
Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Inexact stabilized Benders’ decomposition approaches

with application to chance-constrained problems with finite support

W. van Ackooij · A. Frangioni · W. de Oliveira

Received: date / Accepted: date

Abstract We explore modifications of the standard cutting-plane approach for minimizing a convex
nondifferentiable function, given by an oracle, over a combinatorial set, which is the basis of the cel-
ebrated (generalized) Benders’ decomposition approach. Specifically, we combine stabilization—in two
ways: via a trust region in the L1 norm, or via a level constraint—and inexact function computation
(solution of the subproblems). Managing both features simultaneously requires a nontrivial convergence
analysis; we provide it under very weak assumptions on the handling of the two parameters (target
and accuracy) controlling the informative on-demand inexact oracle corresponding to the subproblem,
strengthening earlier know results. This yields new versions of Benders’ decomposition, whose numerical
performance are assessed on a class of hybrid robust and chance-constrained problems that involve a
random variable with an underlying discrete distribution, are convex in the decision variable, but have
neither separable nor linear probabilistic constraints. The numerical results show that the approach has
potential, especially for instances that are difficult to solve with standard techniques.

Keywords :

Benders’ decomposition, chance-constrained problems, mixed-integer optimization, nonsmooth optimiza-
tion, stabilization, inexact function computation

Mathematics Subject Classification (2010) MSC 90C15 · MSC 90C25 · MSC 49M27 · MSC 90C11

1 Introduction

Motivated by application of Generalized Benders decomposition (GBD) algorithms to Chance-Constrained
Optimization (CCO) problems, we investigate in this work modifications to the standard Cutting-Plane
Method (CPM) for minimizing an oracle-provided convex nondifferentiable function over a combinatorial

Wim van Ackooij
EDF R&D, OSIRIS
7, Boulevard Gaspard Monge, 91120 Palaiseau Cedex, France
E-mail: wim.van-ackooij@edf.fr

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 Pisa, Italia
E-mail: frangio@di.unipi.it

Welington de Oliveira
Universidade do Estado do Rio de Janeiro - UERJ
Rua São Francisco Xavier 524, 20550-900, Rio de Janeiro, Brazil
E-mail: welington@ime.uerj.br

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80268148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 W. van Ackooij et al.

set. The main aim of our investigation is to improve the practical performance of GBD by applying it (ac-
tually, to the CPM that sits at its core) two techniques that have been successful in related but different
situations: stabilization and inexact subproblem solution. While these have sometimes been separately
employed in the past, their simultaneous use involves a nontrivial interaction that had not been fully
theoretically investigated before. Since GBD is the most prominent application of our results we mainly
discuss them in that context. However, it has to be remarked that our theory is completely general,
and it applies to any situation where the minimization of a convex (possibly nondifferentiable) function
described by a standard (computationally costly) first-order oracle is required, provided that the oracle
can be modified as to become an informative on-demand inexact one, formally defined below.

The observation that certain problems can be made much easier by temporarily fixing a subset of
variables, and that solving the thusly simplified problem may provide information for improving the
allocations of these fixed variables, was originally made for linear problems [11]. It was also soon realized
that it was particularly promising for stochastic ones [62]. Since it basically relies on duality, it was readily
generalized to problems with some underlying convexity [38]; we refer to [16, 33] for a general overview.
In a nutshell, GBD is a variant of Kelley’s Cutting-Plane Method [41] applied to the value function of
the simplified problem. As it is well-known that CPM suffers from serious computational issues, it is not
surprising that methods aimed at improving the performances of GBD have been proposed. Several of
these have centered on the appropriate choice for the linearizations (Bender’s cuts) used to construct the
model, as it was quickly recognized that this can have a significant impact on (practical) convergence [42].
Different strategies have been proposed for generating good linearizations [26,57,61,65,68], occasionally
with a problem-dependent flavor, e.g., based on duality theory [32] or on combinatorial arguments [15].

We tackle the issue of efficiency of GBD from a different angle, with a two-pronged approach. On the
one hand we aim at decreasing the number of iterations by stabilizing the CPM. On the other hand
we aim at decreasing the cost of each iteration by allowing the corresponding subproblem to be solved
only inexactly. That the latter can be beneficial as well as it is intuitive was already recognized as
early as [69]. However, in the corresponding convergence analysis the sequence of accuracy parameters
is chosen a priori to converge to zero, so it is not adaptive to the actual needs of the algorithm. In [67]
the idea is applied to the stochastic context, developing a specific rule for that application that allows to
entirely skip evaluation of some subproblems (scenarios) at properly chosen iterations; this is shown to
combine the advantages of disaggregate and aggregate variants. However, the approach is proposed for
the level method only, and is tailored on the quite specific sum-function structure of two-stage stochastic
programs. Besides, we consider the interaction between inexact subproblem solution and both known
forms of stabilization of the CPM, namely, level and trust region/proximal. The combination of the two
devices requires a technically rather involved theoretical analysis in the convex case; see [51] for the
proximal stabilization, and [4, 28, 50] for the level one. It may be worth mentioning that, in the convex
case, inexact computations can also be used in the context of fast gradient-like approaches [18, 64],
but these methods are not easily adapted to the combinatorial setting. In our case, as it happened
e.g., in [35], finiteness helps to simplify the arguments somewhat. We exploit this to thoroughly analyze
the rules for selecting the two parameters controlling the oracle—the target and the accuracy—in order
to devise methods with the weakest possible requirements. This allows us to cover a large set of different
rules for choosing them. Stabilization of combinatorial Benders’ approaches has already been proposed
(e.g., [6, 58]), but usually with exact oracles. The only previous work we are aware of where both
approaches are used simultaneously in the combinatorial case is [70], but only for the level stabilization.
Moreover, our convergence arguments are significantly more refined.

It is worth remarking that, while we primarily discuss our results in the context where the subproblems
are convex ones, they also apply—and, indeed, are even more likely to be significant—to the exten-
sions of GBD where convexity is not present. These require different techniques according to the nature
of the non-convexity in the subproblem: for instance, polyhedral techniques to approximate the con-
vex hull [14, 59] or generalized “logic” duality (inference duality) [40] for integer linear subproblems,
linearizations techniques to iteratively refine the description of the convex envelope for nonlinear non-
convex subproblems [44], or generalized concavity [71]. In all these cases the subproblems are significantly
harder to solve, which makes their approximate solution all too relevant.

Inexact stabilized Benders’ decomposition approaches 3

This work is organized as follows. Section 2 reviews (generalized) Benders’ decomposition for binary
nonlinear optimization problems, in order to set the stage for our results. In Section 3 we revisit the
CPM to solve the resulting binary problem, extending it to handle oracles with on-demand accuracy.
Two different stabilized variants of the CPM are then discussed in Section 4. Section 5 discusses the
application of the developed techniques to a large set of randomly generated hybrid robust and nonlinear
CCO problems, which is in itself new. Those COO problems can be recast as “monolithic” Mixed-Integer
Second-Order Cone Problems (MISOCP), and therefore solved with standard software; our tests show
that under many (although not all) conditions the new approaches significantly outperform the direct
use of general-purpose MINLP tools. Finally, Section 6 closes with some concluding remarks.

2 Generalized Benders decomposition

Consider the following Mixed-Integer Non-Linear Problem (MINLP)

min
{

f(x) : G(x) ≤ Tz , z ∈ Z , x ∈ X
}

(1)

where f : Rn → R and G : Rn → R
p are convex mappings, X ⊆ R

n is a convex compact set, T ∈ R
p×m,

and Z is some subset of {0, 1}m which is “simple to describe”. In (1), the binary z act as complicating
variables, in that for fixed z the problem reduces to the convex Non-Linear Problem (NLP)

v(z) := min
{

f(x) : G(x) ≤ Tz , x ∈ X
}

, (2)

which is much easier to solve. This is the core idea behind Generalized Benders’ Decomposition (GBD):
the problem is restated in terms of the complicating variables only as

v∗ := min
{

v(z) : z ∈ Z
}

, (3)

using the value function v : {0, 1}m → R ∪ {∞} of the NLP (2). The optimal values of (1) and (3)
coincide: if z∗ solves the latter and x∗ solves (2) with z = z∗, then (x∗, z∗) solves (1). We recall in the
following lemma some known properties of v.

Lemma 1 The mapping v is proper, convex, and bounded from below. If for a given z ∈ Dom(v) (2)
satisfies some appropriate constraint qualification (e.g., Slater’s condition) so that the set Λ(z) ⊂ R

p
+ of

optimal Lagrange multipliers of the constraints G(x) ≤ Tz in (2) is nonempty, then ∂v(z) = −TTΛ(z).

Note that other constraint qualification can be invoked in the Lemma apart from Slater’s condition,
such the QNCQ one. What is required is just that solving the convex NLP (2) for fixed z be equivalent
to solving its dual, i.e., that after having computed v(z) an optimal dual solution λ∗(z) ∈ Λ(z) is
available that can be used to construct a subgradient for v in z. This brings us in the classical setting for
NonSmooth Optimization (NSO): an oracle is available that provides function values and subgradients
for the function.

The simplest approach for NSO problems, irrespectively of z being continuous or discrete, is perhaps
the Cutting-Plane Method [41]. It relies on using the first-order information provided by the oracle to
construct a model of v. At a given iteration k a set of iterates {z1, . . . , zk−1} has been generated and an
index set Ok ⊂ {1, . . . , k − 1} gathers the points zj whose oracle information (vj = v(zj), wj ∈ ∂v(zj))
is (still) available. The standard cutting-plane model for v is

v̌k(z) := max{ vj + 〈wj , z − zj〉 : j ∈ Ok } ≤ v(z) , (4)

where the inequality follows from convexity of v. Each of the inequalities in (4) is, in the parlance of
Benders’ decomposition, an optimality cut. Minimizing v̌k over the feasible set Z provides a lower bound
vlowk for v∗ and a new candidate solution zk to problem (3), at which the oracle is to be called. If
v̌k(z

k) = v(zk) then clearly zk is optimal for (3), as vlowk = v̌k(z
k) ≤ v∗ ≤ v(zk); otherwise, the newly

obtained function value (and subgradient) changes the model, and one can iterate. This brief account

4 W. van Ackooij et al.

is, in a nutshell, the CPM applied to the solution of (3), i.e., the celebrated Benders’ decomposition
method applied to (1). Remarkably, this process does not depend on the fact that Z is a continuous or
discrete set, provided that one can efficiently minimize v̌k over Z. Which is not to say that the process
is identical for discrete and continuous feasible sets, as a number of relevant details differ. For instance,
if zk+1 /∈ Dom(v), i.e., if subproblem (2) is infeasible, then zk+1 must be eliminated from the feasible
set of (3) by adding a feasibility cut to the set of constraints, which is usually obtained by means of
the unbounded ray of the dual problem. In the binary setting, one can alternatively use a simpler no-
good-type cut [17], along the lines of the combinatorial Benders’ cuts proposed in [15]. In particular, let
S(z) = { s : zs = 0 } and Sk = S(zk); then

∑

s∈Sk zs ≥ 1 (5)

is a feasibility cut that excludes the point zk from the feasible set of (3). This corresponds to restricting
Z to a subset Zk+1 ⊇ Dom(v), or equivalently to force the model v̌k+1 to agree with v in zk (v̌k(z

k) <
v̌k+1(z

k) = vk = +∞). Hence, together with the index set Ok of optimality cuts, one only needs to keep
the index set Fk ⊆ {1, . . . , k − 1} of feasibility cuts, and define the master problem

zk+1 ∈ argmin
{

v̌k(z) : z ∈ Zk
}

≡

min r
s.t. r ≥ vj + 〈wj , z − zj〉 j ∈ Ok

∑

s∈Sj zs ≥ 1 j ∈ Fk

z ∈ Z , r ∈ R

(6)

It is easy to show that no optimal solution of (3) is excluded by feasibility cuts, and that the CPM
solves problem (3) (and, consequently, problem (1)). Note that (6) is unbounded below if Ok = ∅, i.e.,
no optimality cut has been generated yet. This will surely happen for k = 0, and may happen even for
a large k (for instance, for all k if Z∗ is empty). A simple way to avoid this issue is to add to (6) the
single constraint r ≥ 0 in case Ok = ∅, making (6) a feasibility problem seeking just any point in Zk.
That constraint is removed as soon as an optimality cut is generated.

