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BepiColombo is a joint ESA/JAXA mission to Mercury with challenging objectives regarding
geophysics, geodesy, and fundamental physics. The Mercury Orbiter Radioscience Experiment (MORE)
is one of the on-board experiments, including three different but linked experiments: gravimetry, rotation,
and relativity. The aim of the relativity experiment is the measurement of the post-Newtonian parameters.
Thanks to accurate tracking between Earth and spacecraft, the results are expected to be very precise.
However, the outcomes of the experiment strictly depend on our “knowledge” about solar system:
ephemerides; number of bodies (planets, satellites, and asteroids); and their masses. In this paper we
describe a semianalytic model used to perform a covariance analysis to quantify the effects on the relativity
experiment, due to the uncertainties of Solar System bodies’ parameters. In particular, our attention is
focused on the Nordtvedt parameter η used to parametrize the strong equivalence principle violation. After
our analysis we estimated σ½η� ⪅ 4.5 × 10−5, which is about 1 order of magnitude larger than the “ideal”
case where masses of planets and asteroids have no errors. The current value, obtained from ground-based
experiments and lunar laser ranging measurements, is σ½η� ≈ 4.4 × 10−4. Therefore, we conclude that, even
in the presence of uncertainties on Solar System parameters, the measurement of η by MORE can improve
the current precision of about 1 order of magnitude.
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I. INTRODUCTION

BepiColombo (BC) is a joint ESA/JAXA mission aimed
at the exploration of Mercury. The mission is composed of
two spacecrafts, the ESAMercury Planetary Orbiter (MPO)
and the JAXAMercury Magnetospheric Orbiter (MMO), to
be put in orbit around Mercury: the launch is scheduled for
April 2018 and the orbit insertion for December 2024. The
nominal duration of the whole mission is 1 year, with a
possible extension to 2 years.
The Mercury Orbiter Radioscience Experiment (MORE)

is one of the on-board experiments whose goals are
(a) to determine the gravity field of Mercury and its

rotation state (gravimetry and rotation experiments);
(b) to study possible violations of the general relativity

(GR) theory of gravitation (relativity experiment);
(c) to provide the spacecraft position for geodesy

experiments;
(d) to contribute to planetary ephemerides improvement.
Such precise experiments are possible thanks to a

multifrequency radio link (in X and Ka bands), allowing
us to eliminate the uncertainty in the refraction index due to
plasma content along the radio waves’ path [1]. The MORE
experiment provides the necessary Ka-band transponder
and the system to compare the delays in a five-way link,

in combination with instruments installed at the ground
stations.
Orders of magnitude for the accuracy which can be

achieved in this way are 3 micron=s in range rate (two-way,
at 1000 s of integration time) and 30 cm in range (two-way,
at 300 s of integration time): the relative accuracy in range
is better than 10−12. This implies that the signal to noise
ratio (S/N) of all the relativistic effects (both in the
dynamics and in the observation equations) is very large,
in particular for the range measurements. By using the
nonlinear least-squares method, range and range-rate data
will be fitted to an accurate theoretical model to estimate
the physical parameters relative to MORE as well as their
uncertainties.
One of the most ambitious purposes of the mission is to

attempt to constrain the Nordtvedt parameter η describing
violations of the strong equivalence principle (SEP). The
equivalence principle (EP) states the equality between
inertial and gravitational mass. As a consequence, there
is the universality of the free fall that allows the geometrical
description of gravity in GR. So far, it has not been
experimentally disproved. In its weak form, the EP states
that strong and electroweak interactions do not influence
the falling of a body, with a negligible self-gravity, in an
external gravity field. This is called the weak equivalence
principle (WEP). The strong form extends the validity of
the EP to bodies with measurable self-gravitational energy,
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like stars or planets. The inequality between inertial
mass mI

i and gravitational mass mG
i of a body can be

parametrized as [2–4]

mG
i ¼ mI

ið1þ δi þ ηΩiÞ; ð1Þ

where Ωi is the ratio between self-gravitational and rest
energy of the body.
The validity of the WEP corresponds to δi ¼ 0 and

Ωi ¼ 0. On the other hand, when Ωi ≠ 0, if both δi and η
are zero, then the SEP is valid. The values ofΩi for the Sun,
Earth, and Moon are, respectively, Ωs ¼ −3.52 × 10−6,
Ωe ¼ −4.64 × 10−10, and Ωm ¼ −1.88 × 10−11 [5].
Since Newton, EP has been tested several times by

laboratory experiments, mainly by torsion balances,
but laboratory objects have a very small self-gravity
(Ωi ⪅ 10−26); therefore no information about SEP can
arise from ground-based experiments only. Hence, an EP
test is in practice a WEP test.
The first test of the EP involving celestial bodies (Earth,

Moon, and Sun) has been proposed by Nordtvedt [6]: in
case of EP violation the different rate of free falling
of Earth and Moon toward the Sun generates a signal in
the Earth-Moon range. This signal carries information
about both WEP and SEP, since Earth and Moon have
different gravitational self-energies but also compositions.
Regarding the SEP violation, the amplitude of the signal at
Earth-Moon distance is proportional to ðΩe −ΩmÞ, at the
Moon’s synodic frequency, and it has been estimated to be
≈13η meters (the so-called Nordtvedt effect). In order to
separate weak and strong EP, laboratory results involving
test bodies with chemical compositions similar to those of
Earth and Moon have been used. The precision achieved on
WEP measurements is currently σ½δaWEP=a� ¼ 1.4 × 10−13

[7], but this result is expected to be improved by 2 orders of
magnitude thanks to the recently launched ESA mission
MICROSCOPE [8]. The Earth-Moon distance has been
measured with increasing precision in the last 46 years
by lunar laser ranging (LLR) [9] and the precision on
Earth-Moon relative differential accelerations is currently
σ½δaem=a⊙� ¼ 1.3 × 10−13 [5]. This result is comparable to
that achieved by ground experiments.
In order to estimate η, it is necessary to consider both

experiments, and the resulting root mean square (RMS) is
σ½η� ¼ 4.4 × 10−4 [5,7,10]. SEP violation can be tested
also by planetary ranging, i.e., by radio-tracking between
Earth and an object orbiting around the Sun (a spacecraft
or another planet). The advantages with respect to the
Earth-Moon tests are (i) the signal is proportional to Ωs
which is 4 orders of magnitude larger than Ωe −Ωm and
(ii) the baseline is in general larger [11].
A test for the SEP violation by ranging measurements

between Earth and L1 or L2 Earth-Sun Lagrangian points
has been recently proposed in [4], while the same experi-
ment for Earth-Mars or Earth-Phobos ranging has been

described in [10–12]. Thanks to precise Earth-Mercury
range measurements, the BC mission will provide data to
estimate with good accuracy η and other post-Newtonian
(PN) parameters [2,13]. Regarding the EP, the expected
precision for relative Earth-Mercury acceleration is
σ½δaearth-merc:=a⊙� ≈ 10−11. It is 2 orders of magnitude
worse than the precision achieved by laboratory tests;
therefore the EP violation test of BC is in practice a
SEP test. Moreover, the SEP violation signal is propor-
tional to Ωs; therefore the parameter η can be estimated
with high precision.
The purpose of this work is to quantify σ½η� in the

presence of systematic effects due to planets and asteroids.
To do this, we will use both a numerical approach (by using
the software ORBIT14, described in Sec. II) and an analytical
one. This latter approach is necessary to take into account
the effects of the experimental uncertainties of gravitational
parameters (μi ¼ GmG

i , hereafter GPs) of planets and
asteroids.
This paper has the following structure. In Sec. II we are

going to give a brief description of the mathematical
models and of the structure of the simulation software
used and we will present the result of a nominal simulation
of the relativity experiment. Section III is devoted to the
detailed description of the experiment to estimate η and of
the analytical method followed. Finally, in Sec. IV we will
draw some conclusions.

