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 Abstract— Direct (or device-to-device, D2D) communications 
are being investigated in the framework of LTE-Advanced. They 
allow one-to-one communications between two endpoints, under the 
control of the eNodeB, which allocates resources for the d2d flow, 
but does not act as a relay for its traffic. The direct link can also be 
used for file transfer or proximity-based browsing, i.e. applications 
running on TCP. In this paper, we evaluate the performance of 
TCP-based traffic transported through the direct link, in several 
scenarios. We show and explain non-intuitive results, which arise 
from the interplay of TCP and LTE-A protocol mechanisms, and 
compare the existing TCP versions in a dynamic environment, 
where mode switches between the direct and the infrastructure link 
may induce periodic losses.  

 

Index Terms—LTE-A, device-to-device, TCP, performance eval-
uation 

I. INTRODUCTION 

Network-controlled Device-to-device (D2D) communica-
tions are envisaged to abate latency and allow spatial frequency 
reuse. They are expected to support both broadcast and unicast 
services. The latter are expected to support several applications, 
such as file transfer and proximity-based file sharing and brows-
ing. It is foreseeable that TCP will be used to support the latter, 
since i) existing applications rely on it for assured in-sequence 
delivery, and ii) its endpoint-regulated congestion control is use-
ful in a network with shared resources such as LTE-A. 

Previous works considered the interplay between TCP 
mechanisms and LTE-A ones, e.g. [22]-[24]. However, no work 
that we know of evaluates the performance of TCP-based traffic 
over a D2D link. In this paper, we show how the Round Trip 
Time (RTT) of a TCP connection is affected by D2D communi-
cations. We then show the effects of D2D mode switch on a TCP 
flow, since the ability of a D2D link to switch between direct 
and infrastructure mode has been widely studied by the research 
community [14]-[18]. To this aim, we compare the performance 
obtained by different TCP implementations, like Reno, NewRe-
no and so on. Our evaluation is carried out using SimuLTE [2]-
[3], a C++ system-level simulator developed for OMNeT++ [4], 
which simulates the data plane of the LTE/LTE-A radio access 
network, including the entire protocol stack from the PDCP to 
the physical layer, where we implemented one-to-one direct 
communications. We evaluate a static scenario, where flows are 
sent through either the sidelink (SL) or the uplink/downlink 
(UL/DL) infrastructure path for their entire lifetime, and a dy-
namic one, where flows can be switched between the two paths. 
We show that direct communications may reduce the RTT of a 

TCP connection, although not as much as expected due to inter-
actions with LTE-A protocol mechanisms. Actually, in some 
cases, the UL/DL path may outperform the SL one. Moreover, 
we show that mode switching impairs the performance of TCP-
based applications, as it causes losses which are interpreted by 
TCP as a congestion signal. As a result, the throughput is highly 
affected by the version of congestion control algorithm imple-
mented in the TCP. We compare the most common algorithms 
and show why some faster than the others from mode switches. 

The rest of the paper is organized as follows: Section II re-
ports background. Section III analyzes the static scenario, 
whereas the dynamic one is discussed in Section IV. We con-
clude the paper in Section V.  

II. BACKGROUND  

Hereafter we provide a minimal background on LTE-A and 
introduce our working hypotheses. Going from top to bottom 
through the LTE-A stack, we find the Packet Data Convergence 
Protocol (PDCP), where IP packets are ciphered and numbered 
and immediately sent down to the Radio Link Control (RLC), 
where they are buffered. The MAC requests to the RLC an RLC 
PDU of a given size, and the RLC responds by dequeuing from 
its buffer an appropriate number of RLC SDUs, fragmenting and 
concatenating them as necessary to fit the request (the RLC 
unacknowledged mode (UM) is recommended by the standard 
for D2D [1]). MAC-layer transmissions are arranged in sub-
frames and paced at Transmission Time Intervals (TTIs) of 1ms. 
In the downlink (DL), the eNB allocates a vector of Resource 
Blocks (RBs) to transmissions directed to the User Equipments 
(UEs) associated to it on each TTI. Each RB carries a number of 
bits depending on the Channel Quality Indicator (CQI) reported 
by the UE. MAC-level error recovery is provided by a Hybrid 
ARQ (H-ARQ) scheme, which allows a configurable number of 
retransmissions. Retransmission is asynchronous in the DL and 
synchronous in the UL, where it occurs after eight TTIs.  

