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We show that in an infinite straight pipe of arbitrary (sufficiently smooth) cross
section, a generalized non-Newtonian liquid admits one and only one fully developed
time-periodic flow (Womersley flow), either when the flow rate (Problem 1) or the
axial pressure gradient (Problem 2) is prescribed in analogous time-periodic fashion.
In addition, we show that the relevant solution depends continuously upon the data
in appropriate norms. As is well known from the Newtonian counterpart of the
problem [3, 8], the latter is pivotal for the analysis of flow in a general unbounded
pipe system with cylindrical outlets (Leray problem). It is also worth remarking that
Problem 1 possesses an intrinsic interest from both mathematical and physical
viewpoints, in that it constitutes a (nonlinear) inverse problem with a significant
bearing on several applications, including blood flow modeling in large arteries.

1. Introduction

The motion of a viscous liquid in a bent tube or in a pipe system is among the
classical problems in fluid dynamics; see, e.g., [2, Chapter 4]. Because of their basic
role in applied science, particular importance is given to flows of this kind when
the field variables (velocity and pressure) are independent of time (steady-state)
or, more generally, time-periodic. Noteworthy applications of time-periodic and/or
pulsatile1 pipe flow can be found in the modeling of blood flow in large arteries
[14, 15]. Other significant applications regard mass transportation in pipes by a
pulsatile pumping driving mechanism [19].

Despite its undoubted relevance, a rigorous and systematic mathematical study
of the flow of a viscous liquid in an unbounded pipe system (by the mathematical
community often referred to as Leray problem) has begun only a few decades ago
with the work of Amick [1], Ladyzhenskaya & Solonnikov [11], and Pileckas [13], for
liquids described by the Navier-Stokes equations (Newtonian liquids). It must be
remarked, however, that these papers deal with the steady-state case only, whereas
the more general time-periodic case was virtually left untouched until recently, when
it was finally analyzed to a full extent first by Beirão da Veiga [3] and, successively,
Galdi & Robertson [10]; see also [8, Chapter I].

1Namely, a time-periodic flow superimposed to a steady-state one.
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As is well known, the crucial ingredient in the study of these motions is the
knowledge of the mathematical properties of the so called fully developed flow (in
the following referred to as FDF) [3, 10, 8]. We recall that FDF occurs in an
infinite pipe of constant cross-section, Σ, and is characterized by the property that
the velocity field is parallel to the axis of the pipe, and depends only on the cross-
sectional variables and time. In fact, the solution to the general Leray problem
is found as a “perturbation” around the appropriate FDF, and for this reason
continuous dependence on the data of FDF in appropriate norms is of the utmost
importance. In the case when the liquid is Newtonian (described by the Navier-
Stokes equations), time-periodic FDF is often referred to as Womersley flow, after
J.R. Womersley who, in a hemodynamics context, first proved the existence of such
a motion when Σ is a circle and the time-periodic driving mechanism (the axial
pressure gradient, that is) has a finite number of active modes [20].2 In this regard,
we observe that FDF can be driven either by assigning the axial pressure gradient,
Γ (which we call Problem 2), or else the total flow-rate, α, through the cross-section
(Problem 1). Problem 2 is a direct one and it is readily solvable. For example, in the
classical (Newtonian) Navier-Stokes liquid model, it reduces to find time-periodic
solutions to the standard heat equation with a prescribed time-periodic forcing
term Γ. Of course, once the solution is found, α is determined as well. On the other
hand, Problem 1 is of inverse type, and, as such, less trivial. Actually, even for the
simpler Newtonian liquid, it can be viewed as a heat-conducting problem where the
distribution of temperature and the forcing term must be determined only from the
knowledge of the average temperature value, α, on Σ.

The main objective of this paper is to prove existence, uniqueness and continuous
data dependence of solutions to both Problems 1 and 2 in the case of generalized
Newtonian liquid, thus extending, in particular, Womersley’s results to more general
liquid models.

When dealing with such models, the problem of determining time-periodic fully
developed flow is more complicated than in the Navier-Stokes case, due to the
circumstance that the relevant equations are no longer linear. As a consequence,
the methods used in [3, 10] to prove existence, uniqueness and continuous data
dependence of time-periodic fully developed flow no longer apply, and we have to
resort to a different approach. In this respect, we wish to observe that, even though
the more challenging problem is when the flow-rate is prescribed (i.e., Problem 1),
also the direct problem, namely, when the pressure gradient is assigned (Problem 2),
presents some difficulty related to the nonlinear character of the equation. However,
since the technical details in the proofs are similar, we shall mainly focus on the
resolution of Problem 1 (see theorems 5.1 and 6.1), whereas we limit ourselves to
state the main results for Problem 2 (see theorems 7.2 and 7.3), and briefly sketch
its proof.

