensory primates and sloths, 

but do not have large articular surface areas, implying less hip abduction. Their knee 

joint is also more mediolaterally compressed than in great apes. This suggests that 

hind-limb positioning in these taxa during climbing and other behaviors was different 

than in extant great apes, involving less mobility. Palaeopropithecus groups with 

extant suspensory taxa in all articular indices, consistent with other aspects of its 

skeleton. 

3. Babakotia shows more adaptations to suspensory behavior than Mesopropithecus and 

fewer than Palaeopropithecus when interlimb proportions are considered. When 

within- limb proportions are considered, Babakotia and Mesopropithecus are often 

indistinguishable, though showing fewer suspensory adaptations than 

Palaeopropithecus. 

4. For the variables for which the comparison is possible, Mesopropithecus and 

Babakotia are more similar to Choloepus while Palaeopropithecus is more similar to 

Bradypus in humerofemoral head and length proportions.     

These results generally agree with previous broad locomotor reconstructions of 

Babakotia. However, they provide a more refined description of the postcranial adaptations 

of this subfossil lemur, further showing an animal with a unique set of adaptations, ape-like, 

sloth-like, and lemur-like, that cannot be found in any living primates. 
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Figure legends 

Fig. 1 – Phylogenetic tree and divergent times of the taxa included in the study. 

 

Fig. 2 – a. Principal component analysis of humeral and femoral variables in extant primates 

and sloths, and in subfossil lemurs. The two extracted components (PC1 and PC2) explain 

79.8% of the total variance: PC1 accounts for 45.6% and PC2 for 24.2%; b. Phylogenetic 

principal component analysis of humeral and femoral variables in extant primates and sloths, 

and in subfossil lemurs. The two extracted components (PC1 and PC2) explain 87.4% of the 

total variance: PC1 accounts for 71.9% and PC2 for 15.52%. 

 

Fig. 3 – Humeral within-bone proportions of extant primates and sloths, and of subfossil 

lemurs. a. Humeral head surface area (HHSA) to shaft strength (H40J) proportions; b. 

humeral head superoinferior breadth (HHSI) to shaft strength (H40J) proportions; c. humeral 

distal articulation surface area (HDSA) to shaft strength (H40J) proportions; d. humeral distal 

articulation mediolateral breadth (HDML) to shaft strength (H40J) proportions. VCL: vertical 

clingers and leapers; Quad: quadrupedal lemurs; Var: Varecia variegate; G: gorilla; C: 

chimpanzee; O: orangutan; Chol: Choloepus; Brad: Bradypus; Bab: Babakotia; Mes: 

Mesopropithecus; Pal: Palaeopropithecus. 

 

Fig. 4 - Femoral within-bone proportions of extant primates and sloths, and of subfossil 

lemurs. a. Femoral head surface area (FHSA) to shaft strength (F50Ix) proportions; b. femoral 

head superoinferior breadth (FHSI) to shaft strength (F50Ix) proportions; c. femoral condyle 

surface area (FCSA) to shaft strength (F50Ix) proportions; d. femoral condyle mediolateral 

breadth (FCML) to shaft strength (F50Ix) proportions. See Fig. 3 for group abbreviations. 
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Fig. 5 – Humeral and femoral interlimb robusticity and length proportions of extant primates 

and sloths, and of subfossil lemurs. a. humeral shaft strength (H40J) to femoral shaft strength 

(F50Ix) proportions; b. humeral length to femoral length proportions. See Fig. 3 for group 

abbreviations. 

 

Fig. 6 – Humeral and femoral interlimb articular proportions of extant primates and sloths, 

and of subfossil lemurs. a. Humeral head surface are (HHSA) to femoral head surface area 

(FHSA) proportions; b. humeral (HHSI) to femoral (FHSI) head superoinferior breadth 

proportions; c. humeral head superoinferior breadth (HHSI) to femoral head surface area 

(FHSA) proportions; d. humeral distal mediolateral breadth (HDML) to femoral condyle 

surface area (FCSA) proportions. See Fig. 3 for group abbreviations. 
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Table 1 ± Comparative sample composition 
Genus1 N Locomotory Group Data sources 

Indri 10 VCL2 
Demes and Jungers (1993), Rafferty (1996), pres. 

study 

Propithecus 15 VCL Demes and Jungers (1993), Rafferty (1996), pres. 
study 

Eulemur 9 Quad3 Demes and Jungers (1993), pres. study 
Lemur 3 Quad Demes and Jungers (1993), pres. study 

