
Accurate polynomial root–finding methods for
symmetric tridiagonal matrix eigenproblems

L. Gemignani
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Abstract

In this paper we consider the application of polynomial root-finding methods
to the solution of the tridiagonal matrix eigenproblem. All considered solvers
are based on evaluating the Newton correction. We show that the use of scaled
three-term recurrence relations complemented with error free transformations
yields some compensated schemes which significantly improve the accuracy of
computed results at a modest increase in computational cost. Numerical ex-
periments illustrate that under some restriction on the conditioning the novel
iterations can approximate and/or refine the eigenvalues of a tridiagonal matrix
with high relative accuracy.
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1. Introduction

Polynomial root-finding algorithms can be applied for the solution of struc-
tured matrix eigenproblems. Most of the methods including the Newton method
for eigenvalue refinement and the Ehrlich-Aberth iteration for simultaneous
eigenvalue computation [3] need at each step to evaluate only the ratio f(z)/f ′(z)
–generally referred as the Newton correction– between the value of the charac-
teristic polynomial and of its first derivative. It is an immediate observation
that the function value and the derivative might overflow/underflow while the
ratio may still be a reasonable machine number. Numerically reliable polyno-
mial methods should be able to exploit the structure of the matrix eigenproblem
for the efficient and accurate evaluation of the Newton correction.

In this paper we focus on the symmetric tridiagonal eigenproblem. It is
well known that in some cases the efficiency of the polynomial solver can be
coupled with the high accuracy of the computed approximations. Theoretical
and computational results have been already established in the literature for the
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important subclass of real symmetric tridiagonal matrices with zero diagonal en-
tries. Such matrices arise naturally both in the framework of divide-and-conquer
methods for bidiagonal singular value problems [12, 15, 19] and in the approxi-
mation theory for the computation of Gauss-type quadrature rules for symmetric
weight functions [20, 13]. Since symmetric tridiagonal matrices with zero diag-
onal specify their eigenvalues with high relative accuracy independently of their
magnitudes [6] numerical methods can possibly compute these eigenvalues at
the same relative accuracy they are determined by the input data. Relatively
accurate polynomial zerofinders based on Laguerre’s iteration are considered in
[19, 24] while GR-type matrix methods are devised in [6, 8]. Similar results do
not hold for a general symmetric tridiagonal whose entries do not determine its
eigenvalues to high relative accuracy. Higher (multi)precision computation can
be recommended to increase the accuracy of the computed approximations with
some timing penalties.

It is a classical result that the characteristic polynomial of a tridiagonal ma-
trix together with its derivatives can efficiently be evaluated by using three-term
recurrences [25]. Although such recurrences are computationally appealing and
straightforward to implement in practice the resulting scheme can be prone to
numerical difficulties. Due to overflow and underflow occurrences in real ap-
plications the computation needs to incorporate some normalization or scaling
techniques [26]. In addition, the three-term sequence computation is backward
stable but this does not imply any accuracy in the evaluation of the polyno-
mial and its derivative and, a fortiori, of the corresponding Newton correction.
According to the classical rule of thumb the (relative) forward error depends
both on the (relative) backward error and the condition number. Wilkinson
analyzed the three-term recurrence computation [25] by proving that the eval-
uation of the characteristic polynomial is relatively backward stable for points
close to the origin. Nevertheless, quite commonly computing the determinant
of a symmetric tridiagonal matrix is an ill-conditioned problem.

A similar situation also occurs with the Ruffini-Horner algorithm generally
used to evaluate polynomials and incorporated in the multiprecision polyno-
mial rootfinder MPSolve [2]. Though named for Paolo Ruffini (1765-1822) and
William Horner (1786-1837), two European mathematicians who described it
in the early 1800s, the Ruffini-Horner method had first appeared in mathemat-
ical texts from both Arab and Chinese medieval mathematicians [4] and then
rediscovered in 1669 by Isaac Newton (see [21]). Very recently an accurate vari-
ant of the Ruffini-Horner scheme has been proposed in [10] which is capable to
compute a result of the same quality as if computed using twice the working
precision and then rounded to the working precision. This variant makes use
of some modified algorithms –called error-free transformations in [22]– for eval-
uating the sum and the product of two floating point numbers introduced by
Knuth [17] and Dekker–Veltkamp [5], respectively.