Our results are proved for a generalized Newtonian liquid satisfying very general
and standard assumptions (see Section 2). In particular, in Section 5 we shall treat
the “shear thinning case”, namely, when the shear viscosity of the liquid is a de-
creasing function of the magnitude of the stretching tensor, while in Section 6 we

2A similar problem, but in different setting, was already considered by T. Sexl [17], with the
aim of explaining the so-called Richardson annular effect, which consists of the presence of a
velocity overshoot near to the wall of the pipe.
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investigate the same problem for a “shear thickening” liquid, where, instead, the
viscosity is an increasing function.

The approach we follow relies upon the following two points. In the first place, we
begin to suitably reformulate Problem 1, in such a way that it becomes equivalent to
an appropriate direct problem (Section 4). This being established, we then provide
the existence of time-periodic weak solutions by coupling the Galerkin method with
the theory of monotone operators (basically, the “Minty’s trick”).3 Though based
on classical tools, the implementation of our approach to existence (namely, the
proof of appropriate uniform estimates on the approximating solutions) requires,
however, a further effort. In fact, we are able to show that the weak solutions we
obtain have the additional properties of being differentiable in time, and of having
enstrophy that is uniformly bounded in time. These properties are then used to
prove continuous dependence upon the prescribed flow rate in appropriate norm. As
emphasized a few times earlier on, the latter is pivotal for the resolution of the
(time-periodic) Leray problem in an unbounded pipe system with cylindrical outlet
extending to infinity, a question that will be the object of future work.

The plan of the paper is the following. After introducing, in Section 2, the main
notation along with the basic assumptions on the Cauchy stress tensor, in Section
3 we collect a number of preparatory and known results that will be needed further
on. In Section 4 we reformulate Problem 1 in such a way that it becomes equivalent
to a direct problem, and give the definition of corresponding time-periodic weak
solutions. Successively, in Section 5, we prove the existence of unique weak solutions
to Problem 1, along with their continuous data dependence in the shear-thinning
case. The same results for the shear-thickening case are proved in Section 6. Finally,
in Section 7, we briefly treat the well posedness of Problem 2.

2. Notation

By Σ we denote a connected, bounded subset of the plane IR2, with Lipschitz
boundary. All functions considered throughout are time periodic with period T . Con-
sequently, we shall restrict our attention to the time-interval [0, T ]. We set

C∞0,per = {φ ∈ C∞0 (Σ× [0, T ]) : φ(x, 0) = φ(x, T )∀x ∈ Σ}

V =

{
ψ ∈ C∞0 (Σ) :

∫
Σ

ψ(x) dx = 0

}

VT =

{
φ ∈ C∞0,per :

∫
Σ

φ(x, t) dx = 0, ∀t ∈ [0, T ]

}

Wp =

{
w ∈W 1,p

0 (Σ) :

∫
Σ

w(x) = 0

}
p ≥ 1

For any p > 1, p′ = p
p−1 will be the conjugate exponent of p. With the symbol

v′ we will denote differentiation with respect to the time variable t. We will also

3The reader interested to a general overview on parabolic evolution equations involving mono-
tone operators, is referred to the classical literature on the topic [12, Chapitre 2], [6, Chapter
3].
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make use of the space of distributions on the time interval (0, T ) with values in a
Banach space X, indicated by D′(0, T ;X).

With (· , ·) we will denote the usual L2 scalar product with respect to the space
variable

(φ, ψ) =

∫
Σ

φ(x)ψ(x) dx ,

and with 〈·, ·〉 the duality pairing between Banach spaces.
For any tensors A,B ∈ IR3×3 we set

A : B = AijBij and |A| = |A : A|1/2.