II. MATHEMATICAL MODELS AND
SOFTWARE STRUCTURE

In this section we briefly describe the mathematical
models that are the basis of the software ORBIT14 built to
process the data of MORE and used as simulation software
to infer some results about the estimation of parameters.
ORBIT14 has been developed in the last six years by the
Celestial Mechanics Group of the University of Pisa and it
has the capability to simulate the relativity experiment, the
gravimetry and rotation experiment [14] of the BC mission,
and also the radioscience experiment of the NASA mission
JUNO [15].
Concerning the relativity experiment, we need to solve

an orbit determination problemwith a full relativistic model
(also for the observable computations, see [16]), including
the terms expressing the violations of general relativity with
the PN parameters, such as γ, β, η, α1, α2.
The equations of motion of Mercury and of the

Earth-Moon barycenter (EMB) have been implemented
using the parametric post-Newtonian approach: they are
linearized with respect to the small parameters v2i =c

2 and
Gmi=ðc2rikÞ, where vi is the barycentric velocity for each
of the bodies of mass mi, the speed of light c, and a mutual
distance rik, appearing in the metric of the curved space-
time and hence in the equations for geodesic motion. This
can be done by adding to the Lagrangian of the N-body
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problem some corrective terms of PN order 1 in the small
parameters (as described in [13]).
Here we are interested in the model for the violation of

SEP. We can consider that there are for each body i two
quantities μi ¼ GmG

i and μIi ¼ GmI
i , one in the gravita-

tional potential (including the relativistic part) and the other
in the kinetic energy, not considering the relativistic
correction for the masses. If there is a violation of the
SEP involving body i, with a fraction Ωi of its mass due to
gravitational self-energy, then from Eq. (1) and neglecting
WEP,

μi ¼ μIið1þ ηΩiÞ ⇔ μIi ¼ μið1 − ηΩiÞ þOðη2Þ: ð2Þ

Neglecting Oðη2Þ terms, this is expressed by a Lagrangian
term ηLη, with an effect on body i:

Lη ¼ −
1

2

X
i

Ωiμiv2i ⇒
d2ri
dt2

¼ ð1þ ηΩiÞ
d2ri
dt2

����
η¼0

: ð3Þ

The largest effect of η is a change in the center of mass
integral (where dots stand for terms of order 2 PN and
higher, including the neglected terms in the masses)

P ¼
X
j

∂L
∂vj ¼

X
j

ð1 − ηΩiÞμivj þ…;
dP
dt

¼ 0 ð4Þ

and if the center of mass is the origin, the position of the
Sun has to be corrected (to indicate the Sun we use the
subscript 0):

r0 ¼
−1

μ0ð1 − ηΩ0Þ
X
j≠0

ð1 − ηΩjÞμjrj þ � � � : ð5Þ

The partial derivative of the acceleration of the body j with
respect to η is

∂
∂η

d2rj
dt2

¼ Ωj

�
μ0
r3j0

rj0 þ
X
i≠j;0

μi
r3ji

rji

�
þ ∂r0

∂η
∂ðμ0=r3j0Þ

∂r0 ; ð6Þ

where the first term is the direct η-perturbation, the second
the indirect, and

∂r0
∂η ¼

X
i≠0

ðΩj −Ω0Þ
μi
μ0

ri: ð7Þ

By combining together and omitting smaller terms with
Ωiμk (with i, k ≠ 0) or Oðη2Þ

∂
∂η

d2rj
dt2

¼ Ωjμ0
rj0
r3j0

− Ω0

∂ð1=r3j0Þ
∂r0

X
i≠0

μiri; ð8Þ

with a direct (small parameter Ωjμ0) and an indirect (small
parameter Ω0μi) part.

A. ORBIT14 software structure

Since the real data from the spacecraft will be available
only in 2025, the first program of the software is the
simulator, which generates fictitious sets of observables,
nongravitational accelerations and initial orbital elements
for the probe at the central time of each observed arc.
These are obtained by propagating the orbit of the
spacecraft starting from some initial conditions taken
by the spice kernel generated by the navigation team of
the mission.
The core of the orbit determination software is the

corrector, the purpose of which is to estimate the param-
eters we are interested in. This program is the one that will
be used to analyze real data. The corrector follows a
classical approach (see, for instance, [17]), and its aim is
to perform a nonlinear least-squares fit to compute a set of
parameters q� which minimizes the target function

QðqÞ ¼ 1

m
ξTðqÞWξðqÞ ¼ 1

m

Xm
i¼1

wiξ
2
i ðqÞ; ð9Þ

where m is the number of observations and ξ ¼ O − C is
the vector of residuals, the difference between the observed
quantities O and the predicted ones CðqÞ, computed using
suitable models and assumptions. In our case, the observed
quantities are range and range-rate data, while the
computed observables are the results of the light-time
computation (see [16] for more details) as a function of
all the quantities q we want to estimate (wi is the weight
associated to the i-observation).
The procedure to compute q� is based on a modified

Newton’s method known in the literature as the “differ-
ential corrections method”; see, e.g., [17]. Let us define

B ¼ ∂ξ
∂q ðqÞ; C ¼ BTWB; ð10Þ

which are called the design matrix and the normal matrix,
respectively. Then the correction,

Δq ¼ C−1D with D ¼ −BTWξ; ð11Þ

is applied iteratively until either Q does not change
meaningfully from one iteration to the other orΔq becomes
smaller than a given tolerance.
Concerning the observations, we propose to have two

ground stations, one observing in the Ka-band at the
Goldstone Deep Space Communications Complex in
California (United States) and the other in X-band at the
Cebreros station in Spain. With this scenario, the obser-
vations are split into arcs, with interruptions of tracking not
exceeding 1 h, namely, the “observed arcs,” with a duration
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from 14 to 19 h. The arcs are separated by intervals in the
dark lasting from 5 to 10 h. We call an “extended arc” an
observed arc broadened out from half of the dark period
before it to half of the dark period after it.
In order to estimate the parameters we do not use a

classical multiarc strategy [18], as described for example in
[17], but a constrained multiarc strategy. This method is
established on the idea that each observed arc belongs
to the same object (the spacecraft) and thus the orbits
corresponding to two subsequent extended arcs should
coincide at the connection time in the middle of the
nonobserved interval (see [19] for more details).