In this contribution we combine error-free transformations and scaled three-
term recurrence relations to produce an efficient and accurate algorithm for
evaluating both the characteristic polynomial of a symmetric tridiagonal ma-
trix and its first derivative. By ”accurate” we mean that the computed an-
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swers have relative errors as they were computed in twice the working preci-
sion. This means that we achieve full precision accuracy, apart from severely
ill-conditioned computations, without timing penalties required by multipreci-
sion environments. Then the algorithm is incorporated in the Newton method
for testing purposes. By using a result in [23] the accurate computation of the
characteristic polynomial implies that the same property holds for the approxi-
mation of the eigenvalues. Our numerical experience suggests that the resulting
rootfinder is typically able to approximate matrix eigenvalues at high relative
accuracy independently of their magnitude.

The paper is organized as follows. In Section 2 we introduce and analyze
the compensated variants of the classical schemes making use of three-term re-
currences for evaluating the characteristic polynomial, as well as its first deriva-
tive, of tridiagonal matrices. In Section 3 we illustrate the results of numerical
experiments confirming the potential high relative accuracy of an eigenvalue
refinement method based on the Newton method complemented with the com-
pensated techniques for computing the function values. Finally, conclusion and
future work are drawn in Section 4.

2. Accurate three-term recurrence computation

Let T ∈ Rn×n be a symmetric unreduced tridiagonal matrix, i.e.,

T =


α1 β1

β1
. . .

. . .

. . .
. . . βn−1
βn−1 αn

 , βi, αi ∈ R, βi 6= 0, 1 ≤ i ≤ n− 1.

The characteristic polynomial

fn(λ) = det(λIn − T )

can be computed by the three-term recurrence relations

f0(λ) = 1, f1(λ) = λ− α1;
fj(λ) = (λ− αj)fj−1(λ)− β2

j−1fj−2(λ), j = 2, 3, . . . , n.

By differentiating the relations we obtain a second recurrence for the evaluation
of the first derivative f ′n(λ), namely,

f ′0(λ) = 0, f ′1(λ) = 1;
f ′j(λ) = fj−1(λ) + (λ− αj)f ′j−1(λ)− β2

j−1f
′
j−2(λ), j = 2, 3, . . . , n.

The MatLab1 function evalpoly1 (Algorithm 1) [9] computes the function
values fn(λ) and f ′n(λ) for a given λ and returns the value of the Newton

correction given by r =
fn(λ)

f ′n(λ)
.

1Matlab is a registered trademark of The MathWorks, Inc..
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Algorithm 1: Evaluating the characteristic polynomial

and its derivative

function r=evalpoly1(λ,α,β);
n=length(α);
f1s=0; f1=1; f2s=1; f2=λ−α(1);
for k=1:n-1

f0s=f1s; f0=f1;

f1s=f2s; f1=f2;

β = β(k); β = β*β; γ = λ−α(k + 1);
f2s=f1+ γ*f1s-β*f0s;
f2=γ*f1-β*f0;

end

r=f2/f2s;

The previous Algorithm 1 in the iterative phase only performs additions
and multiplications. As has been noticed by several authors (see [5] and the
references given therein) the errors generated by a floating point addition and
multiplication are always floating point numbers. Specifically, let F be the set of
floating point numbers, ε is the machine precision and, as usual, let fl(·) denote
the result of a floating point computation. Then the elementary rounding error
e generated in the computation of fl(a ◦ b), a, b ∈ F , ◦ ∈ {+,−, ∗}, namely,

e = (a ◦ b)− fl(a ◦ b)

satisfies e ∈ F . The algorithms TwoSum [17] and TwoProduct [5] given in
input two floating point numbers a and b return as output the pair of floating
numbers fl(a ◦ b) and e for ◦ = + and ◦ = ∗, respectively. The properties of
these algorithms are summarized in the following theorem [22].

Theorem 2.1. Let a, b ∈ F and let x, y ∈ F be such that [x, y] = TwoSum(a, b).
Then

a+ b = x+ y, x = fl(a+ b), |y| ≤ ε|x|, |y| ≤ ε|a+ b|.

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x, y ∈ F be such that [x, y] = TwoProduct(a, b). Then

a ∗ b = x+ y, x = fl(a ∗ b), |y| ≤ ε|x|, |y| ≤ ε|a ∗ b|.