Varecia 15 Quad-HLS4 
Demes and Jungers (1993), Rafferty (1996), pres. 

study 
Gorilla 20 K-W, F-W, Suspension Ruff (2002) 
Pan 23 K-W, F-W, Suspension Ruff (2002) 
Pongo 20 K-W, F-W, Suspension5 Ruff (2002) 
Choloepus 25 Suspension6 Patel et al. (2013), Rafferty (1996), pres. study 
Bradypus 21 Suspension Patel et al. (2013), Rafferty (1996), pres. study 
Mesopropithecus 1 Suspension Rafferty (1996) 
Palaeopropithecus 7 Suspension Rafferty (1996) 
1 Data have been collected from the Harvard Museum of Comparative Zoology, Harvard; the National Museum 

of Natural History, Washington; the Kenya National Museum, Nairobi; the American Museum of Natural 

History, New York; the British Museum, London; the 0XVpXP�1DWLRQDOH�G¶+LVWRLUH�1DWXUHOOH�� 3DULV ; and the 

Division of Fossil Primates of the Duke University Primate Center, Durham. 

2 Vertical clinger and leapers. 

3 Quadrupedal lemurs with some leaping. 

4 quadrupedal, with frequent hind-limb suspension. 

5 Quadrupedal knuckle- or fist-walking, climbing, and suspension. 

6 Fore- and hind-limb suspension and climbing.  
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Table 2 - Abbreviations and description of structural properties of humerus and femur1 
 
Property Description 
H40J Humeral polar second moment of area at 40% of length of the bone 
F50Ix Femoral anteroposterior second moment of area at midshaft 
HHSA Humeral head surface area 
HDSA Humeral distal articulation surface area (trochlea + capitulum) 
HHSI Humeral head superoinferior breadth 
HHML Humeral head mediolateral breadth 
HDML Humeral distal mediolateral breadth 
HL Humeral mechanical length 
FHSA Femoral head surface area 
FCSA Femoral condyles surface area 
FHSI Femoral head superoinferior breadth 
FHML Femoral head mediolateral breadth 
FCML Femoral condyles mediolateral breadth 
FL Femoral mechanical length 
1See Ruff (2002) Appendix A for illustrations and explanations of the variables  
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Table 3 - Within-bone articular to cross-sectional geometric proportions . Significance indicated only for subfossil lemurs. 

Proportions1 VCL 

Lemurs 
mean  
(SD)  

(n = 25) 

Quadruped 
Lemurs 

mean  
(SD) 

(n = 12) 

Varecia 
 

mean 
(SD) 

(n = 15) 

Gorilla 
 

mean 
(SD) 

(n = 20) 

Pan 
 

mean 
(SD) 

(n = 23) 

Pongo 
 

mean  
(SD) 

(n = 20) 

Choloepus 
 

mean  
(SD) 

(n = 23) 

Bradypus 
 

mean 
(SD) 

(n = 21) 

Palaeopropithecus 
 

mean  
(SD) 

(n = 3) 

Mesopropithecus 
 

mean  
(SD) 

(n = 1) 

Babakotia 
 

mean  
(SD) 

(n = 3) 
Humerus            
HHSA/H40J0.5 2.78 

(0.19) 
2.94 

(0.24) 
2.704 
(0.13) 

2.82 
(0.15) 

2.71 
(0.15) 

2.99 
(0.12) 

2.38 
(0.17) 

2.62 
(0.20) 

2.72 
(0.05) 

2.42 2.305 

HHSI/H40J0.25 1.20 
(0.05) 

1.19 
(0.08) 

1.314 
(0.06) 

1.27 
(0.05) 

1.24 
(0.05) 

1.28 
(0.06) 

1.10 
(0.06) 

1.22 
(0.08) 

1.25 
(0.04) 

1.18 1.165 

HDSA/H40J0.5 2.752 
(0.12) 

2.72 
(0.14) 

2.985 2.607 
(0.10) 

2.518 
(0.15) 

2.63 
(0.10) 

2.174 
(0.15) 

2.479 
(0.24) 

- - 2.245 

HDML/H40J0.25 1.333 
(0.06) 

1.32 
(0.05) 

1.404 
(0.06) 

1.36 
(0.04) 

1.34 
(0.05) 

1.31 
(0.05) 

1.14 
(0.09) 

1.33 
(0.10) 

1.23Va
11 

(0.02) 
1.27 1.205 

 
Femur 

           

