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ABSTRACT 

We present a stochastic full-waveform inversion that uses genetic algorithms (GA FWI) to estimate 

acoustic macro-models of the P-wave velocity field. Stochastic methods such as GA severely suffer 

the curse of dimensionality, meaning that they require unaffordable computer resources for inverse 

problems with many unknowns and expensive forward modeling. To mitigate this issue, we propose 

a two-grid technique, that is, a coarse grid to represent the subsurface for the GA inversion and a 

finer grid for the forward modeling. We applied this procedure to invert synthetic acoustic data of 

the Marmousi model. We show three different tests. The first two tests use as prior information a 

velocity model derived from standard stacking velocity analysis and differ only for the 

parameterization of the coarse grid. Their comparison shows that a smart parameterization of the 

coarse grid may significantly improve the final result. The third test uses a linearly increasing 1D 

velocity model as prior information, a layer-stripping procedure, and a large number of model 

evaluations. All the three tests return velocity models that fairly reproduce the long-wavelength 

structures of the Marmousi. First-break cycle skipping related to the seismograms of the final GA-

FWI models is significantly reduced compared to the one computed on the models used as prior 

information. Descent-based FWIs starting from final GA-FWI models yield velocity models with 

low and comparable model misfits and with an improved reconstruction of the structural details. 

The quality of the models obtained by GA FWI + descent-based FWI is benchmarked against the 

models obtained by descent-based FWI started from a smoothed version of the Marmousi and 

started directly from the prior information models. The results are promising and demonstrate the 

ability of the two-grid GA FWI to yield velocity models suitable as input to descent-based FWI. 

 

INTRODUCTION 
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Full-waveform inversion is usually based on iterative local optimization methods and exploits the 

entire information of the seismogram to determine a high-resolution image of the subsurface. 

Accordingly, FWI is a very promising method, and, over the last decades, it has received growing 

expectations by industry and academy (e.g., Mora, 1988; Pratt, 1990; Virieux and Operto, 2009; 

Vigh, 2010; Morgan et al., 2013). Nevertheless, this method is limited by its local nature, i.e., it 

terminates in the nearest minimum of the misfit function, which may not coincide with the global 

minimum. To mitigate this issue, a smoother misfit function, which is obtained by progressively 

incorporating the higher frequencies of the data (multiscale technique, Bunks, 1995), is commonly 

used in the inversion, and the initial model is carefully chosen. Theoretically, a good starting model 

for FWI is a model which lies in the basin of attraction of the global minimum of the data misfit 

surface. In practice, good starting models are usually required to be smooth (Asnaashari et al., 

2013) and able to match the main events of the observed seismogram with an error smaller than half 

of the wavelet wavelength to avoid the so-called cycle-skipping artifact (Beydoun and Tarantola, 

1988). Several methods can be used to produce a starting model for FWI. In the oil and gas 

industry, the most common procedure is to apply reflection tomography followed by migration 

velocity analysis (see Woodward et al., 2008 for a review of the tomographic workflow). Other 

popular methods are first-arrival traveltime tomography (Nolet, 1987), stereotomography (Billette 

and Lambaré, 1998; Lambaré, 2008), Laplace domain and Laplace-Fourier domain inversions (Shin 

and Cha, 2008; Shin and Ha, 2008). Note that building a good enough initial model with these or 

other methods requires a significant amount of qualified human resources and a not negligible 

computing time. In fact, many processing iterations and adjustments, which include also traveltime 

picking, are usually needed to obtain the desired starting model. 

A different approach to full-waveform inversion may consist in using a stochastic global method in 

place of a local iterative method. The advantage of using stochastic global methods is that they are 

able to jump out from local minima. Consequently, stochastic methods are less affected by the 
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choice of the starting point for the inversion (some stochastic methods, such as genetic algorithms, 

do not even require to define a starting model). The drawback of employing stochastic methods is 

that their computational cost increases exponentially with the number of unknowns. This is due to 

the search area of the stochastic inversion which grows exponentially with the number of 

unknowns. Such problem for stochastic methods is usually referred to as the curse of dimensionality 

(Bellman, 1957). Because FWI commonly inverts for more than hundreds of thousands of 

unknowns, the resulting computational time for a stochastic inversion appears to be unaffordable.  

To attenuate this problem, we propose to represent the subsurface by means of a two-grid 

technique, i.e., we discretize the P-wave velocity model using a coarse grid in the stochastic 

inversion and a fine grid in the modeling of the wavefield propagation (Sajeva et al., 2014). The 

coarse grid permits to reduce the number of unknowns, thus mitigating the curse of dimensionality 

in the stochastic inversion, whereas the fine grid is used to perform the finite-difference forward 

modeling on an interpolated coarse grid model. Tuning the fine-grid step size allows us to 

propagate a certain frequency range independently of the coarse-grid parameterization. Because of 

the coarse grid employed in the inversion, the final model after GA FWI is at low resolution and 

thus it can not be directly compared with the result of FWI that uses local-iterative methods 

(descent-based FWI) which may solve for the finer details of the subsurface. Instead, using 

stochastic FWI, we aim to build a macro-model that contains the correct long-wavelength structure 

of the subsurface. Recently, other authors (Gao et al. 2014, Datta 2015) proposed to determine 

starting models for acoustic FWI using stochastic inversion methods combined with different 

strategies to reduce the number of unknowns. 

Several stochastic methods exist and among them genetic algorithms (GA, Holland, 1975), 

simulated annealing (SA, Kirkpatrick et al., 1983) and neighborhood algorithm (NA, Sambridge, 

1999a) are the most popular methods applied to geophysical problems (Sen and Stoffa, 2013). In 

this paper, we perform the stochastic inversion using a real-valued genetic algorithm. In real-valued 
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GAs the model parameters are represented as real numbers (Wright, 1991; Eshelman and Schaffer, 

1993). Real-valued GAs are an evolution of the first implementations of GAs, which were binary-

coded, i.e., whose model parameters were encoded with a binary scheme (De Jong, 1975; Goldberg, 

1989). We have chosen a real-coded GA because it proved to perform better than NA and adaptive 

SA (Ingber, 1989) for high dimensional spaces, using a simple 1D elastic model and analytic 

functionals (Sajeva et al., 2014). Another advantage of GA over SA is that it can be easily 

parallelized, because GA inverts collectively a population of models.  