Algorithm 1 Combinatorial Cutting-Plane Method (CCPM)

Step 0. (Initialization) Let δTol ≥ 0 be the stopping tolerance. vup0 ←∞, O1 = F1 ← ∅, and k ← 1.

Step 1. (Master) Find zk by solving problem (6), and let vlow
k

be its optimal value.

Step 2. (Stopping test) ∆k ← v
up

k−1
− vlow

k
. If ∆k ≤ δTol, stop: z

up is a δTol-optimal solution.

Step 3. (Oracle call) Solve (2) with z replaced by zk.

– If (2) is infeasible then Fk+1 ← Fk ∪ {k}, Ok+1 ← Ok, v
up

k
← v

up

k−1
and go to Step 4.

– Else, obtain vk = v(zk) and a subgradient wk as in Lemma 1, Fk+1 ← Fk and Ok+1 ← Ok ∪ {k}.
v
up

k
← min{ vk , v

up

k−1
}. If vk = v

up

k
then zup ← zk.

Step 4. (Loop) k ← k + 1 and go to Step 1.

Theorem 1 Algorithm 1 terminates after finitely many steps either returning a δTol-optimal solution
to problem (3) or proving that it is infeasible.

Proof First, note that the algorithm cannot stop for k = 1: vup0 = ∞ implies ∆k = ∞ > δTol (v
low
1 = 0

because O1 = ∅, cf. the added constraint r ≥ 0 in (6)). Once zk is determined in Step 1 and vk is
computed in Step 3, we have two cases. If vk = ∞, a feasibility cut is added which excludes (at least)
zk from the feasible region for good. As long as no feasible solution is found (i.e., vj =∞ for all j ≤ k)
one keeps having vlowk = 0 =⇒ ∆k =∞ unless (6) is infeasible, in which case vlowk = vupk =∞ and hence
∆k = 0: the algorithm stops, with Z ⊆ Zk = ∅ proving that (3) is empty. Because at each iteration Zk

strictly shrinks and Z has a finite cardinality, after finitely many steps either the algorithm establishes
that (3) is infeasible or it generates an optimality cut.

In this last case, from (6) we have that vlowk = v̌k(z
k) ≥ vj + 〈wj , zk − zj〉 for all j ∈ Ok. Therefore,

‖wj‖‖zj − zk‖ ≥ 〈wj , zj − zk〉 ≥ vj − vlowk ≥ vupk−1− vlowk = ∆k, where the last inequality comes from the

fact that vupk−1 ≤ vj for all j ∈ Ok. Hence, z
k differs from all the previously generated iterates as long as

the ∆k > 0. Since Z contains only finitely many points, the algorithm finitely stops. ⊓⊔

Inexact stabilized Benders’ decomposition approaches 5

The CPM can therefore be used to solve (3) (and thus (1)); it can also be generalized somewhat,
see e.g., [66]. However, CPM is well-known to suffer from slow convergence in practice. It is therefore
attractive to mimic “more advanced” NSO approaches, such as one of the several available variants of
bundle methods, developed for the continuous case (e.g., [34,39,43] among many others). Adapting these
methods to the case where Z is combinatorial requires specific work; this is done in Section 4, whereas
in the next one we introduce another mechanism that can improve the performances of the approach.

3 Extending the cutting-plane method: inexact oracles

Algorithm 1 has two potentially costly steps: Step 1, that requires solving a MI(N)LP, and Step 3
that requires solving a (convex) NLP. A way to reduce the computational burden in Step 3 is to only
approximately solve the NLP; in the parlance of [18, 50, 51] this is employing an inexact oracle for the
value function v. While we discuss this with reference to GBD, the idea of inexact oracles clearly has
wider application, as (10) will make apparent.

To illustrate what an inexact oracle is in the GBD case, we cast the oracle problem (2) in a Lagrangian
setting. That is, for the vector λ of Lagrangian multipliers, the dual function of (2)

θ(λ) := min
{

f(x) + 〈λ,G(x)〉 : x ∈ X
}

− 〈λ, T z〉 (7)

has the property that θ(λ) ≤ v(z) for each λ ∈ R
p
+. Hence, the Lagrangian dual

v(z) = max
{

θ(λ) : λ ∈ R
p
+

}

(8)

is (under appropriate constraint qualification, cf. Lemma 1) equivalent to (2). In fact, in correspondence
to the optimal solution λ∗ to (8) one can find an optimal solution to x∗ ∈ X to (7) (with λ = λ∗) such
that G(x∗) ≤ Tz and 〈λ∗, G(x∗) − Tz〉 = 0 (complementary slackness); one then has f(x∗) ≥ v(z) ≥
θ(λ∗) = f(x∗). Approximately solving (2) to any given accuracy ε reduces to finding a feasible primal-
dual pair (x̄, λ̄) (i.e., x̄ ∈ X , G(x̄) ≤ Tz, λ̄ ≥ 0) such that (0 ≤) f(x̄) − θ(λ̄) ≤ ε. Every conceivable
algorithm for the problem has to provide both information in order to be able to stop at a certified
(approximately) optimal solution: the Lagrangian setting is not the only possible one. When the form
of G(·) allows for an appropriate algebraic dual, such as in the case of our experiments (cf. §5), more
complex dual feasibility conditions can take the place of the minimization in (7) to ensure weak duality.
Yet, such a dual solution would comprise λ as well as other dual variables for the other constraints
representing x ∈ X . We will therefore not explicitly distinguish the two cases, and we will stick with the
Lagrangian notation for ease of discussion.

Algorithmically speaking, there are two different approaches that can yield useful approximated oracles:

– Dual approach: directly tackle problem (8) via some appropriate optimization algorithm; as θ is most
often nonsmooth, usually a NSO approach is required. This typically constructs a sequence {λh}
of iterates with nondecreasing objective value θ(λh) that approximate v(z) from below. Any such
algorithm eventually constructs a primal feasible (at least, up to some specified numerical tolerance)
solution x̄ such that f(x̄)−θ(λh) is appropriately small [30], thereby providing the stopping criterion.
Although it did not turn out to be computationally effective in our specific application, the dual
approach has indeed shown to be efficient in several cases to solve large-scale continuous [36,37] and
combinatorial [3] programs.

– Primal-dual approach: under appropriate conditions, subproblem (2) can be solved by primal-dual
interior-point methods (e.g., [10] among the many others). These typically construct a sequence of
primal-dual pairs (xh, λh) which track the central path towards the optimal primal-dual solutions
(x∗, λ∗). Possibly after an initial infeasible phase, both solutions are feasible. In particular, it is well
known (see for instance [12, §11.2]) that every central point xh ∈ X yields a dual feasible point
λh. Hence, once again λh yields a lower bound on the optimal value, and xh an upper bound; the
algorithm stops when the two are suitably close.

6 W. van Ackooij et al.

In both cases, a sequence {λh} is produced, each one of which can be used to construct approximate
linearizations. In fact, v = θ(λ) ≤ v(z) and w = −TTλ are such that

v(·) ≥ v + 〈w, · − z〉 . (9)

Note that (9) only hinges on weak duality, and therefore does not require constraint qualification. Thus,
often a sequence of candidates for the next linearization in Algorithm 1 is available, provided that one
allows them not to be tight, i.e., v < v(z). Indeed, proving that a linearization is tight, or at least that
the error ε = v(z) − v is “small”, requires the entirely different information xh that provides an upper
bound v̄ ≥ v(z). In this context, taking a leaf from [50] and (separately) [51], we define an informative
on-demand inexact oracle as any procedure that, given z ∈ Z, a descent target tar ∈ R ∪ {−∞,+∞}
and a desired accuracy ε ≥ 0, returns:

i) as function information, two values v and v̄ such that v ≤ v(z) ≤ v̄
ii) as first-order information, a vector w ∈ R

p such that (9) holds
under the condition that, if v ≤ tar then v̄ − v ≤ ε

(10)

Setting tar = ∞ and ε = 0 gives the standard exact oracle for v. We will aim at defining the weakest
possible conditions on the way to set the two parameters that still guarantee convergence of the algorithm.
Intuitively, this means that we want to keep tar “small”, and ε “large”. Indeed, when v > tar (which, for
instance, surely holds if tar = −∞), not much at all is required from v̄: v̄ =∞ is a perfectly acceptable
answer, corresponding to “no feasible solution to (3) has been found yet” (which may be just because
no feasible solution exists). Note that the oracle must be able to detect when (2) is infeasible, so that
a feasibility cut is added to (6). This is signaled by returning v =∞ (which obviously implies v̄ = ∞),
incidentally making the value of tar irrelevant. Usually, in this case w should be required to describe a
valid inequality for Dom(v) that cuts away the current z, which requires the oracle to find an unbounded
feasible descent direction for (8). Although doing so may be beneficial in practice, in our setting we
can use (5) instead when v = ∞, disregarding w; we therefore assume this, just in order to simplify
the notation. Moreover, setting a finite target tar < ∞ actually allows us to dispense with feasibility
cuts altogether. In fact, suppose that (2) is infeasible for the fixed z: since X in (1) is compact, we can
argue by using [39, Proposition 2.4.1, Chapter XII] that (7) is unbounded. Thus, any dual or primal-dual
algorithm applied to its solution will typically construct a sequence {λh} such that θ(λh) → ∞, while
(clearly) never constructing any feasible xh. It is therefore easy to add the simple check θ(λh) > tar to
the oracle, and stop it immediately when this happens (or at any moment thereafter). If tar < ∞ this
will typically ensure finite termination of the oracle even in the unbounded case (which is not trivial
for pure dual approaches), while still ensuring by weak duality that v = θ(λh) > tar and w = −TTλh

provide the required information (whatever the value of v̄, e.g., v̄ =∞). This yields the following simple
but useful remark:

Remark 1 (Valid cuts for function v) Given z ∈ Z and a finite target tar <∞ as input, an oracle (10)
solving (7) can provide a valid cut w for v independently of whether or not (2) is feasible for z. Hence,
Fk in (6) can remain empty for all k even if Z \ Dom(v) 6= ∅. ⊓⊔

As we will see, this information is enough for the CPM, making it irrelevant to “formally prove” if (2)
is or not feasible. This shows that when inexact computations are allowed for, and a finite target is
specified, the separation between feasibility and optimality cuts blurs somewhat.

3.1 A cutting-plane method for inexact oracles

We now adapt Algorithm 1 for dealing with the (informative, on-demand) inexact oracle (10). We start
by providing the necessary change for defining the next iterate: having the (inexact) oracle information
at hands, the inexact cutting-plane approximation for v is just

v̌k(z) := max
{

vj + 〈wj , z − zj〉 : j ∈ Ok } , (11)

Inexact stabilized Benders’ decomposition approaches 7

where Ok is as in Algorithm 1. Since (9) yields v̌k(z) ≤ v(z) for all z ∈ Z, minimizing v̌k still provides a
valid global lower bound over the optimal value of (3). The algorithm is then given below.

Algorithm 2 Inexact Combinatorial Cutting-Plane Algorithm (ICCPM)

Step 0. (Initialization) As in Step 0 of Algorithm 1. In addition, choose ε1 ≥ 0 and γ > 0.
Step 1. (Master) As in Step 1 of Algorithm 1, but with model given in (11).
Step 2. (Stopping test) As in Step 2 of Algorithm 1.
Step 3. (Oracle call) Choose tark, send the triple (zk , εk, tark) to oracle (10), receive vk, v̄k , and wk.