FHSA/F50Ix
0.5 3.08 

(0.17) 
3.13 

(0.08) 
3.32 

(0.13) 
3.17 

(0.11) 
3.16 

(0.11) 
3.56 

(0.08) 
3.23 

(0.13) 
3.4510 
(0.18) 

3.43 
(0.10) 

3.07 2.97B,O 

(0.12) 
FHSI/F50Ix

0.25 1.28 
(0.07) 

1.06 
(0.03) 

1.25 
(0.04) 

1.18 
(0.06) 

1.17 
(0.05) 

1.34 
(0.05) 

1.27 
(0.06) 

1.33 
(0.09) 

1.39P,Q,V 
(0.06) 

1.26 1.23 
(0.06) 

FCSA/F50Ix
0.5 3.422 

(0.26) 
3.29 

(0.11) 
3.366 
(0.15) 

3.087 
(0.10) 

3.018 
(0.16) 

3.26 
(0.09) 

2.582 
(0.21) 

2.974 
(0.19) 

- - 2.745 

FCML/F50Ix
0.25 1.51 

(0.06) 
1.56 

(0.05) 
1.56 

(0.08) 
1.70 

(0.07) 
1.72 

(0.07) 
1.80 

(0.05) 
1.468 
(0.08) 

1.6410 
(0.08) 

1.6212 
(0.02) 

1.44 1.5012 
(0.03) 

1See Tables 1 and 2 for abbreviations. All ratios were natural log-transformed, e.g., ln (HHSA/H40J0.5). 

2n= 9; 3n = 24; 4n = 10; 5n = 1; 6n = 6; 7n = 19; 8n = 22; 9n= 11; 10n= 20.  

11Subscripts indicate statistical significance from: Vertical clingers and leapers = V; quadrupedal primates = Q, Varecia = Va, Pongo = O, Pan = P, Gorilla = G, Choloepus = 

Ch, Bradypus = B, using Kruskal-Wallis analysis of rank test. 

12n = 2. 
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Table 4 - Between-bone cross-sectional geometric, lengths and articular proportions . Significance indicated only for subfossil lemurs. 

Proportions1 VCL1 
Lemurs 
mean  
(SD) 

(n =25) 

Quadruped 
Lemurs 
mean  
(SD) 

(n =12) 

Varecia 
 

mean  
(SD) 

(n =14) 

Gorilla 
 

mean 
 (SD) 

(n = 20) 

Pan 
 

mean  
(SD) 

(n = 23) 

Pongo 
 

mean  
(SD) 

(n = 20) 

Choloepus 
 

mean  
(SD) 

(n =23) 

Bradypus 
  

mean  
(SD) 

(n =21) 

Palaeoprop. 
 

mean  
(SD) 

(n = 0) 

Mesopropithecus 
 

mean  
(SD) 

(n = 1) 

Babakotia 
 

mean  
(SD) 

(n = 2) 
Cross-sectional dimensions and lengths          
H40J/F50Ix -0.450 

(0.268) 
-0.129 
(0.170) 

0.1013 
(0.204) 

0.400  
(0.221) 

0.473 
(0.197) 

1.135 
 (0.132) 

0.6418 
(0.173) 

1.017 
(0.325) 

- 0.620 1.15211 

HumLength/ 
FemLength 
 

-0.591 
(0.039) 

-0.369 
(0.021) 

-0.344 
(0.019) 

0.210 
 (0.027) 

0.060 
 (0.049) 

0.347  
(0.036) 

0.0788 
(0.022) 

0.595 
(0.039) 

- 0.088 0.16311 

Articular dimensions            
HHSA/FHSA -0.526 

(0.169) 
-0.254 
(0.221) 

-0.427 
(0.161) 

-0.155 
(0.140) 

-0.210 
(0.111) 

-0.002 
(0.131) 

-0.531 
(0.193) 

-0.28810 
(0.201) 

- -0.342 -0.225 

(0.001) 
HHSI/FHSA0.5 -0.449 

(-0.081) 
-0.410 
(0.055) 

-0.321 
(0.054) 

-0.220 
(0.047) 

-0.219 
(0.060) 

-0.212 
(0.051) 

-0.359 
(0.069) 

-0.23710 
(0.061) 

- -0.195 -0.126V,Q
12 

(0.024)  
HHSI/FHSI 0.038 

(0.054) 
0.095 

(0.072) 
0.088 

(0.029) 
0.184  

(0.046) 
0.186 

(0.057) 
0.227 

 (0.047) 
-0.009 
(0.048) 