The nonlinear part of the viscosity term will be described by a function S :
IR3×3 −→ IR3×3 of the form

S(A) = h(|A|2)A (2.1)

with
h : [0,+∞) −→ [0,+∞), h ∈ C((0,+∞)). (2.2)

We require S to be continuous and to satisfy suitable coercivity, growth and mono-
tonicity conditions (see [8] II.(2.9) - II.(2.11)). Precisely, for any A,B ∈ IR3×3

S(A) : A ≥ κ1|A|p − k2, κ1 > 0, k2 ∈ IR, p > 1 (2.3)

|S(A)| ≤ κ3

(
|A|p−1 + 1

)
, κ3 > 0, p > 1 (2.4)

(S(A)− S(B)) : (A−B) ≥ 0 ∀A,B. (2.5)

For any vector valued function u : IR3 −→ IR3

Du =
1

2
(∇u+ (∇u)T )

denotes its symmetric gradient.
Throughout the paper α(t) will be a scalar function in W 1,2((0, T )), and χ a

fixed function such that

χ ∈ C∞0 (Σ),

∫
Σ

χ(x) dx = 1. (2.6)

Finally, for sake of simplicity, we shall not relabel subsequences.

3. Auxiliary results

In this section we collect some basic properties concerning the functions spaces
we will use. They are well known, especially in the framework of fluid mechanics
problems. However, they are usually formulated for divergence free functions. In-
stead, we will need them in a formulation involving time-periodic functions with
zero average.

Lemma 3.1. For any p > 1, Wp is a reflexive and separable Banach space. More-
over Wp is continuously and densely embedded in L2(Σ) for any p ≥ 1.
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Proof. The proof follows easily because Wp is a closed subspace of W 1,p
0 (Σ) and

from the Sobolev embedding theorem since n=2.

Lemma 3.2. If u ∈ Lp(0, T ;Wp(Σ)) and u′ ∈ Lp′(0, T ;W ′p(Σ)) then, up to a subset
of zero Lebesgue measure in [0, T ], u ∈ C([0, T ];L2(Σ)).

Proof. See [12, Remarque II.1.2].

Lemma 3.3. For any p ≥ 1 there exists a sequence {Vk} of finite dimensional
subspaces of Wp such that Vk ⊂ Vk+1 for any k ∈ IN and

⋃
k∈IN Vk is dense in Wp.

Proof. The proof follows straightforward from the separability of Wp.

4. The fully developed periodic flow

In this section we derive the relevant equations of a fully developed time-periodic
flow of a generalized Newtonian liquid model specified by the properties (2.1)-(2.5),
and will provide the corresponding weak (distributional) formulation.

Let Ω = IR×Σ be the cylindrical pipe of infinite length occupied by the fluid. We
choose the coordinate system in such a way that Σ lies in the {x2, x3} plane. The
generic time-periodic motion of the liquid is then characterized by velocity field V
and pressure π satisfying the following set of equations

V ′ + V · ∇V = µ0∆V +∇ · S(DV )−∇π in Ω× [0, T ]

V (x, t) = 0 in ∂Ω× [0, T ]∫
Σ

V (·, t) · ndσ = α(t) in [0, T ]

∇ · V = 0 in Ω× [0, T ]

V (·, 0) = V (·, T ), π(·, 0) = π(·, T )

(4.1)

where n is a unit normal vector to the (cross-section) Σ, and α(t) ∈ W 1,2 is the
prescribed T−periodic flow rate.

In accordance with the definition of fully developed flow, the velocity profile has
to be invariant by translations along the axis a ‖ x1 of the pipe and directed along
it, while the pressure gradient is parallel to a and may depend on time only. Namely,

V (x, t) = v(x2, x3, t)e1, π(x, t) = −Γ(t)x1. (4.2)

With these restrictions, the convective term V · ∇V vanishes identically, while the
zero-divergence constraint is always satisfied. As far as the nonlinear contribution
to the dissipative term, we observe that the only non-zero components of the sym-
metric gradient DV are

(DV )21 = (DV )12 =
1

2
∂2v, (DV )31 = (DV )13 =

1

2
∂3v .

As a result,

|DV | = 1√
2
|∇̃v|
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where the tilde denotes differentiation with respect to the variables x2 and x3

only. This, in turn implies by a straightforward calculation that the only non-zero
component of the vector ∇ · S(DV ) is the first one, so that setting

h(s) =
1

2
h
(s

2

)
(4.3)

we get at once
[∇ · S(DV )]1 = ∇̃ · (h(|∇̃v|2)∇̃v).