UEs access UL resources through a Random Access Proce-
dure (RAC). RAC request collisions are resolved through 
backoff. RAC requests are responded by scheduling the UE in a 
future TTI, and are re-iterated if unanswered after a timeout. The 
handshake for UL transmissions takes five messages (Figure 1): 
first the UE sends a RAC request; the eNB responds with a short 
grant, large enough for a Buffer Status Report (BSR); the UE 
sends its BSR; the eNB sends a larger grant according to its 
scheduling policy, and the UE transmits its data. The middle two 
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interactions can be avoided if the UE sends PDUs together with 
the BSR, a technique known as bandwidth stealing (BS). Semi-
Persistent Scheduling (SPS) can also be used to transmit period-
ic traffic, e.g., VoIP, and consists in the eNB issuing a long-
term, periodic grant to a UE, which can then transmit in the pre-
assigned RBs without signaling. However, SPS prevents link 
adaptation, hence it is inefficient [21].  

For D2D communications to happen, the eNB issues two 
grants for the same RBs to a for transmission, and to b for recep-
tion, simultaneously (slots 5 and 3 of Figure 1 respectively). We 
consider a Frequency Division Duplexing (FDD) system, where 
DM transmissions take place in the UL subframe, which is less 
likely to be the loaded (due to the well-known traffic asym-
metry) and allows better overall SINR [19]. Accordingly, we 
assume that UEs are equipped with a Single Carrier-Frequency 
Division Multiple Access (SC-FDMA) receiver [20]. As far as 
H-ARQ is concerned, we assume that the feedback is sent by the 
D2D receiver to both the sender and the eNB. This is necessary, 
since the former needs to know if retransmission is required (in 
eight TTI, it being UL), while the latter has to allocate RBs for it 
to take place. On the other hand, it cannot be given for granted 
that the eNB is able to overhear the transmission occurring on 
the SL, since the power at the sender may not be sufficient.  

For several reasons, e.g. link quality changes due to user mo-
bility, D2D must include a mechanism to switch a flow from the 
SL to the UL/DL path and vice versa dynamically. When this 
happens, losses may occur. In fact, the standard mandates that 
different LTE connections be used for the SL and the UL/DL. 
Now, different connections have  unrelated ciphering and num-
bering. Therefore, traffic buffered at the RLC of one connection 
cannot be sent on the other connection after a mode switch, 
since its ciphering and numbering do not fit with the new one. 
Thus, the only option is to discard it and have it retransmitted at 
the application level.  

A. Background on TCP 

We briefly mention the main features of TCP. TCP provides 
reliable, duplicate-free and ordered delivery of application data. 
Once an end-to-end connection is established, TCP breaks the 
sending application’s stream of bytes into a set of segments, 
each one identified by the sequence number of the last byte in it. 
The reception of a segment must be notified by sending back an 
acknowledgment (ACK), which contains the sequence number 
of the next expected byte, and confirms that all previous bytes 
have been correctly received. A duplicate ACK (dupACK) is 
sent by the receiver when out-of-sequence bytes arrive, which is 
likely to signal that one or more segments are missing. If the 
ACK is not received before a retransmission timer expires, the 
segment is retransmitted. The number of segments that can be 
sent simultaneously is limited by the flow control and conges-
tion control mechanisms. Both use a sliding window to avoid 
sending more data than those the receiver and the network, re-
spectively, can handle. The effective sending window is the 
minimum of the two. While the size of the receive window, 
which paces flow control, is specified by the receiver itself, the 

status of the network must be inferred from the (lack of) recep-
tion of ACKs. Most congestion control algorithms begin with a 
slow-start phase, where the congestion window (cwnd) is in-
creased exponentially, i.e. doubled at each RTT. When a thresh-
old is reached, the algorithm enters a congestion-avoidance 
phase, where the cwnd is increased linearly (cubically in TCP 
Cubic, [12]). If a retransmission timer expires, TCP assumes the 
network is congested, hence reduces the cwnd.  

 
Figure 1 – Standard uplink scheduling (left) and bandwidth stealing (right). 
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Figure 2 – Static scenario (left) and dynamic scenario (right). 