0.140 
(0.028) 

- 0.081 0.146 

(0.020)
 
 

HDSA/FCSA -0.9292 
(0.230) 

-0.640 
(0.101) 

-0.3403 
(0.145) 

-0.2844 
(0.079) 

-0.2626 
(0.116) 

-0.060 
(0.119) 

-0.0179 
(0.222) 

0.0273 
(0.083) 

- - 0.07911 

HDML/FCML -0.301 
(0.064) 

-0.274 
(0.048) 

-0.149 
(0.071) 

-0.245 
(0.033) 

-0.259 
(0.046) 

-0.212 
(0.046) 

-0.1657 
(0.119) 

-0.03910 
(0.05) 

- 0.010 -0.043V 
(0.023) 

HDML/FCSA0.5 -0.5302 
(0.129) 

-0.363 
(0.052) 

-0.2613 
(0.086) 

-0.0755 
(0.035) 

-0.0417 
(0.049) 

-0.037 
(0.059) 

0.0292 
(0.185) 

0.1303 
(0.065) 

- - 0.11911 

1See Tables 1 and 2 for abbreviations. All ratios were natural log-transformed, e.g., ln (H40Zp/F50Zx). 

2n = 9; 3n=10; 4n = 18; 5n = 19; 6n = 21; 7n = 22; 8n=24; 9n = 8; 10n = 20; 11n=1. 

12Subscripts indicate statistical significance from: Vertical clingers and leapers = V; quadrupedal primates = Q, Varecia = Va, Pongo = O, Pan = P, Gorilla = G, Choloepus = 

Ch, Bradypus = B, using Kruskal-Wallis analysis of rank test.
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Table 5 - Component matrix of the variables (ln transformed) used in the principal 
component analysis. 
 
Variable1 PC1 PC2 
FHSA/F50Ix

0.5 -0.697 -0.229  
FHSI/F50Ix

0.25 -0.664 -0.500 
FCML/F50Ix

0.25 -0.813 0.337 
H40J/F50Ix -0.809 -0.548 
HL/FL -0.824 -0.439 
HHSA/FHSA -0.731 0.343 
HHSI/FHSI -0.848 0.239 
HHSI/FHSA0.5 -0.819 -0.038 
HDML/FCML -0.341 -0.609 
HHSA/H40J0.5 -0.355 0.795 
HHSI/H40J0.25 -0.558 0.620 
HDML/H40J0.25 -0.278 0.653 
1See Tables for abbreviations. 
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Table 6 - Component matrix of the variables (ln transformed) used in the phylogenetic 
principal component analysis. 
 
Variable1 PC1 PC2 
FHSA/F50Ix

0.5 -0.416 -0.649  
FHSI/F50Ix

0.25 -0.759 -0.204 
FCML/F50Ix

0.25 -0.354 -0.676 
H40J/F50Ix -0.991 0.051 
HL/FL -0.911 -0.032 
HHSA/FHSA -0.616 -0.524 
HHSI/FHSI -0.725 -0.274 
HHSI/FHSA0.5 -0.810 0.197 
HDML/FCML -0.802 0.278 
HHSA/H40J0.5 0.199 -0.967 
HHSI/H40J0.25 -0.185 -0.653 
HDML/H40J0.25 0.251 -0.459 
1See Tables for abbreviations. 
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Table 7 ± Proportions of Babakotia and Mesopropithecus relative to extant samples expressed as standard deviations of the subfossils from 
sample means: within-bones. (only variables for which n = 1 are shown here). 

Proportions1,2 VCL 
Lemurs 

Quadruped 
Lemurs 

Varecia Gorilla 
 

Pan 
 

Pongo 
 

Choloepus 
 

Bradypus 
  

Humerus Bab3 Mes4 Bab Mes Bab Mes Bab Mes Bab Mes Bab Mes Bab Mes Bab Mes 

HHSA/H40J0.5 -2.5 -1.9 -2.7 -2.2 -3.1 -2.2 -3.5 -2.7 -2.7 -1.9 -5.8 -4.8 -0.5 0.2 -1.6 -1.0 
HHSI/H40J0.25 -0.8 -0.4 -0.4 -0.1 -2.5 -2.2 -2.2 -1.8 -1.0 -1.2 -2.0 -1.7 1.0 1.3 -0.8 -0.8 
HDSA/H40J0.5 -4.2 - -3.3 - - - -3.9 - -1.8 - -4.1 - 0.6 - -0.9 - 
HDML/H40Zp

