
This paper appeared at IEEE VTC Spring 2016.

 Abstract— Direct (or device-to-device, D2D) communications
are being investigated in the framework of LTE-Advanced. They
allow one-to-one communications between two endpoints, under the
control of the eNodeB, which allocates resources for the d2d flow,
but does not act as a relay for its traffic. The direct link can also be
used for file transfer or proximity-based browsing, i.e. applications
running on TCP. In this paper, we evaluate the performance of
TCP-based traffic transported through the direct link, in several
scenarios. We show and explain non-intuitive results, which arise
from the interplay of TCP and LTE-A protocol mechanisms, and
compare the existing TCP versions in a dynamic environment,
where mode switches between the direct and the infrastructure link
may induce periodic losses.

Index Terms—LTE-A, device-to-device, TCP, performance eval-
uation

I. INTRODUCTION

Network-controlled Device-to-device (D2D) communica-
tions are envisaged to abate latency and allow spatial frequency
reuse. They are expected to support both broadcast and unicast
services. The latter are expected to support several applications,
such as file transfer and proximity-based file sharing and brows-
ing. It is foreseeable that TCP will be used to support the latter,
since i) existing applications rely on it for assured in-sequence
delivery, and ii) its endpoint-regulated congestion control is use-
ful in a network with shared resources such as LTE-A.

Previous works considered the interplay between TCP
mechanisms and LTE-A ones, e.g. [22]-[24]. However, no work
that we know of evaluates the performance of TCP-based traffic
over a D2D link. In this paper, we show how the Round Trip
Time (RTT) of a TCP connection is affected by D2D communi-
cations. We then show the effects of D2D mode switch on a TCP
flow, since the ability of a D2D link to switch between direct
and infrastructure mode has been widely studied by the research
community [14]-[18]. To this aim, we compare the performance
obtained by different TCP implementations, like Reno, NewRe-
no and so on. Our evaluation is carried out using SimuLTE [2]-
[3], a C++ system-level simulator developed for OMNeT++ [4],
which simulates the data plane of the LTE/LTE-A radio access
network, including the entire protocol stack from the PDCP to
the physical layer, where we implemented one-to-one direct
communications. We evaluate a static scenario, where flows are
sent through either the sidelink (SL) or the uplink/downlink
(UL/DL) infrastructure path for their entire lifetime, and a dy-
namic one, where flows can be switched between the two paths.
We show that direct communications may reduce the RTT of a

TCP connection, although not as much as expected due to inter-
actions with LTE-A protocol mechanisms. Actually, in some
cases, the UL/DL path may outperform the SL one. Moreover,
we show that mode switching impairs the performance of TCP-
based applications, as it causes losses which are interpreted by
TCP as a congestion signal. As a result, the throughput is highly
affected by the version of congestion control algorithm imple-
mented in the TCP. We compare the most common algorithms
and show why some faster than the others from mode switches.

The rest of the paper is organized as follows: Section II re-
ports background. Section III analyzes the static scenario,
whereas the dynamic one is discussed in Section IV. We con-
clude the paper in Section V.

II. BACKGROUND

Hereafter we provide a minimal background on LTE-A and
introduce our working hypotheses. Going from top to bottom
through the LTE-A stack, we find the Packet Data Convergence
Protocol (PDCP), where IP packets are ciphered and numbered
and immediately sent down to the Radio Link Control (RLC),
where they are buffered. The MAC requests to the RLC an RLC
PDU of a given size, and the RLC responds by dequeuing from
its buffer an appropriate number of RLC SDUs, fragmenting and
concatenating them as necessary to fit the request (the RLC
unacknowledged mode (UM) is recommended by the standard
for D2D [1]). MAC-layer transmissions are arranged in sub-
frames and paced at Transmission Time Intervals (TTIs) of 1ms.
In the downlink (DL), the eNB allocates a vector of Resource
Blocks (RBs) to transmissions directed to the User Equipments
(UEs) associated to it on each TTI. Each RB carries a number of
bits depending on the Channel Quality Indicator (CQI) reported
by the UE. MAC-level error recovery is provided by a Hybrid
ARQ (H-ARQ) scheme, which allows a configurable number of
retransmissions. Retransmission is asynchronous in the DL and
synchronous in the UL, where it occurs after eight TTIs.

