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Abstract

This paper provides a framework to obtain a semi-analytical approximation of extreme values of relative

distances between two spacecraft that cover elliptic displaced orbits. The relative motion is described in

the rotating reference frame of the chief spacecraft and is parameterized with a new set of displaced orbital

elements. The extreme values of the radial, along-track and cross-track distance are analytically evaluated

(as roots of suitable algebraic equations) both for quasi-periodic orbits in the incommensurable case, and

for periodic orbits in the 1:1 commensurable case. In particular, in the 1:1 commensurable case a Fourier

series expansion is used to obtain a time-explicit expression of the relative motion. Finally, some illustrative

examples are presented to validate the correctness of the proposed method.
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Nomenclature

a = semimajor axis of displaced orbit, [ au]

b = semiminor axis of displaced orbit, [ au]

E = eccentric anomaly, [ rad]

f = true anomaly, [ rad]

H = orbit displacement, [ au]

k̂ = unit vector of z-axis

i = inclination of displaced orbit, [ rad]

î = unit vector of x-axis

Jh = Bessel function of the first kind of order h

ĵ = unit vector of y-axis

M = mean anomaly, [ rad]

n = mean motion, [ rad/day]

O = Sun’s center-of-mass

o = focus of displaced orbit

R = manifold

r = spacecraft position vector in TI (with r = ‖r‖), [ au]

S = spacecraft center-of-mass

t = time, [ days]

TI = inertial reference frame

TP = perifocal reference frame

TR = rotating reference frame

TPI = transformation matrix between TP and TI

TPR = transformation matrix between TP and TR

TPDPC
= transformation matrix between TPD

and TPC
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Tij = (i, j) entry of matrix TPDPC

ρx, ρy, ρz = components of relative position vector in the chief’s rotating frame, [ au]

ρ = relative position vector, [ au]

Ω = right ascension of the ascending node of displaced orbit, [ rad]

ω = argument of periapsis of displaced orbit, [ rad]

Subscripts

C = chief

D = deputy

n = numerical solution

Superscripts

T = transpose

� = extreme value

∧ = unit vector

1 Introduction

The development of advanced materials, such as the graphene (Matloff, 2012), and the practical

use of innovative propulsion system concepts, such as the photonic solar sail (Tsuda et al.,

2011a,b; Mori et al., 2010; Johnson et al., 2011a, 2012, 2011b), have contributed to a growing

interest towards non-Keplerian orbits (McKay et al., 2011; Mengali and Quarta, 2009), due

to their potential benefits offered to astronomical missions. In particular, artificial Lagrange
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orbits in a three-body dynamical system (McInnes et al., 1994; Baoyin and McInnes, 2005,

2006a,b) are capable of monitoring solar plasma storms (Prado et al., 1996), while displaced

orbits in two-body problems (McInnes, 1997; McInnes and Simmons, 1992a,b) can be used as

planet pole sitters (Ceriotti et al., 2014). In principle, a displaced orbit, that is, an orbit whose

orbital plane does not contain the primary’s center-of-mass, can be generated either by means

of photonic solar sails (McInnes, 1998; Gong et al., 2008b), or by the more recent electric solar

wind sails (Janhunen, 2004; Mengali and Quarta, 2009), whereas more conventional propulsion

systems are known to be inadequate for these applications (McInnes, 1999).

In this context, most of the available literature is dedicated to the study of circular displaced

orbits (McInnes, 1997; Ceriotti et al., 2014; Gong et al., 2008b; Mengali and Quarta, 2009)

or to artificial Lagrange points (McInnes et al., 1994; Baoyin and McInnes, 2005, 2006a,b)

in the restricted three-body problem, whereas elliptic displaced orbits have attracted smaller

interest. However, some celestial bodies such as Mercury (or some near-Earth asteroids) track

orbits with considerable eccentricity and, in that case, a full-time observation of their pole

region could not be obtained using circular displaced orbits. An interesting option for those

mission scenario is the use of elliptic displaced orbits. In particular, Gong and Li (2014) point

out that a photonic solar sail with reflection control devices (electrochromic panels) could be

able to achieve and maintain such kind of non-Keplerian orbit. This is possible by exploiting

the fact that the mean optical properties of the sail’s film can be adjusted, within some limits,

by switching on or off the state of each electrochromic panel (Gong and Li, 2014; Mu et al.,

2015a,b; Hu et al., 2015).

Moreover, scientific explorations of some celestial bodies that cover eccentric orbits, require

multi-aspect observations that can only be accomplished using a formation of spacecraft. For

instance, the interaction of solar wind with the magnetic field of Mercury is still, to some

extent, an unknown phenomenon. An exhaustive comprehension of the magnetotail structure

and dynamics of Mercury is possible only if a correlation between these two acting causes may
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be found (Aliasi et al., 2015), which requires the simultaneous observation and measurement

of both the magnetotail and the solar wind from different positions using multiple spacecraft.

However, the only existing papers on solar sail relative motion around displaced orbits use a

linearized mathematical model (Gong et al., 2007a, 2008a, 2007b, 2011), and thus can only

be applied to small-distance and short-term missions. Especially for a large baseline formation

flying, a nonlinear insight is indispensable for looking at some inherent properties of the for-

mation structure, such as the bounds and the geometric topology of relative motion (Gurfil

and Kholshevnikov, 2006), which might be useful for collision avoidance and communication

analysis.