0.333 -1.8 -1.0 -2.0 -1.0 -3.0 -2.2 -4.3 -2.3 -3.0 -1.4 -2.4 -0.8 0.8 1.4 -1.2 -0.6 
 
Femur 

                

FHSA/F50Ix
0.5 - -0.1 - -0.8 - -1.9 - -0.9 - -0.8 - -6.1 - -1.2 - -2.1 

FHSI/F50Ix
0.25 - -0.3 - 6.7 - 0.3 - 1.3 - 1.8 - -1.6 - -0.2 - -0.8 

FCSA/F50Ix
0.5 -2.6 - 5.0 - -4.1 - -3.4 - -1.7 - -5.8 - 0.8 - -1.2 - 

FCML/F50Ix
0.25 - -1.2 - -2.4 - -1.5 - -3.7 - -4.0 - -7.2 - -0.3 - -2.5 

1See Tables 1 and 2 for abbreviations. All ratios were natural log-transformed, e.g., ln (HHSA/H40J0.5). 

2See Tables 3 and 6 for sample means and standard deviations . Bold means < 1 SD from sample means. 

3Babakotia; 4Mesopropithecus. 

  

Page 50 of 57

John Wiley & Sons

Journal of Morphology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8 

 

Table 8 ± Proportions of Babakotia and Mesopropithecus relative to extant samples expressed as standard deviations of the subfossils from 
sample means: between-bones (only variables for which n = 1 are shown here). 

Proportions1,2 VCL 
Lemurs 

Quadruped 
Lemurs 

Varecia Gorilla 
 

Pan 
 

Pongo 
 

Choloepus 
 

Bradypus 
  

Cross-sectional 
dimensions & Lengths  

Bab3 Mes4 Bab Mes Bab Mes Bab Mes Bab Mes Bab Mes Bab Mes Bab Mes 

H40J/F50Ix 6.0 4.0 7.5 4.4 5.2 2.5 3.4 1.0 3.4 0.8 0.1 -3.9 3.0 -0.1 0.4 -1.2 
HumLength/ 
FemLength 

19.3 17.4 25.3 21.8 26.7 22.7 -1.7 -4.5 2.1 0.6 -5.1 -7.2 3.9 0.5 -11.1 -13.0 

                 
Articular dimensions                 
HHSA/FHSA 1.8 1.1 0.1 -0.4 1.3 0.5 -0.5 -1.3 -0.2 -1.2 -1.7 -2.6 1.6 1.0 0.3 -0.3 
HHSI/FHSA0.5 - 3.1 - 3.9 - 2.3 - 0.5 - 0.4 - 0.3 - 2.4 - 0.7 
HHSI/FHSI - 0.8 - -0.2 - -0.2 - -2.2 - -1.8 - -3.1 - 1.9 - -2.1 
HDSA/FCSA 4.4 - 7.1 - 2.9 - 4.6 - 2.9 - 1.2 - 0.4 - 0.6 - 
HDML/FCML - 4.9 - 5.9 - 2.2 - 7.7 - 5.8 - 4.8 - 1.5 - 1.0 
HDML/FCSA0.5 5.0 - 9.3 - 4.4 - 5.5 - 3.3 - 2.6 - 0.5 - -0.2 - 
1 See Tables 1 and 2 for abbreviations. All ratios were natural log-transformed, e.g., ln (H40J/F50Ix). 

2 See Tables 3 and 4 for sample means and standard deviations . Bold means < 1 SD from sample means. 

3Babakotia; 4Mesopropithecus. 
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Fig. 1 - Phylogenetic tree and divergent times of the taxa included in the study  
180x114mm (299 x 299 DPI)  
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Fig. 2 – Principal component analysis of humeral and femoral variables in extant primates and sloths, and in 
subfossil lemurs  

177x65mm (300 x 300 DPI)  
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Fig. 3 – Humeral within-bone proportions of extant primates and sloths, and of subfossil lemurs.  
160x119mm (300 x 300 DPI)  
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Fig. 4 - Femoral within-bone proportions of extant primates and sloths, and of subfossil lemurs.  
160x119mm (300 x 300 DPI)  
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Fig. 5 – Humeral and femoral interlimb robusticity and length proportions of extant primates and sloths, and 
of subfossil lemurs.  

160x60mm (300 x 300 DPI)  
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Fig. 6 – Humeral and femoral interlimb articular proportions of extant primates and sloths, and of subfossil 
lemurs.  

160x119mm (300 x 300 DPI)  
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