UEs access UL resources through a Random Access Proce-
dure (RAC). RAC request collisions are resolved through
backoff. RAC requests are responded by scheduling the UE in a
future TTI, and are re-iterated if unanswered after a timeout. The
handshake for UL transmissions takes five messages (Figure 1):
first the UE sends a RAC request; the eNB responds with a short
grant, large enough for a Buffer Status Report (BSR); the UE
sends its BSR; the eNB sends a larger grant according to its
scheduling policy, and the UE transmits its data. The middle two

Performance evaluation of TCP-based traffic over
direct communications in LTE-Advanced

Giovanni Nardini, Giovanni Stea, Antonio Virdis

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
g.nardini@ing.unipi.it, giovanni.stea@unipi.it, a.virdis@iet.unipi.it

This paper appeared at IEEE VTC Spring 2016.

interactions can be avoided if the UE sends PDUs together with
the BSR, a technique known as bandwidth stealing (BS). Semi-
Persistent Scheduling (SPS) can also be used to transmit period-
ic traffic, e.g., VoIP, and consists in the eNB issuing a long-
term, periodic grant to a UE, which can then transmit in the pre-
assigned RBs without signaling. However, SPS prevents link
adaptation, hence it is inefficient [21].

For D2D communications to happen, the eNB issues two
grants for the same RBs to a for transmission, and to b for recep-
tion, simultaneously (slots 5 and 3 of Figure 1 respectively). We
consider a Frequency Division Duplexing (FDD) system, where
DM transmissions take place in the UL subframe, which is less
likely to be the loaded (due to the well-known traffic asym-
metry) and allows better overall SINR [19]. Accordingly, we
assume that UEs are equipped with a Single Carrier-Frequency
Division Multiple Access (SC-FDMA) receiver [20]. As far as
H-ARQ is concerned, we assume that the feedback is sent by the
D2D receiver to both the sender and the eNB. This is necessary,
since the former needs to know if retransmission is required (in
eight TTI, it being UL), while the latter has to allocate RBs for it
to take place. On the other hand, it cannot be given for granted
that the eNB is able to overhear the transmission occurring on
the SL, since the power at the sender may not be sufficient.

For several reasons, e.g. link quality changes due to user mo-
bility, D2D must include a mechanism to switch a flow from the
SL to the UL/DL path and vice versa dynamically. When this
happens, losses may occur. In fact, the standard mandates that
different LTE connections be used for the SL and the UL/DL.
Now, different connections have unrelated ciphering and num-
bering. Therefore, traffic buffered at the RLC of one connection
cannot be sent on the other connection after a mode switch,
since its ciphering and numbering do not fit with the new one.
Thus, the only option is to discard it and have it retransmitted at
the application level.

A. Background on TCP

We briefly mention the main features of TCP. TCP provides
reliable, duplicate-free and ordered delivery of application data.
Once an end-to-end connection is established, TCP breaks the
sending application’s stream of bytes into a set of segments,
each one identified by the sequence number of the last byte in it.
The reception of a segment must be notified by sending back an
acknowledgment (ACK), which contains the sequence number
of the next expected byte, and confirms that all previous bytes
have been correctly received. A duplicate ACK (dupACK) is
sent by the receiver when out-of-sequence bytes arrive, which is
likely to signal that one or more segments are missing. If the
ACK is not received before a retransmission timer expires, the
segment is retransmitted. The number of segments that can be
sent simultaneously is limited by the flow control and conges-
tion control mechanisms. Both use a sliding window to avoid
sending more data than those the receiver and the network, re-
spectively, can handle. The effective sending window is the
minimum of the two. While the size of the receive window,
which paces flow control, is specified by the receiver itself, the

status of the network must be inferred from the (lack of) recep-
tion of ACKs. Most congestion control algorithms begin with a
slow-start phase, where the congestion window (cwnd) is in-
creased exponentially, i.e. doubled at each RTT. When a thresh-
old is reached, the algorithm enters a congestion-avoidance
phase, where the cwnd is increased linearly (cubically in TCP
Cubic, [12]). If a retransmission timer expires, TCP assumes the
network is congested, hence reduces the cwnd.

Figure 1 – Standard uplink scheduling (left) and bandwidth stealing (right).

eNB

UE1 UE2

eNB

UE1 UE2

Figure 2 – Static scenario (left) and dynamic scenario (right).