TABLE 1 - SIMULATION PARAMETERS 

Parameter Value 
Carrier frequency 2 GHz 
Bandwidth 10 MHz (50 RBs) 
Path loss model Urban Macro [13] 
eNB Tx Power 40 dBm 
UE Tx Power 20 dBm 
eNB Antenna gain 18 dB 
Noise figure 5 dB 
Cable loss 2 dB 
RAC timeout 10ms 
Simulation time 500 seconds 
# of independent repetitions 10 

III.  STATIC D2D CONNECTIONS 

In this section, we evaluate the Round Trip Time (RTT) and 
the throughput of a TCP connection between two static, D2D-
capable UEs, communicating in DM and IM. A TCP connection 
is bidirectional, including a data flow, consisting of (long) TCP 
segments, and an ACK flow. The data and ACK flows are unre-
lated at the MAC level, hence they can be sent through either the 
DM or the IM path independently. Thus, we have four scenarios, 
corresponding to the cases of data/ACK flows routed as 
DM/DM, DM/IM, IM/DM, IM/IM. 

Figure 2 (left) reports the simulation scenario. We consider 
one pair of D2D-capable UEs and one eNB, whose antenna ra-
diates the signal with an omnidirectional pattern. The two UEs 
are 20m away from the eNB and 20m away from each other. 
This way, CQIs stay equal to 15 for the whole simulation for SL, 
UL and DL directions, hence measurements are not affected by 
factors like different link quality. Simulation parameters are 
reported in Table 1. UE1 sends a 1GB file to UE2. The sending 
rate is limited by the TCP receive window size, which is 8 KB. 
Figure 3 shows the evolution of the RTT. The RTT is about 
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42ms (on average) for traditional IM-IM communication, 
whereas DM-DM reduces it to 30ms, but not less. In other 
words, DM transmissions cannot drastically abate the RTT, un-
less SPS or similar mechanisms are employed. This can be ex-
plained by looking at Figure 4, which shows the sequence of 
events between the transmission of one TCP data segment and 
the reception of the corresponding TCP ACK, when DM-DM is 
used. At time t=0, the data segment is available in the transmis-
sion buffer of UE1. Since the latter has no scheduled resources, 
it issues a RAC request to the eNB, which replies with an UL 
grant of the minimum size (one RB) to allow UE1 to send the 
BSR, at t=5. The eNB decodes the BSR at t=9 and sends a SL 
grant to UE1, which uses it to transmit data to UE2 at t=11. At 
t=15, UE2 decodes the airframe and delivers it to the TCP layer. 
The TCP ACK goes back to UE1 following the same sequence, 
i.e. UE1 receives the ACK at t=30. Two thirds of the time are 
occupied by the RAC procedure and BSR reporting, which are 
unavoidable. For the IM-DM case, the RTT is longer, since the 
data flow has to traverse two hops: the UL leg requires the same 
timing as a DM transmission, while the DL leg adds 5ms.  

When the ACK flow is in IM, instead, BS, as described in 
Section II, comes into play. Note that BS cannot work for DM, 
since it requires that the recipient of both BSR and data be the 
same entity (i.e., the eNB), whereas in DM data would be sent to 
the peering UE instead. Moreover, it seldom works for the data 
flow in IM, since TCP segments are too large to fit the one and 
only RB granted for the BSR after a successful RAC request. In 
fact, the RLC layer provides a RLC PDU of the requested size to 
the MAC layer. However, since TCP data segments are likely to 
be large, the RLC fragments them, thus only the first fragment 
fits the granted RB. Although that fragment reaches the eNB’s 
RLC immediately, the original data segment is not reassembled 
until all the subsequent fragments have arrived at the eNB, 
hence BS is of little benefit. The ACK flow consists of small 
segments (46 bytes at the MAC level), which can instead be 
accommodated in that single RB granted to UE2. If a burst of 
ACKs is queued at UE2, one or two of them can be sent together 
with the BSR, while the others need to wait for a subsequent 
data grant. This results in irregular arrivals of TCP ACKs, hence 
irregular sending of new TCP data segments. This is visible in 
the DM-IM and IM-IM lines in Figure 3, where the RTT fluctu-
ates. With reference to Figure 4, if new data becomes available 
at t+6, right after UE1 has sent its BSR to the eNB, UE1 cannot 
start a new RAC request, since it is already waiting for a data 
grant. At the same time, it is likely that the newly arrived data do 
not fit the grant decoded at t+9. Thus, UE1 can only defer the 
new RAC request to after the RAC timeout at  t+10. This in-
creases the RTT for the data segment.  

