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ABSTRACT

We propose two time elements for the orbit propagator named Dromo. One is linear and the other constant with
respect to the independent variable, which coincides with the osculating true anomaly in the Keplerian motion.
They are defined from a generalized Kepler’s equation written for negative values of the total energy and, unlike
the few existing time elements of this kind, are free of singularities. To our knowledge it is the first time that a
constant time element is associated with a second-order Sundman time transformation. Numerical tests to assess the
performance of the Dromo method equipped with a time element show the remarkable improvement in accuracy for
the perturbed bounded motion around the Earth compared to the case in which the physical time is a state variable.
Moreover, the method is competitive with and even better than other efficient sets of elements. Finally, we also
derive a time element for a null and positive total energy.
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1. INTRODUCTION

An important and powerful tool in celestial mechanics is
represented by the differential transformation of the physical
time t to a new independent variable s, sometimes called
fictitious time, as given by:

dt = c rαds, (1)

with c in general being a function of the position and velocity, r
the orbital radius, and α a positive real number.

The above transformation is sometimes called a “generalized
Sundman transformation” of α order following the work of the
Finnish astronomer Carl Sundman in 1912, who succeeded in
the exclusion of binary collisions in the three-body problem
by means of Equation (1) with c and α both equal to one.3

In this way he derived a series expansion for the coordinates
of the three bodies valid for all time (Siegel & Moser 1971,
Chapter 1).

The benefits brought by the employment of time transfor-
mations are many and include a performance increase in the
numerical propagation of the orbital motion under the Newto-
nian attraction of a central body and a small perturbation. This
comes as a result of several factors.

First of all, they can reduce or eliminate the Lyapunov in-
stability of the unperturbed elliptical two-body problem (Stiefel
& Scheifele 1971, p. 75; Bond 1982), as shown by Baumgarte
(1972) and Velez (1974), with a consequent reduction of the
global numerical integration error. Secondly, they produce
an analytic regulation of the integration step size (Stiefel &
Scheifele 1971, pp. 77–78), with a consequent uniformization
and reduction of the local truncation error over one orbital revo-
lution (Velez 1974; Feagin & Mikkilineni 1976; Velez & Hilin-
ski 1978). Such uniformization has the important advantage of
allowing the use of fixed step size numerical methods even in

3 One should note that the same time transformation had been adopted a few
years before by the Italian mathematician Tullio Levi-Civita (1906) together
with a change of the spatial variables for regularizing the restricted three-body
problem.

the numerical integration of highly eccentric orbits (Janin 1974;
Velez 1974) thus avoiding resorting to more sophisticated, and
in some cases less efficient, variable step size schemes.

Further discussions and references about the aspects of
stabilization, uniformization of the local truncation error, and
numerical error propagation related to the usage of a time
transformation in the perturbed two-body problem can be found
in Nacozy (1976a).

As a consequence of changing the independent variable,
Equation (1) is added to the system of differential equations with
physical time becoming a new state variable. Such an equation
may exhibit dynamical instability itself depending on the value
of the exponent α. As noted by Velez (1974), the benefit of the
time stabilization of the Newtonian equations of motion can be
significantly deteriorated by the numerical error of the physical
time. This deleterious effect will be higher when time appears
explicitly inside the perturbative terms and is still present in the
case of time-independent perturbations whenever the position is
required at specific epochs.

Numerical results have shown that the local truncation error
associated with physical time, and therefore the global error of
the state vector, can be reduced with the introduction of new
state variables called time elements. A time element was first
defined by Stiefel and Scheifele as “any quantity which, during
a pure Kepler motion, is a linear function of the independent
variable” (Stiefel & Scheifele 1971, p. 83). Two well-known
examples of time elements are given by the time of pericenter
passage and the mean anomaly in relation to the physical time.
In practice, one common way of introducing a time element is
to analytically integrate Equation (1) in the unperturbed case for
the selected values of c and α. As a result, a relation between the
time and the time element can be established, and by exploiting
methods of variation of parameters, the differential equation of
the time element is derived for the perturbed motion.

The research of time elements to be employed in the numer-
ical computation of orbits started at the end of the 1960s and
continued mainly until the beginning of the 1980s. In the litera-
ture, two kinds of time elements appear depending on whether
they are constant (i.e., the time element is a prime integral)
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or linear in Keplerian motion with respect to the independent
variable (s). As pointed out by Nacozy (1976b), these time el-
ements differ according to two features. Linear time elements
lead to differential equations that are free of secular terms, hence
avoiding the quadratic growth of the local truncation error. On
the other hand, constant time elements are affected by a much
smaller local truncation error.

Stiefel & Scheifele (1971, Section 18) develop a linear
time element with respect to the independent variable for the
Kustaanheimo–Stiefel (K-S) regularization and report of the
increased accuracy in the computation of time as observed
by numerical experiments (see also Velez 1974). As recently
discovered by Fukushima (2005), the reason for the improve-
ment lies in a change of the error growth of the physical time
from quadratic to linear associated with this time element. The
Stiefel–Scheifele time element has also been proposed in com-
bination with the Newtonian equations of motion (Baumgarte
1972; Baumgarte & Stiefel 1974). Numerical tests show that the
integration of the stabilized equations in Cartesian coordinates
equipped with a time element can be as accurate as a regular-
ized set of elements (Janin 1974). An interesting property of the
Stiefel–Scheifele time element is that it can be incorporated as
a coordinate into several canonical sets of variables by means of
a canonical transformation applied in the extended phase space
(Ferrándiz & Sansaturio 1995).

Another key contribution to the research of time elements
for time transformations (1) is found in the work of Nacozy,
who explores three different linear time elements related to the
eccentric (α = 1), true (α = 2), and intermediate (α = 3/2)
anomalies, respectively (Nacozy 1981). Because the definition
given by Nacozy stems from Kepler’s equation in its classic
form, the differential equations result in cumbersome expres-
sions that contain the semi-major axis, eccentricity, and the
anomalies. By writing Kepler’s equation in terms of the state
vector and the Keplerian energy (as done in Stiefel & Scheifele
1971), Kwok & Nacozy (1981) obtain much more compact
derivatives of the Nacozy’s time elements wherein the position
and velocity appear explicitly. One order of magnitude in the
accuracy of the position is gained by the three time elements
with respect to the integration of Equation (1). Numerical de-
vices to further increase the accuracy are discussed in Nacozy
(1976b). It is worth noting that while the time element related
to α = 1 is the already known Stiefel–Scheifele time element
applied to the Newtonian equations, as far as we know, Nacozy
is the first to propose time elements for the true and intermediate
anomalies.

More recent work on linear time elements associated with a
generalized Sundman transformation with α = 2 is found in a
series of papers by Ferrándiz et al. A time element is attached
to the Burdet–Ferrándiz (B-F) focal variables in Ferrándiz &
Sansaturio (1990). The definition is obtained by applying a
similar technique employed by Nacozy (1981) but with two
key differences. First, Kepler’s equation is considered in a
generalized form where the total energy replaces the Keplerian
energy, and second, the time element is proportional to the
independent variable while Nacozy’s is proportional to the
osculating true anomaly, the two angles coinciding only in
the case of unperturbed motion. The benefit of this time
element for the numerical integration of the perturbed motion
along highly eccentric orbits is analyzed in three papers by
Ferrándiz et al. (1991, 1992b, 1993). A sensitive decrease of
the accumulated position error under the J2 perturbation is seen
when compared to the original B-F method where the physical

time is integrated. Furthermore, the improvement brought by
the use of a time element in B-F focal variables is much
more significant than for the corresponding K-S regularization
whose performance is only slightly improved by a time element.
This advantage increases for higher eccentricities and still
holds for long-term integrations. Time-dependent perturbations
deteriorate the efficiency of the method, especially with a fixed
step size numerical integrator; nonetheless, when compared with
many other formulations, it continues to show the best behavior
with a variable step size scheme.