The aim of this paper is to give a comprehensive analysis of closed-form solutions and bounds

of relative motion between elliptic displaced orbits, thus generalizing the recently developed

theory (Wang et al., 2015) wherein the relative motion between circular displaced orbits has

been investigated. A new set of displaced orbital elements is first introduced to describe an

elliptic displaced orbit and to define its orientation with respect to an inertial reference frame.

Based on the newly defined parameters, a closed-form solution expressed in the chief sail’s

rotating frame is derived without the need of solving or linearizing the relative dynamics. The

relative motion emanated from the parametric solution is quasi-periodic for the incommen-

surable case and periodic for the commensurable case. In the commensurable case, the ratio

between the mean motion of the two elliptic displaced orbits is a rational number, whereas for

the incommensurable case the ratio is an irrational number. In both cases, the relative motion

evolves along its invariant manifold that presents a well-defined accessible domain (Topputo,

2016; Mingotti et al., 2012).

The general solution is then used to look for the bounds along each coordinate axis assuming

a small value of orbital eccentricity. For the 1:1 commensurable case, a first-order closed-form

approximate solution is obtained, and the problem of looking for the bounds is transformed

into that of calculating the roots of algebraic equations. The derived closed-form solutions are
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of general applicability and do not suffer from the usual assumption of small relative distance

between the two spacecraft, as in the linearized case.

2 Spacecraft relative position vector

Consider a spacecraft that covers a heliocentric displaced orbit using a continuous-thrust

propulsion system and a suitable control law (Gong and Li, 2014). Such a non-Keplerian

orbit is elliptic, with semimajor axis a and eccentricity e �= 0 (both constant) and belongs to

a plane P placed at a distance H from Sun’s center-of-mass O. The special case of circular

displaced orbit (e = 0) is thoroughly discussed in Wang et al. (2015), where the usefulness of a

particular set of orbital elements has been pointed out to obtain a comprehensive description

of the spacecraft dynamics along its orbit. By analogy with the Keplerian motion, let o be

one of the two foci of the displaced orbit, and assume that such a point plays the same role

of primary focus as it happens in a classic two-body problem (however, in this scenario the

primary body is not placed at o). In particular, note that the segment O-o is orthogonal to

the plane P of the displaced orbit. Accordingly, the spacecraft position along its elliptic orbit

can be located using a sort of true anomaly f , measured anticlockwise from the line joining

the focus o with the orbit’s pericenter.

To formulate the problem conveniently, it is useful to introduce three right-handed reference

frames, see Fig. 1. The first one is the classical heliocentric-ecliptic (inertial) reference frame

TI(O; xI , yI , zI), where the plane (xI , yI) coincides with the ecliptic plane, the xI axis points to

the vernal equinox, and the zI axis points to the north of celestial pole. The second coordinate

system TR(S; xR, yR, zR) is a rotating reference frame centered at the spacecraft center-of-mass

S, whose plane (xR, yR) coincides with plane P , the xR axis points from o to S, and zR axis

is positive in the direction of the spacecraft angular velocity vector. The unit vectors of TR

are îR, ĵR, and k̂R. Finally TP (o; xP , yP , zP ) is a classical perifocal reference frame centered
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at o, where the plane (xP , yP ) coincides with plane P , and xP axis is directed from o to the

periapsis of the elliptic displaced orbit.

Paralleling the classical approach of Keplerian motion, the orientation of the elliptic displaced

orbit with respect to the inertial frame TI is described by three Euler angles: the inclination

i ∈ [0, π], i.e. the angle between zI-axis and the O-o line; the right ascension of the ascending

node Ω ∈ [0, 2 π], i.e. the angle between the line of nodes and the direction of xI-axis; and the

argument of periapsis ω ∈ [0, 2 π], i.e. the angle between the line of nodes and the direction of

the periapsis, see Fig. 1. In this context, the line of nodes is the intersection of plane P with

plane E , which is parallel to the ecliptic plane (xI , yI) and passes through the focus o of the

displaced orbit. In the special case in which the plane of the displaced orbit is parallel to the

ecliptic plane, the line of nodes is assumed to coincide with the line parallel to xI and passing

through the focus o.

Note that the absolute position vector r of the spacecraft, that is, its position vector evaluated

in the inertial frame TI , can be written as a function of its true anomaly f as

r = H k̂R +
a (1− e2)

1 + e cos f
îR (1)

where H k̂R is the position vector (in the inertial frame) of the focus o of the displaced orbit.