Now we can define a new function S : IR2 −→ IR2

S(a) = h(|a|2)a. (4.4)

It is not difficult to verify that the function S has the same properties of S. Indeed,
by (2.3), (2.4) and (2.5) we have that, for any a, b ∈ IR2

S(a) · a ≥ κ12−p/2|a|p − k2 := k1|a|p − k2, (4.5)

|S(a)| ≤ κ3√
2

(
|a|p−12

1−p
2 + 1

)
≤ κ3√

2
(|a|p−1 + 1) := k3(|a|p−1 + 1), (4.6)

(S(a)− S(b)) : (a− b) ≥ 0 ∀a, b. (4.7)

In the following lemma we prove some elementary, but crucial, properties related
to the coercivity and the growth of S which will be useful in the following sections.

Lemma 4.1. Let be p > 1 and h as in (4.3). Setting H(s) =
s∫
0

h(τ) dτ for any

s ≥ 0, it results

0 ≤ H(s) ≤ 2k3

(
s

p
2

p
+ s

1
2

)
. (4.8)

Moreover, if k2 = 0 in the coercivity condition (2.3), then

H(s) ≥ 2k1

p
s

p
2 .

Proof. We remark that for any t > 0, setting a =

(√
t

0

)
in inequality (4.7), we get

that
0 ≤ h(t) ≤ k3

(
t
p−2
2 + t−

1
2

)
.

Since p > 1 the function H is well defined and H ′(s) = h(s) for any s > 0. Moreover,
integrating the above inequality it readily follows that, for any s ≥ 0

0 ≤ H(s) ≤ 2k3

(
s

p
2

p
+ s

1
2

)
.

Concerning the estimate from below if k2 = 0, by (4.5)

S(a) · a ≥ k1|a|p
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which, with the above choice for a, provides

h(t) ≥ k1t
p−2
2

and

H(s) ≥
∫ s

0

k1τ
p−2
2 dτ =

2k1

p
s

p
2 .

For the sake of simplicity, and with a little abuse of notation, in the rest of the
paper we will drop the superscript ,̃ and set x = (x2, x3).

Thus, from all the above, we conclude that fully developed time-periodic flow of
our shear-thinning model is governed by the following equations

v′ = µ0∆v +∇ · S(∇v) + Γ(t) in Σ× [0, T ]

v(x, t) = 0 on ∂Σ× [0, T ]∫
Σ

v(x, t) dx = α(t) in [0, T ]

v(·, 0) = v(·, T ), Γ(0) = Γ(T ) ,

(4.9)

where v and Γ are the scalar functions defined in (4.2), whereas S is a vector
function satisfying conditions (4.5)-(4.7).

Objective of this paper is to prove that for an arbitrarily given time-periodic
function α in a suitable class, problem (4.9) has one and only one corresponding
time-periodic distributional solution (v,Γ). To this end, we begin to give a weak
formulation of (4.9), where (4.9)1 is projected on the space of zero mean value
functions. In this way, we eliminate the pressure gradient from the equation and
reduce the problem to finding only the unknown velocity field; see remark 4.3.

Definition 4.2. We say that v is a weak solution of the problem (4.9) if v ∈
L2(0, T ;W 1,2

0 (Σ)) ∩ Lp(0, T ;W 1,p
0 (Σ)) ∩ L∞(0, T ;L2(Σ)) and

∫ T

0

(v, φ′)−
(
µ0∇v + S(∇v),∇φ

)
dt = 0 ∀φ ∈ VT∫

Σ

v(x, t) dx = α(t) for a.e. t ∈ [0, T ]

v(x, 0) = v(x, T ) for a.e. x ∈ Σ

(4.10)

Remark 4.3. If v is a weak solution then, if 1 < p < 2

v′ = µ0∆v +∇ · S(∇v) in D′(0, T ;W ′2)

and v′ ∈ L2(0, T ;W ′2). In the case p > 2 we have that

v′ = µ0∆v +∇ · S(∇v) in D′(0, T ;W ′p)

and v′ ∈ Lp′(0, T ;W ′p). However, in both cases, by lemma 3.2, v can be modified on
a set of null Lebesgue measure in [0, T ] in such a way that v ∈ C([0, T ];L2(Σ)). In
principle, this is not enough to deduce the existence of the pressure gradient, even in



8 G.P. Galdi, C.R. Grisanti

the distribution sense. However, if v is slightly smoother, say, v′ ∈ L2(0, T ;W−1,2
0 )

if 1 < p < 2 or v′ ∈ Lp′(0, T ;W−1,p′

0 ) if p > 2, then there exists a time-periodic

function Γ ∈ L2(0, T ), respectively Γ ∈ Lp′(0, T ), such that∫ T

0

(v, ψ′)−
(
µ0∇v + S(∇v),∇ψ

)
+
(
Γ, ψ

)
dt = 0 ∀ψ ∈ C∞0,per . (4.11)