The constant generated by the analytic integration of the
time transformation can be selected as a time element, which,
in this case, takes the physical interpretation of the time
of passage through a certain point along the orbit. Burdet
(1968) (see also Bond & Allman 1996, Section 9) develops
a set of elements linked to the spatial variables of Sperling’s
regularization together with four temporal integrals in place of
the physical time. The time element is one of these integrals and
it represents the initial time, while the other three are functions
of the spatial elements. Bond (1974) includes the same time
element as Burdet in the uniform and regular elements for
the K-S method and shows that the overabundant integrals for
computing the time eliminate the mixed secular terms from the
derivative of the time element with a consequent improvement in
efficiency.

The time of pericenter passage is employed as a time ele-
ment associated with a time transformation of the type given in
Equation (1) in two works. Baumgarte (1976) introduced it in
conjunction with a general time transformation, but two draw-
backs discourage its use: the singularity for circular orbits and
the presence of the multi-value arctangent function. The latter
was circumvented by adding a stabilized differential equation
for the time. Then, more recently Arakida & Fukushima (2001)
inserted it into the framework of the element method proposed
by Stiefel in 1967 for the K-S regularization.

In this paper, we define and test two time elements for
a special perturbation method (Baù et al. 2013) that relies
on a generalized Sundman time transformation of the form
shown in Equation (1) with the exponent α set equal to 2.
The method, called Dromo(P), represents a generalization of
the original formulation published by Peláez et al. (2007) for
taking advantage of perturbations deriving from a potential.
The state of the propagated particle is described by means of
the physical time and seven generalized orbital elements that
are strictly related to the variables of the B-F linearization,
namely the inverse of the orbital radius and the unit vector of
the position. Originally introduced by Burdet (1969) and later
by Ferrándiz (1988) and Ferrándiz et al. (1992a) as canonical
coordinates, they transform the two-body problem into four
harmonic oscillators with unit frequency when the independent
variable obeys Equation (1) wherein α = 2 and c is the inverse
of the angular momentum per unit mass.

The motivation of our work comes from the results of the
analysis done by Ferrándiz on the numerical behavior of the
B-F regularization. In Ferrándiz et al. (1992a), it is shown that
for highly eccentric orbits perturbed by the J2 zonal harmonic
of Earth’s gravity field, the step size is completely driven by the
integration of the physical time. This interesting feature, which
is not observed in the K-S regularization, suggests that a time
element can be very effective in the B-F method, at least when
the perturbation does not explicitly depend on the physical time.
This is in line with results shown in Baù et al. (2013) in relation
to the Dromo(P) method.
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The equations for implementing the first time element in the
framework of the Dromo(P) method are obtained in Section 2.
From the generalized Sundman time transformation, a quadra-
ture yields the generalized version of Kepler’s equation, which
is modified to introduce a linear time element in the indepen-
dent variable. After a direct differentiation, the derivative of the
time element is determined. The resulting time element is not
affected by singularities which instead appear in similar time
elements presented in the literature. With just a little effort, an
alternative time element, which is a constant in the unperturbed
motion, is also developed. As far as we know, it represents the
first example of a constant time element relative to a time trans-
formation (1) with α = 2, which is not affected by the limitation
due to the multi-value arctangent function. Both time elements
are presented for a negative total energy and we address the case
of positive and null energy in Appendix B.

In Section 3, using the support of numerical examples, we
corroborate the usefulness of completing the Dromo(P) set
of elements with a time element. By restricting the problem
to the perturbed motion around the Earth, we monitor two
performance metrics: the accuracy achieved at a given epoch
corresponding to a few tens of revolutions and the position and
time error accumulated throughout thousands of revolutions.
Both conservative and time-dependent perturbations are applied
with different initial eccentricities. As a first goal, we propose
showing the improvement caused in Dromo(P) when the spatial
elements are equipped with the time elements described in this
paper as opposed to the physical time as in Baù et al. (2013).
Finally, we compare the performance of the eight generalized
orbital elements of Dromo(P) with respect to other efficient and
popular sets of elements.

Non-dimensional quantities are used throughout this paper.
For the reference length, we use the orbital distance at the initial
epoch, for the reference time, we use the inverse of the mean
motion of a circular orbit with a radius equal to the reference
length, and for the reference mass, we use the mass of the
propagated body.

2. TWO TIME ELEMENTS RELATED TO THE
TIME OF PERICENTER PASSAGE

The two proposed time elements are developed in the frame-
work of the spatial variables of Dromo(P) which are recalled
below.

2.1. The Spatial Variables of the Dromo(P) Method

Let r and v be the position and velocity vectors of the
propagated body relative to a central body. The particle is acted
upon by the gravitational attraction of the central body and a
perturbing force that is regarded as the sum of two contributions:

F = −∂ U (t, r)

∂ r
+ P , (2)

where U is the disturbing potential energy and P includes those
perturbations that do not arise from a potential U .

Dromo is a formulation of the perturbed two-body problem
that describes the motion by means of the physical time and
seven spatial elements, which are constants in the Keplerian
case. In its most recent version (Baù et al. 2013), referred to
as Dromo(P), a generalized Sundman transformation relates the
time t to the new independent variable φ:

dt

dφ
= r2

c
, (3)

where here c (h̃ in Baù et al. 2013) is called the generalized
angular momentum and reads:

c =
√

h2 + 2 r2 U , (4)

with h = |r × v| being the orbital angular momentum and
r = |r| the orbital radius. As detailed in Baù et al. (2013),
c can be obtained from the angular momentum definition by
formally replacing the Keplerian energy εK with the total energy
ε = εK + U .

In a similar fashion, one can introduce the generalized
eccentricity g as:

g =
√

1 + 2 ε c2, (5)

and the generalized true anomaly θ , univocally defined in the
range [0, 2π ) by:

g sin θ = c
dr

dt
, g cos θ = c2

r
− 1. (6)

It can be readily verified that, for the case in which U = 0, the
generalized quantities c, θ , and g coincide with the osculating
angular momentum, true anomaly, and eccentricity, respectively.

The first two spatial Dromo(P) elements are defined as (see
Equations (52) and (53) on p. 65 of Baù et al. 2013):

ζ1 =
(

c

r
− 1

c

)
cos φ +

dr

dt
sin φ, (7)

ζ2 =
(

c

r
− 1

c

)
sin φ − dr

dt
cos φ. (8)

These equations can now be written in a more compact form by
employing Equation (6) to eliminate the terms r and dr/dt :

ζ1 = g

c
cos (φ − θ ) , (9)

ζ2 = g

c
sin (φ − θ ) . (10)

The angle:
γ = φ − θ (11)

has an important physical interpretation which is explained in
the following. Let us first introduce the orbital frame orthonor-
mal basis (i, j , k):

k = r × v

h
, i = r

r
, j = k × i , (12)

and consider a generic perturbation F:

F = R i + T j + N k.