TABLE 1 - SIMULATION PARAMETERS

Parameter Value
Carrier frequency 2 GHz
Bandwidth 10 MHz (50 RBs)
Path loss model Urban Macro [13]
eNB Tx Power 40 dBm
UE Tx Power 20 dBm
eNB Antenna gain 18 dB
Noise figure 5 dB
Cable loss 2 dB
RAC timeout 10ms
Simulation time 500 seconds
of independent repetitions 10

III. STATIC D2D CONNECTIONS

In this section, we evaluate the Round Trip Time (RTT) and
the throughput of a TCP connection between two static, D2D-
capable UEs, communicating in DM and IM. A TCP connection
is bidirectional, including a data flow, consisting of (long) TCP
segments, and an ACK flow. The data and ACK flows are unre-
lated at the MAC level, hence they can be sent through either the
DM or the IM path independently. Thus, we have four scenarios,
corresponding to the cases of data/ACK flows routed as
DM/DM, DM/IM, IM/DM, IM/IM.

Figure 2 (left) reports the simulation scenario. We consider
one pair of D2D-capable UEs and one eNB, whose antenna ra-
diates the signal with an omnidirectional pattern. The two UEs
are 20m away from the eNB and 20m away from each other.
This way, CQIs stay equal to 15 for the whole simulation for SL,
UL and DL directions, hence measurements are not affected by
factors like different link quality. Simulation parameters are
reported in Table 1. UE1 sends a 1GB file to UE2. The sending
rate is limited by the TCP receive window size, which is 8 KB.
Figure 3 shows the evolution of the RTT. The RTT is about

This paper appeared at IEEE VTC Spring 2016.

42ms (on average) for traditional IM-IM communication,
whereas DM-DM reduces it to 30ms, but not less. In other
words, DM transmissions cannot drastically abate the RTT, un-
less SPS or similar mechanisms are employed. This can be ex-
plained by looking at Figure 4, which shows the sequence of
events between the transmission of one TCP data segment and
the reception of the corresponding TCP ACK, when DM-DM is
used. At time t=0, the data segment is available in the transmis-
sion buffer of UE1. Since the latter has no scheduled resources,
it issues a RAC request to the eNB, which replies with an UL
grant of the minimum size (one RB) to allow UE1 to send the
BSR, at t=5. The eNB decodes the BSR at t=9 and sends a SL
grant to UE1, which uses it to transmit data to UE2 at t=11. At
t=15, UE2 decodes the airframe and delivers it to the TCP layer.
The TCP ACK goes back to UE1 following the same sequence,
i.e. UE1 receives the ACK at t=30. Two thirds of the time are
occupied by the RAC procedure and BSR reporting, which are
unavoidable. For the IM-DM case, the RTT is longer, since the
data flow has to traverse two hops: the UL leg requires the same
timing as a DM transmission, while the DL leg adds 5ms.

When the ACK flow is in IM, instead, BS, as described in
Section II, comes into play. Note that BS cannot work for DM,
since it requires that the recipient of both BSR and data be the
same entity (i.e., the eNB), whereas in DM data would be sent to
the peering UE instead. Moreover, it seldom works for the data
flow in IM, since TCP segments are too large to fit the one and
only RB granted for the BSR after a successful RAC request. In
fact, the RLC layer provides a RLC PDU of the requested size to
the MAC layer. However, since TCP data segments are likely to
be large, the RLC fragments them, thus only the first fragment
fits the granted RB. Although that fragment reaches the eNB’s
RLC immediately, the original data segment is not reassembled
until all the subsequent fragments have arrived at the eNB,
hence BS is of little benefit. The ACK flow consists of small
segments (46 bytes at the MAC level), which can instead be
accommodated in that single RB granted to UE2. If a burst of
ACKs is queued at UE2, one or two of them can be sent together
with the BSR, while the others need to wait for a subsequent
data grant. This results in irregular arrivals of TCP ACKs, hence
irregular sending of new TCP data segments. This is visible in
the DM-IM and IM-IM lines in Figure 3, where the RTT fluctu-
ates. With reference to Figure 4, if new data becomes available
at t+6, right after UE1 has sent its BSR to the eNB, UE1 cannot
start a new RAC request, since it is already waiting for a data
grant. At the same time, it is likely that the newly arrived data do
not fit the grant decoded at t+9. Thus, UE1 can only defer the
new RAC request to after the RAC timeout at t+10. This in-
creases the RTT for the data segment.