Indeed, note that r is the vector from the Sun’s center-of-mass to the spacecraft’s center-of-

mass. Therefore, the components of r in the rotating reference frame TR are

[r]TR =

[
a (1− e2)

1 + e cos f
, 0, H

]T

(2)

Likewise, the components of vector r in the perifocal reference frame TP (recall that the

displaced orbit’s plane does not contain the Sun’s center-of-mass) are

[r]TP = [a (cosE − e) , b sinE, H]T (3)

where b = a
√
1− e2 is the semiminor axis of the elliptic displaced orbit, and E is the spacecraft
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eccentric anomaly whose value, as a function of the true anomaly f , is given by the well known

equation

tan
E

2
=

√
1− e

1 + e
tan

f

2
(4)

Consider now the general scenario of two spacecraft flying along two different elliptic displaced

orbits. The first spacecraft is referred to as the chief (subscript C), and the other as the deputy

(subscript D), see Fig 2. The spacecraft relative position vector is given by

ρ � rD − rC (5)

where rC (or rD) is the inertial position vector of the chief (or deputy). The components of

ρ are usually expressed in the Cartesian space. However, such a choice provides little physical

insight within a three-dimensional scenario, especially for emphasizing the extreme values of

the spacecraft relative distances, i.e. the extreme values of each component of ρ. For this

reason, it is better to write the components of ρ as a function of both the true anomaly f and

the geometrical characteristics, given by the set {a, e, Ω, ω, i, H}, of the two elliptic displaced

orbits.

The components of ρ are now written in the chief’s rotating frame TRC
, and three coordinate

transformations are carried out to find the components of rD in TRC
. To that end, the iner-

tial frame TI is used as an intermediate bridge (Gurfil and Kholshevnikov, 2006). The first

transformation is from the deputy’s perifocal frame TPD
to the inertial frame TI , the second is

from TI to the chief’s perifocal frame TPC
, and the last one is from TPC

to TRC
. Taking into

account (Battin, 1987) that the transformation matrix TPI between TP and TI is a function of
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the triplet {Ω, i, ω} via the equation

TPI (Ω, i, ω) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cosω cosΩ− sinω cos i sinΩ) (− sinω cosΩ− cosω cos i sinΩ) (sin i sinΩ)

(cosω sinΩ + sinω cos i cosΩ) (cosω cos i cosΩ− sinω sinΩ) (− sin i cosΩ)

sinω sin i cosω sin i cos i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

and that the transformation matrix TPR between the perifocal frame and the rotating frame

is

TPR (f) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos f sin f 0

− sin f cos f 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Eq. (5) provides

[ρ]TRC
= TPR(fC)T

T

PCI (ΩC , iC , ωC) TPDI (ΩD, iD, ωD) [rD]TPD
− [rC ]TRC

(8)

where [rD]TPD
is given by Eqs. (3)-(4) as a function of {aD, eD, fD, HD}, and [rC ]TRC

is given by

Eq. (2) as a function of {aC , eC , fC , HC}. For the sake of conciseness, the eccentric anomaly ED

is used in place of the true anomaly fD for the deputy, and the following shorthand notation

is introduced

TPDPC
� T

T

PCI (ΩC , iC , ωC) TPDI (ΩD, iD, ωD) (9)

where TPDPC
represents the transformation matrix between the chief’s perifocal frame and the

deputy’s perifocal frame.

Substituting Eqs. (2)–(3) and (6)–(7) into Eq. (8), the components ρx, ρy, and ρz of the relative

position vector ρ in TRC
can be written in terms of elliptic displaced orbit characteristics of
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both the chief and the deputy spacecraft, viz.

ρx = aD T11 cos fC cosED + aD T21 sin fC cosED + bD T12 cos fC sinED + bD T22 sin fC sinED

+ (HD T13 − aD eD T11) cos fC + (HD T23 − aD eD T21) sin fC − aC (1− e2C)

1 + eC cos fC
(10)

ρy = aD T21 cos fC cosED − aD T11 sin fC cosED + bD T22 cos fC sinED − bD T12 sin fC sinED

+ (HD T23 − aD eD T21) cos fC + (aD eD T11 −HD T13) sin fC (11)

ρz = aD T31 cosED + bD T32 sinED + (HD T33 −HC − aD eD T31) (12)

where Tij denotes the entry of row i and column j of matrix TPDPC
, see Eqs. (76)–(84) in

Appendix. Note that Eqs. (10)–(12) provide a parametric representation of the chief-deputy

relative distance, with two angular coordinates (fC , ED) being the variables, thus comprising

the invariant manifold R. In particular, Eqs. (10)–(12) remain valid for elliptic displaced orbits

independent of the value of the orbital eccentricity.

There are two qualitatively different cases, depending on whether the mean motion of the two

orbits, nC and nD respectively, are commensurable or not. Recall that in the commensurable

case the ratio nC/nD is a rational number, whereas for the incommensurable case nC/nD is an

irrational number. In the following sections, the bounds of each directional coordinate will be

calculated analytically in both cases.

3 Bounds of incommensurable relative motion

As far as the incommensurable case is concerned, that is, when the ratio of mean motions

is an irrational number, the relative motion evolving on the invariant manifold is open, but

bounded, and is usually referred to as quasi-periodic. Due to its ergodic nature, the two angular

variables in Eqs. (10)–(12), fC and ED, can be considered as independent of each other when

differentiating the radial, along-track, and cross-track components with respect to them. In
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other terms, the necessary conditions, which must be met to find the bounds of each component

ρi, are

∂ρi
∂fC

= 0 and
∂ρi
∂ED

= 0 with i = {x, y, z} (13)

whose corresponding solutions in terms of the chief’s true anomaly and the deputy’s eccentric

anomaly are referred to as fC = f �
C and ED = E�

D, respectively. The bounds of the relative

distances components are then calculated from Eqs. (10)–(12).