The algorithm TwoProduct requires 17 flops.

Now, for the sake of simplicity let us assume that the input data (λ,α,β) in
Algorithm 1 are floating point numbers and the function evalpoly1 is mod-
ified to return just only the value f2 of the characteristic polynomial. Scaling
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the matrix T by a diagonal similarity transform yields

T̂ =


α1 β2

1

1
. . .

. . .

. . .
. . . β2

n−1
1 αn

 ,

which says that f2 is really a function of λ, αi and β2
i . For the sake of sim-

plicity also suppose that β2
j ∈ F for j = 1, 2, . . . , n − 1. Then the function

g(λ,α, β̂) : = evalpoly1(λ,α,β), with β̂ =
[
β2
1 , . . . , β

2
n−1
]
, is computed by

means of an algorithm ĝ using intermediate quantities g1, . . . , gN with corre-
sponding elementary rounding errors y1, . . . , yN and returning gN+1 as output.
Thus we can write gN+1 = ĝ(λ,α, β̂,y), y = [y1, . . . , yN ]. By a first-order
analysis since g(λ,α, β̂) = ĝ(λ,α, β̂,0) it follows that

∆ = g(λ,α, β̂)− ĝ(λ,α, β̂,y) = −
N∑
i=1

∂ĝ

∂yi
(λ,α, β̂,y)yi +O(‖ y ‖2∞). (2.1)

The approach pursued by the compensated schemes proposed in [18, 10, 16]

consists of computing the correcting term ŷ = −
N∑
i=1

∂ĝ

∂yi
(λ,α, β̂,y)yi which

gives the first-order approximation of ∆ and then returning the corrected result
g̃ defined by

g̃ = fl(gN+1 + ŷ).

A compensated variant of Algorithm 1 should work as described in the
next Algorithm 2. A slightly different version can be found in [11].

The following observation motivates our analysis.

Remark 2.2. As long as we assume that βj , β
2
j ∈ F for j = 1, 2, . . . , n−1, then

it is easily seen that the values of Γ and ∆ returned as output by Algorithm 2
provide first-order approximations of the global forward error generated in the
computation of the characteristic polynomial and its first derivative, respectively.
In addition, if we look at the zero diagonal case where αj = 0, 1 ≤ j ≤ n, then
the global forward errors are linear function of the elementary rounding errors
so that the big O term in (2.1) is zero and the linear terms gives the exact
corrections.

To support theoretically the intuitive argument in favor of the compensa-
tion technique we present in the sequel a forward rounding error analysis of
Algorithm 2. A forward error analysis of three-term recurrences is somehow
customary. We outline below the main points by taking in mind the application
of Algorithm 2 to polynomial rootfinding.

Let (δ0, δ2, δ3, δ4) : = (δ
(k)
0 , δ

(k)
2 , δ

(k)
3 , δ

(k)
4 ), k = 1, 2, . . . , n−1, be the quadru-

ple of elementary rounding errors generated at step k of Algorithm 2 in the

5



Algorithm 2: Compensated variant of Algorithm 1

function rc=evalpoly1c(λ,α,β);
n=length(α);
f1s=0; f1=1; f2s=1; [f2,δ0]=TwoSum[λ,−α(1)];
∆1 = 0; ∆ = 0; Γ1 = δ0; Γ = 0;
for k=1:n-1

∆0 = ∆1; ∆1 = ∆;

Γ0 = Γ1; Γ1 = Γ;
f0s=f1s; f0=f1;

f1s=f2s; f1=f2;

β = β(k); β = β*β;
[γ, δ0]=TwoSum[λ,−α(k + 1)];
[r0s,δ2]=TwoProduct[β,f0s]; [r1s, δ3]=TwoProduct[γ,f1s];
[r2s, δ4]=TwoSum[f1,r1s]; [f2s, δ5]=TwoSum[r2s, -r0s];

∆ = Γ1 + γ ∗∆1 + δ0 ∗ f1s− β ∗∆0 + δ3 + δ4 + δ5 − δ2;
[r0, δ2]=TwoProduct[β,f0]; [r1, δ3]=TwoProduct[γ,f1];
[f2, δ4]=TwoSum[r1, -r0];