B. Nominal simulation

The simulation scenario (the same as described in [20])
consists of a 365-arc simulation, which corresponds to
about 1 yr, starting on March 27, 2025. The main
assumptions made are briefly described as follows:

(i) Two ground stations are available for tracking, one
at the Goldstone Deep Space Communications
Complex (California, USA) for the Ka-band and
the other in Spain, at Cebreros station, for the
X-band. Range measurements are taken every 120 s
and range rate every 30 s, both with top accuracies.

(ii) We impose the Nordvedt equation [21]; i.e., we
assume a metric theory to remove the approximate
symmetry between β and J2⊙,

η ¼ 4ðβ − 1Þ − ðγ − 1Þ − α1 −
2

3
α2: ð12Þ

The MORE relativity experiment consists in solving for
the following parameters: the PN and related parameters
(γ, β, η, α1, α2, J2⊙, μ⊙, ζ) plus six initial conditions for the
Mercury barycenter fXm; Ym; Zm; _Xm; _Ym; _Zmg and six for
the EMB fXe; Ye; Ze; _Xe; _Ye; _Zeg with respect to the Solar
System Barycenter (SSB) in the Ecliptic J2000 reference
frame [22]. Due to rank deficiency, among the 12 param-
eters (positions and velocities), only 8 can be determined
simultaneously. They are the position and velocity of
Mercury and two components of the velocity of the EMB.
We solve for all the parameters listed above in a global

least-squares fit. We performed both an analysis based on
formal statistics (standard deviations and correlations) as
given from the formal covariance matrix Γ ¼ C−1 and an
analysis based on “true” errors, defined as the difference
between the values of the parameters at convergence
and the simulated values. We perform a statistical analysis
over ten runs, each time varying the random generator of
Gaussian distribution, and we consider as the true error
the distribution mean value. Concerning the convergence
requirements, we imposed a tolerance threshold in target
function variation between two subsequent iterations of
10−4, and we verified that the differential correction process
always reached this condition in six iterations.

The results for the PN and related parameters in terms of
formal uncertainty are shown in Table I.
The parameters η and ζ present true errors always

higher than formal ones because they are very sensitive
to the effect of systematic errors in range. Nevertheless, the
expected results of MORE could hence improve the actual
knowledge, even if there are some intrinsic problems due to
the uncertainties in the masses and ephemerides of Solar
System bodies (see the next section and [23]).

III. ANALYTICAL MODEL AND SOURCES
OF UNCERTAINTIES

ORBIT14 integrates the orbits of EMB and Mercury, while
the trajectories of planets and asteroids are taken from JPL
ephemerides. The position of the Sun is obtained from
Eq. (5) as a function of positions and (relativistic) masses of
the other bodies.
We want to test how the spurious signal due to a wrong

value of the mass of a planet affects the estimation of η.
This kind of test cannot be performed by ORBIT14. In fact,
we could try to fit the simulated data by using a model with
a slightly different value of the mass. At the first iteration,
the modeled barycentric orbits of the planets are the same
as those of the data, since they come from ephemerides, but
the position of the Sun is slightly different due to the
different mass of the planet. Hence, all mutual distances
among Solar System bodies are altered and the modeled
MPO-Earth range turns out to be very different from the
simulated data. This implies an unphysical systematic
effect on the parameters’ estimation. The parameter η
heavily feels this effect because it enters into the relativistic
equation of the center of mass Eq. (5).

TABLE I. Results for RMS of PN and related parameters
obtained with ORBIT14 numerical simulations in the “ideal” case
(planetary masses have no errors).

Parameter Units Formal sigma

Xm cm 0.49
Ym cm 1.12
Zm cm 2.93
_Xm cm s−1 3.54 × 10−7

_Ym cm s−1 2.81 × 10−7

_Zm cm s−1 1.43 × 10−6

_Xe cm s−1 1.43 × 10−7

_Ye cm s−1 2.76 × 10−7

β 6.21 × 10−7

γ 7.65 × 10−7

η 1.93 × 10−6

α1 4.5 × 10−7

α2 7.6 × 10−8

μ0 cm3=s2 3.9 × 1013

J2⊙ 3.8 × 10−10

ζ ¼ _μ0=μ0 yr−1 2.0 × 10−14
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To perform this test, we develop a heliocentric analytical
model and we include in our calculus the parameters whose
signals are expected to be correlated with the SEP violation
signature. In order to avoid systematic effects, GPs must be
added to the set of parameters to be fitted and their errors
must be taken into account in terms of constraints (hereafter
a priori) to be included to the global covariance analysis.
All signals involved in the relativity experiment have
frequencies of the same order of planetary mean motions.
For this reason, we can neglect the motion of MPO around
Mercury (the orbital period is approximately 2 h)
and we will consider the Mercury-Earth range. Current
uncertainties of planetary GPs go from 2.8 × 10−4 (Mars)
to ≈10.5 km3=s2 (Neptune) [24]. Regarding asteroids,
relative errors can be very large (50% or more).
To summarize, we will calculate the signatures on the

Earth-Mercury range due to
(1) initial conditions of Earth and Mercury,
(2) SEP violation (parameter η),
(3) planets/dwarf planets/asteroids (GPs to be fitted),
(4) secular variation of Sun’s GP μ0 [parameters to be

fitted are δμ0 (displacement from the nominal GP of
the Sun at the starting epoch) and its rate of change
in time ζ ¼ _μ0=μ0],

(5) PN parameter β̄ ¼ β − 1,
(6) Sun’s quadrupole coefficient J2⊙.

The parameter γ, which is related to the curvature produced
by unit rest mass, has not been considered for simplicity.
However, this is not reductive since the best estimation
of γ is expected to be given after the dedicated superior
conjunction experiment (SCE) and its RMS σ½γ� ¼ 2.0 ×
10−6 will be inserted as an a priori into the Nordtvedt
equation.

A. Analytical model

We adopt the notation of [25]: we define rij ¼ rj − ri
and rij ¼ jjrijjj, where ri is the coordinate of planet i in an
inertial reference frame. Planets are numbered from 1
(Mercury) to 8 (Neptune), while 0 is referred to the Sun.
We will use subscripts/superscripts i and k to indicate
Mercury and Earth, respectively, while j will be used for
an arbitrary perturber body (planet or asteroid). We call
q ¼ fq1;…; qNg the set of parameters to be fitted and
ρ13ðt;qÞ the analytical model of the Mercury-Earth range
to be calculated as a function of q. We will describe the
motion of the planet i as a small perturbation from a
heliocentric circular orbit with radius R0i equal to the
semimajor axis and mean motion ni ¼ ½ðμ0 þ μiÞ=R3

0i�1=2.
For all parameters except J2⊙ (see below) inclinations will
be neglected, while eccentricities are assumed to be zero
in all cases. The displacement from the reference orbit is
δri ¼ xiui

r þ yiui
t þ ziui

z, where ui
r, ui

t, ui
z are radial,

along-track, and out-of-plane unit vectors, respectively.
We will express the position of k relative to i as

rik ¼ Rik þ
XN
m¼1

qmδrik;m; ð13Þ

where Rik ¼ R0kuk
r − R0iui

r.
Since terms in the summation are small, at the first order

the range is

ρik ¼ jjrikjj ≈ Rik þ
X
n

qn
δrik;n ·Rik

Rik
: ð14Þ

The factor 1=Rik can be expressed by the Legendre
polynomials Pn (for R0i < R0k) [26],