Then, we gradually boost the sending rate by increasing the
size of the TCP receive window. Figure 5 shows the average
RTT. The latter begins to grow with the window size, as TCP
data segments experience higher queueing time at UE1’s RLC
buffer. However, we observe that the RTT decreases after a
certain point when the data flow is IM. This is because UE1
approaches a full buffer condition. In this case, almost each UL

data transmission transports a trailing non-zero BSR, hence UE1
no longer needs to send RAC requests to obtain a grant, hence
the RTT is shorter. On the other hand, when the data flow is in
DM, every new segment requires a RAC request, since trailing
BSRs may not be overheard by the eNB: this is because the DM
transmission power may be too low for them to get to the eNB,
or because the eNB may reuse frequency on a spatial basis, al-
lowing other DM pairs to use the same RBs, thus being unable
to overhear single transmissions. Note that, with DM-IM, the
ACK flow is never large enough to approach a full-buffer condi-
tion, hence RAC requests are still required for that. Thus, DM
for the data flow is inefficient at higher sending rates.

Figure 3 - Evolution of RTT over time

UE1

UE2

eNB

0 t 5 10 15 20 25 30

RAC
Req BSR data

data
grant

BSR
grant

RAC
Req

BSR data

data
grant

BSR
grant

Send TCP
data segment

Send TCP
ACK

Rcvd TCP
ACK

Figure 4 - Analysis of RTT for DM-DM communications

Figure 5 - RTT with different TCP receive window size

IV. DYNAMIC D2D CONNECTIONS

We now evaluate the performance of a TCP connection be-
tween two D2D-capable UEs in mobility. Mobility causes
changes in the link quality, so it is desirable that the communica-
tion switches from DM to IM and vice versa. Mode switching
may cause relevant losses. In fact, a single hop in LTE-A (both
the SL one and either leg of the IM path) has its own PDCP
peering, with associated state (e.g., PDU numbering) and cipher-
ing. When the mode is switched, the traffic buffered below the
PDCP layer (e.g., at the RLC) for the “old” mode cannot be sent
on the new path, and the UE can only drop it. TCP is sensitive to
losses, which it interprets as congestion signals, thereby reduc-
ing the congestion window (cwnd), hence the throughput. Well-
known congestion control algorithms react differently when a(n
alleged) congestion is perceived. In particular, mode switching

This paper appeared at IEEE VTC Spring 2016.

represents a case study where a possibly large burst of data seg-
ments is lost and several duplicate ACKs (dupACKs) reach the
TCP sender almost simultaneously. Figure 2, right, reports the
simulation scenario, which is designed on purpose to highlight
the impact of mode switches. An omnidirectional eNB has two
D2D-capable UEs associated to it. These start at a distance of
300m to the eNB, and move back and forth along a line at 3m/s,
so that their distance varies in [30m; 160m]. This way, each UE
has a constant UL CQI equal to 9, and a varying CQI on the SL,
going both above and below 9. Every second, the eNB selects
and enforces the highest-CQI mode, hence the communication
bounces between DM and IM. Fading and inter-cell interference
are disabled, and we verified that residual physical-layer errors
are negligible and do not affect our results. The traffic is the
same as Section III, i.e. a 1GB-file transfer from UE1 to UE2.
The receive window size is 128 KB. Figures 6a-f represent the
evolution of the cwnd for different TCP implementations. For
conciseness, we focus on a single mode switch event occurring
at about t=221s (solid arrow in the figures), but the same behav-
ior occurs several times in a run, since the communication peri-
odically bounces from DM-DM to IM-IM and vice versa.
a) Reno [6]: it implements Fast Retransmit and Fast Recovery
(FRec), thus UE1 halves its cwnd once it receives three or more
dupACKs and enters the recovery phase, where it retransmits
one segment per RTT. During this phase, UE1 increases the
cwnd by the number of dupACKs received (ndup) until an ACK
for new data is received, then it exits the recovery phase (this
means reducing the cwnd by ndup). However, the unACKed
segments are still in flight from UE1’s point of view, thus the