– If the subproblem is infeasible (vk =∞), proceed as in Algorithm 1.

– Otherwise, Fk+1 ← Fk, Ok+1 ← Ok ∪ {k}, v
up

k
← min{ v̄k , v

up

k−1
}. If v̄k = v

up

k
then zup ← zk.

Step 3.1 (Accuracy control) If vk ≤ vlow
k

+ γ then choose εk+1 ∈ [0, εk), otherwise choose εk+1 ∈ [0,∞) arbitrarily.

Step 4. (Loop) k ← k + 1 and go to Step 1.

The algorithm is essentially the same as the original one with the obvious modifications regarding
upper and lower estimates. The only real novel mechanisms are the ones regarding the handling of
the target tark and of the accuracy εk. These are stated in a general form that allows many different
implementations. The crucial requirement is that, eventually, iterations where vk ≤ tark and εk ≤ δTol
are performed. With this simple device the algorithm can be proven to converge.

Theorem 2 Assume that the choice of tark in Step 3 and that of εk in Step 3.1 are implemented in
such a way that the following properties holds: i) if vupk = ∞, then tark = ∞, and ii) if εk is reduced
in a sequence of consecutive iterations, then tark ≥ vlowk + γ and εk ≤ δTol holds for k large enough.
Under these conditions, Algorithm 2 finitely terminates with either a δTol-optimal solution to problem
(3) or a proof that it is infeasible.

Proof We will begin by showing that the algorithm establishes infeasibility of problem (3) after finitely
many iterations. Since v(z) = ∞ for all z ∈ Z, the algorithm can never produce v̄j < ∞, and as a
consequence vupk = ∞ for all k. Then, by assumption i) tark = ∞, which means that oracle (10) must
necessarily return vk =∞ for all k. The algorithm behaves exactly as the original one and the proof is
completed.

Assume now that vk <∞ at least once: the problem admits a feasible solution. In fact, at the first such
k one has tark = ∞, and therefore vk < tark: by (10), ∞ > vk + εk ≥ v̄k ≥ v(z), hence at least one
feasible point exists and vupk <∞ as well. Since the total number of possible “infeasible” iterations (with
vk = ∞) is finite, for the sake of finite convergence arguments we can assume that none happens after
iteration k. Note that, due to Remark 1, Fk may be empty even if some zk really was infeasible. Hence,
we can assume that a feasible zk is determined in Step 1: from (6) with v̌k given in (11) we have that
vlowk = v̌k(z

k) ≥ vj + 〈wj , zk − zj〉 for all j ∈ Ok, whence by the Cauchy-Schwarz inequality

‖wj‖‖zj − zk‖ ≥ 〈wj , zj − zk〉 ≥ vj − vlowk . (12)

For all the iterations j ∈ Ok where vj > vlowk , (12) gives ‖zj − zk‖ > 0, i.e., zk 6= zj as in the proof of
Theorem 1. If one could prove that vj > vlowk holds always, the finiteness of Z would complete the proof.

However, since we have two different values v̄j ≥ v(zj) ≥ vj , it may well happen that v̄j − vlowk ≥ ∆k >
δTol while one is performing a tight iteration: Tk = { j ∈ Ok : vj ≤ vlowk }. For j ∈ Tk we could have
zk = zj, which exposes the algorithm to the danger of cycling. Note that (12) cannot be used with j = k
because k /∈ Ok: the linearization corresponding to zk was not in the definition of v̌k when the master
problem was solved. That is, one can repeat the same iterate (say, zk+1 = zk), and in this case vk > vlowk

only implies that (possibly, but not even necessarily) vlowk+1 > vlowk . Thus, the lower bound on v∗ may
increase arbitrarily slowly; and similarly for the upper bound. In fact, when condition i) is no longer
in effect, and until condition ii) is triggered, tark can be chosen arbitrarily (possibly, tark = −∞),
which means that one can have v̄k = ∞ (although, at this point of the argument, vupk < ∞). Thus, we
need to distinguish among the iterations that are in-target, i.e., belong to Ik = { j ≤ k : vj ≤ tarj },
and those that are not. The rationale is that only for j ∈ Ik the value of v̄j actually is “meaningful”,

8 W. van Ackooij et al.

while for j /∈ Ik nothing much can be said, v̄j =∞ being possible. The relevant set of iterations is then
T ′

k = Tk ∩ Ik, and for these iterations one has

vupk−1 =min{ v̄j : j ∈ Ok } ≤ min{ v̄j : j ∈ T ′

k } ≤

≤min{ vj + εj : j ∈ T ′

k } ≤ vlowk +min{ εj : j ∈ T ′

k } , (13)

where the first inequality comes from T ′

k ⊆ Ok, the second inequality comes from the assumption on
oracle (10) when j ∈ T ′

k ⊆ Ik, and the third one comes from the definition of Tk. Note that T ′

k = ∅ may
happen, making (13) useless, because either no tight iteration has been performed, or none of them is
an in-target one, the latter clearly depending on how tark is chosen.

Let us now assume by contradiction that the algorithm does not finitely terminate. For iteration k,
either vk ≤ vlowk + γ, or vk > vlowk + γ. Let us first consider the case when vk > vlowk + γ occurs infinitely
many times (not necessarily consecutively). By taking subsequences if necessary we can assume that the
condition actually holds at every k. Since the set Z is finite and the algorithm is assumed to loop forever,
eventually it necessarily re-generates iterates that have already been found earlier. Hence, consider two
iterates h > k such that zh = zk: one has

vlowh = v̌h(z
h) = max{ vj +

〈

wj , zh − zj
〉

: j ∈ Oh } ≥ vk +
〈

wj , zh − zk
〉

= vk > vlowk + γ (14)

where the first equalities are just the fact that zh is optimal for v̌h, the leftmost inequality comes from
k ∈ Oh, and the following equality comes from zh = zk. Actually, if the algorithm runs forever then at
least one of the iterates zk has to be generated infinitely many times. Since γ > 0, repeating (14) on the
corresponding sub-sequence proves that vlowk →∞ as k →∞, which contradicts vlowk ≤ v∗ ≤ vupk <∞.

Hence, vk > vlowk + γ can only occur finitely many times: if the algorithm runs forever, then eventually a
long enough sequence of consecutive iterations where εk is reduced has to be performed. The assumption
ii) on the choice of the oracle parameters now applies: eventually, tark ≥ vlowk +γ (≥ vk =⇒ k ∈ Ik) and
εk ≤ δTol. This ensures that v̄k − vk ≤ εk ≤ δTol: eventually, iterates become “accurate enough”. Now,
consider two (large enough, hence accurate enough) iterations k > j: if j ∈ Tk, then by (13) one would
have ∆k = vupk−1 − vlowk ≤ v̄j − vj ≤ εj ≤ δTol (obviously, v

up
k−1 ≤ v̄j), contradicting the fact that the

algorithm does not stop. One should therefore have that vj > vlowk always holds; however, in this case
(12) shows that zk 6= zj for all the infinitely many k > j, which contradicts finiteness of Z. Altogether,
we have shown that the algorithm must therefore stop after finitely many iterations. ⊓⊔

We now discuss why, save for a few minor twists, the conditions on εk and tark in Theorem 2 appear
to be basically the weakest possible ones.

– Having tark = ∞ as long as vupk = ∞, as required by condition i), may seem a harsh request, but
it appears to be unavoidable in order to account for the case where (1) is infeasible. In fact, if the
algorithm were allowed to set a finite target tar1, then the oracle may return any finite v1 > tar1

together with w1 = 0 (and, obviously, v̄1 = ∞). Then, at the next iteration the algorithm would
have vlow2 = v1 > tar1, and may well produce z2 = z1. Hence, an infinite sequence of iterations may
start where zk = z1 and vlowk →∞, but the algorithm never stops because vupk =∞ as well (and εk
is finite). That is, the algorithm would spend all the time trying to compute v(z1) = ∞ by finitely
approximating it from below. Thus, setting tark =∞ is required until the problem is proven feasible.

– A similar observation justifies the need for the constant γ > 0, both in the definition of the threshold
for reducing εk in Step 3.1, and in the condition on tark. In fact, if one would require decrease only
if vk ≤ vlowk , then a sequence of iterations all producing the same z may ensue where vk > vlowk , but
“only very slightly so”. Hence, while one may have vlowk+1 > vlowk , the increment may be vanishingly

small, and since εk would not be decreased, ultimately vlowk may never become close enough to vupk
(a similar argument, in the continuous case, is made in [18, Observation 2.7]). Analogously, if one
would set tark = vlowk , then again a sequence of iterations producing the same zk could be performed
where vk may be fractionally larger than vlowk . While this would force the decrease of εk, none of
these iterations would be in-target, which would not allow us to use (13). That is, while vlowk may
indeed be converging to v∗, oracle (10) may never report a close enough upper bound; in fact, one
may well have v̄k =∞ for all k.

Inexact stabilized Benders’ decomposition approaches 9

A few minor improvements could be added:

– It is possible to weaken somewhat condition i) by requiring that tark =∞ holds after finitely many
iterations where vupk =∞, whatever mechanism be used to ensure this.

– Running the algorithm with fixed εk = δTol and tark =∞ does not require any γ (which is somehow
obvious since that parameter only influences the choice of εk and tark). An alternative way to get the
same result would be to ask that εk = δTol and tark is “large enough” (e.g., tark = vupk−1) eventually,
with some mechanism, say a fixed number of iterations, to ensure it.

– A fixed γ > 0 is only the simplest possible option. All one needs is that each time when the same
iterate is repeated, vlowk has “significantly increased”. As customary in other settings (e.g., [18]), one
may obtain this by ensuring that for every subsequence of the sequence {γk} the series diverges (even
if, say, γk → 0). Note that this allows γk = 0 to happen, but only finitely many times: eventually
γk > 0 has to happen, albeit it does not need to be bounded away from zero.

– Alternatively, for δTol > 0 the simple choice γk = α∆k for some fixed α > 0 obviously works.
– A slightly weaker version of Step 3.1 is possible where εk is only reduced if vk ≤ vlowk + γk and

zk coincides with a previously generated tight iterate, for this cannot happen infinitely many times.
However, the check that zk 6= zj for all j ∈ Tk could ultimately be costly in both time and memory.

3.2 Accuracy handling in the ICCPM

Theorem 2 provides ample scope for constructing different strategies to handle the oracle parameters εk
and tark, besides the obvious one where εk = δTol and tark =∞ throughout. In fact, intuitively having
high-accuracy computations at the initial phases of the algorithm is unnecessary, and that starting with
a “large” εk and a “low” tark would be better. This has in fact been proven true computationally in
the continuous case [5, 50, 67]. There are several possible ways of doing it:

– One may choose (even a-priori) a sequence {εk} → δTol (finitely), while still keeping tark =∞. This
again works, but it is clearly non adaptive.

– Keeping εk “large” and tark = −∞ is possible for most of the time. That is, if the condition at Step
3.1 is not satisfied, then one can immediately reset εk+1 to some “large” value (say, ε1), and leave
it there until forced to reduce it. This generalizes the rule presented in [51, Algorithm 5.4] for the
continuous case.

All this shows that there is no need to solve the oracle with even a modicum of accuracy, both from
the primal and the dual viewpoint, unless the algorithm has reached the global optimum of the current
model v̌; only then the accuracy has to be increased. Said otherwise, the function ideally only have to
be computed with provable accuracy δTol only at the optimal solution z∗. Insisting that εk and tark

are kept “coarse” for most of the iterations is therefore possible, and likely justified in cases where the
oracle cost is a preponderant fraction of the overall computational burden.