Next, let us introduce the generalized eccentricity vector:

g = −i + w × c, (13)

where the generalized velocity and angular momentum vectors
obey:

w = dr

dt
i +

c

r
j , c = c k. (14)
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Figure 1. Axes x and y of the intermediate reference frame as viewed from
the k axis (Equation (12)). The propagated body occupies the position P along
an osculating ellipse with the center in C, one focus in F, and the eccentricity
vector indicated by e. The elements ζ1 and ζ2 of the Dromo(P) formulation are
the projections of the generalized eccentricity vector g (Equation (13)) along x
and y, respectively.

After substituting the above expressions into Equation (13) and
taking into account Equation (6) we have:

g = g (i cos θ − j sin θ ) . (15)

Moreover, Equations (9) and (10) invite one to introduce two
orthogonal unit vectors, x and y, lying on the orbital plane such
that:

g = c (ζ1 x + ζ2 y) = g (x cos γ + y sin γ ) . (16)

Let us compose the basis (x, y, z) and call it the intermediate
frame (analogous to the ideal frame—as it was originally called
by the astronomer P. A. Hansen in 1857—employed by Deprit
1975). We deduce from Equations (15) and (16) that the unit
vectors x and y are obtained from i and j by a rotation of φ
around the axis associated with k as shown in Figure 14:

x = i cos φ − j sin φ,

y = i sin φ + j cos φ.

It follows that the angular velocity ωI of the intermediate frame
with respect to a fixed frame is the composition of a rotation from
the fixed frame to the orbital frame with an angular velocity ωO
(see Equation (14) on p. 3 of Deprit 1975) and a rotation from
the orbital frame to the intermediate frame with the angular
velocity ωIO = −(dφ/dt) k:

ωI = ωO + ωIO = N
r

h
i +

h − c

r2
k. (17)

Equations (15) and (16) show that the angles φ and γ describe,
respectively, the angular position of the particle P and the
rotation of the generalized eccentricity vector g with respect
to the vector x of the intermediate frame. In the case of pure
Keplerian motion, g becomes the eccentricity vector e and γ
represents the orientation of the line of apsides with respect

4 The intermediate frame introduced here would represent the ideal frame in
Deprit (1975) if φ were defined by the transformation (3) with the angular
momentum h in place of its generalized counterpart c. Therefore, the two
reference frames coincide if the disturbing potential U is zero.

to the axis associated with x, which is fixed according to
Equation (17). If only the perturbation P is present, that is
U = 0, γ still measures the angular displacement of e reckoned
from x but it is not a constant since both the directions of e
and x are affected by P . As shown in Appendix II of Baù et al.
(2013), γ can be expressed as (U = 0):

γ = ω − ω0 +
∫ Ω

Ω0

cos i dκ , (18)

where ω, Ω, and i are the argument of pericenter, the longitude
of the ascending node, and the inclination of the osculating orbit.
Also note that when the out-of plane component of P is zero,
then x is fixed (as can be seen from Equation (17)) together
with the orientation of the orbital plane, and as predicted by
Equation (18), γ is simply equal to the variation of ω with respect
to its initial value ω0. Such a straightforward interpretation of γ
and, in turn, of ζ1 and ζ2 has been exploited in two recent papers
by Bombardelli et al. (2011, 2012) to develop a perturbation
theory for the orbit propagation of a point mass perturbed by a
constant tangential thrust.

The spatial orbital elements ζ4, ζ5, ζ6, and ζ7 are the
components of a unit quaternion ζ that describes the orientation
of the intermediate frame except for a constant rotation φ0
around the k axis. More precisely, if we indicate with (x0, y0, k)
the reference frame associated with ζ then we have:

x0 = x cos φ0 + y sin φ0, y0 = −x sin φ0 + y cos φ0,

where φ0 is the value taken by φ at the initial time t = 0. The
inertial orientation of the orbital frame can be determined from
the intermediate frame by an additional rotation of φ −φ0 in the
common direction identified by k.

Finally, the remaining element, ζ3, is defined as:

ζ3 = 1

c
. (19)

As we pointed out at the end of Section 4 in Baù et al. (2013), the
total energy should be preferred as a dependent variable instead
of ζ3 whenever a disturbing potential U is applied.

In summary, the variables ζ1, ζ2, and ζ3 describe the dynamics
in the orbital frame and ζ4, ζ5, ζ6, and ζ7, along with φ and φ0,
fix the orientation of the orbital frame with respect to a fixed
frame so that the position and velocity of the propagated body
can be computed at any time t.

Equations (9) and (10) are the starting point of our approach
to develop a time element for the Dromo(P) method.

2.2. Generalized Kepler’s Equation

Equation (6) can be rewritten in the form:

r = c2

1 + g cos θ
,

dr

dt
= g sin θ

c
. (20)

From here on, we assume that the total energy is negative,
ε < 0, which implies that 0 � g < 1 (Equation (5)), while
the case ε � 0 is addressed in Appendix B. Analogous to the
generalized quantities previously described, we now introduce
the generalized eccentric anomaly, G, as fully defined by:

sin G =
√

1 − g2 sin θ

1 + g cos θ
, cos G = g + cos θ

1 + g cos θ
. (21)
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The radial distance and its time-derivative (Equation (20)) can
be written in terms of G with the aid of the above relations and
by exploiting Equation (5) to eliminate the explicit dependency
on c:

r = g cos G − 1

2 ε
,

dr

dt
=

√−2 ε g sin G

1 − g cos G
. (22)

In the case where the generalized eccentricity and total energy
are constant in time, which includes unperturbed motion as a
particular case, the former equation is differentiated with respect
to time and with the help of the latter we find that the differentials
of t and G obey:

dt = r√−2 ε
dG, (23)

where r is a function of G. Finally, the integration of
Equation (23) yields the generalized Kepler’s equation:

t = τp +
1

(−2 ε)3/2 (G − g sin G) , (24)

where τp can be regarded as a generalized time of pericenter
passage.

2.3. “Linear” Time Element ζ0

In the Dromo(P) method, the variable time is obtained by the
numerical integration of Equation (3). Here we introduce a time
element to be used in place of the physical time. Let us define
the quantity:

ζ0 = τp +
θ

(−2 ε)3/2 .

Because the generalized true anomaly θ differs from φ by an
arbitrary constant in the absence of perturbations, the element
ζ0 defined above is a linear function of the independent variable
for Keplerian motion and can be adopted as a time element in
our orbit propagation scheme.