Γ = γ ∗ Γ1 + δ0 ∗ f1− β ∗ Γ0 + δ3 + δ4 − δ2;
end

f2=f2+Γ; f2s=f2s +∆; rc=f2/f2s;

computation of the value of the characteristic polynomial. Set f̂k(λ) = fl(fk(λ))

and µk = δ
(k)
0 f̂k(λ) + δ

(k)
3 + δ

(k)
4 − δ(k)2 . From Theorem 2.1 by calling

Γk = fk(λ)− f̂k(λ), k = 0, 1, . . . , n,

we obtain

Γ0 = 0, Γ1 = µ0 = δ
(0)
0 ;

Γk+1 = (λ− αk+1)Γk − β2
kΓk−1 + µk, k = 1, 2, . . . , n− 1.

The computation of the sequence Γk can be recasted in matrix form as the
solution of the following banded linear system with coefficient matrix F ∈
R(n+1)×(n+1),

FΓ = µ,



1 αn − λ β2
n−1

. . .
. . .

. . .

. . .
. . . β2

1

. . . α1 − λ
1




Γn

Γn−1
...

Γ1

Γ0

 =


µn−1

...
µ1

µ0

0

 .
(2.2)

The matrix characterization yields the next result.
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Theorem 2.3. Let us define the sequence of complementary orthogonal poly-
nomials given by

ρ0(λ) = 1, ρ1(λ) = λ− αn;
ρj(λ) = (λ− αn−j+1)ρj−1(λ)− β2

n−j+1ρj−2(λ), j = 2, 3, . . . , n− 1.

Then we find that

Γn =

n−1∑
j=0

µn−1−jρj(λ). (2.3)

Furthermore, we have

|Γk| ≤ 3ε Γ∗ +O(ε2), Γ∗ = M ‖ F−1 ‖∞, k = 0, 1, . . . , n,

where
M = max

k
{(|λ|+ |αk+1|)|fk(λ)|+ β2

k|fk−1(λ)|}.

Proof. Let us consider the persymmetric partitioning of F defined by

F =

[
e1 T̂n
0 eTn

]
.

The first characterization of Γn follows by using Schur complementation applied
to this partitioning in order to compute a block representation of the inverse of
F . Concerning the second estimate let us observe that from Theorem 2.1 we
obtain that

|µk| ≤ 3ε(|λ− αk+1||f̂k(λ)|+ β2
k|f̂k−1(λ)|) +O(ε2), k = 1, 2, . . . , n− 1,

and, hence,
|µk| ≤ 3εM +O(ε2), k = 1, 2, . . . , n− 1.

Then from (2.2) it follows that at the first order

|Γk| ≤ 3εM ‖ F−1 ‖∞= 3εΓ∗, k = 0, 1, . . . , n.

Equation (2.3) describes the connection between three-term recurrences and
Clenshaw’s algorithm for the summation of certain finite series. A related for-
ward error analysis of Clenshaw’s algorithm can be found in [7, 1]. The final
value of f2 returned by Algorithm 2 satisfies

f2 = fl(f̂n(λ) + fl(Γn)) = (f̂n(λ) + fl(Γn))(1 + ε1), |ε1| ≤ ε.

A forward error analysis of the algorithm for evaluating Γn can be derived
similarly as above. By setting

γk = Γk − fl(Γk), k = 0, 1, . . . , n,
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we obtain

γ0 = 0, γ1 = 0;
γk+1 = (λ− αk+1)γk − β2

kγk−1 + νk, k = 1, 2, . . . , n− 1,

where

|νk| ≤ 3ε(|λ− αk+1||Γk|+ β2
k|Γk−1|+ |µk|) +O(ε3), k = 1, 2, . . . , n− 1.

Hence, from Theorem 2.3 it is found that

γn =

n−2∑
j=0

νn−1−jρj(λ),

and, moreover,

|νk| ≤ 9ε2M ‖ F−1 ‖∞ (|λ−αk+1|+β2
k+ ‖ F ‖∞)+O(ε3), k = 1, 2, . . . , n−1.

In this way, we finally arrive at the following estimate

f2 = (f̂n(λ) + Γn − γn)(1 + ε1) = fn(λ)(1 + ε1)− γn(1 + ε1), |ε1| ≤ ε,

and, equivalently,

|f2− fn(λ)| ≤ ε|fn(λ)|+ |γn|+O(ε3), (2.4)

where

|γn| ≤ 9ε2Γ∗(

n−2∑
j=0

(|λ− αn−1−j |+ β2
n−1−j+ ‖ F ‖∞)|ρj(λ)|).