However, there can be cases where the master problem cost may be non-negligible, in particular because
it is a combinatorial program. Furthermore, working with a “coarse” model of v—even coarser then the
ordinary cutting-plane model arguably already is—may increase the number of iterations, and therefore
finally prove not computationally convenient. Hence, more “eager” mechanisms for handling the accuracy
parameters may be preferable, which can be obtained in several ways.

– For instance, tark ← max{ vupk , vlowk + γk } may make sense. Basically, one is trying to improve on
the upper bound, although doing so early on has only a limited effect on the algorithm behavior (the
only role of vupk being in the stopping condition).

– Condition ii) can be ensured by choosing α ∈ (0, 1) and setting εk+1 = max{ δTol , min{α∆k , εk } }.
This is for instance the strategy that has been employed in [67, 69], and it is intuitively attractive
because εk is nonincreasing with the iterations and converges to δTol. A (minor) issue arises when
δTol = 0, since the algorithm may not finitely terminate: basically, once identified the optimal solution
z∗ one would keep on calling the oracle on z∗ infinitely many times, with a sequence of εk (quickly)

10 W. van Ackooij et al.

converging to zero, but never really reaching it. This issue is easily resolved by setting εk ← δTol
when εk has reached a sufficiently small value.

– The analysis in Theorem 2 directly suggests to choose εk+1 < min{ εj : j ∈ T ′

k }, with some
mechanism ensuring εk ≤ δTol eventually. This has the advantage that the right-hand side of the
equation is∞ while T ′

k = ∅, so one starts to decrease εk only when tight iterates are indeed performed.
– The above mechanisms still rigidly alternates master problem and subproblem computations. If the

master problem cost is significant, when the oracle error is found to be excessive one may rather prefer
to avoid the computation of zk+1 (which may well produce zk once again) and directly re-compute
the function with increased accuracy. A potential advantage of this eager mechanism is that, while
the oracle is still called several times on the same iterate zk, (at least, some of) the calls happen
consecutively. This means that warm starts can be used in the oracle making a sequence of calls with
εk decreasing up to some ε̄ not significantly more costly than a single call with accuracy ε̄.

Thus, several strategies exist for handling the accuracy in the original CPM. In the next paragraph we
will discuss how these can be adapted when stabilized versions of the approach are employed.

4 Extending the cutting-plane method: stabilization

In this section we explore a different strategy to improve the performances of the CPM: rather than
decreasing the iteration cost, we aim at requiring fewer iterations. For this we propose two different
stabilization techniques which, in analogy with what has been done for the continuous case, have the
potential of improving the quality of the first-order information by decreasing the instability of the
CPM, i.e., the fact that two subsequent iterates can be “very far apart”. This has been shown to be very
beneficial (e.g., [8, 35, 58] among the many others) for two reasons: fewer subproblems are solved, and
therefore master problems of smaller sizes need be solved. Also, stabilization involves modifications of
the master problem, which may (or may not) lead to an even further reduction of its computational cost.
It has also been reported (cf. [70] in the discrete setting and [5] in the continuous one) that stabilization
in GBD improves feasibility of master iterates, thus reducing the number of feasibility cuts.

4.1 Trust-region stabilization

The most widespread stabilization technique in the continuous setting is the proximal one, whereby
a term is added to the objective function of the master problem to discourage the next iterate to be
“far” from one properly chosen point (say, the best iterate found so far). In our setting, we find it more
appropriate to use trust-regions [48]; note that in the continuous case the two approaches are in fact
“basically the same” [8, 34]. For this we modify the master problem (6) by selecting one stability center
ẑk, which can initially be thought of as being the current best iterate, and the radius Bk ≥ 1 of the
current trust region. Then, we restrict the feasible region of (6) as

zk ∈ argmin
{

v̌k(z) : z ∈ Zk , ‖z − ẑk‖1 ≤ Bk
}

, (15)

which just amounts at adding the single linear local branching constraint [31]

∑

s : ẑk
s=1(1− zs) +

∑

s : ẑk
s=0 zi ≤ Bk .

A similar approach was used in [58] and [49], both with exact oracles. In addition to consider inexact
oracles, our analysis is significantly more refined. The effect of the trust region is to force the next iterate
to lie in a neighbourhood of the stability center where only at most Bk variables can change their state
w.r.t. the one they have in ẑk. A benefit of this choice is that the complement of that neighbourhood,
‖z − ẑk‖1 ≥ Bk +1, can be represented by an analogous linear constraint. Note that in a convex setting
any such set would be non-convex, thus making the master problem significantly harder to solve if one
were to add it; yet, in our case this is just another linear constraint in a(n already nonconvex) MILP.
It is therefore reasonable to add these constraints, and we will denote by Rk the set of iterations at

Inexact stabilized Benders’ decomposition approaches 11

which the reverse region constraints are added. We remark in passing that, since for zs ∈ {0, 1} one
has z2s = zs, also ‖z − ẑk‖22 has a similar linear expression (this is in fact used in §4.2). The ICCPM is
modified as follows:

Algorithm 3 Trust Region Inexact Combinatorial Cutting-Plane Algorithm (TRICCPM)

Step 0. (Initialization) As in Step 0 of Algorithm 2, plus R1 ← ∅, v̂1 =∞, choose B1 ≥ 1, β > 0 and ẑ1 ∈ Z arbitrarily.
Step 1. (Master) As in Step 1 of Algorithm 2 except using (15).
Step 2. (Stopping test) ∆k ← v

up

k−1
− vlow

k
. If ∆k > δTol then Rk+1 ←Rk, Bk+1 ← Bk and go to Step 3.

If Bk = m then stop: zup is a δTol-optimal solution. Otherwise, Rk+1 ← Rk ∪ {k} and choose Bk+1 ∈ (Bk , m].
Step 3. (Oracle call) As in Step 3 of Algorithm 2, except add the following before Step 3.1:

If v̄k ≤ v̂k − β then ẑk+1 ← zk, v̂k+1 ← v̄k , choose εk+1 ∈ [0,∞) arbitrarily and go to Step 4.
Otherwise ẑk+1 ← ẑk, v̂k+1 ← v̂k and proceed to Step 3.1.

Step 4. (Loop) k ← k + 1 and go to Step 1.

A few remarks on the algorithm are useful. The initial stability center ẑ1 may or may not be feasible; to
be on the safe side, by initializing v̂1 = ∞ we assume it is not. If a feasible iterate zk is produced, the
new mechanism at Step 3 ensures that the stability center is moved to the feasible point. This is called a
“serious step” (SS) in the parlance of bundle methods. Note that the initial master problem, not really
having an objective function, may well return z1 = ẑ1. In this case one may be doing a “fake” SS where
the stability center does not really change, while its objective function value does. Adding the reverse
region constraint when Bk is increased in Step 2 is not strictly necessary, but it is cheap and ensures that
iterates in the previous neighbourhood are no longer produced. Reducing the feasible region of (15), this
hopefully makes it easier to solve.

Theorem 3 Under the assumptions of Theorem 2, Algorithm 3 terminates after finitely many steps
with either a δTol-optimal solution to problem (3) or a proof that this problem is infeasible.

Proof The analysis of Theorem 2 applied to a fixed stability center, and therefore to the fixed (finite)
feasible region Z ∩ (‖ · −ẑ‖1 ≤ B), shows that if no SS is done, eventually the stopping condition at
Step 2 is triggered. If this happens but B < m, then local δTol-optimality of zup (which, as we shall see
later on, is not necessarily the same as ẑ) in the current neighbourhood has been proven. If the master
problem were convex this would be the same as global optimality, but since this is not the case we need
to increase B up until eventually the whole Z is covered; obviously, this can happen only a finite number
of times. When Bk = m, global optimality is ensured; in particular, if no feasible solution has been found
throughout, then (3) clearly is infeasible.

Hence, we must prove that changing ẑk—performing a SS—can only happen finitely many times. Note
that a SS do not trigger a forced decrease of εk (although it is possible to reduce it), so we cannot rely
on that mechanism to prove finite convergence. However, since β > 0, a SS can only be declared when
a “significant” decrease is obtained, which can only happen finitely many times. ⊓⊔

Again, the assumptions on the SS mechanism are (almost) minimal. Indeed, with β = 0 it would be
possible that the same iterate z is produced infinitely many times, each time the oracle providing a
vanishingly smaller value for v̄ and therefore triggering a “fake” SS (where ẑ is not actually changed).
This in itself would not impair finite convergence, but an even more devious case exists: the one where
ẑ “cycles through” a set of iterates (possibly with the very same, and optimal, value of v(z)), each time
fractionally reducing vup but never really producing the true value: β > 0 rules this out. Similarly to
the remark concerning γ in ICCPM: a fixed value β > 0 is the easiest choice. A non-summable sequence
{βk} or, for δTol > 0, βk = α∆k for α ∈ (0, 1] are other options that work as well. We remark in passing
that the rules deciding when a SS has to be declared are crucial in the continuous case when dealing
with inexact oracles [51]. It is also apparent that the analysis extends to the “eager” accuracy control
of §3.1.

A relevant practical detail is how B is increased in Step 2 when local optimality is detected. The simple
rule Bk+1 ← Bk + 1 would work, but previous experience (in the exact setting) [6] suggests that this

12 W. van Ackooij et al.

is not computationally effective: once a local optima for a “small” region has been found, it is usually
best to try to prove its global optimality. Therefore, in our computational experiences we have used
(without any significant amount of tuning) the simple approach where B is updated by moving through
a restricted set of sizes, as described in §5.3. Similarly to what happens for εk and tark, it is possible
to reset B to a “small” value each time a SS is computed, since this only happens finitely many times.
This differs from [58] that employs the trust-region constraint only in the initial iterations.
4.2 Level stabilization

In this section we explore level stabilization, which is, even in the continuous case, significantly different
to analyze [43]. Continuous level bundle methods have been analyzed in the inexact case in [50], and
discrete level bundle methods have been analyzed in the exact case in [20]; to the best of our knowledge,
apart from the recent [70] this is the first work investigating a discrete level bundle method with inexact
oracles. Our results are more general, as we deal with oracles with on-demand (as opposed to fixed)
accuracy, and the hypotheses we require to establish convergence are significantly weaker.

Level stabilization centers on defining a level parameter vlevk ∈ (vlowk , vupk−1) and the level set

Z
k :=

{

z ∈ Zk : v̌k(z) ≤ vlevk

}

. (16)

The next iterate zk is then chosen in Z
k, whenever it is nonempty. If Zk = ∅, then vlowk < vlevk ≤ v∗, i.e.,

a lower bound on the optimal value that is strictly better then vlowk has been generated. As a result, the
current lower bound vlowk can be updated by the simple rule vlowk ← vlevk .

Choosing a new iterate in Z
k can be done in several ways. A good strategy is to choose zk by satisfying

some criterion of proximity with respect to a given stability center ẑk ∈ {0, 1}m, which in this case may
not even belong to Z. That is, we find zk by minimizing a convex stability function ϕ(·; ẑk) over Zk; in
the continuous case, the most common choice for ϕ is ϕ = ‖ · ‖22. In our setting it may be natural to take
the ℓ1 or ℓ∞ norms instead, as done in [20], since this leads to a MILP master problem. Yet, as already
mentioned, for binary variables the Euclidean norm also is linear: ‖z − ẑk‖22 = 〈121 − ẑk, z〉 + ‖ẑk‖22, 1
being the all-one vector of appropriate dimension. Taking the ℓ2 norm as a stability function leads to

zk ∈ argmin
{

ϕ(z; ẑk) : z ∈ Z
k
}

≡

min 〈121− ẑk, z〉
s.t. vj + 〈wj , z − zj〉 ≤ vlevk j ∈ Ok

z ∈ Zk .
(17)

The level version of the ICCPM then reads as follows:

Algorithm 4 Level Inexact Combinatorial Cutting-Plane Algorithm (LICCPM)

Step 0. (Initialization) Run Algorithm 2 with the added condition in Step 2: stop (also) if v̄k = v
up

k
<∞.