In the first part of the paper, we describe the salient methodological aspects of our method and in 

particular: the workflow of the GA FWI, the two-grid technique, the numerical method used to 

solve the forward modeling, the misfit functions, and the layer-stripping approach. In the second 

part, we show three examples of GA FWI applied to the Marmousi model. The first two examples 

are identical apart from the parameterization of the coarse grid and are discussed together. The third 

example is more complex, it uses different inversion parameters and inverts for a higher-number of 

model parameters. This set of three examples verifies the feasibility of using the stochastic 

approach to FWI to invert for the large structures of the acoustic Marmousi model. As an 

application of the method, we tested the GA-FWI models as starting models for descent-based FWI. 

Finally, we quantify the cycle-skipping artifacts and we compare the results of the sequence GA 

FWI + descent-based FWI with those obtained using descent-based FWI only. 

 

THE METHOD 

 

The genetic-algorithm inversion 
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Genetic algorithms are stochastic heuristic search algorithms that mimic the natural 

selection and evolution processes of biological species to search for optimal solutions in a model 

space (Holland, 1975). Candidate solutions to the optimization problem are interpreted as 

individuals of a population which undergo the evolution process. Evolution is simulated via the 

operations of natural selection (performed according to a fitness function), recombination or 

mating, and mutation. First implementations of GA were binary coded and thereafter real-coded 

genetic algorithms were proposed to solve a number of problems (Deb and Kumar, 1995; Bessaou 

and Siarry, 2001; Wu et al, 2007). In 1991, Janikow and Michalewicz demonstrated that real-coded 

GA outperform binary-coded GA in many optimization problems, especially in high-dimensional 

nonlinear problems. Consequently, we used a real-coded GA in this work. 

When setting up a genetic algorithm, choices related to genetic operators and tuning parameters 

must be made. Such choices are often problem dependent and they may be crucial to the success of 

the algorithm. We employed the GA operators described in Chipperfield et al. (1994) and here 

below we give a brief summary of the GA workflow we used 

1. Randomly generate a set of models (individuals) within a defined search area. This set of 

models is called initial population. 

2. Solve the forward model for each individual of the current population and evaluate the 

misfit between the observed and the simulated data. 

3. Sort the individuals according to their data misfit and assign to each individual a rank-based 

fitness value (Baker, 1987); hence, select the subset of individuals apt for mating using 

stochastic universal sampling (Baker, 1987) as the selection method. 

4. Pair the selected individuals and recombine their values to generate new individuals. The set 

of new individuals is called offspring.  

5. Randomly mutate a fraction of the parameters of the offspring. 
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6. Allow for some parents to survive in the next generation by adding the most fit parents to 

the offspring. To this end and to maintain constant the desired number of models in the new 

generation, a subset of the offspring may be rejected. The resulting set of models constitutes 

the new generation. 

7. Repeat steps from 2 to 6 until a stopping criterion is attained. 

8. Extract the best-fitting model. 

The search area is determined by the available prior information and should contain any valuable 

information of the subsurface. Several stopping criteria may be chosen, such as the achievement of 

a predetermined data misfit value, the consumption of the allocated resources (computer time, 

number of model evaluations), or if the data misfit does not decrease for a certain number of 

generations. At the end of the inversion, we simply extract the best-fitting model instead of 

evaluating the posterior probability distribution (PPD) of the models. This is because we mainly 

aim to estimate a single model, which can be used, for example, as starting model for descent-based 

FWI. In addition, it is demonstrated that genetic algorithms are not Monte Carlo methods, and, then, 

they produce a biased PPD (Sen and Stoffa, 1996). Thus, if desired, the PPD must be reconstructed 

from the set of computed models using different methods (Sambridge, 1999b; Hong and Sen, 2009; 

Mallick, 1999; Aleardi and Mazzotti, 2014). Such methods add a computational cost to the GA 

FWI. For these reasons, in the following we neglect to evaluate the PPD associated to the GA 

results.  

 

The forward modeling 

We perform the forward modeling by numerically solving the 2D acoustic wave equation: 

� ���
��
��� − �

	
��
, �, �� = −� ∙ �, (1) 
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where P is the scalar pressure field, � = ��
, �, �� is the external force field, � = ��
, �� is the 

acoustic wave speed, and �	 is the 2D Laplacian. Despite the fact that equation 1 is strictly valid 

only in fluid and gaseous media, it is frequently used in active-source full waveform inversion 

because its numerical solution is computationally inexpensive compared to the solution of the 

elastic wave equation (Fichtner, 2011).  

For each source term f, the predicted data consists in the solution of equation 1 at the receiver 

positions. To numerically solve the acoustic wave equation, we employ a simple explicit time-

stepping scheme starting from a local perturbation of the wavefield at the source position. The 

scheme is implemented using a time-domain finite-difference method having an accuracy of second 

order in time and fourth order in space. We position absorbing cells at the boundaries of the model 

to avoid artifacts and to suppress surface-related multiples. In the following, we compactly denote 

with g the forward operator, and we explicit the dependence on the source position for the pressure 

field 

��
� , 
�, �� = ����
, ��, ��
� , ���, (2) 

where xr are the inline receiver positions (zr=0) and xs are the inline source positions (zs=0).  

The two-grid technique 

Several methods have been proposed in the literature to reduce the number of model 

parameters that describe the subsurface by using geological information. For instance, Ma et al. 