From the generalized Kepler’s equation (24) ζ0 is related to
the physical time as:

ζ0 = t − 1

(−2 ε)3/2 (G − θ − g sin G) . (25)

We show in Appendix A that the angular difference G − θ can
be expressed in the convenient form:

G − θ = −2 arctan

(
g sin θ

1 + g cos θ +
√

1 − g2

)
, (26)

which is analogous to the relation satisfied by the eccentric
and true anomalies (Broucke & Cefola 1973, Equation (1)). It
is worth noting that since g < 1, the denominator is always
positive and therefore G−θ is a continuous function. As shown
by Equation (6), the terms g sin θ and g cos θ are functions of the
orbital radius and radial velocity which, in turn, are computed
from (Baù et al. 2013):

r = 1

ζ3 s
,

dr

dt
= u, (27)

where the generalized transverse velocity (s) and the radial
velocity (u) obey:

s = ζ3 + ζ1 cos φ + ζ2 sin φ, (28)

u = ζ1 sin φ − ζ2 cos φ. (29)

From Equations (6) and (27) we obtain the relations:

g sin θ = u

ζ3
, g cos θ = s

ζ3
− 1. (30)

The remaining term to work out in Equation (25) is g sin G. By
manipulating Equations (22) and performing the substitutions
(27) we find:

g sin G = u
√−2 ε

ζ3 s
. (31)

Equation (26) along with Equations (5), (19), and (30), and
Equation (31) finally allow us to write Equation (25) in the form:

ζ0 = t − u

2 ε ζ3 s
− 1

ε
√−2 ε

arctan

(
u

s +
√−2 ε

)
. (32)

This equation is a fundamental relation to be used for initializing
ζ0 at t = 0 and for updating the time at each integration step
(Appendix A contains more details on the implementation of
the time element ζ0 in the Dromo(P) method). Note that the
employment of a linear time element has completely avoided
the difficulty related to the multi-value arctangent function.

The last necessary step for the use of the variable ζ0 in
an orbit propagation scheme is to relate its derivative to the
remaining variables of the method and the perturbing terms. By
differentiating Equation (32) with respect to φ and after carrying
through several algebraic manipulations, which are outlined in
Appendix A, the final equation is:

dζ0

dφ
= a3/2

[
1 +

dε

dφ

(
6 a arctan

(
u

f + w

)
+ k1

)

+

(
R

ζ3 s
− 2U

)
k2

]
, (33)

where:

k1 =
√

a u

s2

(
ζ3 + s

f
+

2 w

ζ3
+ 1

)
, k2 = 1

s2

(
f

ζ3
+

w

f
+

u2

f s

)
,

(34)

a = − 1

2 ε
, (35)

w = ζ1 cos φ + ζ2 sin φ, (36)

f = ζ3 +
√−2 ε, (37)

s and u are found in Equations (28) and (29), and (Baù et al.
2013):

dε

dφ
= 1

ζ3 s2

(
Rp u + Tp

√
s2 − 2U +

∂ U
∂ t

)
, (38)

with Rp = P · i and Tp = P · j .
With regard to the singularities that affect Equations (32)

and (33), we see that the only ones are represented by ζ3 = 0
and s = 0 which correspond to an infinite orbital distance and
rectilinear motion. The former has little practical significance
because we assume that the propagation occurs inside the
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sphere of influence of a central body which can possibly be
changed if the orbital distance becomes sufficiently large. The
latter, inherited by the B-F linearization, represents an unusual
dynamical condition for artificial as well as natural bodies.

Time elements related to a time transformation of the kind
considered in Equation (1) with α = 2 have been developed
by just a few authors (see the Introduction). The time elements
proposed by Nacozy (1981) and Ferrándiz & Sansaturio (1990)
are similar to that presented here, but they both suffer from
one more singularity than our time element, which is when the
osculating and generalized eccentricities, respectively, are zero.
The non-singular nature of the Dromo(P) elements avoids this
kind of singularity which can produce a loss of accuracy for
near-circular motion.

2.4. “Constant” Time Element τ0

In Keplerian motion, the time element ζ0 grows linearly
with φ at a rate of a3/2. This entails the presence, on the
right-hand side of the differential Equation (33), of a zero-
order term with respect to the perturbation, which may have a
dominant contribution to the local truncation error generated by
the numerical integration of Equation (33) for weakly perturbed
motion. In the end, this would affect the computation of the
physical time through Equation (32) and degrade the accuracy
of the propagation method as observed by Nacozy (1976b).

In light of these considerations, we seek a time element that
behaves like a constant in the unperturbed motion, which would
eliminate the leading addend in Equation (33). In the literature
we have encountered only a few examples of time elements of
this kind (as outlined in the Introduction).

At first sight, one would be tempted to employ the generalized
time of pericenter passage τp (Equation (24)) as a time element
that remains constant in the unperturbed motion. Unfortunately,
this approach is doomed to failure since the variable G in the
generalized Kepler’s equation (24) cannot be properly evalu-
ated from Equation (21) due to the discontinuous multi-value
arctangent function. One possible way to partially overcome
this difficulty is to compute G from Equation (26) where θ is
given by φ − γ , as follows from Equation (11). Since we have
γ = atan2 (ζ2, ζ1) (Equations (9) and (10)) one has just shifted
the problem to the computation of the angle γ . Even if γ is
a slowly varying angle compared with G, a secular drift in-
duced by the perturbations will generate a discontinuity for a
sufficiently long propagation time. Notably, Baumgarte (1976)
overcomes a similar obstacle at the price of adding a differential
equation for the time modified by a control term that depends
on the time element.

In this paper, we pursue a different approach. The new time
element is defined as:

τ0 = ζ0 − a3/2 φ, (39)

where a is related to the total energy as shown in
Equation (35). By comparison of Equations (24) and (25)
and taking into account Equation (39), one finds that τ0 =
τp − a3/2 γ , where γ is the perturbing angle introduced in
Equation (11), and as a consequence, τ0 is a constant in the
absence of perturbations. After substituting for ζ0 in Equation
(32), by exploiting Equation (39), we end up with (ε < 0):

t = τ0 − a u

ζ3 s
+ a3/2

(
φ − 2 arctan

(
u

f + w

))
, (40)

where w and f are given in Equations (36) and (37). The
derivative of τ0 with respect to φ is easily determined by

differentiating Equation (39) with the help of Equations (33),
(35), and (38) to yield:

dτ0

dφ
= a3/2

[
dε

dφ

(
6 a arctan

(
u

f + w

)
− 3 a φ + k1

)

+

(
R

ζ3 s
− 2U

)
k2

]
, (41)

where k1 and k2 are provided in Equation (34). As expected,
the right-hand side vanishes in the two-body problem. Unlike
ζ0, the local truncation error of τ0 is scaled by the perturbations
and the contribution of τ0 to the physical time is much smaller
compared with the sum of the other terms in Equation (40).
However, the derivative of τ0 exhibits a secular growth as long
as non-conservative perturbations are applied, which induces a
quadratic increase in the error. By contrast, the rate of change
of ζ0 shown in Equation (33) is periodic and a linear evolution
of the error is expected.

For their complementary features, one may think to start the
orbit propagation with τ0 up to a selected number of revolutions
to then switch to ζ0, through Equation (39), which is more
recommended for long-term propagations.

In the next section, we combine τ0 and ζ0 with the seven
spatial elements of Dromo(P) and test the resulting formulations.

3. NUMERICAL EXPERIMENTS

The time elements ζ0 (Equations (32) and (33)) and τ0
(Equations (40) and (41)) are applied here, in combination
with the spatial variables of the Dromo(P) method, to a series
of benchmark orbital propagation problems. The resulting
formulations, which are based on eight generalized orbital
elements, are compared with the original Dromo(P) method as
presented in Baù et al. (2013) in order to investigate the effect
of the time elements with respect to the direct employment of
the physical time.

We have conducted numerical experiments considering per-
turbed motion around the Earth. In particular, we are interested
in two performance indicators: the computational cost required
to achieve a certain level of accuracy in the position, and the
accumulation of the error in the position and time in function of
the independent variable.