In fact, let ψ ∈ C∞0,per and set φ = ψ − χ
∫

Σ
ψ. Replacing such a φ in (4.10)1, and

taking into account the periodicity of v and ψ we show, after simple manipulation,
that (4.11) holds with

Γ := 〈v′, χ〉+
(
µ0∇v + S(∇v),∇χ

)
, (4.12)

where 〈 , 〉 is the duality paring between W 1,p
0 (Σ) and W−1,p′(Σ). It is easy to see

that Γ is independent of the particular choice of χ. In fact, let χ1 be another such
a function, and let θ be arbitrary in C∞0 ((0, T )). Then, we may take φ = θ(χ−χ1)
in (4.10)1 and show, by the arbitrariness of θ, and with ξ := χ− χ1∫ t

t0

(
µ0∇v + S(∇v),∇ξ

)
dτ = −〈v(t)− v(t0), ξ〉 , 0 < t0 ≤ t < T ,

from which, after differentiation with respect to t, the desired property follows.
Clearly, if v is even more regular, from (4.11) we may prove that (v,Γ) obeys (4.9)1

in the ordinary sense.

Next, we wish to make a suitable lift of the flux condition (4.9)3. Actually, setting

u(x, t) = v(x, t)− α(t)χ(x), (4.13)

we find

∫
Σ

u(x, t) dx = 0 for any t ∈ [0, T ] and that (u,Γ) solves the problem


u′ = µ0∆u+∇ · S(∇u+ α∇χ) + µ0α∆χ− α′χ+ Γ(t) in Σ× [0, T ]

u(x, t) = 0 on ∂Σ× [0, T ]

u(x, 0) = u(x, T )
(4.14)

if and only if (v,Γ) solves (4.9). Therefore, in analogy with definition 4.2, we give
the following

Definition 4.4. We say that u is a weak solution of the problem (4.14) if u ∈
L2(0, T ;W2) ∩ Lp(0, T ;Wp) ∩ L∞(0, T ;L2(Σ)) and
∫ T

0

(u, φ′)− (µ0∇u+ S(∇u+ α∇χ) + µ0α∇χ,∇φ)− (α′χ, φ) dt = 0∀φ ∈ VT

u(x, 0) = u(x, T ) for a.e. x ∈ Σ

Remark 4.5. v is a weak solution of the problem (4.9) if and only if u is a weak
solution of the problem (4.14).
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Remark 4.6. If u is a weak solution of the problem (4.14) then, by remark 4.3, we
may redefine u on a set of zero Lebesgue measure in [0, T ]so that u∈C([0, T ];L2(Σ)).
This makes clear the way in which the periodicity condition (4.14)3 should to be
understood.

In order to deal with the above problem, for any t ∈ [0, T ] we define the following
functionals

A(t, ·) : W2 −→W ′2, A(t, v) = −µ0∆v−∇·S(∇v+α(t)∇χ), 1 < p < 2, (4.15)

B(t, ·) : Wp −→W ′p, B(t, v) = −µ0∆v −∇ · S(∇v + α(t)∇χ), p > 2. (4.16)

Proposition 4.7. A and B are strictly monotone, coercive and satisfy the following
growth conditions uniformly for any t ∈ [0, T ]

‖A(t, v)‖W ′2 ≤ ck3

(
‖α‖1,2‖∇χ‖2 + |Σ|1/2

)
+ (ck3 + µ0)‖∇v‖2, (4.17)

‖B(t, v)‖W ′p ≤ c(µ0 +k3)‖∇v‖p−1
p +c(µ0 +k3)|Σ|

p−1
p +ck3‖α‖p−1

1,2 ‖∇χ‖p−1
p . (4.18)

Proof. Let be v1, v2 ∈W2. We have, by (4.7)

〈A(t, v1)−A(t, v2), v1 − v2〉 ≥ µ0‖∇v1 −∇v2‖22

hence A is strictly monotone. The same assertion holds true for B.
By (4.7) with b = 0 we get that S(∇v+α(t)∇χ),∇v+α(t)∇χ) ≥ 0 and by (4.6),

if 1 < p < 2

|(S(∇v + α∇χ), α∇χ)| ≤
∫

Σ

k3

(
|∇v + α∇χ|p−1 + 1

)
|α∇χ| dx

≤ k3

(
‖∇v + α∇χ‖p−1

2 ‖α∇χ‖ 2
3−p

+ ‖α‖∞‖∇χ‖1
)