Then, we gradually boost the sending rate by increasing the 
size of the TCP receive window. Figure 5 shows the average 
RTT. The latter begins to grow with the window size, as TCP 
data segments experience higher queueing time at UE1’s RLC 
buffer. However, we observe that the RTT decreases after a 
certain point when the data flow is IM. This is because UE1 
approaches a full buffer condition. In this case, almost each UL 

data transmission transports a trailing non-zero BSR, hence UE1 
no longer needs to send RAC requests to obtain a grant, hence 
the RTT is shorter. On the other hand, when the data flow is in 
DM, every new segment requires a RAC request, since trailing 
BSRs may not be overheard by the eNB: this is because the DM 
transmission power may be too low for them to get to the eNB, 
or because the eNB may reuse frequency on a spatial basis, al-
lowing other DM pairs to use the same RBs, thus being unable 
to overhear single transmissions. Note that, with DM-IM, the 
ACK flow is never large enough to approach a full-buffer condi-
tion, hence RAC requests are still required for that. Thus, DM 
for the data flow is inefficient at higher sending rates.   

 
Figure 3 - Evolution of RTT over time 

UE1

UE2

eNB

0 t 5 10 15 20 25 30

RAC 
Req BSR data

data 
grant

BSR 
grant

RAC 
Req

BSR data

data 
grant

BSR 
grant

Send TCP 
data segment

Send TCP 
ACK

Rcvd TCP 
ACK

 
Figure 4 - Analysis of RTT for DM-DM communications 

 
Figure 5 - RTT with different TCP receive window size 

IV.  DYNAMIC D2D CONNECTIONS 

We now evaluate the performance of a TCP connection be-
tween two D2D-capable UEs in mobility. Mobility causes 
changes in the link quality, so it is desirable that the communica-
tion switches from DM to IM and vice versa. Mode switching 
may cause relevant losses. In fact, a single hop in LTE-A (both 
the SL one and either leg of the IM path) has its own PDCP 
peering, with associated state (e.g., PDU numbering) and cipher-
ing. When the mode is switched, the traffic buffered below the 
PDCP layer (e.g., at the RLC) for the “old” mode cannot be sent 
on the new path, and the UE can only drop it. TCP is sensitive to 
losses, which it interprets as congestion signals, thereby reduc-
ing the congestion window (cwnd), hence the throughput. Well-
known congestion control algorithms react differently when a(n 
alleged) congestion is perceived. In particular, mode switching 
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represents a case study where a possibly large burst of data seg-
ments is lost and several duplicate ACKs (dupACKs) reach the 
TCP sender almost simultaneously. Figure 2, right, reports the 
simulation scenario, which is designed on purpose to highlight 
the impact of mode switches. An omnidirectional eNB has two 
D2D-capable UEs associated to it. These start at a distance of 
300m to the eNB, and move back and forth along a line at 3m/s, 
so that their distance varies in [30m; 160m]. This way, each UE 
has a constant UL CQI equal to 9, and a varying CQI on the SL, 
going both above and below 9. Every second, the eNB selects 
and enforces the highest-CQI mode, hence the communication 
bounces between DM and IM. Fading and inter-cell interference 
are disabled, and we verified that residual physical-layer errors 
are negligible and do not affect our results. The traffic is the 
same as Section III, i.e. a 1GB-file transfer from UE1 to UE2. 
The receive window size is 128 KB. Figures 6a-f represent the 
evolution of the cwnd for different TCP implementations. For 
conciseness, we focus on a single mode switch event occurring 
at about t=221s (solid arrow in the figures), but the same behav-
ior occurs several times in a run, since the communication peri-
odically bounces from DM-DM to IM-IM and vice versa. 
a) Reno [6]: it implements Fast Retransmit and Fast Recovery 
(FRec), thus UE1 halves its cwnd once it receives three or more 
dupACKs and enters the recovery phase, where it retransmits 
one segment per RTT. During this phase, UE1 increases the 
cwnd by the number of dupACKs received (ndup) until an ACK 
for new data is received, then it exits the recovery phase (this 
means reducing the cwnd by ndup). However, the unACKed 
segments are still in flight from UE1’s point of view, thus the 