3.1. Benchmark Problems and Compared Methods

The analysis is aimed at assessing the numerical behavior
with different eccentricities and under the influence of both
conservative and non-conservative perturbing forces. Since the
position error is always referred to a given epoch and, moreover,
the physical time is not the independent variable, the accuracy
in time will in general affect the computation of position even
in the presence of only time-independent perturbations.

We propose five benchmark problems to be used as examples;
these are taken from the paper Baù et al. (2013) and for easy
reference are labeled by the letter E followed by a number
from 1 to 5 as can be seen in Table 1. The initial position
and velocity are specified as follows. Let the basic rectangular
frame (O, x1, x2, x3) have the origin O in Earth’s barycenter and
fixed directions in space, with the axes x1 and x2 lying on the
equatorial plane and x3 pointing to the North Pole. The object
is located with respect to this frame in:

r1 = 0 km, r2 = −5888.9727 km, r3 = −3400 km,
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Table 1
Examples Considered for the Numerical Tests

Example Eccentricity Perturbation

E1 0.95a J2

E2 0 J2 + drag
E3 0.3 J2 + Moon
E4 0.7 J2 + Moon
E5 0.95a J2 + Moon

Note. a The value is not exactly equal to 0.95 as explained in the text.

which is the position shown in Table 1 of Baù et al. (2013).
Assume the velocity is oriented along the positive x1 axis and
the propagated body is at the perigee. Therefore, for the velocity
vector we have:

v1 = vc

√
1 + e0, v2 = 0, v3 = 0,

where vc is the velocity of a circular orbit with radius equal
to the initial orbital distance and e0 is the initial eccentricity.
The second column of Table 1 shows the value of e0 of each
example. For E1 and E5 v1 is set equal to 10.691338 km s−1 as
reported in Table 1 of Baù et al. (2013), which gives rise to an
eccentricity almost equal to 0.95. Note that for the case of near-
circular orbits, ordinary integration of position and velocity in
the physical time would already be quite efficient. However, the
use of a time transformation (and regularization in general)
can still bring a further improvement in performance. This
comes from the fact, as pointed out by Baumgarte (1972) and
Velez (1974), that Equation (1) can reduce and even remove the
dynamical instability of the Newtonian equations written for
circular Keplerian motion.

The third column of Table 1 contains the applied perturba-
tions, which are represented by the second zonal harmonic of
the geopotential (J2), the gravitational attraction of the Moon,
and the atmospheric drag. The formulae implemented to com-
pute the corresponding perturbing forces and the values of the
physical constants therein are found in the section titled “Perfor-
mance of the method” in Baù et al. (2013). It is worth pointing
out that the lunar attraction depends explicitly on the phys-
ical time through the Moon’s position and that it is not de-
rived from a disturbing potential but regarded as a P-type force
(Equation (2)). On the other hand, the potential energy associ-
ated with the J2 term is introduced.

The formulations compared in the numerical tests are listed
in Table 2. Dromo is the method presented in Peláez et al.
(2007); Dromo(P) is the improved version of Dromo for tak-
ing advantage of forces that are derived from disturbing po-
tentials (Baù et al. 2013); the Dromo(PL) and Dromo(PC)
schemes are based on the seven generalized orbital elements
of Dromo(P) supplied by, respectively, the linear and constant
time elements, ζ0 and τ0, developed in this paper. The Dromo(P)
schemes are implemented with the total energy ε in place of ζ3
(Equation (19)) as the dependent variable. We also include two
other formulations known to be efficient in the orbit compu-
tation: the Sperling–Burdet (Spe&Bu) variables as described
in Chapter 9 of the book Bond & Allman (1996) and the
Stiefel–Scheifele (Sti&Sche) set of elements as implemented
in Section 19 of the book Stiefel & Scheifele (1971). As high-
lighted in Table 2, Spe&Bu and Sti&Sche are characterized by a
time transformation with an exponent of 1 instead of 2 and they
describe the motion with two and six more dependent variables
than the family of Dromo methods. Finally, we stress that in

Table 2
Methods to be Compared

Method Time Transformation Dim.a Time Time el.

Dromo h dt = r2 ds 8 x
Dromo(P) c dt = r2 ds 8 x
Dromo(PL) c dt = r2 ds 8 x
Dromo(PC) c dt = r2 ds 8 x
Spe&Bu dt = r ds 14 x
Sti&Sche

√−2 ε dt = r ds 10 x

Notes. Apart from Dromo and Dromo(P), the other formulations employ a time
element. The time transformation is the same for Dromo(P), Dromo(PL), and
Dromo(PC). The fictitious time is indicated by s and the physical time by t.
The quantities r, h, c, and ε are, respectively, the orbital radius, the osculating
angular momentum, the generalized angular momentum (Equation (4)), and the
total energy.
a This is the number of dependent variables.

this paper, both methods are implemented with the use of a time
element variable, while in Baù et al. (2013), the physical time
was employed instead.

3.2. Computational Cost versus Accuracy

Since the performance/price ratio of modern processor units
is becoming increasingly high, the selection of an orbit propa-
gator should be mainly guided by the accuracy requirement and
secondly by the computational effort. Nonetheless, for intensive
tasks, such as the orbit propagation of thousands of objects (i.e.,
asteroids and space debris) and the study of the evolution of nat-
ural bodies (i.e., the planets of the solar system) over long-time
scales, even relatively small time savings in the propagation of
each individual orbit would be significant. Therefore, we as-
sess the efficiency of the methods in Table 2 by taking into
account the computational cost spent to achieve a certain level
of accuracy.

The first test consists of evaluating the error in the position
at a target time tf elapsed from the initial time 0. The adopted
numerical integrator is the Runge–Kutta (4, 5) pair of Dormand
& Prince (1980), hereafter called DP54, as implemented in
the function ode45.m of the Matlab system. The step size is
controlled by the algorithm itself by means of an absolute and
relative tolerance. The first is set equal to 10−13 while the latter
is allowed to take decreasing values in the range from 10−6 to
10−10. For a given benchmark problem (Table 1), formulation
(Table 2), and relative tolerance of the integrator DP54, the
propagation is stopped when the physical time equals the time
tf . The computational cost is measured by the total number of
evaluations on the right-hand side of the differential equations
of motion, that is, the function calls. The position error is given
by |rf − rref | where rf is the position at time tf computed at the
end of the propagation and rref is the reference position, which
represents the “exact” point where the object is at time tf . It is
expected that as the relative tolerance takes smaller values, the
number of function calls increases and position error decreases
as shown in Figures 2 and 4–7 for the five examples of Table 1.
The time span of propagation tf is specified in mean solar days
(msd) in the caption of each figure along with the corresponding
number of revolutions (revs) and the reference positions can be
found in Table 2 of Baù et al. (2013). The delicate aspects
concerning the selection of tf for each example, the procedure
applied to stop propagations at tf , and the method for finding
the reference positions are addressed in Baù et al. (2013).
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Figure 2. Function calls vs. position error for the example E1. Markers indicate
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method (DP54). The time span of propagation is 289.66457509 msd (50.5 revs).
The curves of Dromo(PL) and Dromo(PC) almost overlap.
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Dromo(P*), the time transformation (Equation (3)) is not numerically integrated.
The introduction of a linear time element does not produce any appreciable
variation of the step size with respect to Dromo(P*).