(2012) used the depth-migrated image to sparsely sample the subsurface and derive an image-

guided interpolator that permits to go back and forth between the sparse representation and the 

finely and uniformly sampled representation. In this section, we propose to use a simple low-

resolution grid with large sized rectangular cells that is resampled to a finer grid prior to the forward 

modeling.  
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To achieve this goal, we introduce two parameterizations of the subsurface, represented by the 

matrices U and V. The matrix � ∈ ℝ�×� contains the acoustic velocity values of the subsurface 

arranged in a coarse grid, at positions 
�, 
	 = 
� + !
,… , 
� = 
� + �# − 1�!
 and depths 

��, �	 = �� + !�,… , �� = �� + �% − 1�!�. We employ this coarse grid to parameterize the 

subsurface for the GA inversion. Note that this parameterization is completely defined by the 

horizontal and vertical step sizes (dx and dz). The values of dx and dz depend on prior information 

that we have on the subsurface. For instance, if, given a P-wave velocity prior model, we observe a 

vertical variability higher than the horizontal variability, then we will use !� < !
. Prior 

information may be provided by a number of different means, including standard stacking velocity 

analysis as done in two examples of the present work. The choice of dx and dz has a component of 

subjectivity, in fact the user may choose smaller step-sizes to increase resolution, or larger step-

sizes to reduce the number of unknowns. Since the matrix U contains a limited number of 

unknowns, the exploration of the model space can be more thorough (in fact, the number of 

unknowns equals the dimensionality of the model space) and the statistical relevance of the 

inversion is higher.  

Differently, we use a finer grid to represent the subsurface for the forward modeling. To obtain the 

fine-grid model ' ∈ ℝ(×) associated with U, where N>n and M>m, we apply a bilinear 

interpolator (Proakis and Manolakis, 1996), I, to the coarse-grid model U, that is V=I(U). Using V 

in the forward modeling permits to introduce constraints in the model, such as the position of the 

water bottom, and it allows us to simulate higher frequencies without numerical dispersion. We 

denote with DX (=DZ) the side of the square cells of the fine-grid.  

A variation of the simple coarse-grid implementation makes use of grid step sizes (dx,dz) that vary 

with depth, i.e., (dx(z),dz(z)). In this case, the grid is more properly represented by a vector * ∈ ℝ+, 

where d is the number of grid points and the position of the grid points depends on the step-size 

functions dx(z) and dz(z). We use this coarse-grid implementation to enlarge the step sizes in depth 
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according to the loss of resolution with depth that occurs in seismic exploration in which sources 

and receivers are placed on the surface. 

The misfit functions 

Given a candidate solution U of the inverse problem, a simple data misfit function can be written as 

‖!-.� − ��/����‖0,     i=1, 2, (3) 

where ‖∙‖01�,	 is the L1 or L2 norm, and dobs is the observed acoustic field (in the case of synthetic 

tests  !-.� = �����23, �� with vtrue indicating the true velocity model). Some preprocessing 

operations, such as low-pass/band-pass filtering, trace-by-trace normalization, muting of specific 

events, may be applied to the observed and/or to the predicted seismograms prior to the data misfit 

computation. 

We also use a more sophisticated data misfit function composed by the weighted sum of the misfit 

components referred to the reflected and to the transmitted (or diving) wavefields: 

4�!-.��+0�0�5 − ���'��+0�0�540 + 64�!-.���37839�3+ − ���'���37839�3+40,     i=1, 2, (4) 

where 6 ∈ ℝ is the weighting parameter. The choice of α is dictated by the error component we 

would like to prevail and then be reduced by the inversion. For instance, when α=0, the misfit 

function is given by the difference between the modeled and observed diving-waves, so that the 

optimization focuses on the reduction of this mismatch only. Otherwise if the value of α is chosen 

such as the error components due to the diving and to the reflected waves balance, that is  

6 ≈ 4�+;<=�>?@?ABC�5�D��>?@?AB4?
4�+;<=�EFGHFIJF>C�5�'��EFGHFIJF>4?

,     i=1, 2, (5) 

then the optimization operates to equally reduce both mismatches simultaneously. 
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The data misfit computed by means of equation 4 facilitates a layer-stripping approach to the 

inversion. It consists in solving the inverse problem starting from the shallower layers and 

progressively including the deeper layers (Yagle and Levy, 1983; Koster, 1991, among others). We 

use a layer-stripping procedure that consists of three steps: 

1. First, estimate the shallow part of the model using the transmitted waves only to guide the 

inversion within a predetermined model search range (equation 4 with α=0). 

2. Next, keep fixed the upper part of the model retrieved from step 1 (or narrow the search 

range of the GA around the solution found in step 1) and estimate the deeper part of the 

model using a weighted sum of reflected and transmitted waves (equation 4 with α≠0).  

3. Finally, as a possible step, readjust both the shallow and the deep parts of the model, using 

again a weighted sum of reflected and transmitted waves as misfit function. 

The depth of the first layer may be inferred by a few try and error tests or by ray tracing over an 

approximate image of the subsurface. The first layer should embrace the area in which the majority 

of the turning rays travel into. 

For what concerns the model misfit we use a simple average absolute error formula that is, given a 

fine-grid model V, its model misfit χ is 

K = 4'EFGC'4L
(×) ,  (6) 

where Vref is a reference model, and N×M is the number of nodes in the fine grid. 

 

TESTS ON THE MARMOUSI MODEL 

We discuss three tests in which the two-grid GA-FWI method is applied to the acoustic 2D 

Marmousi model (Versteeg, 1994, Figure 1a). Figure 1b shows the leftmost shot of the observed 
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data that were generated by means of the 2D finite-difference (FD) engine introduced in the theory 

section, using the derivative of the Ricker wavelet with 10 Hz central frequency as seismic wavelet. 

The three tests differ in terms of (1) the search ranges of the GA FWI, (2) the misfit function, (3) 

the parameterization of the model grids and (4) the simulated acquisition geometry. We can 

summarize the three tests as follows 

1. Velocity-analysis test with uniform dx and dz (test-V1):  

o search ranges: 1200 m/s wide and centered on a simple model determined via 

standard stacking velocity analysis and Dix formula. 

o misfit function: equation 3 with i=2, i.e., L2 norm; 

o the two grids:  

� coarse grid: n=17, m=15, corresponding to dx≈570 m and dz≈150 m, 

and number of grid points d=255;  

� fine grid: N=384, M=92, corresponding to DX=DZ=24 m and a 

maximum frequency of 12.5 Hz.  