1

Rik
¼ 1

R0k

X∞
n¼0

�
R0i

R0k

�
n
PnðcosΦikÞ; ð15Þ

where we defined Φi ¼ nitþ φi and Φik ¼ ðnk − niÞtþ
φk − φi. Afterwards, for each qn we will calculate the
corresponding δrik;m.
We decompose the perturbation on i (or k) as a sum of

radial and along-track forces
P

nqn
0ðRi

nui
r þ Ti

nui
tÞ, where

q0 represents the subset of N − 12 dynamical parameters
to be estimated (all but initial conditions of Earth and
Mercury). For simplicity we assume that perturbations are
on the ecliptic plane.
Since we are assuming that jjδrijj ≪ R0i, we can use the

first order Hill’s equations [27]. They are

ẍi − 2ni _yi − 3n2i xi ¼
X
n

q0nRi
n

ÿi þ 2ni _xi ¼
X
n

q0nTi
n

̈zi þ n2i _zi ¼ 0: ð16Þ

Solutions are the sum of the homogeneous part fx̂i; ŷi; ẑig
plus the contributions fx0i; y0i; z0ig due to the perturbing
forces. Since Eqs. (16) are linear, the inhomogeneous terms
can be calculated one at a time and finally summed
together.

1. Initial conditions

Here we calculate the signature on range due to initial
conditions of Earth and Mercury. We consider two cases:
initial conditions expressed in heliocentric and in barycen-
tric (SSB) reference frame. In this latter case an additional
signal which depends on η must be included.
Referring to Eq. (16), we express the state vector

v ¼ fxi; yi; zi; _xi; _yi; _zig of body i as

v ¼ v̂Aþ v0q0 ð17Þ
where the first term on the right side represents the
homogeneous solution of Eq. (16). It is the product of a
6 × 6 matrix v̂ [see Eq. (A1) in the Appendix] and the
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vector A of six coefficients to be fixed by the initial
conditions. The second term, the inhomogeneous solution,
is the product of the 6 × ðN − 12Þmatrix v0 of the particular
solutions and the column vector q0 of the parameters q0n.
We pass to the coordinate system with fixed axes and

we express the state vector as v ¼ Rδx, where R is the
corresponding rotation matrix [see Eq. (A3)]. We rewriteA
in terms of δx and R at t ¼ 0 (say δx0, R0) and, defining
V ¼ v̂v̂−10 [see Eq. (A2)], we get

v ¼ VR0δx0 þ ðv0 − Vv00Þq0: ð18Þ

The first term represents the “signal” due to initial con-
ditions δx0, while the signal due to parameter q0n (the term
in parentheses) is the sum of the particular solution v0 plus
the homogeneous solution corresponding to δx0 ¼ 0. The
complete set of parameters to be determined by the ranging
between i and k is

q ¼ fδxi
0; δx

k
0;q

0g: ð19Þ

Defining the 6×6matrix fiαμ and 6×ðN−12Þmatrix giαμ as

fiαμ ¼ R−1VR0; giαμ ¼ R−1ðv0 − Vv00Þ ð20Þ

(R, V, and v are referred to body i) and using α ¼ 1, 2, 3 to
indicate the spatial components in the fixed-axes coordinate
system of δrik;m, we get

δrik;m ¼

8>><
>>:

−fiαλ λ ¼ m and m ≤ 6;

fkαλ λ ¼ m − 6 and 7 ≤ m ≤ 12;

gkαλ − giαλ λ ¼ m − 12 and m > 12:

ð21Þ

Finally, by Eqs. (14), (21) we obtain the perturbation on
range due to each element of q.
The barycentric initial state vector Xi

0 is related to the
heliocentric one by

Xi
0 ¼ ð1þ ηΩ0ÞR0 þ R0isi þ δxi

0; ð22Þ

where

sj ¼ fcosφj; sinφj; 0;−nj sinφj; nj cosφj; 0g ð23Þ

and

R0 ¼ −
P

j≠0μjR0jsjP
jμj

ð24Þ

is the position of the Sun with respect to the SSB in the case
η ¼ 0. Therefore, if we pass to barycentric initial conditions
we must take into account additional signals due to μj’s
and η.

By Eq. (22) we can express Eq. (18) as a function ofXi
0.

Adopting now q ¼ fXi
0;X

k
0;q

0g, we calculate the extra
signals due to η and μl to be added to δrik;m in Eq. (21).
They are reported in Eq. (B1).

2. SEP violation and contributions of planets/asteroids

In the heliocentric reference frame, the equations of
motion of a planet i, in the case η ≠ 0, are [2,4,11,26,28]

̈r0i ¼ −
μ⋆
r30i

r0i þ
X
j≠i≠0

μj

�
ð1þ ηΩiÞ

rij
r3ij

− ð1þ ηΩ0Þ
r0j
r30j

�
;

ð25Þ

where the summation is extended to all Solar System
bodies and

μ⋆ ¼ μ0 þ μi þ ηðμiΩ0 þ μ0ΩiÞ: ð26Þ

From Eq. (25) a high correlation among planetary pertur-
bations (depending on μj) and SEP violation is evident.
We separate the contributions of parameters η and μj and

we project them on radial and along-track directions. Since
Ωi ≪ Ω0, the SEP violation contribution can be simplified
[4,23,26]:

Ri
η ≈ −Ωin2i R0i −Ω0

X
j≠i≠0

cosΦij

R2
0j

;

Ti
η ≈ −Ω0

X
j≠i≠0

sinΦij

R2
0j

; ð27Þ

[see Eq. (C1) for the complete expression].
The signal contains a small permanent radial displace-

ment due to a “direct” term ∝ Ωi and an “indirect” term,
which depend on Ω0. These terms have been calculated in
the SSB frame in Sec. II [see Eq. (8)].
The particular solution of Eq. (16) relative to parameter η

can be written as fx0i;η; y0i;ηg, where

x0i;η ¼ Ωi
R0i

3
þ Ω0

X
j≠i

μj
R2
0j

1þ 2ni=nji
n2ji − n2i

cosΦji;

y0i;η ¼ −Ω0

X
j≠i

μj
R2
0j

1þ 2ni=nji þ 3n2i =n
2
ji

n2ji − n2i
sinΦji: ð28Þ

Similarly, perturbations on planet i due to body j are (radial
and along-track) [26]

Ri
μj ¼

X
j≠i≠0

�
R0j cosΦij − R0i

R3
ij

−
cosΦij

R2
0j

�
;

Ti
μj ¼

X
j≠i≠0

�
R0j

R3
ij
−

1

R2
0j

�
sinΦij: ð29Þ
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The coefficient 1=R3
ij can be calculated from Eq. (15) and

expressed as a Fourier cosine series with fundamental
frequency Φij [see Eq. (D1)]. Therefore, we can write