In the example E1 (Figure 2), the proposed time elements
significantly improve the performance of Dromo(P) by requiring
much lower function evaluations to reach better accuracies.
In Figure 3, we plot the variation of the step length during
the propagation for Dromo(P), Dromo(PL), and Dromo(P*),
which refers to the Dromo(P) method without integrating the
differential equation of the physical time. It is seen that in
Dromo(P), the change of the step size is mainly controlled
by the physical time and that Dromo(PL) produces the same
curve as Dromo(P*), thus explaining why the time element
poses such a huge benefit. The same effect was also noted by
Ferrándiz et al. (1992a) for the set of focal coordinates and it
motivated the introduction of a time element to be used with
these variables (Ferrándiz & Sansaturio 1990). It is remarkable
that Dromo(PL) and Dromo(PC) are, by far, superior to the other
formulations in the main satellite problem for highly eccentric
orbits.
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Figure 5. Same as Figure 2 but for the example E3. The numerical integrator
is the fifth-order explicit Runge–Kutta method (DP54) and the time span of
propagation is 5.45405849 msd (49.5 revs).

Because the motion is nearly circular in the example E2
(Figure 4), the physical time behaves like a linear time element,
and as expected, Dromo(PL) and Dromo(PC) are comparable
to Dromo(P), which, by the way, already shows the best
performance.

In the examples E3 (Figure 5), E4 (Figure 6), and E5
(Figure 7), it is seen that, as the initial eccentricity becomes
higher and thereby the Moon’s attraction stronger near the
apogee, the benefit generated by the time elements with respect
to the integration of the physical time is reduced. However, in
E3 and E4, Dromo(PL) and Dromo(PC) outperform the other
methods, while in E5, even if Sti&Sche ranks first, Dromo(PC)
achieves up to two orders of magnitude better accuracies than
Dromo(P) for the same range of function evaluations.

Note that the constant time element τ0 is worse than the linear
time element ζ0 only in the example E3, showing in the other
cases either a comparable or better behavior.
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Figure 6. Same as Figure 2 for the example E4. The numerical integrator
is the fifth-order explicit Runge–Kutta method (DP54) and the time span of
propagation is 19.43348169 msd (49.5 revs).

One final remark concerns the computational time. The
substitution of the physical time with a time element in the
Dromo(P) method introduces additional mathematical opera-
tions with consequently little increase in the computational time
spent per each integration step. In the example E2, the pro-
posed time elements do not have any advantage with respect
to Dromo(P). Therefore, we expect Dromo(P) will be slightly
faster than Dromo(PL) and Dromo(PC). On the other hand, in
the remaining examples, the difference in the function calls can
be significant, in which case the new formulations run much
faster than Dromo(P).

3.3. Error Growth

Another important performance metric is represented by
the error growth in the position and time throughout the
propagation. Several ways of estimating the global accuracy of
numerical integrations exist when the exact solution is unknown
(Fukushima 2003). The one adopted here consists of carrying
out two integrations and taking the difference between them.
For the examples E1–E4, we select the eighth-order implicit
Adams method (AM8) in PECE mode (predict, evaluate, correct,
evaluate) whose starting values are provided by a fifth-stage
implicit Runge–Kutta algorithm. In the first propagation, the
step size is given by h = sP /N , where sP is the value
of the independent variable of the formulation to be tested
corresponding to one period of the initial osculating orbit and N
is the number of steps per revolution. In the second propagation,
which is assumed to provide the reference solution, the step
length is halved. Both the integrations are stopped when the
particle would complete 5000 revolutions if the motion were
unperturbed. The error in the position r at a certain physical
time is assessed by means of the first-order Taylor expansion
(Fukushima 2007):

δr = ∣∣rh − rh/2 − δt vh/2

∣∣ , (42)

where the subscripts refer to the step size of the integration, v is
the velocity vector, and δt is the error of the physical time:

δt = |th − th/2|. (43)
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Figure 7. Same as Figure 2 for the example E5. The numerical integrator
is the fifth-order explicit Runge–Kutta method (DP54) and the time span of
propagation is 288.12768941 msd (49.5 revs).

In Figures 8–11, the position and time errors δr and δt relative
to the examples E1–E4 of Table 1 are displayed as a function of
the normalized coordinate:

χ = s/ max(s), (44)

where s represents the independent variable of each formulation
(as shown in the second column of Table 2). The value of N,
which is reported in each figure, has been chosen in order to
avoid both the numerical instability and the dominance of the
round-off error.

In the example E5, a fixed step size integrator is not ap-
propriate for a time transformation with the exponent α in
Equation (1) equal to 2 while it is still a good choice when
α is equal to 1. The reason is that for the same N the analytic
step size regulation produced by α = 1 places more points near
the apogee where the Moon exerts a stronger attraction (which is
significantly higher than in E45). Indeed, if the same integrators
selected for E1–E4 are adopted in E5 and N is set equal to 144
one finds that after 5000 revs Sti&Sche is five orders of mag-
nitude more accurate in the position than all Dromo methods
(which show almost the same performance). This huge differ-
ence is mainly due to the quadratic error growth of the formers
against the linear increase of the latter. Thus, we prefer to use
the numerical integrator DP54 already employed in the tests
from the previous section. We stress that while the variable step
size seems to be necessary for the Dromo formulations, there
should not be much benefit to having it with methods relying
on a Sundman time transformation of order 1 (such as Spe&Bu
and Sti&Sche).

In this case, two integrations are conducted with different
relative tolerances: 10−7 is selected for the test propagation and
10−9 to obtain the reference solution. The reference position
and time are provided at the required values of the independent
variable by interpolation through the Matlab function ntrp45.m.
Finally, the errors are computed with formulae analogous to
Equations (42) and (43) and are shown in Figure 12 over 5000
“unperturbed” revolutions.

5 For example, the maximum value of the ratio between the forces due to the
Moon and Earth is three orders of magnitude bigger in E5 than in E4.
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The performance diagrams show average errors that are
obtained by a moving average filter.6 Besides, in order to avoid
superpositions, the curves are shifted along the vertical axis
when necessary by a suitable power of 10.

In the example E1 (Figure 8), the proposed time element
τ0 to be used in combination with the spatial variables of
Dromo(P) drastically reduces the position and time errors with
respect to the direct integration of the physical time. Although
Dromo(PC) exhibits a linear increase of the error compared
to the constant behavior observed in Dromo(P) (and Dromo),
it is seven orders of magnitude more accurate in the position

6 More precisely, the window size exploits m + 1 points where we have set m
equal to the number of steps per revolution (N) for the examples E1–E4, and to
5 floor (n/5000) for E5, with n being the number of steps of the whole
integration.

at the end of the propagation. We note that the error grows
linearly for Dromo(PC) and Spe&Bu which employ a constant
time element, while it becomes proportional to the 3/2 power
of the independent variable when a linear time element is
adopted, as in Dromo(PL) and in Sti&Sche, which is the
typical law of the round-off error (Brouwer 1937). The reason
for this is that since the orbit is highly eccentric and the J2
perturbation weakens as the propagated body goes away from
the Earth, for most of the integration, the time element is
given by the sum of an increasingly big term proportional to
the independent variable and a small perturbing quantity (see
Equation (33)).