2. Velocity-analysis test with dx and dz increasing with depth (test-V2):  

o search ranges: same as in test-V1; 

o misfit function: L2 norm (same as in test-V1);  

o the two grids:  

� coarse grid: number of grid points d=140, dx and dz increase with 

depth according to the loss of both vertical and horizontal seismic 

resolution with depth;  

� fine grid: same as test-V1.  

Page 12 of 53Geophysics Manuscript, Accepted Pending: For Review Not Production



 13 

3. Linear-velocity-increase test with a layer-stripping approach (test-L):  

o search ranges: 2000 m/s wide in the first two steps of the layer stripping and centered 

on a 1D model with linearly increasing velocity with depth from 1500 m/s to 4000 

m/s; 1000 m/s wide in the last step and centered on the resulting best model of the 

previous two steps. 

o misfit function of equation 4 with i=1, i.e., L1 norm, and variable α in a three-step 

layer stripping procedure; 

o the two grids:  

� coarse grid: n=96, m=23 (i.e, dx=dz=96 m), and number of grid points 

d=2208; 

� fine grid: N=192, M=46, corresponding to DX=DZ=48 m and 

maximum frequency of 6.25 Hz.  

Note that the third example uses a quarter of the number of points of the first two examples for the 

fine grid. Accordingly, the fine-grid step size is doubled, the maximum modeled frequency is 

halved (to guarantee that no numerical dispersion occurs), and, above all, the FD computational cost 

is reduced. At the opposite, the number of points of the coarse grid in the third example is notably 

larger than that used for the first two examples. Because the number of points of the coarse grid 

equals the number of unknowns of the inversion, this test requires an increased number of model 

evaluations. 

Finally, note that we have developed quite different model parameterizations for the coarse grid. In 

fact, the first example uses an asymmetric parameterization, i.e. dx≠dz, the second example uses an 

asymmetric parameterization with step-sizes increasing with depth, and in the third example the 

cells are square (dx=dz, symmetric parameterization) and small. 
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The velocity-analysis tests (test-V1 and test-V2) 

The prior information for these tests is derived by standard stacking velocity analysis and Dix 

formula that enabled us to compute the velocity model shown in Figure 2a. This model is resampled 

to the coarse grids of test-V1 and test-V2 (Figure 2b and 2c, respectively) and the resulting 

resampled models define the central values of the search areas for the GA inversions. In both tests, 

the search area is 1200 m/s wide for each model parameter.  

The relevant GA parameters used in both test-V1 and test-V2 are shown in Table 1. The simulated 

acquisition geometry consists of 31 sources with spacing of 288 m. Each source hits 127 receivers, 

uniformly spaced at 72 m, and placed at fixed locations on the surface. For the computation of the 

inversions, we used five compute nodes of a linux cluster (each compute node is a 2 octa-core Intel 

Xeon CPU E5-2630 v3 at 2.40 GHz). We stopped both inversions after 100 generations, which 

correspond to 40500 evaluated models, and the runtime was approximately 10 days.  

Figure 3 shows the evolution of the data misfit during the GA inversions for test-V1 (red) and test-

V2 (green); dashed lines refer to the mean values of the data misfit per generation and continuous 

lines show the minimum values of the data misfit per generation. Note that for both inversions, the 

mean value curve approaches the minimum value curve. This indicates a loss of genetic diversity 

during the inversion (Reeves and Rowe, 2002). When the genetic diversity is low, the genetic 

optimization is less efficient (Reeves and Rowe, 2002), and further continuing the inversion may 

bring to minimal improvements at the expense of significant additional CPU time. 

The best-fitting model for test-V1 is shown in Figure 4a. This model is interpolated to the fine grid 

(Figure 4b) and, hence, the reference Marmousi model of Figure 1a is subtracted from the 

interpolated model for comparison (Figure 4c). Analogously, for test-V2, the best-fitting model is 

shown in Figure 5a in the coarse grid, in Figure 5b in the fine grid, and Figure 5c shows the 
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difference between the estimated model of Figure 5b and the reference model. Note that the quality 

of both inversions worsens with depth (see Figures 4c and 5c).  

To evaluate the quality of the final models, we calculated the average absolute error χ using 

equation 6 with respect to the reference Marmousi model of Figure 1a. For both test-V1 and test-V2 

χ=254 m/s. Nevertheless, if we limit to the shallow half of the model, the average absolute errors 

are χ=188 m/s and χ=115 m/s for testV1 and testV2, respectively. This means that the shallower 

half of the model is better resolved in test-V2. In addition, test-V2 produces a smoother model with 

less anomalies (see Figure 5b) than the final model of test-V1 (Figure 4b). We believe that the 

smoothness of the final model and the more correct reconstruction of the shallow part are 

indications that the result of test-V2 is an improvement with respect to test-V1.  

The inspection of the seismic data offers some insights into the seismic events that guide the 

inversion. Figure 6 shows a zoom of the leftmost shot of Figure 3 and displays the observed data 

(Figure 6a), the predicted data for test-V1 and test-V2 (Figures 6b and 6d, respectively), and the 

differences between predicted and observed data for test-V1 and test-V2 (Figures 6c and 6e, 

respectively).  

Note that the predicted data do not show strong reflectors (Figures 6b and 6d), whereas the 

observed data contains some evident reflections (Figures 6a). This is because the true model 

presents sharp contrasts and a fine layering (see Figure 1a), which produce strong reflections, 

whereas the fine-grid final models for test-V1 and test-V2, which are interpolated models, have a 

smooth structure and thus they can not produce strong reflections. The red circles in Figure 6 

highlight an area in which the improvement from test-V1 to test-V2 is evident (compare Figure 6c 

and Figure 6e). The final data misfit for test-V1 is 2.83 and for test-V2 is 2.80. This further proves 

the better performance of test-V2 with respect to test-V1. 

The linear-velocity-increase test with a layer-stripping approach (test-L) 
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In this test, we applied the layer-stripping procedure described in the theory section, and we used 

the misfit function of equation 4. The data portion which includes the diving waves had been low-

pass filtered (3 Hz) and subjected to a trace-by-trace normalization. The reflected waves portion had 

been low-pass filtered (6.25 Hz) and trace-by-trace normalized. 