It is worth mentioning that the value of Γ∗ determines the conditioning of the
zero–finding problem for the polynomial fn(λ). Indeed, if we consider relative
perturbations of the values β2

i → β2
i (1 + εi) and αi → αi(1 + ε′i) |εi|, |ε′i| ≤ ε′′,

and the corresponding perturbed characteristic polynomial f̃n(λ) then it can be
shown that for any simple root ξ of fn(λ) and a sufficiently small ε′′ there is a
simple root ξ̃ of f̃n(λ) such that

|ξ̃ − ξ|
|ξ|

≤ 3ε
Γ∗

|ξ||f ′n(ξ)|
+O(ε2).

Hence by applying corollary 2.3 in [23] we obtain the following result.

Theorem 2.4. Assume that fn(ξ) = 0, f ′n(ξ) 6= 0, ξ ∈ R, and, moreover, there
exists I = [ξ − δ, ξ + δ], δ ≥ 0, such that ∀λ ∈ I we have

ε
|fl(f ′n(λ))− f ′n(λ)|

|f ′n(λ)|
≤ 1/8,

8



and
maxλ∈I |f ′′n (λ)|
|f ′n(ξ)|

|λ− ξ| ≤ 1/8.

Let us consider the Newton method applied in floating point arithmetic for the
solution of fn(λ) = 0 by making use of Algorithm2 for computing the function
values. Suppose that no premature underflow condition occurs for initial guesses
ξ0 ∈ I. Then there exists I ′ ⊂ I such that ∀ξ0 ∈ I ′ the method applied with
starting point ξ0 generates a sequence {ξk} whose relative error decreases until
the first k for which

|ξk − ξ|
|ξ|

' ε+ 9ε2N
Γ∗

|ξ||f ′n(ξ)|
,

where

N = max
λ∈I

n−2∑
j=0

(|λ− αn−1−j |+ β2
n−1−j+ ‖ F ‖∞)|ρj(λ)|.

Incorporating scaling techniques in Algorithm2 can be useful in order to
prevent underflow/overflow situations and to keep N of moderate magnitude.
This leads to the following modified version –referred as to Algorithm 3– which
will be tested experimentally in the next section.

It is remarkable to notice that the value of the Newton correction is indepen-
dent of the scaling factor so that there is no need to compute back the “exact”
evaluations of the characteristic polynomial and its first derivative.

3. Numerical Results

We have designed a numerical method for eigenvalue refinement of sym-
metric tridiagonal matrices based on the Newton iteration complemented with
Algorithm 3 for the evaluation of the function values. The resulting algo-
rithm named New cs –acronym of Newton’s method with compensation and
scaling– have been tested in Matlab. For comparison purposes we have also im-
plemented a variant called New s making use of Algorithm 1 complemented
with the same scaling strategy as employed in Algorithm 3. Numerical results
are shown to illustrate the differences between the compensated algorithm and
this latter variant.

To measure the relative error of a computed approximation ξ̂ we rely upon
the following well known inclusion theorem for polynomial roots (see Corollary

6.4g in [14]). Assume that ξ̂ 6= 0 and f ′n(ξ̂) 6= 0 then there exists a root ξ of
fn(λ) such that

|ξ̂ − ξ|
|ξ̂|

≤ n |fn(ξ̂)|
|f ′n(ξ̂)||ξ̂|

.

The relative approximation error app err of a computed nonzero approximation

ξ̂ is therefore defined as

app err : = n
|fn(ξ̂)|
|f ′n(ξ̂)||ξ̂|

.
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Algorithm 3: Compensated variant of Algorithm 1 with scaling

function rcs=evalpoly1c(λ,β, Ms, Mi);

n=length(β); n=n+1;

f1s=0; f1=1; f2s=1; [f2,δ0]=TwoSum[λ,−α(1)];
∆1 = 0; ∆ = 0; Γ1 = δ0; Γ = 0;
for k=1:n-1

∆0 = ∆1; ∆1 = ∆;

Γ0 = Γ1; Γ1 = Γ;
f0s=f1s; f0=f1;

f1s=f2s; f1=f2;