Ri
μj ¼

X∞
l¼0

aj;l cosðlΦijÞ;

Ti
μj ¼

X∞
l¼1

bj;l sinðlΦijÞ; ð30Þ

and coefficients aj;l and bj;l are reported in Eq. (D2).
The radial and along-track components of fx0i;μj ; y0i;μjg

are, respectively,

x0i;μj ¼ −
aj0
3n2i

−
X∞
l¼1

aj;l − 2bj;l=ðlnjiÞ
l2n2ji − n2i

cosΦji;

y0i;μj ¼ −
X∞
l¼1

bj;l − 2aj;lni=ðlnjiÞ þ 3bj;ln2i =ðl2n2jiÞ
l2n2ji − n2i

× sinΦji: ð31Þ
Finally, by applying Eq. (14) and Eq. (21), the Earth-
Mercury range perturbations due to parameters η can be
written as

δρη13 ¼
X∞
l¼1

Dl cosðlΦ13Þ

þ
X

j¼pl
þast

X
p;q;r
∈Z

Ipqr
j cosðpΦ1 þ qΦ3 þ rΦjÞ; ð32Þ

where coefficientsDl are due to the “direct effect” and they
depend only on Ω1 and Ω3.
For all perturbing bodies considered, we calculated the

numerical values of amplitudesD and I using the complete
expression Eq. (C1). They are reported (for planets from
Mars to Neptune) in Table IV.
An analog expression can be written for the perturbation

due to body j,

δρ
μj
13 ¼

X
p;q;r
∈Z

J pqr cosðpΦ1 þ qΦ3 þ rΦjÞ: ð33Þ

Numerical coefficients for amplitudes J are reported in
Table V.

3. Range signature due to a variation of Sun’s GP

It is well known that the GP of the Sun is not constant in
time due to the Sun’s mass loss and to a possible (but
unconfirmed) dependence of G on time. Mathematically
this corresponds to

GM⊙ðtÞ ¼ μ0½1þ ζðt − t0Þ� þ δμ0 ; ð34Þ
where t0 is the epoch (hereafter t0 ¼ 0) when the GP of the
Sun is equal to μ0 þ δμ0 . The small parameter δμ0 has been

introduced to account for the fact that the true value and
nominal value μ0 of the GP of the Sun are not the same. The
parameter ζ ¼ _μ0=μ0 is a small (constant) rate of change.
If ζ ≠ 0 and/or μ0 is slightly different from the nominal

value, a radial perturbation will be present. The Hill’s
equations are

ẍi − 2ni _yi − 3n2i xi ¼ −
δμ0 þ μ0ζt

R3
0i

;

ÿi þ 2ni _xi ¼ 0; ð35Þ

and a particular solution is

x0i ¼ −
δμ0 þ μ0ζt

n2i R
2
0i

; y0i ¼
μ0ζt2 þ 2δμ0t

niR2
0i

: ð36Þ

By Eqs. (14), (21) we obtain the range signature due to ζ
and δμ0 .

4. Range signature due to β ≠ 1

The PN parameter β is related to the nonlinearity in the
superposition of gravity. In GR it is, by definition, β ¼ 1.
Defining the small parameter β̄ ¼ β − 1, the perturbing
force per unit mass on body i in an inertial frame is

aiβ ¼ −
2β̄

c2
X
j≠i

μjrij
r3ij

�X
h≠i

μh
rih

þ
X
k≠j

μk
rjk

�
: ð37Þ

We calculate it in the heliocentric frame aiβ − a0β. The

biggest term is 2β̄=c2μ20=R
3
0iu

i
r and all others are at least 3

orders of magnitude smaller.
The effect due to β̄ is essentially a radial force, as for δμ0

and ζ. A particular solution is

xi ¼ β̄
2μ20

R3
0in

2
i c

2
; yi ¼ −β̄

4μ20
R3
0ic

2ni
t; ð38Þ

and by Eqs. (14), (21) we obtain the range signature for β̄.

5. Range signature due to Sun’s J2⊙
So far, inclinations have been neglected: all planets are

assumed to orbit on the ecliptical plane, but in this case
we will consider the orbital inclinations with respect to
the Sun’s equatorial plane. This is necessary to avoid a
fictitious strong correlation between J2⊙ and β̄, μ0 or ζ.
Inclinations of Mercury and Earth orbits with respect to

the Sun’s equator are 3.380° and 7.155° respectively. Unit
vectors ur, ut, and uz have been rewritten to take into
account the orbital elements of the planet.
The perturbation of the Sun’s J2⊙ on the trajectory of a

planet can be obtained by solving this set of equations [34]:
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ẍ− 2ðncÞ_y− ð5c2 − 2Þn2x¼ −3αn2ð3þ 5sÞcosð2nctþφÞ
ÿþ 2ðncÞ_x¼ −2αn2ð3þ 5sÞ sinð2nctþφÞ

z̈þ ð3c2 − 2Þn2z¼ −2βn2s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3s

p
sinðnctþφÞ;

ð39Þ

where

c ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p
; s ¼ 3J2⊙R2

⊙

8r2
½1þ 3 cosð2IÞ�;

α ¼ 3J2⊙R2
⊙

8rð3þ 5sÞ ½1 − cosð2IÞ�; β ¼ 3J2⊙R2
⊙

4rs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3s

p sinð2IÞ;

ð40Þ
and I is the inclination, R⊙ is the radius of the Sun, n is the
mean motion, r is the Sun-planet distance, and φ is the
initial phase.
Hill’s equations have been modified by increasing the

angular velocity of the reference frame from n up to nc in
order to avoid drifts into the inhomogeneous solutions
(see [34] for details). The particular solution is

x0 ¼ α cosð2nctþ φÞ;

y0 ¼ α
1þ 3s
2ð1þ sÞ sinð2nctþ φÞ;

z0 ¼ −β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3s

p
sinðnctþ φÞ: ð41Þ

Since Eqs. (41) are not linear functions of J2⊙, we expand
them as MacLaurin series of J2⊙ up to the first order (for
Mercury and Earth).
By Eqs. (14) and (21) we estimate the perturbation on the

range due to J2⊙.

6. Time sampling

Due to the visibility windows, as described in Sec. II A,
range and range-rate data contain several gaps. A gap
occurs approximately at each arc and lasts about 9.3 h.
To perform a realistic calculus, we evaluate the pertur-

bations at the set of epochs ti (spanning an interval of
373 d) generated by ORBIT14. A low-frequency sampling
(fs ¼ 10−4 Hz) is sufficient for our purposes since the
signals involved have frequencies of the same order of
planetary mean motions. For the RMS σ̂i relative to the ith
range data, we adopt [17]

σ̂i ¼ 15 cm
ffiffiffiffiffiffiffiffiffiffiffiffi
300fs

p
≈ 2.6 cm: ð42Þ

7. Constraints and covariance matrix calculus

As explained in Sec. II B, there is a subset of M
parameters x ¼ fx1;…; xMg ∈ q for which information
is available from other experiments. In our case they are the
GPs and γ. The information about γ from SCE affects β and
η thanks to the Nordtvedt equation.