The simulated acquisition geometry employs 11 sources and 96 uniformly spaced receivers. Note 

that the number of sources is smaller than those used in the previous tests (11 instead of 31), and 

this reduces the computational cost of the forward modeling. Figures 7a and 7b show the diving and 

the reflected wavefield components for one of the observed shots which is approximately located at 

the center of the model (the 5
th

 shot out of 11).  

Some relevant GA parameters used in this test are shown in Table 2. Due to the increased number 

of unknowns, we set a larger number of models per generation (4800 instead of 300 as in the first 

two tests) resulting in approximately 3×10
6
 evaluated models. Nine compute nodes (i7-3770 CPUs 

at 3.4 GHz) were used to concurrently compute the forward modelings. The overall run time of test-

L was about 41 days, corresponding to approximately 1.2 s per forward model. Note that the GA 

inversion is highly parallelizable, and the runtime would have dropped drastically if a higher 

number of compute nodes were used as well as if the code had been fully optimized for parallel 

computing.  

In the first step of the layer-stripping procedure, the shallower model parameters (down to 1 km of 

depth) are allowed to vary inside a search area 2000 m/s wide, centered on a simple 1D model 

where the acoustic velocity increases linearly with depth from 1500 m/s to 4000 m/s (see Figure 

8a). Note that this model contains inaccurate prior information, and we will show in the following 

sections that the descent-based FWI started from this model fails to converge (see Figure 16a). 

Hence it is of interest to investigate for an inversion procedure which is different from descent-

based FWI and more robust with respect to inaccurate starting models. In this step the α parameter 
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in the data misfit function of equation 5 is 0. We stop the first inversion after approximately 265000 

evaluations, when the trend of the minimum value of the misfit per generation begins to flatten (see 

Figure 8b). Figure 8c shows the best-fitting model after this first inversion. Note the improvement 

in the shallow part of the model, especially in the center. 

To preserve genetic continuity, we used the last generation of the first inversion to start the second 

step of the layer stripping procedure where we focused on the deeper part of the model. We used a 

search area 2000 m/s wide, and we stopped the inversion after approximately 1.4×10
6
 model 

evaluations. The parameter α was set to 1 such that the contributions of the error components 

relative to the diving waves and to the reflected events, were comparable. However, since the 

previous inversion step was focused on the optimization of the diving waves only, in the present 

step the data misfit of the reflected waves was some two-three times higher than the data misfit of 

the diving waves. Thus, it is the reflected events that mainly drive the inversion in the first 

generations. The cyan curve in Figure 9a indicates the data misfit evolution of the second inversion 

step. We allowed a third inversion step, performing approximately 1.4×10
6 

model evaluations and 

setting again α=1, in which the model parameters at all depths may vary in a search area ±500 m/s 

wide centered on the best-fitting model of the second inversion. The blue curve of Figure 9a 

indicates the data misfit evolution, Figure 9b shows the final best-fit model, and Figure 9c displays 

the difference between the final best-fit model and the reference model.  

The average absolute errors between the best-fitting model and the reference model are 369 m/s in 

the first inversion, 251 m/s in the second inversion, and 212 m/s in the third inversion. If we take 

only the shallower half of the model, the average absolute errors are 167 m/s, 129 m/s, and 99 m/s, 

respectively. Comparing these values with those of test-V1 and test-V2 shows that the final model 

of test-L is the one with the smallest model misfit. 

Page 17 of 53 Geophysics Manuscript, Accepted Pending: For Review Not Production



 18 

As in the previous tests, the diving wavefield (Figure 10) is better recovered than the reflections 

(Figure 11). However, the match between the predicted reflected waves (Figure 11a) and the low-

frequency part of the observed wavefield (Figure 11b) is improved with respect to the previous two 

tests, whereas, the high-frequency components dominate the difference panel (Figure 11c). Note 

that, in this test, the low-frequency components of the reflected wavefield can be correctly 

reconstructed thanks to the finer coarse grid employed in the inversion, which allows for a more 

detailed representation of the subsurface.  

GA-FWI macro-models as starting models for descent-based FWI 

Waiting for computers that can permit to run GA-based FWI on industrial scale projects at a 

convenient performance-to-cost ratio, a possible application of GA FWI is to produce a suitable 

starting model for descent-based FWI. To this end, we used test-V1, test-V2, and test-L final GA 

models as starting models for descent-based FWI. The descent-based FWI algorithm that we use 

employs the steepest-descent method and a multiscale approach (we performed 5 iterations at 4, 5, 

6, 8, and 10 Hz). Both inversions and forward problems are formulated in time domain. The starting 

models for descent-based FWI (i.e. the final models retrieved by GA FWI) for test-V1, test-V2, and 

test-L, are shown in Figures 12a, 12d, and 12g, respectively, while in Figures 12b, 12e, and 12h the 

final models after descent-based FWI are illustrated. Figures 12c,f, and i display the differences 

between the final models after descent-based FWI and the reference model of Figure 1a.  

Note that in all the three cases the structure features of Marmousi are fairly reconstructed, 

especially down to depths of 1 km -1.2 km. With respect to the GA FWI results, the average 

absolute error obtained with the sequence GA FWI + descent-based FWI decreases to 158 m/s, 150 

m/s, and 120 m/s for test-V1, test-V2, and test-L, respectively.  

As a benchmark test, we performed a descent-based inversion that starts from a smoothed version 

of the Marmousi (Figure 13a). This model contains the correct long wavelengths of the true model, 
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and, therefore, it is a suitable starting model for FWI (Virieux and Operto, 2009). Figure 13b shows 

the final model after descent-based FWI and Figure 13c displays the difference between the 

reference model and the model of Figure 13b. Note that this final model (Figure 13b) correctly 

reproduces the intermediate/fine scale of the Marmousi model, and, as expected, it has an average 

absolute error (80 m/s) smaller than those of the three GA FWI + descent-based FWI tests. 