number of outstanding segments exceeds the sending window,
preventing UE1 from transmitting the next segment until the
retransmit timeout expires after 1s. UE1 resumes transmission
from the first unACKed segment, but it ends retransmitting also
those segments correctly received by UE2, thus generating an-
other congestion event (the dotted arrow in the figure).
b) NewReno [7]: same as Reno but the sender exits the FRec
phase only when all outstanding segments at the congestion
event have been ACKed (i.e., reception of a full ACK). During
FRec, every partial ACK i) reduces the cwnd by the number of
ACKed segments and ii) increases the cwnd by one. This yields
the plateau in Figure 6b. Note that, one second after the conges-
tion event, the cwnd is reset to 1 MSS. In fact, the retransmit
timer is restarted only after the reception of the first partial
ACK, which expires before the end of the FRec phase and caus-
es the cwnd to be reset to 1 MSS without exiting FRec (i.e. UE1
continues to send one segment per RTT). This is called the im-
patient variant of NewReno: once FRec terminates, UE1
switches to slow-start, instead of congestion-avoidance, to allow
faster recovery. NewReno prevents UE1 from stalling, although
its FRec phase may last several seconds.
c) Westwood [8]: same as Reno but instead of halving the cwnd,
the latter is set according to the estimation of the end-to-end
bandwidth. The latter is calculated by measuring the rate of the
returning ACKs. The rationale is to avoid an excessive reduction
of the cwnd when the congestion signal is instead due to tempo-
rary link failures (e.g. errors on a wireless link). However, Fig-
ure 6c shows that cwnd is reduced to a very low value, thus fail-
ing its goal, due to a phenomenon known as ACK compression

 a) Reno b) NewReno c) Westwood

 d) Westwood+ e) Reno w SACK f) Cubic

Figure 6 – Evolution of the congestion window over time with different TCP congestion control algorithms.

This paper appeared at IEEE VTC Spring 2016.

[9]. Each bandwidth sample is computed as k k kb d= ∆ , where

kd is the amount of data ACKed and k∆ is the time distance
between two consecutive ACKs. Since in LTE-A the time is
slotted, two ACKs may arrive at the same time, hence 0k∆ = ,
resulting in undefined behavior. In this implementation, kb is set
to 0, thus strongly affecting the bandwidth estimation. Moreo-
ver, Westwood presents the same problems as Reno.
d) Westwood+ [10]: a variant of Westwood where term k∆ is
set to the value of the last RTT to avoid ACK compression.
However, the cwnd still undergoes a coarse reduction to about
13 KB and exhibits a similar behavior as with Reno.
e) Reno with Selective ACKs [11]: it uses the same algorithm of
Reno to increase/decrease the cwnd, but adds the SACK option
to the TCP segment. Each returning ACK contains the indica-
tion about a set of out-of-sequence data received at UE2. This
avoids both i) to wait for a retransmit timer after congestion and
ii) to trigger a second congestion event. In fact, selective ACKs
allows UE1 to know exactly the number of outstanding seg-
ments and to avoid deadlocks. On the other hand, already re-
ceived segments are not retransmitted by UE1, thus dupACKs
are not generated. Thus, the second congestion does not occur.
f) Cubic [12]: the cwnd growth function is cubic and does not
depend on the RTT (note the larger scale of the y axis). At con-
gestion, UE1 reduces cwnd by a factor β (typically 0.8) and
retransmits one segment. However, as in Reno, the unACKed
segments exceed the sending window, thus UE1 has to stop and
wait for the retransmit timeout to expire. In this case too, a sec-
ond congestion event is triggered. Since the growth function is
cubic, the cwnd reverts to a value comparable to the receive
window faster than the other cases.

Figure 7 shows the application-layer throughput obtained
with the different congestion control algorithms. The mode
switches do affect the throughput, thus Reno with Selective
ACKs and Cubic outperform the other implementations. The
former does not drastically reduce its cwnd, whereas the latter
recovers very fast. Reno, Westwood and Westwood+ perform
almost the same, as they all present the same problems. On the
other hand, NewReno’s smaller throughput is due to the longer
duration of the recovery phase at mode switch.

Figure 7 – Application-layer throughput

V. CONCLUSIONS

We evaluated the performance of TCP-based applications
over D2D communications. We showed that the RTT is affected
by protocol mechanisms within the LTE-A stack, like RAC and
bandwidth stealing. Simulation results showed that D2D com-

munication allows moderate reduction of the RTT. Surprisingly,
traditional infrastructure communications may even achieve
better performance when the sending rate of the TCP flow is
high. Moreover, we showed that multiple losses occurring after
D2D mode switching cause undesired behaviors when using
some TCP implementations, which treat losses as congestion
signal. Results showed that using TCP Cubic or selective acks
reduces the impact of mode switching.