number of outstanding segments exceeds the sending window, 
preventing UE1 from transmitting the next segment until the 
retransmit timeout expires after 1s. UE1 resumes transmission 
from the first unACKed segment, but it ends retransmitting also 
those segments correctly received by UE2, thus generating an-
other congestion event (the dotted arrow in the figure). 
b) NewReno [7]: same as Reno but the sender exits the FRec 
phase only when all outstanding segments at the congestion 
event have been ACKed (i.e., reception of a full ACK). During 
FRec, every partial ACK i) reduces the cwnd by the number of 
ACKed segments and ii) increases the cwnd by one. This yields 
the plateau in Figure 6b. Note that, one second after the conges-
tion event, the cwnd is reset to 1 MSS. In fact, the retransmit 
timer is restarted only after the reception of the first partial 
ACK, which expires before the end of the FRec phase and caus-
es the cwnd to be reset to 1 MSS without exiting FRec (i.e. UE1 
continues to send one segment per RTT). This is called the im-
patient variant of NewReno: once FRec terminates, UE1 
switches to slow-start, instead of congestion-avoidance, to allow 
faster recovery. NewReno prevents UE1 from stalling, although 
its FRec phase may last several seconds. 
c) Westwood [8]: same as Reno but instead of halving the cwnd, 
the latter is set according to the estimation of the end-to-end 
bandwidth. The latter is calculated by measuring the rate of the 
returning ACKs. The rationale is to avoid an excessive reduction 
of the cwnd when the congestion signal is instead due to tempo-
rary link failures (e.g. errors on a wireless link). However, Fig-
ure 6c shows that cwnd is reduced to a very low value, thus fail-
ing its goal, due to a phenomenon known as ACK compression 

                
             a) Reno                                                                 b) NewReno                                                           c) Westwood 

             
       d) Westwood+                                                       e) Reno w SACK                                                        f) Cubic 

Figure 6 – Evolution of the congestion window over time with different TCP congestion control algorithms. 
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[9]. Each bandwidth sample is computed as k k kb d= ∆ , where 

kd  is the amount of data ACKed and k∆  is the time distance 
between two consecutive ACKs. Since in LTE-A the time is 
slotted, two ACKs may arrive at the same time, hence 0k∆ = , 
resulting in undefined behavior. In this implementation, kb  is set 
to 0, thus strongly affecting the bandwidth estimation. Moreo-
ver, Westwood presents the same problems as Reno. 
d) Westwood+ [10]: a variant of Westwood where term k∆  is 
set to the value of the last RTT to avoid ACK compression. 
However, the cwnd still undergoes a coarse reduction to about 
13 KB and exhibits a similar behavior as with Reno. 
e) Reno with Selective ACKs [11]: it uses the same algorithm of 
Reno to increase/decrease the cwnd, but adds the SACK option 
to the TCP segment. Each returning ACK contains the indica-
tion about a set of out-of-sequence data received at UE2. This 
avoids both i) to wait for a retransmit timer after congestion and 
ii) to trigger a second congestion event. In fact, selective ACKs 
allows UE1 to know exactly the number of outstanding seg-
ments and to avoid deadlocks. On the other hand, already re-
ceived segments are not retransmitted by UE1, thus dupACKs 
are not generated. Thus, the second congestion does not occur. 
f) Cubic [12]: the cwnd growth function is cubic and does not 
depend on the RTT (note the larger scale of the y axis). At con-
gestion, UE1 reduces cwnd by a factor β  (typically 0.8) and 
retransmits one segment. However, as in Reno, the unACKed 
segments exceed the sending window, thus UE1 has to stop and 
wait for the retransmit timeout to expire. In this case too, a sec-
ond congestion event is triggered. Since the growth function is 
cubic, the cwnd reverts to a value comparable to the receive 
window faster than the other cases.  

Figure 7 shows the application-layer throughput obtained 
with the different congestion control algorithms. The mode 
switches do affect the throughput, thus Reno with Selective 
ACKs and Cubic outperform the other implementations. The 
former does not drastically reduce its cwnd, whereas the latter 
recovers very fast. Reno, Westwood and Westwood+ perform 
almost the same, as they all present the same problems. On the 
other hand, NewReno’s smaller throughput is due to the longer 
duration of the recovery phase at mode switch.  

 

 
Figure 7 – Application-layer throughput 

V. CONCLUSIONS  

We evaluated the performance of TCP-based applications 
over D2D communications. We showed that the RTT is affected 
by protocol mechanisms within the LTE-A stack, like RAC and 
bandwidth stealing. Simulation results showed that D2D com-

munication allows moderate reduction of the RTT. Surprisingly, 
traditional infrastructure communications may even achieve 
better performance when the sending rate of the TCP flow is 
high. Moreover, we showed that multiple losses occurring after 
D2D mode switching cause undesired behaviors when using 
some TCP implementations, which treat losses as congestion 
signal. Results showed that using TCP Cubic or selective acks 
reduces the impact of mode switching.  
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