We prove the benefit of performing GA FWI prior to the descent-based FWI also by analyzing the 

cycle skips associated to the first breaks of the observed data and of the data modeled on the 

starting models of descent based FWI, for each of the three tests. We restrict the cycle-skip analysis 

to the first breaks because these transmission events are crucial to reconstruct the large and 

intermediate wavelengths of the model in descent-based FWI (Mora, 1989). To compute the amount 

of cycle skipping associated with a given starting model we use the method proposed by Shah et al. 

(2012). Their method analyzes the first arrivals of the data, and computes the phase differences 

between the observed data and the data predicted on the starting model, at a given frequency, for 

each source-receiver pair. In this residual phase domain, the cycle skipping occurs when there is a 

2π jump. Figure 14 shows the residual phase associated with the three different models representing 

the central models of the search range for GA FWI (Figures 14a, b, and c) and the three best fitting 

models found by GA FWI (Figures 14d, e, and f), in the three tests V1, V2, and L. Note that, for 

each of the three tests, the final models obtained by GA FWI produce significantly lower cycle 

skips than the models corresponding to the prior information, that is the models corresponding to 

the central values of model search ranges. Therefore, it is evident the advantage to descent-based 

FWI of starting from a model estimated by GA FWI. 

The benefit of performing GA FWI prior to descent-based FWI is further proved by comparing each 

of the three tests with counterpart descent-based FWIs that start directly from the velocity models 

corresponding to the centers of the search ranges for the GA FWIs (Figures 2b, 2c, and 8a), 

interpolated in the fine grid. The bar diagram of Figure 15 shows the average absolute error of the 
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final models from all these six inversions and illustrates that the descent-based only approach 

returns worse results than the inversions that also make use of GA. 

Note that test-L is the one that most benefits from the introduction of the GA inversion. Given the 

highly inaccurate prior information (see Figure 8a), the descent-based FWI falls, as expected, into a 

local minimum (Figure 16a). Differently, the GA FWI starting from the same prior information 

returns a more accurate image of the subsurface, even though at low resolution, which is shown in 

Figure 16b. We suggest therefore to use this GA model as starting model for descent-based FWI. 

The final result of the combined GA FWI + descent-based FWI is shown in Figure 16c. Finally, the 

average absolute errors of the three models of Figure 16 are monotonically decreasing from left to 

right: 416 m/s, 212 m/s, and 120 m/s. 

 

CONCLUSIONS 

We present a genetic algorithm full-waveform inversion (GA FWI) that uses a two-grid technique 

to estimate a low-resolution acoustic model (macro-model) of the subsurface. The two-grid 

technique allows us to both reduce the number of unknowns in the inversion; thus mitigating the so-

called curse of dimensionality, and to increase the frequency range in the acoustic propagation.  

We demonstrate the feasibility of the proposed GA FWI on three different examples from the 

Marmousi model, using noise-free synthetic data and known source wavelet, a quite convenient 

situation that clears the ground from other issues than stochastic FWI. The first two examples (test-

V1 and test-V2) of GA FWI allow the stochastic algorithm to explore a broad search area centered 

on a velocity model derived from standard stacking velocity analysis. They share the same input 

data (31 shots), GA parameters setting, and a data misfit functional that takes into account the 

whole recorded wavefield. They differ only for the parameterization of the coarse grid as test-V1 
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employs constant-size grid cells, while test-V2 uses a grid with cell dimensions increasing with 

depth. In the third example (test-L), the GA FWI starts from a search area centered on a 1D velocity 

model with velocity linearly increasing with depth, it makes use of a layer-stripping procedure and 

of a data-misfit equation that is composed of two terms, one associated to the diving waves and the 

other related to the reflected wavefield. It also differs from the previous two examples because a 

larger number of model evaluations are performed due to a higher number of unknowns (coarse grid 

points). This in turn requires different GA parameters, a larger fine-grid step size and a reduced 

number of input data (11 shots) to allow for a sustainable computational effort.  

Comparing the results of the first two tests, it turns out that a smart implementation of the coarse 

grid, with cell size that increases with depth (test-V2), improves the final result (compare the final 

model shown in Figure 4b with the one in Figure 5b). This is due to the fact that in the coarse grid 

more cells are placed on the shallow part of the model, where the seismic illumination is higher, 

while the deeper part of the model, with poorer illumination, is discretized employing much larger 

cell sizes. Note that the better results of test-V2 are achieved making use of a total number of grid 

points (the unknowns in the inversion) that is less than in test-V1 (140 vs 255). In spite of the very 

simple 1D velocity field that defined the initial model parameter search, the GA FWI performed in 

the third example (test-L) is the one that returns the best result. This highlights the importance of 

letting the GA perform a large exploration of the model space (3×10
6
 models were computed for 

this test) and of choosing an efficient inversion strategy, such as the layer-stripping approach, for 

the success of the stochastic inversion.  

Note that in all cases, the major differences between the estimated GA FWI models and the 

reference model (Figures 4c, 5c, and Figure 9c) are concentrated at the edges and at the base of the 

models, where the seismic illumination is poor and any purely data driven inversion cannot do 

much. However, all the estimated macro-models fairly reproduce the long-wavelength structures of 

the Marmousi model. 
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Starting descent-based FWI from the three best models estimated via GA FWI, we found that the 

final models improve the reconstruction of the finer details (see Figures 12b, 12e, and 12h). 

Moreover, the final models resulting from the sequence GA FWI + descent-based FWI turn out to 

be quite similar to the model obtained starting the descent-based FWI from a smooth version of the 

true Marmousi (compare Figures 12b, 12e, and 12h with Figure 13b). Considering the average 

absolute model error for the final models of the sequence GA FWI + descent based FWI, we have 

158 m/s, 150 m/s, 120 m/s for test-V1, test-V2, and test-L, respectively, while we register 80 m/s 

for the final descent based FWI model obtained starting from the smoothed version of the 

Marmousi. In fact, the models resulting from GA FWI fulfill an important prerequisite for the 

success of descent-based FWI, that is the seismograms computed on them show minor first-breaks 

cycle skips with respect to the observed seismic data. In particular, we verified that GA FWI macro-

models give rise to seismograms with significant increases of first-breaks matching compared to the 

seismograms of the prior models (corresponding to the central values of the GA FWI search 

ranges). Descent-based FWI started straight on the prior models brings, as expected, to considerably 

worse results.  