β = β(k); β = β*β;
[γ, δ0]=TwoSum[λ,−α(k + 1)];
[r0s,δ2]=TwoProduct[β,f0s]; [r1s, δ3]=TwoProduct[γ,f1s];
[r2s, δ4]=TwoSum[f1,r1s]; [f2s, δ5]=TwoSum[r2s, -r0s];

∆ = Γ1 + γ ∗∆1 + δ0 ∗ f1s− β ∗∆0 + δ3 + δ4 + δ5 − δ2;
[r0, δ2]=TwoProduct[β,f0]; [r1, δ3]=TwoProduct[γ,f1];
[f2, δ4]=TwoSum[r1, -r0];

Γ = γ ∗ Γ1 + δ0 ∗ f1− β ∗ Γ0 + δ3 + δ4 − δ2;
w=max{|f1|, |f2|};
if (w ≥ Ms)

w=Ms/w; w=ceil(log2(w)); w=2w;

f1=f1∗w; f2=f2∗w; f1s=f1s∗w; f2s=f2s∗w;
∆ = ∆∗w; ∆1 = ∆1∗w; Γ = Γ∗w; Γ1 = Γ1∗w;
else

if (w ≤ Mi)

w=Msi/w; w=floor(log2(w)); w=2w;

f1=f1∗w; f2=f2∗w; f1s=f1s∗w; f2s=f2s∗w;
∆ = ∆∗w; ∆1 = ∆1∗w; Γ = Γ∗w; Γ1 = Γ1∗w;

end;

end;

end;

f2=f2+Γ; f2s=f2s +∆; rcs=f2/f2s;

where the Newton correction is evaluated by Algorithm 1 carried out in high
(128 digits) precision arithmetic. Both algorithms New cs and New s are
stopped whenever the relative error between two consecutive iterates is less
than ε in magnitude or the number of iterations exceed a given fixed maxit

value. According to [26] the values of Ms and Mi used in Algorithm 3 for
scaling are set to 234 and 2−34, respectively, in our implementations.

Out test suite consists of the following examples:

1. The tridiagonal reduction of the rosser matrix, that is, T = hess(rosser).
The rosser matrix is a small 8× 8 classical test for matrix eigenvalue al-
gorithms. The matrix, and thus also T , has a numerically zero eigenvalue.
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2. Random symmetric tridiagonal matrices Tn ∈ Rn×n with eigenvalues λ1 =
ε, λi = 1+(i−2)

√
ε, 2 ≤ i ≤ n. The matrices are obtained by Householder

tridiagonal reduction of random dense symmetric matrices that have the
given eigenvalue distribution.

3. Tridiagonal Toeplitz matrices Tn = (ti,j) ∈ Rn×n with

ti,j =

{
1 if |i− j| = 1;
2− (π/(n+ 1))2 if |i− j| = 0.

These matrices have one small eigenvalue of order 1/n4.

4. Shifted Wilkinson tridiagonal matrices Tn(α) ∈ Rn×n generated by

Tn(α) = wilkinson(n)− α · eye(n).

5. Symmetric tridiagonal matrices Tn ∈ Rn×n, Tn = Tn(α, β), n = 2k, with
zero diagonal and subdiagonal entries defined by

β2j−1 = α ∈ {2−10, 1}, β2j = β = {1, 4n}, j = 1, 2, . . . , k.

These matrices are encountered when computing the SVD of bidiagonal
Toeplitz matrices [8]. The eigenvalues occur in pairs (−λ, λ) with typically
two paired eigenvalues very close to the origin.

In all the tests performed we start the iterative refinement using the approx-
imation of the eigenvalue of minimum modulus returned by the function eig

applied to the input matrix.
In Example 1 both algorithms New cs and New s stop in three iterations.

The approximation error is app err = 4.6e−17 for the approximation returned
by New cs and app err = 4.3e−2 for the approximation returned by New s.

For the input matrices of Example 2 algorithm New s does not generally
fulfill the stopping condition on the relative error by thus performing maxit

iterations in all the tests considered without any significant improvement of the
accuracy. Differently algorithm New cs stops in a few (less than 5) iterations.
In next Figure 1 we show the approximation errors measured at the end of
execution of algorithm New cs.