≤ k3

(
‖α‖∞‖∇χ‖ 2

3−p
‖∇v‖p−1

2 + ‖α‖p∞‖∇χ‖
p−1
2 ‖∇χ‖ 2

3−p
+ ‖α‖∞‖∇χ‖1

)
≤ c

(
1 + ‖∇χ‖2∞

)(
c(ε)‖α‖

2
3−p
∞ + ε‖∇v‖22 + ‖α‖p∞ + ‖α‖∞

)
≤ εc

(
1 + ‖∇χ‖2∞

)
‖∇v‖22 + ‖α‖∞

(
c(ε)‖α‖

p−1
3−p
∞ + ‖α‖p−1

∞ + 1

)(
1 + ‖∇χ‖2∞

)
.

Choosing ε = µ0

2c(1+‖∇χ‖2∞) we get the following coercivity for A

〈A(t, v), v〉 ≥ µ0

2
‖∇v‖22 − c‖α‖1,2

(
‖α‖

p−1
3−p

1,2 + ‖α‖p−1
1,2 + 1

)(
1 + ‖∇χ‖2∞

)
. (4.19)

In a similar way in the case p > 2 we have, for arbitrary ε > 0

|(S(∇v + α∇χ), α∇χ)| ≤ k3

(
‖∇v + α(t)∇χ‖p−1

p ‖α∇χ‖p + ‖α∇χ‖1
)

≤ εk3‖∇v + α(t)∇χ‖pp + c(ε)‖α(t)∇χ‖pp + k3‖α(t)∇χ‖1.
(4.20)
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Hence, by (4.5) and choosing ε = k1
2k3

in (4.20) we have

〈B(t, v), v〉 = µ0‖∇v‖22 + (S(∇v + α∇χ),∇v + α∇χ)− (S(∇v + α(t)∇χ), α∇χ)

≥ µ0‖∇v‖22 +
k1

2
‖∇v + α∇χ‖pp − k2|Σ| − c‖α‖1,2

(
1 + ‖∇χ‖pp

)
(4.21)

that proves the coercivity also for B.
Concerning the growth of A by (4.7) and since 1 < p < 2 we have

‖S(∇v + α(t)∇χ)‖22 ≤ k2
3

∫
Σ

(
|∇v + α(t)∇χ|p−1 + 1

)2
dx

≤ ck2
3

(
|Σ|+ ‖∇v‖22 + ‖α‖21,2‖∇χ‖22

)
.

Since
‖A(t, v)‖W ′2 ≤ µ0‖∇v‖2 + ‖S(∇v + α(t)∇χ‖2

we get (4.17).
Finally the growth of B is controlled, thanks to (4.6), in the following way

‖B(t, v)‖W ′p ≤ µ0‖∇v‖p′ + ‖S(∇v + α∇χ)‖p′

≤ cµ0

(
‖∇v‖p−1

p + |Σ|
p−1
p

)
+ ck3

(
‖∇v‖p−1

p + ‖α‖p−1
1,2 ‖∇χ‖p−1

p + |Σ|
p−1
p

)

5. The Shear-Thinning case

The main goal of this section is to show the following result.

Theorem 5.1. Let Σ ⊂ IR2 be a Lipschitz domain, µ0 > 0, 1 < p < 2 and α ∈
W 1,2((0, T )) such that α(0) = α(T ). If S satisfies (4.5), (4.6) and (4.7), then there
exist a unique pair of functions (v,Γ) with

v ∈ L∞(0, T ;W 1,2
0 (Σ)), v′ ∈ L2(Σ× (0, T )), Γ ∈ L2((0, T ))

such that v is the weak solution of the problem (4.9), in the sense of definition 4.2,
and (v,Γ) satisfies (4.11). Moreover there exists a constant K(α) depending also
on Σ, T, k1, k3, µ0, p with K(α)→ 0 as ‖α‖1,2 → 0 such that

sup
t∈[0,T ]

‖∇v(·, t)‖22 dt+

∫ T

0

‖v′(·, t)‖22 dt ≤ K(α) (5.1)

‖Γ‖22 ≤ c(1 +K(α)) (5.2)

and the map Φ : W 1,2((0, T )) −→ L2(Σ × (0, T )) × L2((0, T )) defined by Φ(α) =
(v,Γ) is continuous, strongly in its first component and weakly in the second one.