3.1 Radial bounds

According to Eq. (13), the extreme values of radial relative distance (i.e., the component of ρ

along the xR axis), are given by enforcing the necessary condition

∂ρx
∂fC

= 0 ,
∂ρx
∂ED

= 0 (14)

In general, it is not possible to obtain a closed-form solution of f �
C using the first one of

Eqs. (14). However, assuming that eC � 1, a first-order approximation of the chief’s focus-

spacecraft distance can be obtained using a Taylor series expansion of the last term in Eq. (10),

viz.

aC (1− e2C)

1 + eC cos fC
	 aC

(
1− e2C

)
(1− eC cos fC) (15)

Substituting Eq. (15) in Eq. (10), and then in Eqs. (14), the result is

ς2 sin fC sinED − ς1 sin fC cosED + ς3 cos fC sinED + ς4 cos fC cosED + ς5 sin fC

+ ς6 cos fC = 0 (16)

ς3 sin fC cosED − ς4 sin fC sinED − ς1 cos fC sinED − ς2 cos fC cosED = 0 (17)
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where

ς1 � aD T11 , ς2 � −bD T12 , ς3 � bD T22 , ς4 � aD T21 ,

ς5 � aD eD T11 −HD T13 − aC eC , ς6 � HD T23 − aD eD T21

(18)

are constant coefficients depending on the characteristics of the two elliptic displaced orbits.

Using the notation

ι � tan
fC
2

, υ � tan
ED

2
(19)

Eqs. (16)-(17) are transformed into a new set of two nonlinear equations in two unknowns ι

and υ, that is

(ς4 − ς6) ι
2 υ2 + 2 (ς1 + ς5) ι υ

2 − 2 ς3 ι
2 υ − (ς4 + ς6) ι

2 − (ς4 − ς6) υ
2

+ 4 ς2 ι υ + 2 (ς5 − ς1) ι+ 2 ς3 υ + (ς4 + ς6) = 0 (20)

ς2 ι
2 υ2 + 2 ς3 ι υ

2 − 2 ς1 ι
2 υ − ς2 ι

2 − ς2 υ
2 + 4 ς4 ι υ − 2 ς3 ι+ 2 ς1 υ + ς2 = 0 (21)

Given an initial guess, Eqs. (20)–(21) can be solved as a function of ι and υ, and then the

critical value of fC and ED can be obtained from Eq. (19). Due to the inherent singularities of

the mapping from (fC , ED) to (ι, υ) in Eq. (19), it must be further checked whether ι → ±∞

and υ → ±∞ correspond to the extreme values. In this case, since ι → ±∞ when fC → k π and

υ → ±∞ when ED → k π (where k ∈ N), it is sufficient to investigate whether cos fC = ±1,

sin fC = 0, cosED = ±1, and sinED = 0 correspond to extreme values by substituting them

into Eqs. (16)-(17).
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3.2 Along-track bounds

Bearing in mind Eq. (11), the necessary condition of Eq. (13) for the along-track motion leads

to

ς4 sin fC cosED + ς3 sin fC sinED − ς2 cos fC sinED + ς1 cos fC cosED + ς6 sin fC

− ς7 cos fC = 0 (22)

ς2 sin fC cosED + ς1 sin fC sinED − ς4 cos fC sinED + ς3 cos fC cosED = 0 (23)

where ς1, ς2, . . . , ς6 are given by Eq. (18) and

ς7 � aD eD T11 −HD T13 (24)

Taking into account Eq.(19), Eqs. (22)-(23) provide

(ς1 + ς7) ι
2 υ2 + 2 (ς6 − ς4) ι υ

2 + 2 ς2 ι
2 υ + (ς7 − ς1) ι

2 − (ς1 + ς7) υ
2 + 4 ς3 ι υ

+ 2 (ς4 + ς6) ι− 2 ς2 υ + (ς1 − ς7) = 0 (25)

ς3 ι
2 υ2 − 2 ς2 ι υ

2 + 2 ς4 ι
2 υ − ς3 ι

2 − ς3 υ
2 + 4 ς1 ι υ + 2 ς2 ι− 2 ς4 υ + ς3 = 0 (26)

Also, it must be further checked whether ι → ±∞ and υ → ±∞ correspond to extreme values

using the same approach of radial bounds.

3.3 Cross-track bounds

To find the bounds of cross-track motion, the necessary condition of Eq. (13) results in

ς8 sinED + ς9 cosED = 0 (27)

where

ς8 � aD T31 , ς9 � bD T32 (28)
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In this case, the critical values of the deputy’s eccentric anomaly corresponding to the cross-

track bounds can be directly written in an explicit form as:

E�
D =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(k + 1/2) π if ς8 = 0

k π − arctan(ς9/ς8) if ς8 �= 0

(29)

with k ∈ N, whereas the extreme values of z component are obtained by substituting Eq. (29)

into Eq. (12).

4 Bounds in a 1:1 commensurable relative motion

In the commensurable case, that is, when the relative motion is periodic, an important sce-

nario is the 1:1 commensurable relative motion. Indeed, in this case the period of the relative

motion is the least common multiple of the two orbital periods, which often turns out to be

unacceptably long if the condition of 1:1 is not satisfied. Therefore, the following discussion is

confined to the 1:1 commensurable case only, and the condition nC = nD � n is enforced.