If ∆k ≤ δTol then terminate.
Step 1. (Stopping test) As in Step 2 of Algorithm 2.
Step 2. (Master) Choose arbitrarily ẑk ∈ {0, 1}m. Choose vlev

k
∈ [vlow

k
, v

up

k−1
− δTol). Solve (17): if it is infeasible

then v
up

k
← v

up

k−1
, choose vlow

k
∈ [vlev

k
, v∗] and go to Step 4, else zk is available.

Step 3. (Oracle call) Choose tark. Send the triple (zk, εk, tark) to oracle (10), receive vk, v̄k , and wk.

– If vk =∞ then proceed as in Algorithm 1.

– Otherwise, Fk+1 ← Fk, Ok+1 ← Ok ∪ {k}, v
up

k
← min{ v̄k , v

up

k−1
}. If v̄k = v

up

k
then zup ← zk.

Step 3.1 (Accuracy control) If vk ≤ vlev
k

then choose εk+1 ∈ [0, εk), otherwise choose εk+1 ∈ [0,∞) arbitrarily.

Step 4. vlow
k+1
← vlow

k
, k ← k + 1 and go to Step 1.

As usual, a few remarks on the algorithm can be useful:

– The level master problem (17) does not need any trick, as (6) and (15) do, when Ok = ∅. In fact,
as long as this happens, the value of vlevk is completely irrelevant: Zk = Zk, and one is seeking the
nearest feasible point to ẑk (i.e., ẑk itself if ẑk ∈ Zk).

Inexact stabilized Benders’ decomposition approaches 13

– The algorithm does not actually need an optimal solution to (17): any feasible point is enough.
This opens the way for applying heuristics to (17), for instance by solving the continuous relaxation
and then applying randomized rounding. One can also append the formulation (17) with additional
constraints, such as those induced by precedence relations [55], if these can be exhibited.

– Conversely, (17) does not automatically produce a valid (local) lower bound vlowk as (6) (and (15))
do, while—at least if Ok 6= ∅—requiring one for defining vlevk . Thus, the algorithm requires an
initialization phase which essentially uses the standard CPM. A different initialization step will be
discussed later on.

Theorem 4 Assume that Step 2 is implemented in such a way that vlevk changes or problem (3) is found
to be infeasible only finitely many times. Furthermore, assume that the choice of tark in Step 3 and that
of εk in Step 3.1 satisfy the assumptions of Theorem 2, only with tark ≥ vlevk replacing tark ≥ vlowk + γ.
Then, Algorithm 4 finitely terminates with either a δTol-optimal solution to problem (3) or a proof that
it is infeasible.

Proof Step 0 of the algorithm—possibly a complete run of Algorithm 2—finitely terminates due to
Theorem 2: either vupk−1 = vlowk = ∞ =⇒ ∆k = 0, proving that (3) is infeasible, or a feasible zk is

eventually found, at which point Step 0 terminates. Since this happens at Step 2 of Algorithm 2, vlowk is
available, which is what the initialization aimed at. Also, note that one could have vupk−1 ≤ vlowk +δTol <∞,
i.e., the algorithm stops at Step 0 because the initialization has already found a δTol-optimal solution.

The crucial assumption on the level management is that vlevk can change and (3) be infeasible only
finitely many times. Consequently, if the algorithm does not terminate, there exists an iteration k̄ such
that vlevk = vlev

k̄
and Z

k 6= ∅ for all k ≥ k̄. Let us therefore assume k ≥ k̄: we have vj+〈wj , zk−zj〉 ≤ vlev

for all j ∈ Ok, where vlev = vlevk = vlev
k̄

, from which we get the analogous of (12)

‖wj‖‖zj − zk‖ ≥ 〈wj , zj − zk〉 ≥ vj − vlev . (18)

Defining Tk = { j ∈ Ok : vj ≤ vlev }, (18) immediately shows that zk 6= zj for j /∈ Tk. Again, only tight
iterations can repeat previous iterates. Therefore, vk > vlev can only happen finitely many times. In this
case one has k /∈ Tk+1, and more in general k /∈ Th for all h > k. So, each time a non-tight iteration
is performed, its iterate must be different from all these previous non-tight iterations. Thus, finiteness
of Z ensures that either the algorithm stops, or eventually only tight iterates can be performed. Let us
therefore assume that k̄ is large enough so that for all k ≥ k̄ the iterate is tight.

From the hypotheses on tark and εk, eventually tark ≥ vlev and εk ≤ δTol, i.e, v̄
k − vk ≤ εk ≤ δTol.

Copying (13) (keeping Ih and T ′

h unchanged), we similarly conclude

vupk−1 ≤ min{ v̄j : j ∈ Tk } ≤ min{ vj + εj : j ∈ T ′

k } ≤ vlevk +min{ εj : j ∈ T ′

k } ≤ vlev + δTol .

But the choice of vlev at Step 2 now requires that vlev < vupk−1 − δTol ≤ vlev, a contradiction: hence, the
algorithm must terminate finitely. ⊓⊔

The assumptions on Step 2 are not trivial to satisfy. This is because the general rule in Step 2, vlevk ∈
[vlowk , vupk−1 − δTol), requires changing the value of vlev from that of the previous iteration when vlevk−1 >

vupk−1 − δTol, i.e., one has found a better upper bound at the previous iteration that forces vlev to be

decreased. Furthermore, when Z
k = ∅ it is easy to choose vlevk+1 in a way that causes this to happen again

at the next iteration: just increase vlev of a vanishingly small fraction. Hence, ensuring that none of this
happens infinitely many often requires careful choices in the updating mechanism. This is especially true
if δTol = 0, because it means that eventually one must have vlowk = vlevk = vupk−1 = v∗, quite a high call.
Indeed, we will show that this is not, in fact, possible unless one provides the algorithm with a significant
helping hand under the form of a way to compute “tight” lower bounds. Different working examples of
vlev-selection mechanisms can be developed, though, as we discuss below.

The analysis should also plainly extend to the case when the feasible set Z is not finite, but still bounded,
Dom(v) ⊂ Z (ensuring thus that ∂v is locally bounded) and δTol > 0. This case is analyzed in [70], under

14 W. van Ackooij et al.

stricter assumptions on the oracle. We have not pursued this extension because our analysis is rather
focussed on the handling of the accuracy parameters in the oracle: very similar results could be expected
in the non-finite compact case, but this would make the arguments harder to follow.

4.3 Accuracy handling in the LICCPM

The short proof of Theorem 4 somehow hides the fact that the level parameter vlev has to be properly
managed for the assumptions to be satisfied. We now discuss possible mechanisms which obtain that.

If δTol > 0, then the assumption of the Theorem can be satisfied by the following simple mechanism: in
Step 3, whenever Zk = ∅ we set vlowk ← vlevk . Furthermore, denoting by h(k) < k the iteration where vlevk

has last changed (h(1) = 1), for some fixed α ∈ (0, 1) we set

vlevk ←

{

vupk−1 −max{ δTol , α∆k } if vupk−1 < vup
h(k) − δTol or Zk−1 = ∅

vlev
h(k) otherwise

. (19)

In plain words, vlevk is updated whenever vlow needs be revised upwards, or vup is “significantly” revised
downwards. This mechanism ensures that vlevk cannot change infinitely many times. In fact, even if the
same iterate zk (possibly, the optimal solution) is generated more than once, updating the upper bound
v̄k by vanishingly small amounts, vlevk only changes if the upper bound decreases “significantly”, i.e., by
at least δTol > 0. Similarly, Zk = ∅ cannot happen infinitely many times: in fact, whenever this happens

∆k+1 = vupk − vlowk ≤ vupk−1 − vlevk−1 = max{ δTol , α∆k } .

In other words, the gap shrinks exponentially fast until eventually ∆k ≤ δTol, triggering the stopping
condition. Note, however, that for δTol = 0 (19) only gives ∆k → 0, but not finite convergence.

Although not particularly significant in practice, it may be worth remarking that the fact that (19) only
works with δTol > 0, unlike those of Algorithms 2 and 3, is not not due to a weakness of the analysis,
but rather to an inherent property of level-based methods. Indeed, using a level stabilization one does
not have a way to prove that a given value vlevk is a sharp lower bound on v∗: when Z

k = ∅ we can
conclude vlevk < v∗. The fact that the inequality is strict shows that a level-based approach will never be
able to prove that vlevk = v∗. This is why one is not allowed to pick vlevk = vupk−1: if v

up
k−1 = v∗, one would

never be able to prove this because Z
k 6= ∅. Indeed, consider a stylized problem with Z = {z̄}. At the

first iteration (in Step 0), the oracle may provide v̄1 = v(z̄) = v∗ and some v1 = v∗ − ε1 (with ε1 > 0),
so that Step 0 ends with vlow1 = v∗ − ε1. Even if one sets εk = 0, an infinite sequence of iterations then
follows whereby Z

k = ∅ always happens and vlowk → v∗—say, using (19)—but never quite reaching it.
This is a known (minor) drawback of this form of stabilization.

Actually, LICCPM can finitely converge even if δTol = 0, but only if the initial vlowk provided by Step 1
happens to be precisely v∗. This is because that vlowk is produced by different means, which do allow to
prove that vlevk ≤ v∗. This observation suggests a variant of the algorithm which can work with δTol = 0:
just prior to setting the level parameter one solves (6) and updates vlowk with its minimum value. This
was proposed when level methods were introduced [43], in the continuous case. The condition ensures
that Zk 6= ∅ will happen at every iteration, thus making the relevant part of the assumption in Theorem
4 moot. However, this re-introduces the risk that vlowk increases infinitely many times. Furthermore, (19)
now no longer rule out the risk that decreases of vupk are vanishing. To avoid these problems, one may
for instance introduce some mechanism whereby eventually vlevk = vlowk : basically, at some point the
algorithm reverts to the standard CPM. Hybrid versions where (6) is solved “from time to time” are also
possible. While in principle applicable, we do not see this approach as promising in our specific setting
because our master problem is combinatorial, and hence possibly computationally costly. For this reason
we do not pursue its analysis further.

A somewhat opposite approach would be to dispense the need of finding a vlowk that is a guaranteed
lower bound on v∗ from the start, and hence the need of solving (6) at least once. To do that, one can

Inexact stabilized Benders’ decomposition approaches 15

avoid the call to (the modified) Algorithm 2 in Step 0, and instead initialize vlow1 <∞ arbitrarily. Then,
the following has to be added right before Step 3.1:

Step 3.0 (vlowk update) If Zk = ∅ has not happened yet and vupk − δk < vlowk , then
vlowk ← min{ vupk , vlowk } − δk, choose εk+1 ∈ [0,∞) arbitrarily and go to Step 4

where δk ∈ (δTol, δ̄] for some δ̄ < ∞. With this modification, similar to the one present in [50], the
algorithm replaces the dependable lower bound vlowk on v∗ with a guess, produced using the best available
upper bound and a displacement (this is called a “target value” approach [18]). Step 3.0 cannot be
executed infinitely many times: each time it does vlowk decreases by an amount bounded away from zero,
and v∗ > −∞. Hence, eventually vlowk will be a valid lower bound on v∗ − δ̄, and vupk − δk < vlowk can
no longer happen unless vlowk increases. But the latter only happens when Z

k = ∅, at which point Step
3.0 is disabled: a dependable lower bound has been found, and the normal course of the algorithm, as
analyzed in Theorem 4, starts. Basically, all the iterations up to that point take the place of the Step
0 where (6) is solved. Note that the algorithm cannot stop before that Z

k = ∅ at least once, since the
target will always “overrun” vupk−1 by at least δk > δTol. Hence, the analysis of Theorem 4 still applies.
In fact, similarly to §4.1, we can disable the accuracy control when the target decreases.

As a final remark, the analysis clearly extends to the more “eager” accuracy control versions of §3.1,
with the corresponding computational trade-offs.