We interpret the increased likeness among the three final models after the sequence GA FWI + 

descent-based FWI, their decreased model misfits and their good similarity with the model 

estimated from the smoothed Marmousi model as positive indications of the ability of the proposed 

two-grid GA FWI to estimate reliable velocity macro-models of the subsurface, suitable as input for 

further descent-based inversions. 
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LIST OF CAPTIONS 

 

Figure 1: (a) The acoustic Marmousi model. We use it to generate the observed synthetic data and 

as reference model for the computation of the average absolute model error. (b) The leftmost shot 

gather of the observed data set. Both reflected waves and transmitted/diving waves can be identified 

in the seismogram. 

Figure 2: (a) The model determined via standard stacking velocity-analysis and Dix equation. This 

model is resampled to the coarse grid of test-V1 (b) and to the coarse-grid of test-V2 (c). Models of 

panels (b) and (c) are used as the center of the search areas for test-V1 and test-V2, respectively.  

Figure 3: The evolution of the data misfit for test-V1 (red) and test-V2 (green) from generation 20 

to 100. Continuous and dashed lines denote the minimum and the mean values of the data misfit per 

generation, respectively. Note that the minimum value of the data misfit for test-V2 is smaller than 

that of test-V1 and that the mean value curve approaches the minimum value curve in both tests.  
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Figure 4: Test-V1: (a) best model in coarse grid at the end of the 100
th

 generation; (b) the same 

model in fine grid; (c) difference between (b) and the reference model (Figure 1a). The average 

absolute error between (b) and the reference model is 254 m/s for the entire model, and 188 m/s if 

we take only the shallower half of the model. 

Figure 5: Test-V2: (a) best model in coarse grid at the end of the 100
th

 generation; (b) the same 

model in fine grid; (c) difference between the best model in fine grid and the reference model 

(Figure 1a). The average absolute error between (b) and the reference model is 254 m/s and 115 m/s 

if we take only the shallower half of the model.  

Figure 6: (a) Observed data; (b) data predicted in test-V1; (c) difference between (b) and (a); (d) 

data predicted in test-V2; (e) difference between (d) and (a). All panels are referred to the leftmost 

shot and share the same gray scale. The red circles delimit an area in which test-V2 clearly matches 

the observed data better than test-V1.  

Figure 7: One of the shots of the observed data in test-L split into two parts: (a) the 

transmitted/diving wavefield and (b) the reflected waves down to 4.2 s. Both data are low-pass 

filtered and trace-by-trace normalized.  

Figure 8: The first step of the layer-stripping procedure of test-L: (a) the model used to center the 

search domain; (b) the evolution of the minimum value of the data misfit per generation; (c) the 

best-fitting model. Note that we updated only the shallow part of the model down to approximately 

1 km of depth.  

Figure 9: The second and third steps of the layer stripping procedure of test-L: (a) the evolution of 

the minimum value of the data misfit per generation for the two steps; (b) the best-fitting model 

after the third step; (c) difference between (b) and the reference model (Figure 1a). The average 
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absolute error of equation 6 computed with respect to the reference model decreases from 222 m/s 

at the end of the second step to 211 m/s at the end of the third step.  

Figure 10: Result of the inversion on the diving waves for the 5
th

 shot-gather: (a) final predicted 

data after the third inversion step of test-L, (b) observed data, (c) difference between the predicted 

and observed data. Note the good fit between the predicted and the observed seismogram attested 

by the low residuals. 

Figure 11: Result of the inversion on the reflected waves for the 5
th

 shot-gather: (a) final predicted 

data after the third inversion step of test-L, (b) observed data, (c) difference between the predicted 

and observed data. Note that the low-frequency content of the observed wavefield is correctly 

recovered and the mismatch is mainly due to the high-frequency content.  

Figure 12: Results of the sequence GA FWI + descent-based FWI. First row shows the outcome 

referred to test-V1: (a) starting model for descent based FWI, i.e., the best-fitting model after GA 

FWI, (b) final model after descent-based FWI, (c) difference between (b) and the reference model 

of Figure 1a. In analogy to the first row, the second and third rows show the outcomes referred to 

test-V2 and test-L, respectively.  

Figure 13: Benchmark test: (a) smoothed version of the Marmousi used as starting model for 

descent-based FWI, (b) final model after descent-based FWI, (c) difference between the descent-

based FWI model and the reference model of Figure 1a. The average absolute error of (b) is 80 m/s. 

Figure 14: Phase residual panels (Shah et al., 2012) referred to different starting models: (a) the 

first velocity analysis model (the model of Figure 2b after fine interpolation), (b) the second 

velocity analysis model (the model of Figure 2c after fine interpolation), (c) the linearly increasing 

with depth model (the model of Figure 8a in fine grid). Phase residual panels for (d) the best-fitting 

model of test-V1; (e) the best-fitting model of test-V2, (f) the best-fitting model of test-L.  
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Figure 15: Bar diagram that shows, in blue, the average absolute error after descent-based FWIs 

started from models that represent the prior information used in the three tests (V1, V2, and L), and, 

in red, the average absolute error of the final models after GA FWI + descent-based FWI for the 

three tests (V1, V2, and L). Note that performing a GA FWI prior to descent-based FWI improves 

the final model misfit for each of the three tests.  