Unlike the incommensurable relative motion where the critical time approaches infinity, the

relative motion in the commensurable case exhibits periodicity and, therefore, the time t should

be treated as the only independent variable when looking for the extreme values of the bounds.

However, from Eqs. (10)–(12), the spacecraft relative distances are time-implicit. In this case, to

obtain a time-explicit solution, the true anomaly and the eccentric anomaly must be written as

an explicit function of time. To this end, first perform a nonlinear mapping from true anomaly

f to mean anomaly M using Fourier series expansions (Battin, 1987):

sin f = 2
√
1− e2

∞∑
h=1

dJh(he)

de

sin(hM)

h
(30)

cos f =
2 (1− e2)

e

∞∑
h=1

Jh(he) cos(hM)− e (31)
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where Jh(·) denotes the Bessel function of the first kind of order h defined as:

Jh (ν) =
∞∑
j=0

(−1)j νh+2j

2h+2j j! (h+ j)!
(32)

Likewise, the eccentric anomaly can be related to the mean anomaly as

sinE =
∞∑
h=1

[Jh+1 (he) + Jh−1 (he)]
sin(hM)

h
=

2

e

∞∑
h=1

sin(hM)

h
Jh (h e) (33)

cosE =
∞∑
h=1

1

h
[Jh−1 (he)− Jh+1 (he)] cos(hM)− e

2
=

∞∑
h=1

2 cos(hM)

h2

dJh (h e)

de
− e

2
(34)

The generalized expansion theorem is now used to get

1− e2

1 + e cos f
= 1 +

e2

2
− 2 e

∞∑
h=1

dJh(he)

de

cos(hM)

h2
(35)

The first order term is sufficient for elliptic displaced orbits with small eccentricity, and

Eqs. (30)–(31), (33)–(35) are rewritten as

sin f ≈ sinM + e sin(2M) +O
(
e2

)
(36)

cos f ≈ −e+ cosM + e cos(2M) +O
(
e2

)
(37)

sinE ≈ sinM +
e

2
sin(2M) +O

(
e2

)
(38)

cosE ≈ −e

2
+ cosM +

e

2
cos(2M) +O

(
e2

)
(39)

a (1− e2)

1 + e cos f
≈ a (1− e cosM) +O

(
e2

)
(40)

Substituting Eqs. (36)–(40) into Eqs. (10)–(12) and neglecting second-order terms, an approx-
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imate solution in terms of the two spacecraft mean anomalies is obtained as

ρx ≈ − (HDT13eC + aC) + (−3aDT11eD/2 +HDT13+aCeC) cosMC − aDT11eC cosMD

+ (−3aDT21eD/2 +HDT23) sinMC − bDT12eC sinMD +HDT13eC cos 2MC +HDT23eC sin 2MC

+ aDT11 cosMC cosMD + bDT12 cosMC sinMD + aDT21 sinMC cosMD + bDT22 sinMC sinMD

+ aDT11eD cosMC cos 2MD/2 + bDT12eD cosMC sin 2MD/2 + aDT21eD sinMC cos 2MD/2

+ bDT22eD sinMC sin 2MD/2 + bDT12eC cos 2MC sinMD + aDT11eC cos 2MC cosMD

+ aDT21eC sin 2MC cosMD + bDT22eC sin 2MC sinMD (41)

ρy ≈ −HDT23eC + (−3aDT21eD/2 +HDT23) cosMC − aDT21eC cosMD

+ (3aDT11eD/2−HDT13) sinMC − bDT22eC sinMD +HDT23eC cos 2MC −HDT13eC sin 2MC

+ aDT21 cosMC cosMD + bDT22 cosMC sinMD − aDT11 sinMC cosMD − bDT12 sinMC sinMD

+ aDT21eD cosMC cos 2MD/2 + bDT22eD cosMC sin 2MD/2− aDT11eD sinMC cos 2MD/2

− bDT12eD sinMC sin 2MD/2 + aDT21eC cos 2MC cosMD + bDT22eC cos 2MC sinMD

− aDT11eC sin 2MC cosMD − bDT12eC sin 2MC sinMD (42)

ρz ≈ (−3aDT31eD/2 +HDT33 −HC) + aDT31 cosMD + bDT32 sinMD + aDT31eD cos 2MD/2

+ bDT32eD sin 2MD/2 (43)

Assuming an initial mean anomaly MC(t0) = MD(t0) = 0, after some symbolic operations and

simplifications, Eqs. (41)–(43) are written in a more compact form as

ρx ≈ σ0 + σc cos(n t) + σs sin(n t) + σc2 cos(2n t) + σs2 sin(2n t) + σc3 cos(3n t) + σs3 sin(3n t)

(44)

ρy ≈ τ0 + τc cos(n t) + τs sin(n t) + τc2 cos(2n t) + τs2 sin(2n t) + τc3 cos(3n t) + τs3 sin(3n t)

(45)

ρz ≈ ξ0 + ξc cos(n t) + ξs sin(n t) + ξc2 cos(2n t) + ξs2 sin(2n t) (46)
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where the relevant coefficients are given in the Appendix, see Eqs. (85)–(103). Equations (44)–

(46) provide a first-order approximate closed-form solution, which is very useful for under-

standing the nature of the relative motion due to its time-explicit property. Eqs. (44)–(46) also

serve as a basis for studying the extreme values of the spacecraft relative distance along each

coordinate axis, as is illustrated in the next sections.