The introduction of a time element does not essentially change
the error evolution of Dromo(P) in E2 (Figure 9), and it further
improves the already good performance of the method so that
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Figure 11. Position error (Equation (42)), left, and time error (Equation (43)), right, as a function of χ (Equation (44)) in the example E4 for 5000 revs. The numerical
integrator is the eighth-order Adams in PECE mode (AM8) and N is the number of steps per rev.

out of the compared formulations, Dromo(PC) and Dromo(PL)
generate the smallest position error throughout the propagation.
After an initial plateau, the error increases roughly obeying
to the power 3/2 (position) and 2 (time) up to around 1350
revolutions when a jump occurs, then the growth becomes cubic.
An analogous jump is also found in Spe&Bu after which the
error increases according to a 7/2 power law. This scheme is
the most accurate in the computation of time during the first
35 revolutions followed by Dromo(PC) and Dromo(PL) which,
thereafter, are the best. In Dromo and Sti&Sche, the position
and time errors start growing quite early, at around 100 and 150
revolutions, with a 5/2 and 7/2 index power, respectively.

Let us analyze the performance when the gravitational attrac-
tion of the Moon is considered along with the J2 perturbation.
The time elements τ0 and ζ0 reduce the initial error amplification
of Dromo(P) by more than two and three orders of magnitude,

respectively, in the examples E3 (Figure 10) and E4 (Figure 11).
After remaining constant, the errors increase at around 250 revs
in E3 and 50 revs in E4 as the 3/2 (E3) and 5/3 - 2 (E4) powers
of the independent variable compared to the at most linear accu-
mulation shown by Dromo(P) and the other formulations (with
Sti&Sche, which is affected by a quadratic growth in E4, being
the only exception). Nonetheless, Dromo(PC) and Dromo(PL)
generate again the smallest averaged errors which become com-
parable to those of Dromo(P) at the end of the propagation. In
E5 (Figure 12), the constant time element τ0 does not alter the
3/2 power growth of the error in Dromo(P) while Dromo(PL),
like Dromo and Sti&Sche, is characterized by a quadratic evo-
lution. It is notable that, even with a higher relative tolerance
(10−6 instead of 10−7), Dromo(PC) shows the second best ac-
curacy after Sti&Sche with a similar error in the last part of the
propagation thanks to the smaller rate of change.
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Figure 12. Position error (Equation (42)), left, and time error (Equation (43)), right, as a function of χ (Equation (44)) in the example E5 for 5000 revs. The numerical
integrator is the fifth-order explicit Runge–Kutta method (DP54). The relative tolerance for obtaining the error is set equal to 10−6 for Dromo(PC) instead of 10−7 in
order to render the number of integration steps comparable with that of the other methods. The Sperling–Burdet formulation is not shown since it exhibits a very poor
performance.

Finally, we can state that Dromo(PL) (linear time element
ζ0) is better than Dromo(PC) (constant time element τ0) in
the presence of weak non-conservative perturbations and with
moderate eccentricities (example E3). In the other examples,
either the two methods are equivalent (E2 and E4) or Dromo(PC)
outperforms Dromo(PL) (E1 and E5).

4. CONCLUSIONS

Two time elements have been developed to be used with
spatial variables of the formulation of the perturbed two-body
problem called Dromo(P), both of them leading to equations free
of singularities and limitations due to the multi-value arctangent
function. The theory has been presented for a negative total
energy and the cases of zero and positive total energy are
addressed in Appendix B.

One time element is a linear function of the independent
variable; the other one is an integral of Keplerian motion. The
resulting equations are also defined for circular motion, which
instead represents a singularity in analogous time elements
found in the literature. Moreover, the second proposed time
element represents the first example of a constant time element
associated with a time transformation with exponent 2 which
does not present any limitation stemming from the multi-
revolution issue.

The benefit introduced by the time elements is impressive
in the main satellite problem, and in particular the formula-
tion with the constant time element is by far the best formu-
lation in terms of propagation accuracy versus function calls
and reduction of the position as well as time errors with respect
to the independent variable. When non-conservative perturba-
tions are added (atmospheric drag, the Moon’s gravitational
attraction) to the J2 zonal harmonic, either of the two pro-
posed formulations keeps showing the smallest errors among
the compared schemes up to high eccentricities. Concerning
the error evolution, the proposed time elements compared with
the direct employment of the physical time in Dromo(P) enjoys
a significantly smaller initial error. However, after remaining
constant, it undergoes an earlier and faster increase (which ap-

proaches the quadratic law as the eccentricity grows) so that
after a sufficiently large number of revolutions (5000 in the ex-
amples), the errors become comparable. Therefore, we suggest
switching to a Dromo formulation without time element for very
long propagations since this method exhibits a more favorable
behavior (at most, a linear growth of the error) as long as the
magnitude of the non-conservative perturbations is moderate.

In general, the constant time element outperforms the linear
one, the latter being preferable only in the example of moder-
ately eccentric motion perturbed by Earth’s oblateness and lunar
attraction.

We thank M. E. Sansaturio for sending several relevant papers
on the topic. Comments by the referee have been helpful in
improving the quality of the paper.

APPENDIX A

TIME ELEMENT ζ0

A.1. Implementation of the Time Element ζ0
in the Dromo(P) Method

The new state vector of the Dromo(P) method is composed of
eight elements ζi , i = 0, . . . , 7. The initialization of the time
element ζ0 at time t = 0 from the position and velocity is done
by exploiting Equation (32) where ζ1, ζ2, and ζ3 are evaluated
through Equations (7), (8), and (19). The numerical integration
of Equation (33) produces the current value of ζ0 which, in turn,
is plugged into Equation (32) to get the physical time.

Besides, if the total energy ε is a dependent variable, then in
Equations (32) and (33), the element ζ3 is given by:

ζ3 =
√

ζ 2
1 + ζ 2

2 − 2 ε,

while if ζ3 is a dependent variable, the total energy ε is obtained
by:

ε = ζ 2
1 + ζ 2

2 − ζ 2
3

2
.
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A.2. Expression for G − θ (Equation (26))

By exploiting the half-angle and angle difference identities
for the trigonometric functions, we have:

tan

(
G − θ

2

)
= sin G cos θ − sin θ cos G

1 + cos G cos θ + sin G sin θ
.

For convenience, let us introduce the quantity:

β =
√

1 − g2 + 1.

Then, we plug in the expressions for sin G and cos G reported
in Equation (21) to find:

tan

(
G − θ

2

)
= [(β − 2) cos θ − g] sin θ

2 (1 + g cos θ ) + (β − 2) sin2 θ
. (A1)

By exploiting the identity:

(β − 2) β = −g2, (A2)

we rewrite the numerator in Equation (A1) as:

[(β − 2) cos θ − g] sin θ = −(1 + g β−1 cos θ ) g sin θ , (A3)

and the denominator as:

2 (1 + g cos θ ) + (β − 2) sin2 θ = β−1 (β + g cos θ )2 . (A4)

Equations (A3) and (A4) are used into Equation (A1) to give
the final result:

tan

(
G − θ

2

)
= − g sin θ

β + g cos θ
,

from which Equation (26) is directly obtained.