4.4 Bundle resets: making master problems easier to solve

All the master problems considered in this work are combinatorial problems, and hence in principle
difficult to solve. It can be expected that the size of the two bundles Fk and Ok, respectively of feasibility
and optimality cuts, may have an impact on the solution time (this may be true also for Rk of the reverse
region constraints in TRICCPM). It is therefore possible—although by no means certain—that reducing
the bundle sizes helps in reducing the master problem time.

In the convex case it is sometimes possible to reduce the size to Ok all the way down to |Ok| = 2
by the so-called aggregation technique. However, this cannot be done for Fk, and even for Ok this
only works for certain stabilizations: the standard CPM and trust region approaches, for instance, do
not have any particularly elegant way of resetting the bundle [34, §5.3], while proximal (under specific
assumptions) [34, §5.2] and level do. However, the aggregation technique heavily relies on convexity of
the master problem (in particular by using the dual optimal solution), and therefore does not extend to
our discrete case, even for the stabilizations that would allow it in the continuous one.

There is a practical way in which one can reset Ok (and, by the same token, Fk): it can be done
arbitrarily, only provided that this happens finitely many times. The standard convergence proofs then
apply after that the last reset has occurred. This is not a very satisfactory mechanism, and in particular
it does not allow to set any a-priori bound on |Ok|; however, it is, basically, the only mechanism that
works in general even in the convex case, unless strong properties allow otherwise [34, §5.2]. If δTol > 0,
for instance, a simple way to reset Ok (and, similarly, Fk) is to initialize k̄ ← 1, pick α ∈ (0, 1), and
employ the following rule (e.g., at the beginning of Step 4)

If ∆k ≤ α∆k̄ then choose Ok+1 ⊇ {k}, k̄← k, else Ok+1 = Ok ∪ {k} .

That is, the bundle can be reset each time the optimality gap “decreases enough”; this can happen only
a finite number of times. Similar rules could check for “substantial changes” in vlowk or vupk separately.

There is a non-trivial trade-off regarding bundle management. On one hand, keeping the bundle as small
as possible may save on master problem time. On the other hand, accruing information is what drives
the algorithm, and therefore discarding information too quickly may be very detrimental to convergence
rates. A fortiori in the discrete case, only computational experiments can provide guidance on the best
way to perform bundle resets.

16 W. van Ackooij et al.

5 Application to probabilistically constrained optimization

To test our approaches we will consider chance-constrained optimization (CCO) problems of the form

f∗ := min
{

f(x) : P[g(x, ξ) ≤ 0] ≥ p , x ∈ X
}

(20)

where ξ ∈ R
r is a random variable, f : Rn → R is a convex function, g = [gi]i∈I is a mapping over

a finite index set I such that each gi : Rn × R
r → R is convex in the first argument, and X 6= ∅ is

a bounded convex set. The joint probabilistic constraints require that all the inequalities gi(x, ξ) ≤ 0
for i ∈ I hold simultaneously with high enough probability p ∈ (0, 1], and arise in many applications
such as water management, finance and power generation (e.g., [2, 56, 63] and references therein). For
introductory texts on joint probabilistic programming we refer to [22, 53].

This large class of problems contains cases of different difficulty, even for the same n, r and |I|, depending
on the underlying assumptions on the probabilistic constraint. For instance, setting p = 1 essentially
eliminates the difficulty, reducing (20) to a standard convex nonlinear optimization problem, albeit
potentially with many constraints [13]. This does not mean that such a problem is trivial, since the
functions f or g can be nonsmooth or/and difficult to evaluate. For such cases, specialized approaches
can be required: the methods of choice currently being constrained bundle ones [4, 5, 29].

When p ∈ (0, 1) instead, one of the fundamental differentiating factors is whether the distribution of ξ is
continuous or discrete. In the former case, one can face hard nonconvex nonlinear optimization problems,
and a careful theoretical study of the properties of the probability function (e.g., differentiability [1]) is
needed. We will rather consider the case where ξ takes values in a finite set Ξ = { ξs : s ∈ S } ⊆ R

r of
possible realizations (or scenarios), with associated weights πs (summing to one). The continuous case
can clearly be approximately reduced to the discrete one by drawing an appropriate finite sample; the
key question then concerns the minimal sample size which allows to assert feasibility for the original
problem with a given confidence level (e.g., [47] and the references therein).

Numerical methods for problems with discrete distributions are, as mentioned in [21, § 2.5], necessarily
based on combinatorial techniques. Indeed, there are now |S| blocks of constraints g(x, ξs) ≤ 0, one for
each s ∈ S, and (20) requires to minimize f over the intersection of X and all possible ways to select a set
of scenarios P ⊆ S such that

∑

s∈P πs ≥ p. In other words, while one is allowed not to satisfy all blocks
of constraints g(x, ξs) ≤ 0, the set of these that are not satisfied by the chosen solution x must be a
low-probability one [60, Chapter 4]. To develop solution methods, simplifying assumptions are frequently
made. A common one is that all the constraint functions gi, i ∈ I are separable, i.e., gi(x, ξ) = ξ−g̃i(x) for
given concave functions g̃i. This assumption is crucial for optimization algorithms based on p-efficient
points, a concept introduced in [52] and used to obtain equivalent problem formulations, as well as
necessary and sufficient optimality conditions [22, 53]. Methods based on p-efficient points are diverse:
see [23,54] for primal and dual CPM, [25] for cone generation methods, and [24] for augmented Lagrangian
and bundle methods. All in all, numerical techniques for this class of problems are well-developed.

When the constraints are not separable, p-efficient approaches are no longer suitable. In this case, one
frequently encounters the assumption that the constraints are linear with respect to x, e.g., g(x, ξ) =
A(ξ)x − b(ξ). This allows to reformulate (20) as a MINLP, which is actually a MILP if f and X are
also linear. This is by far the most widely studied class of CCO problems with finite support and non-
separable constraints. For instance, in the recent [46] an approach similar in spirit to combinatorial
Benders’ cuts is proposed whereby valid inequalities are derived to strengthen the MILP formulation of
the problem, making it easier to solve large-scale instances with standard MILP tools. In this analysis,
linearity plays a crucial role. The approach is extended to a wider class of problems in [45], but again
linearity is essential.

In this work we will neither assume that the constraints g are linear with respect to x, nor separable: our
only assumptions are that f and g are convex in x, X is compact and convex, and ξ has finite support Ξ.
Then, the probability constraint in (20) can be modeled by a standard disjunctive reformulation. That
is, a binary variable zs ∈ {0, 1} for each s ∈ S is introduced which dictates whether or not the block of
constraints g(x, ξs) ≤ 0 is going to be satisfied by the optimal solution x. This requires to estimate, for

Inexact stabilized Benders’ decomposition approaches 17

each i ∈ I a large enough constant M s
i that makes the constraint redundant over X :

M s
i ≥ max{ gi(x, ξ

s) : x ∈ X } . (21)

We remark that while (21) is an easy problem in the linear case, as it amounts to maximizing a linear
function over a well-behaved convex set, this is in principle no longer true in the nonlinear case, as
maximizing a convex function (even a quadratic one) over a convex set (even a hypercube) is in general
NP-hard [19]. However, this issue can be tackled in different ways, such as defining an appropriate
concave upper approximation of gi (say the concave envelope of gi over X , e.g., [7]) or approximating X
as an ellipsoid which, if gi is quadratic, makes the problem tractable [19]. We will therefore assume that
constants M s

i are available: then, (20) can be reformulated as a MINLP using

P[g(x, ξ) ≤ 0] ≥ p ≡

gi(x, ξ
s) ≤M s

i zs i ∈ I , s ∈ S
∑

i∈S πs zs ≤ 1− p

zs ∈ {0, 1} s ∈ S

≡
{

G(x) ≤ Tz , z ∈ Z
}

(22)

for the obviously defined G(x) = [g(x, ξs)]s∈S , T and Z. Therefore, (20) fits the general scheme (1), and
hence we can solve it via GBD. To the best of our knowledge, GBD has never been used as a main tool
for solving CCO programs of this form, although some mechanics of the approach are used in [46] in a
less general setting.

5.1 Application: a hybrid robust/chance-constrained model

We consider the minimization of some objective function f : Rn → R subject to linear constraints

Ax ≤ ξ , (23)

where both ξ and A are subject to uncertainty. It occurs in many cases that there are different sources of
uncertainty, not all equally well understood. This setting is of interest for instance in energy management,
where x represents an energy production schedule (e.g., [63] for the unit-commitment problem), and (23)
means that we wish to produce sufficient energy in all but the most extreme and implausible scenarios.
Knowledge of the distribution of ξ (energy demand) is available, since its characterization has received
considerable attention, while A is related to the underlying physics of generation plants and/or to the
behavior of other generation companies, and much less information is available.

We can therefore employ a hybrid robust/chance-constrained approach. Let A = [ai]i∈I ; we will assume
that the uncertainty about the coefficients matrix can be expressed in the form ai(u) = āi + Piu, where
āi ∈ R

n, Pi is an n × ni matrix, and the uncertainty set u ∈ Ui = {u ∈ R
ni : ‖u‖ ≤ κi} is the ball

of radius κi in the ℓ2 norm. For the sake of notation we define U = [Ui]i∈I , and we write A(u) for
u ∈ U to mean [ai(ui)]i∈I , where ui ∈ Ui. On the other hand, ξ ∈ R

m is a random variable with known
distribution, in our setting represented by a finite set Ξ of realizations (possibly obtained by appropriate
sampling). We can then express our requirement under the form of the robust chance-constraint

P
[

A(u)x ≤ ξ ∀u ∈ U
]

≥ p . (24)

For a fixed ξ, the well-established theory of robust optimization (e.g., [9]) applies: ai(u)
Tx ≤ ξi for all

u ∈ Ui if and only if max{ ai(u)Tx : u ∈ Ui } ≤ ξi, which due to our choice of ai(u) reduces to

max{ ai(u)
Tx : u ∈ Ui } = āTi x+max{ (PT

i x)
Tu : u ∈ Ui } = āTi x+ κi‖P

T

i x‖ .

Consequently, (24) reduces to P
[

āTi x + κi‖PT

i x‖ ≤ ξi i ∈ I
]

≥ p, which readily falls in the setting
of §2, as gi(x, ξ) = āTi x + κi‖PT

i x‖ − ξi is convex in x (since, obviously, κi > 0). The approach easily
extends to U being defined by any convex ℓp norm, resulting in the conjugate norm in the constraint
above, but this is well-known and we stick to the ℓ2 case for simplicity; here, gi is a Second-Order Cone
representable function.

18 W. van Ackooij et al.

It is interesting to remark that (24) implies the weaker condition

P
[

A(u)x ≤ ξ
]

≥ p ∀u ∈ U . (25)

Indeed, because in (24) the probability constraint has to hold for the maximum over all u ∈ U of A(u), a
fortiori it has to hold for any specific choice. The inverse is not true in general, as shown by the following
counterexample.

Example 1 Take U = {u1, u2} and Ξ = {ξ1, ξ2} with probability π1 = π2 = 0.5. Moreover, suppose that
there exists x̄ such that

A(u1)x̄ ≤ ξ1 but A(u1)x̄ 6≤ ξ2 , A(u2)x̄ 6≤ ξ1 but A(u2)x̄ ≤ ξ2 .

Therefore, x̄ is feasible for (25) for the choice p = 0.5: P[A(u)x̄ ≤ ξ] ≥ 0.5 however chosen u ∈ U .
However, P[A(u)x̄ ≤ ξ ∀u ∈ U] = P[∅] = 0. Numerical data may be picked as x̄ = (1, 1), ξ1 = (2, 0),

ξ2 = (0, 2), A(u1) =

(

1 1
0 0

)

, A(u2) =

(

0 0
1 1

)

. ⊓⊔

The example shows that the weaker model (25) may not behave satisfactorily: since we do not know the
underlying distribution of u, when decision x has been taken and u ∈ U turns up, the actual probability
P[A(u)x ≤ ξ] may turn out to be arbitrarily low. This is in fact analogous to the difference between
joint and individual probabilistic constraints (e.g., [2]).