To that end, the necessary condition to be met is

∂ρi
∂t

= 0 with i = {x, y, z} (47)

where the components ρi are given by Eqs. (44)–(46). Bearing in mind the structure of the

three components of ρ in the chief’s rotating frame, it is convenient to make the change of

variable

s � tan
n t

2
with n t �= (2 k + 1) π and k ∈ N (48)

Correspondingly, the necessary condition of Eq. (47) becomes

∂ρi
∂s

= 0 if n t �= (2 k + 1) π with k ∈ N (49)

Once the positive values of s that satisfy Eq. (49) are found, the corresponding time values

are obtained from Eq. (48). These time values, when substituted into Eqs. (44)–(46), provide

a set of stationary values of ρi. The maximum or minimum of these stationary values can now

be calculated along with the corresponding quantities s� and t� at which those extreme values

are obtained.

Note that the change of variable in Eq. (48) can be performed only provided that n t �=

(2 k + 1) π. Therefore, it is necessary to check the generic component ρi in the particular case

n t = (2 k + 1) π. To that end, it is necessary to substitute the condition n t = (2 k + 1) π into
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Eqs. (44)-(46). The corresponding expressions of the components of the position vector become

ρx ≈ σ0 − σc + σc2 − σc3 (50)

ρy ≈ τ0 − τc + τc2 − τc3 (51)

ρz ≈ ξ0 − ξc + ξc2 (52)

It is now sufficient to compare the values of the generic component ρi given by Eqs. (50)-

(52) with those calculated using the necessary condition Eq. (49) in order to get (by direct

comparison) the extreme values of each component of ρ.

4.1 Radial bounds

Substituting Eq. (44) into Eq. (49) and recalling Eq. (48), the following polynomial equation

in the variable s is obtained

λ6 s
6 + λ5 s

5 + λ4 s
4 + λ3 s

3 + λ2 s
2 + λ1 s+ λ0 = 0 (53)

where λ0, λ1 , . . . , λ6 are constant coefficients given by

λ0 = −σs + 2 σs2 − 3 σs3 (54)

λ1 = 2 σc + 8 σc2 + 18 σc3 (55)

λ2 = −σs − 10 σs2 + 45 σs3 (56)

λ3 = 4 σc − 60 σc3 (57)

λ4 = σs − 10 σs2 − 45 σs3 (58)

λ5 = 2 σc − 8 σc2 + 18 σc3 (59)

λ6 = σs + 2 σs2 + 3 σs3 (60)
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where σs, σs2, σs3, σc, σc2, and σc3 are given in the Appendix. Note that Eq. (53) is a sixth

order polynomial equation whose real and positive roots can be easily numerically found. A

similar procedure applies for the other two cases of ρy and ρz.

4.2 Along-track bounds

In this case the necessary condition of Eq. (47), where ρy is taken from Eq. (45), results in

η6 s
6 + η5 s

5 + η4 s
4 + η3 s

3 + η2 s
2 + η1 s+ η0 = 0 (61)

where the constant coefficients η0, η1, . . . , η6 are given by (see also the Appendix)

η0 = −τs + 2 τs2 − 3 τs3 (62)

η1 = 2 τc + 8 τc2 + 18 τc3 (63)

η2 = −τs − 10 τs2 + 45 τs3 (64)

η3 = 4 τc − 60 τc3 (65)

η4 = τs − 10 τs2 − 45 τs3 (66)

η5 = 2 τc − 8 τc2 + 18 τc3 (67)

η6 = τs + 2 τs2 + 3 τs3 (68)

4.3 Cross-track bounds

Finally, to get the cross-track bounds, the necessary condition of Eq. (47) with ρi = ρz should

be satisfied. Assuming that n t �= (2 k + 1) π, the result is

κ4 s
4 + κ3 s

3 + κ2 s
2 + κ1 s+ κ0 = 0 (69)
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where the constant coefficients κ0, κ1, . . . , κ4 are

κ0 = −ξs − 2 ξs2 (70)

κ1 = 2 ξc + 8 ξc2 (71)

κ2 = 12 ξs2 (72)

κ3 = 2 ξc − 8 ξc2 (73)

κ4 = ξs − 2 ξs2 (74)

5 Case study

To verify the consistency of the proposed semi-analytical mathematical model, two illustrative

examples are now discussed in which both the incommensurable and 1:1 commensurable case

are considered.

5.1 Incommensurable case

Introduce a distance unit DU � aC , and a time unit TU � 1/nC . In order to obtain an

incommensurable case, the semimajor axis of the deputy’s elliptic displaced orbit is assumed

to be aD = 1.02DU, so that the deputy’s mean motion becomes nD =
√
1/1.023 TU−1 and the

ratio nC/nD is an irrational number. In this scenario, the geometrical characteristics of the

two displaced orbits are summarized in Tab. 1.

When the relative motion arrives at its radial, along-track and cross-track boundaries, the

principal value of the corresponding (critical) true anomaly of the chief and eccentric anomaly

of the deputy are listed in Tab. 2, along with the extreme values of the generic component ρi.
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In fact, for the radial component of the relative position vector, from Eqs. (20)–(21) it is found

that ι� = 0.0971 and υ� = 0.0519. On the other hand, for the along-track component of the

relative position vector, from Eqs. (25)–(26) one obtains ι� = −1.4379 and υ� = 0.0445.