A.3. Differential Equation of ζ0 (ε < 0, Equation (33))

Let us write the differential equation of ζ3, which is
Equation (35) on p. 63 of Baù et al. (2013), with the help of
Equation (38) of this paper as:

dζ3

dφ
= ζ3

s2

[
u

s

(
R

ζ3 s
− 2U

)
− dε

dφ

]
, (A5)

where s and u are given in Equations (28) and (29). This
expression is plugged into Equations (33) and (34) on p. 62
of Baù et al. (2013), which take the form:

dζ1

dφ
= 1

s3

(
R

ζ3 s
− 2U

) [
ζ2 (ζ3 + s) + ζ 2

3 sin φ
]

+
1

s2

dε

dφ
(ζ3 + s) cos φ, (A6)

dζ2

dφ
= − 1

s3

(
R

ζ3 s
− 2U

) [
ζ1 (ζ3 + s) + ζ 2

3 cos φ
]

+
1

s2

dε

dφ
(ζ3 + s) sin φ. (A7)

Proceed with the differentiation of Equation (32):

dζ0

dφ
= dt

dφ
+

d

dφ

(
a u

ζ3 s

)
+

d

dφ

(
2 a3/2 arctan

(
u

f + w

))
,

(A8)

inserting the quantities a, w, and f as introduced in
Equations (35)–(37). Substitute for c and r in Equation (3) as
shown, respectively, in Equation (19) and in the first relation in
(27) to find Equation (32) on p. 62 of Baù et al. (2013), that is:

dt

dφ
= 1

ζ3 s2
. (A9)

The other two terms in Equation (A8) produce the expressions:

d

dφ

(
a u

ζ3 s

)
= a

ζ3 s

{
S

dζ1

dφ
− C

dζ2

dφ
+ w

− u

s

[
dζ3

dφ

(
1 +

s

ζ3

)
+ C

dζ1

dφ
+ S

dζ2

dφ
− u

]

+ 2 a u
dε

dφ

}
, (A10)

and:

d

dφ

(
2 a3/2 arctan

(
u

f + w

))
= 6 a5/2 dε

dφ
arctan

(
u

f + w

)

+
a3/2

s f

[(
S

dζ1

dφ
− C

dζ2

dφ
+ w

)
(f − w)

− u

(
dζ3

dφ
+ C

dζ1

dφ
+ S

dζ2

dφ
− √

a
dε

dφ
− u

)]
, (A11)

where S = sin φ and C = cos φ. By inserting Equations
(A5)–(A7) into Equations (A10) and (A11) and collecting
similar terms, we have:

d

dφ

(
a u

ζ3 s

)
= a

ζ3 s

[
w +

u2

s
+

1

s

(
R

ζ3 s
− 2U

)
+ 2 a u

dε

dφ

]
,

(A12)
and:

d

dφ

(
2 a3/2 arctan

(
u

f + w

))

= a3/2 − a

s
+ 6 a5/2 dε

dφ
arctan

(
u

f + w

)

+
a3/2

s2 f

[(
R

ζ3 s
− 2U

)(
f + w +

u2

s

)

+
dε

dφ
u(s

√
a − 1)

]
. (A13)

The sum of the right-hand sides of Equations (A9), (A12), and
(A13) and use of the relation u2 = 2 s ζ3 − s2 + 2 ε yield the
differential Equation (33).

APPENDIX B

TIME ELEMENTS FOR POSITIVE AND ZERO
VALUES OF THE TOTAL ENERGY

Let us assume that the total energy is positive. Integration
of the time transformation (3) in the unperturbed motion with
r taken from Equation (20) gives the generalized Kepler’s
equation for ε > 0:

t = τp +
c g sin θ

2 ε(1 + g cos θ )

− 2

(2 ε)3/2 arctanh

(
sin θ

1 + cos θ

√
g − 1

g + 1

)
,
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where from Equation (5) we have that g > 1. By using the
relations (19) and (30), the above equation is brought into the
form:

t = τp +
u a

ζ3 s
− 2 a3/2 arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

)
, (B1)

where w is reported in Equation (36) and a = 1/ (2 ε). In
contrast to the case ε < 0, the constant of integration τp can be
chosen as a time element. In order to exploit Equation (B1) for
computing the physical time, the time element τp is required. In
the two-body problem, τp is determined by the initial conditions
and is a constant. In presence of perturbations, τp is obtained by
the numerical integration of a first-order differential equation.
To derive it, we differentiate Equation (B1):

dτp

dφ
= dt

dφ
− d

dφ

(
a u

ζ3 s

)

+
d

dφ

(
2 a3/2 arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

))
.

(B2)

Taking advantage of Equation (A12) we carry out the deriva-
tives:

d

dφ

(
− a u

ζ3 s

)
= − a

ζ3 s

[
w +

u2

s

+
1

s

(
R

ζ3 s
− 2U

)
− 2 a u

dε

dφ

]
, (B3)

and:

d

dφ

(
2 a3/2 arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

))

= −6 a5/2 dε

dφ
arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

)
+

a3/2
√

g2 − 1

s g

×
[
S

dζ1

dφ
− C

dζ2

dφ
+ w − u

ζ3 g + w

×
(

d(g ζ3)

dφ
+ C

dζ1

dφ
+ S

dζ2

dφ
− u

)
+

u

g2 − 1

dg

dφ

]
,

where S = sin φ, C = cos φ and we made use of the identity
u2 + w2 = ζ 2

3 g2. First, Equation (5) is exploited to substitute
for g2 − 1 and to find dg/dφ, then Equations (A5)–(A7) are
employed to get:

d

dφ

(
2 a3/2 arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

))

= −6 a5/2 dε

dφ
arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

)
+

a

ζ3 s3 g2

×
[(

R

ζ3 s
− 2U

) (
ζ3 g2 + w

)
+

dε

dφ
u s

(
a s − 1

ζ3

)]
.

(B4)

The expressions contained in Equations (A9), (B3), and (B4)
are inserted into Equation (B2) and after some simplifications,

the final result is:

dτp

dφ
= − 6 a5/2 dε

dφ
arctanh

(
u

ζ3 g + w

√
g − 1

g + 1

)

+
r

g2

[
dε

dφ
a u

(
3 a − r +

2

ζ 2
3

)
− (R r − 2U) w r2

]
,

(B5)

where r = 1/ (ζ3 s).
If the energy undergoes a change of sign during the numerical

propagation, then one possible robust strategy for dealing with
this case is to switch from the use of a time element to the
physical time in the state vector whenever the magnitude of the
total energy becomes sufficiently small.

For completeness, let us assume that the total energy is zero,
which implies that g = 1. The generalized Barker’s equation
takes the form:

t = τp,1 +
1

6 ζ 3
3

(
3 tan

θ

2
+ tan3 θ

2

)
, (B6)

which can be transformed into:

t = τp,1 +
u r2

3

(
s

ζ3
+ 1

)
,

and the derivative of τp,1 becomes:

dτp,1

dφ
= r3

3

[
(R r − 2U) 3 w +

dε

dφ
2 u

]
. (B7)

Equations (B1), (B5), and Equations (B6), (B7) are necessary
to introduce a time element in the Dromo(P) method for the cases
ε > 0 and ε = 0, respectively.
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Baumgarte, J. 1972, CeMec, 5, 490
Baumgarte, J. 1976, CeMec, 14, 121
Baumgarte, J., & Stiefel, E. 1974, in Lecture Notes in Mathematics, Vol. 362,

Proc. Conf. Numerical Solution of Ordinary Differential Equations, ed. D.
G. Bettis (Berlin: Springer), 207
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