Figure 16: Comparison between descent-based FWI, GA FWI, and the sequence GA FWI + 

descent-based FWI given the same prior information. (a) final model after descent-based FWI using 

model of Figure 8a as starting model, (b) final model after GA FWI using model of Figure 8a to 

center the ranges of the stochastic inversion, (c) final model after descent-based FWI using the GA 

FWI model in (b) as starting model.  
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Figure 1: (a) The acoustic Marmousi model. We use it to generate the observed synthetic data and as 
reference model for the computation of the average absolute model error. (b) The leftmost shot gather of 

the observed data set. Both reflected waves and transmitted/diving waves can be identified in the 

seismogram.  
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Figure 2: (a) The model determined via standard stacking velocity-analysis and Dix equation. This model is 
resampled to the coarse grid of test-V1 (b) and to the coarse-grid of test-V2 (c). Models of panels (b) and 

(c) are used as the center of the search areas for test-V1 and test-V2, respectively.  
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Figure 3: The evolution of the data misfit for test-V1 (red) and test-V2 (green) from generation 20 to 100. 
Continuous and dashed lines denote the minimum and the mean values of the data misfit per generation, 

respectively. Note that the minimum value of the data misfit for test-V2 is smaller than that of test-V1 and 
that the mean value curve approaches the minimum value curve in both tests.  
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Figure 4: Test-V1: (a) best model in coarse grid at the end of the 100th generation; (b) the same model in 
fine grid; (c) difference between (b) and the reference model (Figure 1a). The average absolute error 
between (b) and the reference model is 254 m/s for the entire model, and 188 m/s if we take only the 

shallower half of the model.  
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Figure 5: Test-V2: (a) best model in coarse grid at the end of the 100th generation; (b) the same model in 
fine grid; (c) difference between the best model in fine grid and the reference model (Figure 1a). The 

average absolute error between (b) and the reference model is 254 m/s and 115 m/s if we take only the 
shallower half of the model.  
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Figure 6: (a) Observed data; (b) data predicted in test-V1; (c) difference between (b) and (a); (d) data 
predicted in test-V2; (e) difference between (d) and (a). All panels are referred to the leftmost shot and 
share the same gray scale. The red circles delimit an area in which test-V2 clearly matches the observed 

data better than test-V1.  
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Figure 7: One of the shots of the observed data in test-L split into two parts: (a) the transmitted/diving 
wavefield and (b) the reflected waves down to 4.2 s. Both data are low-pass filtered and trace-by-trace 

normalized.  

 
116x161mm (300 x 300 DPI)  

 

 

Page 42 of 53Geophysics Manuscript, Accepted Pending: For Review Not Production



  

 

 

Figure 8: The first step of the layer-stripping procedure of test-L: (a) the model used to center the search 
domain; (b) the evolution of the minimum value of the data misfit per generation; (c) the best-fitting model. 

Note that we updated only the shallow part of the model down to approximately 1 km of depth.  
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Figure 9: The second and third steps of the layer stripping procedure of test-L: (a) the evolution of the 
minimum value of the data misfit per generation for the two steps; (b) the best-fitting model after the third 

step; (c) difference between (b) and the reference model (Figure 1a). The average absolute error of 
equation 6 computed with respect to the reference model decreases from 222 m/s at the end of the second 

step to 211 m/s at the end of the third step.  
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Figure 10: Result of the inversion on the diving waves for the 5th shot-gather: (a) final predicted data after 
the third inversion step of test-L, (b) observed data, (c) difference between the predicted and observed 

data. Note the good fit between the predicted and the observed seismogram attested by the low residuals.  
 

58x31mm (300 x 300 DPI)  

 

 

Page 45 of 53 Geophysics Manuscript, Accepted Pending: For Review Not Production



  

 

 

Figure 11: Result of the inversion on the reflected waves for the 5th shot-gather: (a) final predicted data 
after the third inversion step of test-L, (b) observed data, (c) difference between the predicted and observed 

data. Note that the low-frequency content of the observed wavefield is correctly recovered and the 
mismatch is mainly due to the high-frequency content.  
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Figure 12: Results of the sequence GA FWI + descent-based FWI. First row shows the outcome referred to 
test-V1: (a) starting model for descent based FWI, i.e., the best-fitting model after GA FWI, (b) final model 
after descent-based FWI, (c) difference between (b) and the reference model of Figure 1a. In analogy to the 

first row, the second and third rows show the outcomes referred to test-V2 and test-L, respectively.  
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Figure 13: Benchmark test: (a) smoothed version of the Marmousi used as starting model for descent-based 
FWI, (b) final model after descent-based FWI, (c) difference between the descent-based FWI model and the 

reference model of Figure 1a. The average absolute error of (b) is 80 m/s.\r\n  
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Figure 14: Phase residual panels (Shah et al., 2012) referred to different starting models: (a) the first 
velocity analysis model (the model of Figure 2b after fine interpolation), (b) the second velocity analysis 
model (the model of Figure 2c after fine interpolation), (c) the linearly increasing with depth model (the 

model of Figure 8a in fine grid). Phase residual panels for (d) the best-fitting model of test-V1; (e) the best-
fitting model of test-V2, (f) the best-fitting model of test-L. \r\n  
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Figure 15: Bar diagram that shows, in blue, the average absolute error after descent-based FWIs started 
from models that represent the prior information used in the three tests (V1, V2, and L), and, in red, the 
average absolute error of the final models after GA FWI + descent-based FWI for the three tests (V1, V2, 
and L). Note that performing a GA FWI prior to descent-based FWI improves the final model misfit for each 

of the three tests.  
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Figure 16: Comparison between descent-based FWI, GA FWI, and the sequence GA FWI + descent-based 
FWI given the same prior information. (a) final model after descent-based FWI using model of Figure 8a as 
starting model, (b) final model after GA FWI using model of Figure 8a to center the ranges of the stochastic 

inversion, (c) final model after descent-based FWI using the GA FWI model in (b) as starting model.  
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Table 1 Some important genetic-algorithm parameters used for test-V1 and test-V2.  

Parameters Values 

Number of models per generation 500 

Ratio of models selected for mating 80% 

Ratio of mutated models 10% 

Selection method Stochastic universal sampling 
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Table 2 Some important genetic-algorithm parameters used for test-L.  

Parameters Values 

Number of models per generation 4800 

Ratio of models selected for mating 42% 

Ratio of mutated models 10% 

Selection method Stochastic universal sampling 

 

 

Page 53 of 53 Geophysics Manuscript, Accepted Pending: For Review Not Production