We define the a priori observations xP and CP as the
nondiagonal a priori normal matrix used to represent the
information available about parameters x. Errors relative
to the a priori constraints are σi, with i ¼ 1…M.
The constraint involving the subset x can be written as
CPx ¼ CPxP.
Following [17], we modify Eq. (9) by including the

constraints

QðqÞ ¼ 1

mþM
½ξTðqÞWξðqÞ þ ðx − xPÞTCPðx − xPÞ�:

ð43Þ

In our case we have

ðx − xPÞTCPðx − xPÞ ¼ ðη − 4β̄Þ2
σ2N

þ
X
i

ðμi − μPi Þ2
σ2i

;

ð44Þ

where σN ¼ 2.0 × 10−6 is the expected RMS of γ after a
SCE, while the summation is extended to all GPs and σi are
the corresponding errors.
By means of well-known formulas, we obtain the normal

matrix C and its inverse, the covariance matrix Γ. Finally,
the diagonal elements of Γ give us the expected RMSs of
the parameters.
For a large fraction of asteroids, GPs are estimated by

ground-based measurements of diameters and supposed
density values; therefore uncertainties are large. However,
at the epoch of the BC mission, a certain number of GPs
will become more precise thanks to the GAIA mission by
precise measurements of the perturbations on Mars’s orbit
and asteroid-asteroid close approaches.
By DAWN measurements, the error of 4 Vesta’s GP is

now 1.2 × 10−5 km3=s2 [33], while the GP of 1 Ceres has
been recently estimated with an error of 8.0 × 10−4 km3=s2

[31]. The current error σ½μ5� ¼ 2.7 km3=s2 of the GP
of the Jupiter system could be improved by JUNO mission
measurements up to σ½μ5� ¼ 0.53 (X-band) or 0.20 km3=s2

(Ka-band) [29]. In [32] a list of asteroids with their
expected relative errors on GPs after the GAIA mission
was reported; 62 of them belong to the sample of 343
asteroids we considered. We perform tests with both the
“current” and the “expected” values (reported in Table II).

8. Results

We made a preliminary test to check the results of the
analytical model with those of the nominal experiment
described in Sec. II B. Therefore, we perform the covari-
ance analysis for the following set of parameters only:
barycentric initial conditions of Mercury and Earth plus β̄,
η, δμ0 , J2⊙ and ζ. Results are reported in column 1 of
Table III; by comparing with the RMSs of Table I we find a
very good agreement. In particular, the outcome for η from
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the analytical model is σ½η� ¼ 1.58 × 10−6, to be compared
with 1.93 × 10−6 of ORBIT14.
After the validation of the analytical model, we did two

experiments with an extended set of parameters. In both
cases we added to the list the GPs of planets from Jupiter to
Neptune plus Pluto, Eris, and the whole sample of asteroids
involved in the dynamics of ORBIT14. The total number of
parameters was 362. The Nordtvedt a priori has been
included in both experiments.

In the first experiment, we adopt for the a priori’s the
current errors of GPs, while in the other we use the expected
ones, according to the values reported in Table II. The results
are reported in columns 2 and 3 of Table III. The resulting
RMS of the parameter η is about 1 order of magnitude with
respect to the ideal case. The difference between the two
experiments (current and expected) is small: the a priori’s
with the expected values improve the RMS of η by only a
factor of 1.4, leading to σ½η� ¼ 3.1 × 10−5.

IV. CONCLUSIONS

In this work we described in detail a semianalytical
model for the Earth-Mercury ranging for the BepiColombo
mission. Our purpose was the estimation of the RMS of the
Nordtvedt parameter η by a global covariance analysis. The
frequency of signal due to η in the Earth-Mercury range is
of the same order of planetary mean motions and the
parameters that could be in principle correlated with η are
the initial conditions of Earth and Mercury, the other PN
parameters, and the masses of planets and asteroids. We
included them in the list of parameters by calculating their
signals on the range.
In order to check the analytical model we performed a

preliminary covariance analysis, involving 13 parameters, to
becomparedwith thenumerical global fit obtainedbyORBIT14
in the ideal case of exact knowledge of the masses of planets
and asteroids. We found that the RMSs given by our model
were in good agreement with those estimated by ORBIT14.
Afterwards, we included in the parameters list the masses

of planets and the 343 more massive asteroids (the total
number of parameters was 362). The RMSs of the masses
have been constrained to their current (or expected at the
epoch of the mission) values and we found σ½η� ¼ 4.37 ×
10−5 and σ½η� ¼ 3.13 × 10−5, respectively. Therefore, the
uncertainties of the masses of Solar System bodies degrade
the precision of the estimation of η by about 1 order of
magnitude. However, since the current RMS of η, from
LLR measurements, is σ½η� ¼ 4.4 × 10−4, we conclude that
the BepiColombo relativity experiment can improve the
current precision on η by a factor of 10.
Finally, the precision of the initial conditions turns out to

be very low, but we verified that the uncertainties mostly
concern the Sun-SSB position, while the RMS of the
heliocentric coordinates remains almost unchanged.
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TABLE III. RMSs of the parameters obtained by the analytical
global covariance analysis. (1) Metric þ SCE experiment assum-
ing no errors on GPs (to be compared with numerical results
listed in Table I). (2) Metricþ SCE experiment assuming current
errors on GPs. (3) is as (2) but with expected errors on GPs.

Relativity experiment (integration time: 373 d)

Parameter Units (1) (2) (3)

Xm cm 0.29 2.51 × 103 2.49 × 103

Ym cm 0.88 1.19 × 104 1.18 × 104

Zm cm 4.62 5.38 5.15
_Xm cm s−1 3.91 × 10−7 2.38 × 10−3 2.36 × 10−3

_Ym cm s−1 2.93 × 10−7 1.70 × 10−3 1.68 × 10−3

_Zm cm s−1 3.90 × 10−6 4.76 × 10−6 4.72 × 10−6

_Xe cm s−1 1.04 × 10−7 1.79 × 10−3 1.77 × 10−3

_Ye cm s−1 1.18 × 10−7 9.47 × 10−5 9.41 × 10−5

β 6.38 × 10−7 1.09 × 10−5 7.81 × 10−6

η 1.58 × 10−6 4.37 × 10−5 3.13 × 10−5

δμ0 cm3 s−2 9.19 × 1012 7.69 × 1013 5.50 × 1013

J2⊙ 3.80 × 10−10 8.49 × 10−10 8.03 × 10−10

ζ yr−1 1.22 × 10−14 1.93 × 10−14 1.78 × 10−14

� � � � � � � � �

TABLE II. Current and expected uncertainties for GPs of
planets/dwarf planets/asteroids. For Jupiter, the improvement
could be reached by JUNO mission data, and for the others in
the list, by GAIA.

Body
Current GP

errors (km3=s2)
Expected GP
errors (km3=s2) Refs.