REFERENCES
[1] 3GPP - TS 36.843 v12.0.1, “Study on LTE Device to Device Proximity

Services: Radio aspects (Release 12)”, March 2014.
[2] SimuLTE webpage. http://www.simulte.com.
[3] A. Virdis, G. Stea, G. Nardini, “Simulating LTE/LTE-Advanced Net-

works with SimuLTE”, doi: 10.1007/978-3-319-26470-7_5, Advances in
Intelligent Systems and Computing, vol.402, pp.83-105, Springer, 2016.

[4] OMNeT++, http://www.omnetpp.org
[5] V. Jacobson, “Congestion avoidance and control,” Proc. of SIGCOMM

Symp. on comm. architectures and protocols, pp.314-329, 1988.
[6] V. Jacobson, “Modified TCP congestion avoidance algorithm,” Technical

report, 30 Apr 1990. Email to the end2end-interest mailing list.
[7] S. Floyd, T. Henderson, “The NewReno modification to TCP’s Fast Re-

covery mechanism,” RFC 2582, April 1999.
[8] C. Casetti, M. Gerla, S. Mascolo, M. Sanadadi, R. Wang, “TCP Westwood:

End-to-end congestion control for wired/wireless networks,” Wireless
Networks, September 2002, vol.8, issue 5, pp.467-479.

[9] J.C. Mogul, “Observing TCP dynamics in real networks,” Proc. of ACM
SIGCOMM 1992, pp.305-317.

[10] L. Grieco , S. Mascolo, “Performance evaluation and comparison of West-
wood+, New Reno, and Vegas TCP congestion control,” ACM SIGCOMM
Computer Communication Review, v.34 n.2, April 2004.

[11] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP Selective acknowl-
edgement options,” RFC 2018, April 1996.

[12] S.Ha, I. Rhee, L. Xu, “CUBIC: a new TCP-friendly high-speed TCP vari-
ant,” ACM SIGOPS Operating Sys. Rev., vol.42(5), pp.64-74, July 2008.

[13] 3GPP TR 36.814 v9.0.0, “Further advancements for E-UTRA physical
layer aspects (Release 9),” March 2010.

[14] K. Doppler, Chia-Hao Yu, C.B. Ribeiro, P. Janis, "Mode Selection for
Device-To-Device Communication Underlaying an LTE-Advanced Net-
work," Proc. of WCNC 2010, pp.1-6, 18-21 Apr. 2010.

[15] J. Gu, S.J. Bae, B.G. Choi, M.Y. Chung, “Mode Selection Scheme Con-
sidering Transmission Power for Improving Performance of Device-to-
Device Communication in Cellular Networks”, Proc. ICUIMC 2012, 20-
22 Feb. 2012, Kuala Lumpur, Malaysia.

[16] M. Belleschi, G. Fodor, A. Abrardo, "Performance analysis of a distributed
resource allocation scheme for D2D communications," IEEE GLOBECOM
2011 workshops, pp.358-362, 5-9 Dec. 2011.

[17] X. Xiao, X. Tao, J. Lu, "A QoS-Aware Power Optimization Scheme in
OFDMA Systems with Integrated Device-to-Device (D2D) Communica-
tions," Proc. of VTC Fall 2011 pp.1-5, 5-8 Sept. 2011.

[18] S. Wen, X. Zhu, X. Zhang, D. Yang, "QoS-aware mode selection and
resource allocation scheme for Device-to-Device (D2D) communication in
cellular networks," Proc. of ICC 2013, pp.101-105, 9-13 June 2013.

[19] C. H. Yu, O. Tirkkonen, K. Doppler, C. Ribeiro, "On the Performance of
Device-to-Device Underlay Communication with Simple Power Control,"
Proc. of IEEE VTC Spring 2009, pp. 1-5, 26-29 Apr. 2009.

[20] X. Lin, et al., "An overview of 3GPP device-to-device proximity services,"
IEEE Comm. Mag., vol.52(4), pp.40-48, 2014

[21] G. Stea, A. Virdis, “A comprehensive simulation analysis of LTE discon-
tinuous reception (DRX),” Computer Networks, vol. 73(2014), pp.22–40.

[22] J. Huang, et al. “An in-depth study of LTE: effect of network protocol and
application behavior on performance,” Proc. of ACM SIGCOMM 2013,
pp.363-374.

[23] B. Nguyen, et al., “Towards understanding TCP performance on LTE/EPC
mobile networks,” Proc. of the 4th workshop on all things cellular: opera-
tions, applications, & challenges. ACM, 2014, pp. 41–46.

[24] D. Pacifico, et al., “Improving TCP performance during the Intra LTE
handover,” IEEE GLOBECOM 2009.