Figure 3 shows the relative motion (dotted line) and its invariant manifold R along which it

evolves in the chief-fixed rotating frame TRC
. Since the mean motions are incommensurable,

the relative motion is quasi-periodic, and the relative orbit unfolds along a helix on the surface

of R, winding round the whole region of the invariant manifold. In this case, Fig. 4 shows its

projections on (xRC
− yRC

), (xRC
− zRC

), and (yRC
− zRC

) planes respectively.

Figure 4 shows the bounds in the radial, along-track motion, and the cross-track motion. The

corresponding values (dotted lines) of these bounds are plotted in Fig. 5. The extreme values

calculated analytically are able to successfully predict the inner and outer boundaries, with

maximum errors in the three directions being less than 0.12%, 0.09% and 0.0002% respectively.

5.2 1:1 commensurable case

In this case, the semimajor axis of the deputy’s elliptic displaced orbit is assumed to be

aD = aC , in order to obtain nD = nC (1:1 commensurable case). The relevant data are shown

in Tab. 3, and the deputy is assumed to track the Mercury’s heliocentric orbit with a constant

displacement.

Table 4 shows the extreme values of each component of the relative position vector, whereas

Fig. 6 shows the relative motion generated by the first-order approximation (dashed lines)

and the exact solution (solid lines). The relative motion exhibits periodicity since the mean

motions are 1:1 commensurable and, notably, the first-order solution fits well the numerical

solution. In particular, the proposed methodology for determining extreme values via first-order

approximate solution is accurate in predicting the distance bounds, with maximum errors in
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the three directions being less than 0.44%, 0.79% and 0.13% respectively, see also Fig. 7.

Since the approximate extreme values of relative distances are calculated under the “small

eccentricity” assumption, it is necessary to check the accuracy of the results as a function of

the orbital eccentricity of chief spacecraft. To this end, define the maximum relative distance

errors along the three directions, i.e. the maximum differences of the results obtained by using

the semi-analytical method and the (exact) numerical method (denoted by subscript “n”)

εi � max

∣∣∣∣∣ρ
�
i − ρin
ρin

∣∣∣∣∣ with i = {x, y, z} (75)

Figure 8 illustrates the relative distance errors by varying the chief’s eccentricity in a range

eC ∈ [0, 0.5], whereas the deputy’s eccentricity is assumed the same as that of Mercury, i.e.

eD = 0.2056. Note, however, that even though the approximate solution is able to get the

relative distance bounds with a good accuracy, the approximate solution gradually becomes

unable to track the relative orbit as eC approaches 0.1, see Fig. 9. The maximum errors of the

estimated bounds, defined in Eq. (75), are essentially different from the maximum errors of the

approximate solution, the latter representing the maximum errors along the whole trajectory.

As such they do not necessarily obey to a certain monotonously-increasing function of the

chief’s eccentricity. In other words, the estimated bounds are just some critical points that

belong to the approximate solution.

6 Conclusions

The relative motion between elliptic displaced orbits has been parameterized via a set of newly

defined orbital elements, and a semi-analytical approach for the evaluation of the relative dis-

tance has been discussed. In this context, the relative motion evolves along its invariant man-

ifold and exhibits periodicity (quasi-periodicity) for the commensurable (incommensurable)

case.
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For the incommensurable case, by conducting the partial derivatives of the directional com-

ponents with respect to both the chief’s true anomaly and deputy’s eccentric anomaly, the

extreme values of relative distances are found as the real roots of a set of algebraic equations.

For the 1:1 commensurable case, a Fourier series expansion is adopted to obtain a first-order

time-explicit approximate solution, which is used to seek the bounds by differentiating the

directional components of the position vector with respect to time. In this case, the extreme

values for the radial and along-track motion are the real roots of a sextic equation, whereas in

the cross-track motion, they satisfy a quartic equation. In principle, the discussed methodology

is independent of the primary body. In other terms, the semi-analytical relations of the paper

can be applied both in a planetocentric and in a heliocentric case.

The illustrative examples have shown that the discussed approach is capable of successfully

predicting the inner and outer bounds of relative motion between elliptic displaced orbits.

Therefore, the semi-analytical calculation of these bounds is useful for onboard control when

the relative motion arrives at the pre-designed boundary. A natural extension of this work is

to use the results of the commensurable scenario, in terms of bounds of relative distances, to

design periodic motion for formation flying.
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Appendix

The entries Tij of matrix TPDPC
, as a function of the orbital elements of the two displaced

orbits, are:

T11 = (cosωC cosωD + sinωC sinωD cos iC cos iD) cos(ΩC − ΩD)

+ (cosωC sinωD cos iD − sinωC cosωD cos iC) sin(ΩC − ΩD) + sinωC sinωD sin iC sin iD

(76)

T12 = (sinωC cosωD cos iC cos iD − cosωC sinωD) cos(ΩC − ΩD)

+ (sinωC sinωD cos iC + cosωC cosωD cos iD) sin(ΩC − ΩD) + sinωC cosωD sin iC sin iD

(77)

T13 = cosωC sin iD sin(ΩD − ΩC)− sinωC cos iC sin iD cos(ΩC − ΩD) + sinωC sin iC cos iD