5.2 Generation of problem instances

For our experiments we focussed on problems of the form

min
{

cTx : P
[

A(u)x ≤ ξ ∀u ∈ U
]

≥ p , 0 ≤ x ≤ x̄
}

, (26)

where x̄ ∈ R
n is a bound, the objective function is linear, ξ ∈ R

r has finite support Ξ and A(u), U are
as described in the previous paragraph.

Instances of problem (26) were generated by using the following procedure. We begin by setting the
problem dimensions n, |I| and |S|. We also set pi = n the common dimension of the matrices Pi involved
in the constraints. Finally, we took κi = 1/2, πs = 1/|S| uniformly, and p = 0.8. The next step consists of
randomly generating the matrix Ā = [āi]i∈I , with entries in [−10, 10]. The matrices Pi and vector c were
generated likewise with entries in [−1, 1]. Because coefficient matrices are usually sparse in real-world
problems, we generated both Ā and Pi sparse. Finally, we generated a random candidate solution xc

with entries in [0, 10] and we computed ξ̄ such that ξ̄i = āTi x
c + κi‖PT

i x
c‖ for i ∈ I. Scenarios for ξ were

generated as ξs = ξ̄ + rs, where rs was chosen in two different ways. For (at least) a fraction p of the
scenarios, rs was chosen with entries in [0, 20], so that ξs ≥ ξ̄. For the remaining (at most) 1−p fraction
of scenarios (properly rounding taking place), rs is allowed to have entries spanning [−20, 20]. Thus, it
is immediate to realize that xc is feasible for problem (26) by construction. The constant M , identical
for all scenarios, has been set by carefully analyzing the data of the instances with an ad-hoc approach.

The choice of the ℓ2 norm for U means that problem (3) has a Mixed-Integer Second-Order Cone
formulation, that can be directly solved by off-the-shelf tools like Cplex provided that it is reformulated
as a Quadratically-Constrained Quadratic Problem. By introducing auxiliary variables yi for all i ∈ I,
(26) can be rewritten by means of the following constraints

āTi x+ κiyi − ξsi ≤M s
i zs i ∈ I , s ∈ S

xT(PiP
T

i)x ≤ y2i i ∈ I (27)

which are appropriately dealt with by Cplex even if the Hessian matrix of (27) is not, strictly speaking,
positive semi-definite. Subproblem (2) can be written and solved with the same tools.

Inexact stabilized Benders’ decomposition approaches 19

5.3 Setup and results

We have generated several problem instances as follows. First we have chosen n and |I| ranging over
{50, 100} and |S| ∈ {50, 100, 500}, for a total of 12 combinations. We also varied the sparsity of Ā and
Pi in the set {1%, 0.1%, 0.01%}, but only considering the combinations of adjacent sparsity levels, i.e.,
avoiding the combinations (1%, 0.01%) and (0.01%, 1%), for a total of 7 cases. For each of the above we
generated 3 instances changing the seed of the random number generator, for a total of 12 · 7 · 3 = 252
instances. We have experimented with two different values for δTol: 10

−4, the default optimality tolerance
for MINLPs, and 10−3, considered “coarse” but still acceptable in some cases. Both are to be intended
as relative, which, via appropriate scalings, does not impact our analysis in §3 and §4, where absolute
tolerances were used for simplicity. We also set a time limit for each method of 100000 seconds, on
a cluster with Intel Xeon X5670 CPUs, each with 8 Gb of reserved memory. Both the “monolithic”
approach and all the optimization problems in the GBD one (the MILP master problem and the SOCP
subproblems) have been solved with Cplex 12.4, single-threaded. Other than that, the time limit and
optimality tolerance, no other parameters of Cplex were tuned.

We have compared the “Monolithic” approach and three variants of GBD: CP, the CPM of Algorithm 1,
Box, the TRICCPM of Algorithm 3, and Level, the LICCPM of Algorithm 4. In all cases a primal-dual
oracle was employed, where Cplex was used to solve the SOCP formulation of the subproblem (cf. (27)).
Several experiments were carried out with a dual oracle, but it was found not competitive in this setting,
and we do not report the corresponding results. The TRICCPM changes the stability center whenever a
better solution is found, i.e., β = 0, and moves through box sizes {0.005, 0.5, 1} |S|. The LICCPM uses
mechanism (19) described after Theorem 4 with α = 0.9, updates the lower bound vlowk by also solving
the standard master problem (6) at every iteration as discussed after Theorem 4, systematically chose
the last iterate as the next stability center ẑk, and uses a stabilization parameter close to the value of
0.18 which is optimal in the continuous setting [43]. Some tuning was performed, for instance about
other choices for the center update rule, but the results were quite stable.

We compare the solvers by means of performance profiles [27], which read as follows: the parameter γ
represents a scalar value, and φ(γ) the percentage of problems on which a given solver was no slower
than γ times the fastest solver on that particular problem. The value φ(0) shows which solver is the
fastest one and the value φ(∞) is the percentage of instances that the solver managed to solve. Looking
at φ(0) in Figure 1(a) shows that CP is faster in roughly 40% of the instances, whereas the other methods
are roughly each at 20%. The GBD approaches are noticeably more robust than the monolithic one.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(a) All instances

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(b) Instances with low sparsity

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(c) Instances with high sparsity

Fig. 1 Performance profiles for the different methods based on cpu time

The impact of sparsity is illustrated on Figures 1(b) and 1(c), which report performance profiles re-
stricted respectively to “low sparsity” instances ({1%, 0.1%}) and “high sparsity” ones ({0.1%, 0.01%}):
Monolithic gets more and more outperformed by the GBD as sparsity increases. This shows the poten-
tial of decomposition methods, since real-world problems are often highly sparse (even below 0.001%).

20 W. van Ackooij et al.

The impact of the stopping tolerance can be gauged by comparing Figure 1(a) with Figure 2(a), where
the performances are reported with δTol = 10−3 is required. For this coarser tolerance, the monolithic
approach outperforms the GBD ones. However, this is mostly true for dense instances only: as shown in
Figure 2(b), for sparser instances the GBD remain competitive even at a lower precision.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(a) All instances

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(b) Instances with high sparsity

Fig. 2 Performance profiles for the different methods based on cpu time with δTol = 10−3

One issue with performance profiles is that they do not discriminate among instances of widely varying
“difficulty”. That is, two solvers tested on two instances such that the first one has a running time of 2
and 1000 while and the second one has a running time of 1 and 2000 (in whichever units) would show to
have exactly the same performance profiles, while one may be interested in knowing that the first solver
is “better on harder instances although worse on easier ones”. To investigate this issue we subdivided
our instances in three classes: easy if the fastest solver takes less then one minute, intermediate if it takes
between 1 and 10 minutes, and hard otherwise. Figures 3(a), 3(b) and 3(c) show the performance of the
solvers on the easy instances (with δTol = 10−4.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(a) Instances with high sparsity

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(b) Instances with low sparsity

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(c) All instances

Fig. 3 Performance profiles for the different methods based on cpu time on the easy instances

The figures show that while Monolithic is competitive for easy instances, this is only so for dense
problems: for sparse ones, although Monolithic is fastest in around 60% of the cases, the solvers based
on GBD are far more robust. The picture is even clearer for hard instances, as shown in Figures 4(a) and
4(b): there, Monolithic is significantly outperformed also on low sparsity instances. Similar results were
obtained for the intermediate instances, and therefore we avoided to report the corresponding profiles.

Inexact stabilized Benders’ decomposition approaches 21

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(a) Instances with high sparsity

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(b) Instances with low sparsity

Fig. 4 Performance profiles for the different methods based on cpu time on the hard instances

The impact of the number of scenarios is illustrated in Figures 5(a), 5(b) and 5(c). The results show
that GBD is quite stable as |S| varies, whereas Monolithic is less and less robust as |S| increases.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(a) 50 Scenarios

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(b) 100 Scenarios

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Box
CP
Level
Monolithic

(c) 500 Scenarios

Fig. 5 Performance profiles for the different methods based on cpu time, discriminated according to the number of
scenarios |S|

Finally, we have performed some experiments related to the effect of setting a target tar <∞. This has
proved somewhat more complex than anticipated for a number of reasons. On one hand, the dual oracle,
which is the one to which the approach is most suited, was not particularly efficient in our case. On
the other hand, the unfeasible start primal-dual approach implemented in Cplex turned out to produce
feasible solutions (in particular, dual ones) rather late in the optimization. Hence, even intercepting them
as early as possible using the appropriate callbacks did not significantly improve the running times. We
therefore resorted to a somewhat abstract setting, by executing the dual oracle twice at each iteration:
once with tark = ∞, and once with a finite target (the best current value). This has been done in the
ICCPM, and only the dual solution of the exact oracle has been used to compute the feasibility cuts. We
have then compared the oracle time when the target is specified with that when it is not. On average
over all the 252 data sets, using the target resulted in a reduction of oracle time of about 77%, with a
standard deviation of around 20% and cases where the reduction was above 99%. Only in two instances
the running time increased, by a relatively minor fraction. Although these experiments disregard the
impact on the convergence speed of the different feasibility cuts produced, they do indicate that using
an inexact oracle may be beneficial.

22 W. van Ackooij et al.

All in all, our results prove that, on this class of problems, and for our specific test set, the GBD
approaches are in general competitive with the monolithic one. In particular, Monolithic is competitive
(but not necessarily the best choice on sparse instances) when δTol = 10−3, and should be preferred
only for “easy” and “dense” instances with δTol = 10−4. In all the other cases, the GBD approaches are
significantly better.

6 Conclusions and perspectives

In this paper we have studied the combination of two approaches for improving the performances of
algorithms for the minimization of a convex function v(z), given by a first-order oracle, over a finite
domain Z. One idea is to relax the conditions on the information produced by the oracle, requiring it to
only be an informative on-demand inexact one (10), so as to make each iteration cheaper. The second
idea is to employ different forms of stabilization (trust region and level) to reduce the number of oracle
calls. Employing both techniques simultaneously requires some care in the handling of the accuracy
parameters; our convergence results seem to require very weak conditions, which basically show that
the objective function may need to be computed accurately only in a small fraction of the iterates. Our
analysis should also plainly extend to the case setting of [70], i.e., the feasible set Z is not finite but is
bounded, and ∂v is locally bounded. Our results would then extend these obtained in [70], under stricter
assumptions on the oracle and δTol > 0.

Our analysis is primarily interesting for improving the performances of Generalized Benders’ Decom-
position approaches. An interesting property of oracles with on-demand accuracy is that they are able
to provide linearizations even in absence of constraint qualification for the underlining convex problem
(defining the value function). Moreover, linearizations can even be computed at points not belonging to
the domain of the value function, which may allow to implement the algorithm without using feasibility
cuts (unless the problem is infeasible). We remark that while we discuss the inexact oracle in the case
where the subproblem is convex, our analysis also applies (and it is possibly even more relevant) to
the case where it is a hard problem (e.g., [14, 40, 44, 59]), which makes obtaining good upper and lower
estimates even more time consuming.

In order to test the computational significance of the developed techniques, we have applied them on a
class of hybrid Robust and Chance-Constrained Optimization problems, arising when a linear program
is subject to two different sources of uncertainty, that need to be dealt with with different techniques
(an uncertainty set plus a finite set of scenarios). These problems allow a monolithic formulation that a
commercial solver such as Cplex can solve; however, our results show that GBD approaches are often
much more efficient, in particular for high sparsity, a large number of scenarios, and a higher final
accuracy. Also, the experiments indicate that the ideas developed in this work are promising to improve
the performances of decomposition techniques.