Similar results can be found for the matrices in Example 3. In Figure 2 we
plot the approximation errors measured at the end of execution of algorithm
New cs. Observe that the accuracy of the approximation returned by the
compensated scheme is quite independent of its magnitude.

Wilkinson’s eigenvalue test matrices are symmetric tridiagonal matrices with
pairs of nearly equal eigenvalues and unit subdiagonal entries. We consider the
following two classes of shifted matrices:

1. To = wilkinson(21 + 20 · k)− 6 · eye(21 + 20 · k), k = 1, 2, . . .;

2. Te = wilkinson(32 + 20 · k)− 8.5 · eye(22 + 20 · k), k = 1, 2, . . ..

11



0 2 4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

10
5

 

 

New
s

New
cs

Figure 1: Relative errors of approximation returned by New s and New cs for test matrices
as in Example 2 of size n = 20 + 20 · k, k = 1, 2, . . . , 16. The figure plots app err versus the
integer k.
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Figure 2: Relative errors of approximation returned by New s and New cs for test matrices
as in Example 3 of size n = 32 + 20 · k, k = 1, 2, . . . , 20. The figure plots app err versus the
integer k.
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Figure 3: Relative approximation errors returned by New cs for Wilkinson’s type matrices
of size n = {21, 32}+ 20 · k, k = 1, 2, . . . , 11. The figure plots app err versus the integer k.

Each matrix To and Te has two small eigenvalues of order 1.0e−6 and
1.0e−10, respectively. In Figure 3 we show the plot of the approximation error
generated by New cs.

However for harder tests algorithm New cs can even fail. The matrix
Te = wilkinson(62) − 18.5 ∗ eye(62) has two eigenvalues of order 1.0e−16
and New cs fails to resolve the coalescence of these eigenvalues. It is found
that the condition number of computing the determinant of Te is about 1.0e34
and therefore quadruple precision is not enough.

Finally we consider tridiagonal matrices with zero diagonal generally used to
check the behavior of algorithms for computing the SVD of bidiagonal matrices.
For the matrix T of order 48 with α = 2−10 and β = 1 the function eig

returns one positive and one negative eigenvalue of order 1.0e−16. Algorithm
New cs starts to refine the positive root and after 179 iterations it finds a
new approximation of order 1.0e−73 having the approximation error of the
same order of the machine precision. The Newton method exhibits a quadratic
convergence just only in the last three or four iterations. For most of the steps
the iteration shows a linear convergence since the two very close roots are seen as
one single multiple root lying at the origin. This makes the refinement process
not competitive with faster matrix–based methods [8] which may converge in a
few iterations. In Figure 4 we illustrate the convergence history by plotting the
relative error rel err : = |ξj+1−ξj |/|ξj |, 1 ≤ j ≤ 178, between two consecutive
iterates.

For the input matrix T of order 64 with α = 1 and β = 256 our algorithm
returns after 194 iterations the approximation σ32 = 2.210 825 415 070 759e−75
which is correct to full machine precision. However, it is worth noticing that
for tridiagonals with zero diagonal there are no appreciable differences between
New cs and New s. This is in accordance with the classical rule of thumb that
the forward error is of order of the backward error multiplied by the conditioning
of the problem. From [6] we know that the problem is almost perfectly well
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Figure 4: Relative errors between two consecutive iterates at the end of the refinement iterative
process. The figure plots rel err versus the iteration index.

conditioned and, moreover, the three-term recurrence computation is backward
stable.

4. Conclusion and future work

We have presented a compensated scheme using error free transformations
for evaluating the characteristic polynomial and its first derivative of a symmet-
ric tridiagonal matrix. This scheme has been used in conjunction with Newton’s
method to get a better approximation of matrix eigenvalues. Numerical exper-
iments show that the resulting algorithm generally makes it possible to refine a
good initial guess to yield an eigenvalue approximation as accurate as if com-
puted with twice the working precision.

Future work will be directed towards a generalization of the results for the
case where the customary Newton method is replaced by the Ehrlich-Aberth
iteration for simultaneous eigenvalue computation. This iteration can still be
derived as a Newton method applied to a sequence of rational functions de-
pending on the simultaneously computed approximations of the eigenvalues.
The application of the resulting algorithm for the solution of the bidiagonal
SVD computation is also an ongoing research.
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