Venus 0.0063 0.0063 [24]
Mars 0.00028 0.00028 [24]
Jupiter 2.7 0.5 [24,29]
Saturn 1.1 1.1 [24]
Uranus 5.0 5.0 [24]
Neptune 10.5 10.5 [24]
Pluto 2.1 2.1 [30]
Eris 13.1 13.1 [24]
1 Ceres 0.0008 0.0008 [31]
2 Pallas 0.28 0.17 [24,32]
3 Juno 0.11 0.037 [24,32]
4 Vesta 0.000012 0.000012 [33]
10 Hygiea 0.48 0.043 [32]
704 Interamnia 0.47 0.11 [32]
� � � � � � � � � � � �
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APPENDIX A: MATRICES

v̂ ¼

0
BBBBBBBB@

cosðntÞ sinðntÞ 1 0 0 0

−2 sinðntÞ 2 cosðntÞ −3nt=2 0 0 0

0 0 0 0 cosðntÞ sinðntÞ
−n sinðntÞ n cosðntÞ 0 0 0 0

−2n cosðntÞ −2n sinðntÞ −3n=2 0 0 0

0 0 0 0 −n sinðntÞ n cosðntÞ

1
CCCCCCCCA

ðA1Þ

V ¼ v̂v̂−10 ¼

0
BBBBBBBB@

4 − 3 cosðntÞ 0 0 sinðntÞ=n 2½1 − cosðntÞ�=n 0

6½sinðntÞ − nt� 1 0 2½cosðntÞ − 1�=n −3tþ 4 sinðntÞ=n 0

0 0 cosðntÞ 0 0 sinðntÞ=n
3n sinðntÞ 0 0 cosðntÞ 2 sinðntÞ 0

6n½cosðntÞ − 1� 0 0 −2 sinðntÞ −3þ 4 cosðntÞ 0

0 0 −n sinðntÞ 0 0 cosðntÞ

1
CCCCCCCCA

ðA2Þ

R ¼

0
BBBBBBBB@

cosðntÞ sinðntÞ 0 0 0 0

− sinðntÞ cosðntÞ 0 0 0 0

0 0 1 0 0 0

−n sinðntÞ n cosðntÞ 0 cosðntÞ sinðntÞ 0

−n cosðntÞ −n sinðntÞ 0 − sinðntÞ cosðntÞ 0

0 0 0 0 0 1

1
CCCCCCCCA

ðA3Þ

APPENDIX B: ADDITIONAL SIGNALS DUE TO BARYCENTRIC INITIAL CONDITIONS

The extra terms to be added to Eq. (21), if initial conditions are barycentric, are gk − gi, where

gi ¼ −R−1VR0

8>><
>>:

Ω0R0 qm ¼ η;

ðR0lsl þR0Þ=μT qm ¼ μl ≠ μ0;

R0=μT qm ¼ μl ¼ μ0;

ðB1Þ

where μT is the total mass (Sun, planets, and asteroids) and R, V, sl are calculated for body i.

APPENDIX C: COMPLETE SEP VIOLATION PERTURBING TERM

Complete radial and along-track perturbations on planet i due to SEP violation:

Ri
η ¼ −

μiΩ0 þ μ0Ωi

R2
0i

þ
X
j≠i≠0

μj

�
Ωi

R0j cosΦij − R0i

R3
ij

−Ω0

cosΦij

R2
0j

�

Ti
η ¼

X
j≠i≠0

μj sinΦij

�
Ωi

R0j

R3
ij
−Ω0

1

R2
0j

�
: ðC1Þ
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APPENDIX D: COEFFICIENTS FOR PLANETARY PERTURBATIONS

Series expansion for 1=R3
ij, where R0i < R0j:

1

R3
ij
¼

�
1

R3
0j

þ 9

4

R2
0i

R5
0j

þ � � �
�
þ
�
3
R0i

R4
0j
þ 45

8

R3
0i

R6
0j

þ � � �
�
cosΦij þ

�
15

4

R2
0i

R5
0j

þ 105

16

R4
0i

R7
0j
þ � � �

�
cos 2Φij þ � � � ðD1Þ

Radial (aj;l) and along-track (bj;l) coefficients of the perturbation on body i due to body j [see Eq. (30)]:

aj;0 ¼
1

2

R0i

R3
0j

þ 9

16

R3
0i

R5
0j

þ 75

128

R5
0i

R7
0j
…; aj;1 ¼

9

8

R2
0i

R4
0j
þ 75

64

R4
0i

R6
0j

þ 1225

1024

R6
0i

R8
0j

þ…;

aj;2 ¼
3

2

R0i

R3
0j

þ 5

4

R3
0i

R5
0j

þ 315

256

R5
0i

R4
0j
þ…;

bj;1 ¼
3

8

R2
0i

R4
0j
þ 15

64

R4
0i

R6
0j

þ 175

1024

R6
0i

R8
0j

þ…; bj;2 ¼
3

2

R0i

R3
0j

þ 5

8

R3
0i

R5
0j

þ 105

256

R5
0i

R7
0j
þ…: ðD2Þ

APPENDIX E: AMPLITUDES AND FREQUENCIES FOR SEP VIOLATION
AND PLANETARY SIGNATURES

See Tables IV and V.

TABLE IV. SEP violation range signature: coefficients relative to the direct and indirect parts (for η ¼ 1). Only terms bigger than 1 cm
are reported. See Eq. (32).

Direct terms (Dl) Indirect terms (Ipqr)

Mars Jupiter Saturn Uranus Neptune

Frequency Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m)

0 ∞ −22.99
n1 − n3 115.9 1.51

nj − n3 747.35 0.36 398.80 232.53 378.09 47.28 369.66 4.91 367.49 4.59

n1 − nj 100.32 −0.30 89.79 −134.53 88.69 −26.71 88.22 −2.75 88.10 −2.56
nj þ n1 − 2n3 137.14 0.29 163.34 121.87 167.09 24.03 168.79 2.47 169.24 2.29

2n1 − 2n3 57.9 −0.58
2n1 þ nj − 3n3 62.81 0.06 67.79 27.58 68.42 5.47 68.71 0.56 68.78 0.52

2n1 − nj − n3 53.77 −0.02 50.59 20.72 50.24 4.81 50.09 0.53 50.05 0.50

3n1 − 3n3 38.6 −0.19
3n1 þ nj − 4n3 40.73 0.02 42.77 7.99 43.02 1.58 43.13 0.16 43.16 0.15

4n1 þ nj − 5n3 30.14 31.24 2.93 31.37 0.58 31.43 0.06 31.45 0.06

3n1 − nj − 2n3 36.73 35.22 2.12 35.05 0.56 34.97 0.06 34.95 0.06

4n1 − 4n3 29.0 −0.11
4n1 − nj − 3n3 27.89 27.01 0.55 26.91 0.15 26.86 0.02 26.85 0.02

5n1 þ nj − 6n3 23.92 24.61 0.49 24.69 0.09 24.73 24.74

5n1 − nj − 4n3 22.48 21.90 −0.41 21.84 −0.07 21.81 21.80

6n1 − nj − 5n3 18.83 18.42 0.26 18.37 0.05 18.35 18.35

2nj − 2n3 373.67 199.40 189.04 184.83 183.74

n1 − 2nj þ n3 88.45 73.29 71.84 71.22 71.06

n1 þ 2nj − 3n3 167.96 276.64 299.40 310.62 313.73

5n1 − 5n3 23.2 0.06

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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TABLE V. Earth-Mercury range perturbation coefficients due to planetary effects. Only terms bigger than 10 cm are reported.