To conclude, this work is significant in three areas: general algorithms for the minimization of oracle-
provided convex functions over discrete sets, Generalized Benders’ Decomposition approaches, and
Chance-Constrained Optimization. Of course, further improvements are possible in all the three ar-
eas. However, we believe that our results already show that the combination of different concepts such
as probability valid inequalities, strengthening formulations for combinatorial problems and oracles with
on-demand accuracy from nonsmooth optimization will prove fruitful for solving problems as (20).

Acknowledgements The authors gratefully acknowledge financial support from the Gaspard-Monge program for Opti-
mization and Operations Research (PGMO) project “Consistent Dual Signals and Optimal Primal Solutions”. The first
and second authors would also like to acknowledge networking support by the COST Action TD1207.

References

1. van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-
like distributions. SIAM Journal on Optimization 24(4), 1864–1889 (2014)

Inexact stabilized Benders’ decomposition approaches 23

2. van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: Joint chance constrained programming for hydro reservoir
management. Optimization and Engineering 15, 509–531 (2014)

3. van Ackooij, W., Malick, J.: Decomposition algorithm for large-scale two-stage unit-commitment. Annals of Operations
Research 238(1), 587–613 (2016). DOI 10.1007/s10479-015-2029-8

4. van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles.
Computation Optimization and Applications 57(3), 555–597 (2014)

5. van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with application to joint
chance constrained energy problems. SIAM Journal on Optimization 24(2), 733–765 (2014)

6. Baena, D., Castro, J., Frangioni, A.: Stabilized Benders methods for large-scale combinatorial optimization: applica-
tions to data privacy (2015)

7. Bao, X., Sahinidis, N., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained
quadratic programs. Optimization Methods and Software 24, 485–504 (2009)

8. Ben Amor, H., Desrosiers, J., Frangioni, A.: On the Choice of Explicit Stabilizing Terms in Column Generation.
Discrete Applied Mathematics 157(6), 1167–1184 (2009)

9. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press (2009)
10. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, Engineering Applica-

tions. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)
11. Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1),

238–252 (1962)
12. Boyd, S., Vandenberghe, L.: Convex optimization. Available at http://www.stanford.edu/ boyd/cvxbook ISBN 0

521 83378 7 (2006)
13. Calafiore, G.C., Campi, M.C.: Uncertain convex programs: Randomized solutions and confidence levels. Mathematical

Programming 102(1), 25–46 (2005)
14. Caroe, C.C., Tind, J.: L-shaped decomposition of two-stage stochastic programs with integer recourse. Math. Pro-

gramming 83, 451–464 (1998)
15. Codato, G., Fischetti, M.: Combinatorial benders’ cuts for mixed-integer linear programming. Operations Research

54(4), 756–766 (2006)
16. Costa, A.M.: A survey on benders decomposition applied to fixed-charge network design problems. Computers &

Operations Research 32(6), 14291450 (2005)
17. d’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: On Interval-Subgradient Cuts and No-Good Cuts. Operations

Research Letters 38, 341–345 (2010)
18. d’Antonio, G., Frangioni, A.: Convergence Analysis of Deflected Conditional Approximate Subgradient Methods. SIAM

Journal on Optimization 20(1), 357–386 (2009)
19. de Klerk, E.: The complexity of optimizing over a simplex, hypercube or sphere: a short survey. Central European

Journal of Operations Research 16(2), 111–125 (2008)
20. de Oliveira, W.: Regularized nonsmooth optimization methods for convex minlp problems. TOP pp. 1–28 (2016).

DOI 10.1007/s11750-016-0413-4
21. Dentcheva, D.: Optimization models with probabilistic constraints. In: G. Calafiore, F. Dabbene (eds.) Probabilistic

and Randomized Methods for Design under Uncertainty, 1st edn., pp. 49–97. Springer (2006)
22. Dentcheva, D.: Optimisation models with probabilistic constraints. In: A. Shapiro, D. Dentcheva, A. Ruszczyński

(eds.) Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9, pp.
87–154. SIAM and MPS, Philadelphia (2009)

23. Dentcheva, D., Lai, B., Ruszczyński, A.: Dual methods for probabilistic optimization problems. Mathematical Methods
of Operations Research 60(2), 331–346 (2004)

24. Dentcheva, D., Martinez, G.: Regularization methods for optimization problems with probabilistic constraints. Math.
Programming (series A) 138(1-2), 223–251 (2013)

25. Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points for discrete distributions in stochastic
programming. Mathematical Programming 89, 55–77 (2000)

26. Dinter, J.V., Rebenack, S., Kallrath, J., Denholm, P., Newman, A.: The unit commitment model with concave emissions
costs: a hybrid benders decomposition with nonconvex master problems. Annals of Operations Research 210(1), 361–
386 (2013)

27. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical Programming
91, 201–213 (2002). URL http://dx.doi.org/10.1007/s101070100263

28. Fábián, C.: Bundle-type methods for inexact data. In: Proceedings of the XXIV Hungarian Operations Researc
Conference (Veszprém, 1999), vol. 8 (special issue, T. Csendes and T. Rapcsk, eds.), pp. 35–55 (2000)

29. Fábián, C., Wolf, C., Koberstein, A., Suhl, L.: Risk-averse optimization in two-stage stochastic models: computational
aspects and a study. SIAM Journal on Optimization 25(1), 28–52 (2015)

30. Feltenmark, S., Kiwiel, K.: Dual applications of proximal bundle methods, including lagrangian relaxation of nonconvex
problems. SIAM Journal on Optimization 10(3), 697–721 (2000)

31. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1-3), 23–47 (2003)
32. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders cuts. Mathematical Programming 124(1),

175–182 (2010)
33. Floudas, C.A.: Generalized benders decomposition. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of Optimiza-

tion, 2nd edn., pp. 1163–1174. Springer - Verlag (2009)
34. Frangioni, A.: Generalized bundle methods. SIAM Journal on Optimization 13(1), 117–156 (2002)
35. Frangioni, A., Gendron, B.: A stabilized structured dantzig-wolfe decomposition method. Mathematical Programming

B 104(1), 45–76 (2013)
36. Frangioni, A., Gorgone, E.: Generalized bundle methods for sum-functions with ”easy” components: Applications to

multicommodity network design. Mathematical Programming 145(1), 133–161 (2014)

24 W. van Ackooij et al.

37. Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope. Mathematical
Programming 104(2-3), 375–388 (2005)

38. Geoffrion, A.M.: Generalized benders decomposition. Journal of Optimization Theory and Applications 10(4), 237–260
(1972)

39. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II, 2nd edn. No. 306 in Grundlehren
der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg (1996)

40. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Programming 96, 33–60 (2003)
41. Kelley, J.: The cutting-plane method for solving convex programs. Journal of the Society for Industrial and Applied

Mathematics 8(4), 703–712 (1960)
42. Kolokolov, A., Kosarev, N.: Analysis of decomposition algorithms with benders cuts for p-median problem. Journal of

Mathematical Modelling and Algorithms 5(2), 189–199 (2006)
43. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Programming 69(1), 111–147

(1995)
44. Li, X., Chen, Y., Barton, P.I.: Nonconvex generalized benders decomposition with piecewise convex relaxations for

global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51(21), 7287–7299
(2012)

45. Liu, X., Küçükyavuz, S., Luedtke, J.: Decomposition algorithm for two-stage chance constrained programs. Mathe-
matical Programming Series B pp. 1–25 (2014). DOI 10.1007/s10107-014-0832-7

46. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with
finite support. Mathematical Programming 146(1-2), 219–244 (2014)

47. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM
Journal on Optimization 19, 674–699 (2008)

48. Marsten, R., Hogan, W., Blankenship, J.: The BOXSTEP method for large-scale optimization. Operations Research
23(3), 389–405 (1975)

49. Oliveira, F., Grossmann, I., Hamacher, S.: Accelerating Benders stochastic decomposition for the optimization under
uncertainty of the petroleum product supply chain. Computers & Operations Research 49(1), 47–58 (2014)

50. de Oliveira, W., Sagastizábal, C.: Level bundle methods for oracles with on demand accuracy. Optimization Methods
and Software 29(6), 1180–1209 (2014)

51. de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for
inexact oracles. Math. Prog. Series B 148, 241–277 (2014)

52. Prékopa, A.: Dual method for a one-stage stochastic programming problem with random rhs obeying a discrete
probabiltiy distribution. Z. Operations Research 34, 441–461 (1990)

53. Prékopa, A.: Probabilistic programming. In: A. Ruszczyński, A. Shapiro (eds.) Stochastic Programming, Handbooks

in Operations Research and Management Science, vol. 10, pp. 267–351. Elsevier, Amsterdam (2003)
54. Prékopa, A., Vı́zvári, B., Badics, T.: Programming under probabilistic constraints with discrete random variable. In:

F. Giannessi, S. Komlósi, T. Rapcsák (eds.) New Trends in Mathematical Programming : Hommage to Steven Vajda,
Applied Optimization, vol. 13, pp. 235–255. Springer (1998)

55. Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhe-
dra. Mathematical Programming 93, 195–215 (2002)

56. Ruszczyński, A.: Decomposition methods. In: A. Ruszczyński, A. Shapiro (eds.) Stochastic Programming, Handbooks

in Operations Research and Management Science, vol. 10, pp. 141–211. Elsevier, Amsterdam (2003)
57. Sahiridis, G.K.D., Minoux, M., Ierapetritou, M.G.: Accelerating benders method using covering cut bundle generation.

International Transactions In Operational Research 17, 221–237 (2010)
58. Santoso, T., Ahmed, S., Goetschalcks, M., Shapiro, A.: A stochastic programming approach for supply chain network

design under uncertainty. European Journal of Operational Research 167(1), 96–115 (2005)
59. Sen, S., Sherali, H.: Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer program-

ming. Mathematical Programming 106, 203–223 (2006)
60. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM

series on optimization, vol. 9. SIAM and MPS, Philadelphia (2009)
61. Sherali, H., Lunday, B.J.: On generating maximal nondominated benders cuts. Annals of Operations Research 210(1),

57–72 (2013)
62. van Slyke, R., Wets, R.B.: L-shaped linear programs with applications to optimal control and stochastic programming.

SIAM Journal of Applied Mathematics 17, 638–663 (1969)
63. Tahanan, M., van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale unit commitment under uncertainty: a

literature survey. 4OR 13(2), 115–171 (2015). DOI 10.1007/s10288-014-0279-y
64. Tran-Dinh, Q., Necoara, I., Diehl, M.: Fast inexact decomposition algorithms for large-scale separable convex opti-

mization. Optimization (to appear) pp. 1–33 (2015). DOI 10.1080/02331934.2015.1044898
65. Wentges, P.: Accelerating benders’ decomposition for the capacitated facility location problem. Mathematical Methods

of Operations Research 44(2), 267–290 (1996)
66. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques.

Optimization and Engineering 3, 253–280 (2002)
67. Wolf, C., Fábián, C.I., Koberstein, A., Stuhl, L.: Applying oracles of on-demand accuracy in two-stage stochastic

programming a computational study. European Journal of Operational Research 239(2), 437–448 (2014)
68. Yang, Y., Lee, J.M.: A tighter cut generation strategy for acceleration of benders decomposition. Computers and

Chemical Engineering 44, 84–93 (2012)
69. Zakeri, G., Philpott, A., Ryan, D.M.: Inexact cuts in benders decomposition. SIAM Journal on Optimization 10(3),

643–657 (2000)
70. Zaourar, S., Malick, J.: Quadratic stabilization of benders decomposition pp. 1–22 (2014). Draft submitted; Privately

communicated
71. Zappe, C.J., Cabot, A.V.: The application of generalized benders decomposition to certain nonconcave programs.

Computers Math. Applic. 21(6/7), 181–190 (1991)