(78)

T21 = (sinωC sinωD cos iD + cosωC cosωD cos iC) sin(ΩD − ΩC)

+ (cosωC sinωD cos iC cos iD − sinωC cosωD) cos(ΩC − ΩD) + cosωC sinωD sin iC sin iD

(79)

T22 = (sinωC sinωD + cosωC cosωD cos iC cos iD) cos(ΩC − ΩD)

+ (sinωC cosωD cos iD − cosωC sinωD cos iC) sin(ΩD − ΩC) + cosωC cosωD sin iC sin iD

(80)

T23 = sinωC sin iD sin(ΩC − ΩD)− cosωC cos iC sin iD cos(ΩC − ΩD) + cosωC sin iC cos iD

(81)
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T31 = cosωD sin iC sin(ΩC − ΩD)− sinωD sin iC cos iD cos(ΩC − ΩD) + sinωD cos iC sin iD

(82)

T32 = sinωD sin iC sin(ΩD − ΩC)− cosωD sin iC cos iD cos(ΩC − ΩD) + cosωD cos iC sin iD

(83)

T33 = sin iC sin iD cos(ΩC − ΩD) + cos iC cos iD (84)

The coefficients in Eqs. (44)–(46) are:

σ0 = −HDT13eC − aC + aDT11/2 + bDT22/2 (85)

σc = −5aDT11eD/4 +HDT13 + aCeC − aDT11eC/2 + bDT22eD/4 + bDT22eC/2 (86)

σs = −7aDT21eD/4 +HDT23 − 3bDT12eC/2 + bDT12eD/4 + aDT21eC/2 (87)

σc2 = HDT13eC + aDT11/2− bDT22/2 (88)

σs2 = HDT23eC + bDT12/2 + aDT21/2 (89)

σc3 = aDT11eD/4 + aDT11eC/2− bDT22eD/4− bDT22eC/2 (90)

σs3 = bDT12eD/4 + aDT21eC/2 + aDT21eD/4 + bDT12eC/2 (91)

τ0 = −HDT23eC + aDT21/2− bDT12/2 (92)

τc = −5aDT21eD/4 +HDT23 − aDT21eC/2− bDT12eD/4− bDT12eC/2 (93)

τs = 7aDT11eD/4−HDT13 − 3bDT22eC/2 + bDT22eD/4− aDT11eC/2 (94)

τc2 = HDT23eC + aDT21/2 + bDT12/2 (95)
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τs2 = −HD T13 eC + bD T22/2− aD T11/2 (96)

τc3 = aD T21 eD/4 + aD T21 eC/2 + bD T12 eD/4 + bD T12 eC/2 (97)

τs3 = bD T22 eD/4− aD T11 eC/2− aD T11 eD/4 + bD T22 eC/2 (98)

ξ0 = −3 aD T31 eD/2 +HD T33 −HC (99)

ξc = aD T31 (100)

ξs = bD T32 (101)

ξc2 = aD T31 eD/2 (102)

ξs2 = bD T32 eD/2 (103)
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Table 1
Characteristics of the displaced orbits for the incommensurable case.

a [DU] H [DU] e i [deg] Ω [deg] ω [deg] f [deg]

chief 1 0.1 0.05 0.001 0 0 0

deputy 1.02 0.08 0.2 5 5 0 0
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Table 2
Extreme values of the radial, along-track and cross-track distance for the incommensurable case.

component ι� υ� f�
C mod π [rad] E�

D mod π [rad] extreme values [DU]

ρx 0.0971 0.0519 0.1935 0.1037 0.1743 −2.1742

ρy −1.4379 0.0445 1.7028 0.0437 1.2241 −1.2241

ρz - - - 1.5708 0.0668 −0.1074
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Table 3
Characteristics of the displaced orbits for the 1:1 commensurable case.

a [DU] H [DU] e i [deg] Ω [deg] ω [deg] f [deg]

chief 1 0.1 0.05 0.001 50 80 0

deputy 1 0.08 0.2056 7 48.33 77.45 0
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Table 4
Extreme values of the radial, along-track and cross-track bounds for the 1:1 commensurable case.

component s� t� mod 2π [TU] extreme values [DU]

ρx 21.7824 −0.0968 3.0498 6.0902 0.1549 −0.1740

ρy −1.0057 0.9192 1.4866 4.7067 0.2480 −0.3896

ρz −6.9272 0.0919 0.1833 3.4283 0.0768 −0.1671
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Fig. 2. Displaced orbits of chief and deputy spacecraft.
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Fig. 3. Three-dimensional incommensurable relative motion with its invariant manifold R.
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Fig. 4. Projections of incommensurable relative trajectory on (xRC
− yRC

), (xRC
− zRC

), and
(yRC

− zRC
) planes.
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Fig. 5. Analytic bounds (dotted lines) and numerical simulation (solid line) of relative motion for the
incommensurable case.
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Fig. 6. Relative motion: comparison of the first-order approximation and the exact solution.
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Fig. 7. Approximate semi-analytic bounds and simulated directional relative motion for the 1:1 com-
mensurable case.
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Fig. 8. Maximum relative distance errors εi along the three directions, see Eq. (75).
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Fig. 9. Three dimensional relative motion as a function of chief’s orbital eccentricity eC .
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