Coefficients J of Earth-Mercury range perturbation

Mars Jupiter Saturn Uranus Neptune

Frequency Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m) Period (d) Ampl. (m)

0 ∞ −3630.05 ∞ −169686.9 ∞ −8031.6 ∞ −149.5 ∞ −45.7
5nj − 5n3 149.5 −3847.5 79.8 −1244.3 75.6 −8.6 73.9 73.5
4nj − 4n3 186.8 −10505.7 99.7 −9969.9 94.5 −124.9 92.4 −0.5 91.9
3nj − 3n3 249.1 −40416.7 132.9 −94362.8 126.0 −2140.4 123.2 −18.7 122.5 −3.6
2nj − 2n3 373.7 1675569.7 199.4 −1319529.2 189.0 −53036.5 184.8 −921.7 183.7 − 276.9
nj − n3 747.3 40176.8 398.8 2207243.3 378.1 135303.2 369.7 3503.0 367.5 1334.7
n1 þ 5nj − 6n3 515.6 −914.7 255.9 −258.3 217.6 −1.8 204.2 201.0
n1 þ 4nj − 5n3 305.1 −2735.8 714.2 −2158.2 512.9 −26.8 456.4 −0.1 443.5
n1 þ 3nj − 4n3 216.7 −12199.5 903.1 −22017.2 1438.5 −492.5 1944.8 −4.3 2144.8 −0.8
n1 þ 2nj − 3n3 168.0 657422.1 276.6 −359448.6 299.4 −14122.6 310.6 −243.1 313.7 −72.9
n1 þ nj − 2n3 137.1 29419.5 163.3 942637.0 167.1 55310.6 168.8 1405.8 169.2 533.1
n1 − n3 115.9 112.1 115.9 6586.4 115.9 316.1 115.9 5.9 115.9 1.8
n1 − nj 100.3 −30212.5 89.8 −990256.1 88.7 −58250.5 88.2 −1482.1 88.1 −562.1
n1 − 2nj þ n3 88.4 −686619.7 73.3 412491.0 71.8 16445.2 71.2 285.0 71.1 85.6
n1 − 3nj þ 2n3 79.1 12926.6 61.9 23846.6 60.4 534.4 59.7 4.7 59.5 0.9
n1 − 4nj þ 3n3 71.5 2922.8 53.6 2337.1 52.1 29.03 51.4 0.1 51.2
n1 − 5nj þ 4n3 65.3 983.08 47.2 280.4 45.8 1.9 45.1 45.0
2n1 þ 5nj − 7n3 94.6 −246.7 211.8 −72.7 247.8 −0.5 267.8 273.7
2n1 þ 4nj − 6n3 84.0 −719.0 138.3 −599.1 149.7 −7.5 155.3 156.9
2n1 þ 3nj − 5n3 75.5 −3083.9 102.7 −5970.8 107.2 −134.1 109.4 −1.2 109.9 −0.2
2n1 þ 2nj − 4n3 68.6 156661.1 81.7 −93233.7 83.5 −3685.2 84.4 −63.6 84.6 −19.1
2n1 þ nj − 3n3 62.8 6350.1 67.8 220937.0 68.4 13073.8 68.7 333.5 68.8 126.6
2n1 − 2n3 57.9 −116.3 57.9 −5171.2 57.9 −243.9 57.9 −4.5 57.9 −1.4
2n1 − nj − n3 53.8 −4587.1 50.6 −104942.3 50.2 −5864.9 50.1 −145.9 50.0 −55.0
2n1 − 2nj 50.2 −98799.3 44.9 43063.2 44.3 1638.8 44.1 27.8 44.0 8.3
2n1 − 3nj þ n3 47.0 1730.3 40.4 3452.4 39.7 79.2 39.4 0.7 39.3 0.1
2n1 − 4nj þ 2n3 44.2 356.7 36.6 259.9 35.9 3.2 35.6 35.5
2n1 − 5nj þ 3n3 41.8 113.7 33.6 29.7 32.8 0.2 32.5 32.4
3n1 þ 5nj − 8n3 52.1 −73.4 74.9 −21.7 79.0 −0.1 80.9 81.4
3n1 þ 4nj − 7n3 48.7 −213.3 63.0 −178.5 65.3 −2.2 66.4 66.6
3n1 þ 3nj − 6n3 45.7 −912.1 54.4 −1777.2 55.7 −39.9 56.3 −0.3 56.4
3n1 þ 2nj − 5n3 43.1 46092.3 47.9 −27592.5 48.5 −1090.9 48.8 −18.8 48.9 −5.6
3n1 þ nj − 4n3 40.7 1850.0 42.8 64817.3 43.0 3838.1 43.1 97.9 43.2 37.2
3n1 − 3n3 38.6 −37.9 38.6 −1694.5 38.6 −80.0 38.6 −1.5 38.6 −0.5
3n1 − nj − 2n3 36.7 −1330.5 35.2 −32709.3 35.0 −1851.5 35.0 −46.3 35.0 −17.5
3n1 − 2nj − n3 35.0 −27437.1 32.4 7858.8 32.1 268.9 31.9 4.3 31.9 1.3
3n1 − 3nj 33.4 451.4 29.9 581.6 29.6 12.4 29.4 0.1 29.4
3n1 − 4nj þ n3 32.0 101.3 27.8 96.5 27.4 1.2 27.2 27.2
3n1 − 5nj þ 2n3 30.7 30.4 26.0 8.0 25.6 25.4 25.3
4n1 þ 5nj − 9n3 35.9 −28.1 45.5 −8.4 47.0 47.6 47.8
4n1 þ 4nj − 8n3 34.3 −81.0 40.8 −68.8 41.8 −0.9 42.2 42.3
4n1 þ 3nj − 7n3 32.8 −342.7 37.0 −680.9 37.6 −15.3 37.9 −0.1 37.9
4n1 þ 2nj − 6n3 31.4 17008.4 33.9 −10513.7 34.2 −416.9 34.4 −7.2 34.4 −2.2
4n1 þ nj − 5n3 30.1 660.3 31.2 23828.2 31.4 1415.0 31.4 36.1 31.4 13.7
4n1 − 4n3 29.0 −19.1 29.0 −873.7 29.0 −41.3 29.0 −0.8 29.0 −0.2
4n1 − nj − 3n3 27.9 −419.8 27.0 −9569.0 26.9 −535.5 26.9 −13.3 26.9 −5.0
4n1 − 2nj − 2n3 26.9 −7859.3 25.3 2266.9 25.1 79.4 25.0 1.3 25.0 0.4
4n1 − 3nj − n3 26.0 115.9 23.8 80.1 23.6 1.5 23.5 23.4
4n1 − 4nj 25.1 22.4 22.4 8.5 22.2 22.1 22.0

(Table continued)
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