Proof. We will prove the above theorem using the Faedo-Galerkin approximation.
Let {Vk} be the sequence of Lemma 3.3 with p = 2. For any fixed k ∈ IN and
ψ ∈ Vk, let us consider the following problem{

(v′(t), φ) + 〈A(t, v(t)), φ〉 = (µ0α(t)∆χ− α′(t)χ, φ) a.e. in [0, T ], ∀φ ∈ Vk
v(0) = ψ in Σ

(5.3)
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where A is defined in (4.15). By Proposition 4.7 and [16, Lemma 8.26] we can find a
solution uk := v ∈ L∞(0, T ;Vk) of the above problem such that u′k ∈ L2(0, T ;Vk).
Choosing φ = uk(t) in (5.3)1, by the coercivity condition (4.19) and Poincaré
inequality, we get

d

dt
‖uk‖22 ≤ −µ0‖∇uk‖22 + c‖α‖1,2

(
‖α‖

p−1
3−p

1,2 + ‖α‖p−1
1,2 + 1

)(
1 + ‖∇χ‖2∞

)
+ (µ0‖α‖∞‖∆χ‖2 + ‖α′‖2‖χ‖∞) ‖uk‖2

≤ −µ0

2
‖∇uk‖22 +M‖α‖1,2

(5.4)
with

M := c

((
‖α‖

p−1
3−p

1,2 + ‖α‖p−1
1,2 + 1

)(
1 + ‖∇χ‖2∞

)
+ ‖α‖1,2

(
µ0‖∆χ‖22 +

‖χ‖2∞
µ0

))
.

Setting Yk(t) := ‖uk(t)‖22, by Poincaré inequality and (5.4) we have

Y ′k(t) ≤M‖α‖1,2 − cµ0Yk(t) .

By simple manipulation of the previous differential inequality, we infer

Yk(t) ≤ Yk(0)e−cµ0t +
M‖α‖1,2
cµ0

(
1− e−cµ0t

)
, ∀t ∈ [0, T ] , (5.5)

which furnishes,

Yk(0) ≤ R∗ =⇒ Yk(t) ≤ R∗, ∀t ∈ [0, T ] (5.6)

provided

R∗ :=
M‖α‖1,2
cµ0

. (5.7)

Let us set
Bk = {φ ∈ Vk : ‖φ‖2 ≤ R∗}.

Thanks to (5.6) we can define a map Pk : Bk −→ Bk by means of Pk(ψ) = uk(T ).

Let us show that Pk is continuous. Indeed if we choose another initial data ψ̃ ∈ Bk
and we call ũk the corresponding solution, we have

1

2

d

dt
‖uk(t)− ũk(t)‖22 ≤ −µ0‖∇uk(t)−∇ũk(t)‖22 ≤ 0

hence
‖Pk(ψ)− Pk(ψ̃)‖2 ≤ ‖ψ − ψ̃‖2.

Since Bk is a convex and compact set in a Banach space, we can apply Schauder
theorem to get that Pk has a fixed point ψk. From now on we will denote by uk
the solution of problem (5.3) with initial data ψk, which satisfies the periodicity
condition uk(0) = uk(T ). Moreover, by (5.6) we get that

sup
t∈[0,T ]

‖uk(t)‖22 ≤ R∗ ∀k ∈ IN (5.8)
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and, integrating in time inequality (5.4), by the periodicity just obtained, we get
also

µ0

2

∫ T

0

‖∇uk(t)‖22 dt ≤MT‖α‖1,2. (5.9)

Let us consider the system (5.3) with v = uk and φ = tu′k(t). We get

t‖u′k(t)‖22 = −µ0t

2

d

dt
‖∇uk‖22 − t (S(∇uk(t) + α(t)∇χ),∇u′k(t))

+t (µ0α(t)∆χ− α′(t)χ, u′k(t)) .

Using the notation of lemma 4.1 we have

d

dt

∫
Σ

H(|∇uk(t) + α(t)∇χ|2) dx

= 2

∫
Σ

h(|∇uk(t) + α(t)∇χ|2)(∇uk(t) + α(t)∇χ) · (∇u′k(t) + α′(t)∇χ) dx

= 2 (S(∇uk(t) + α(t)∇χ),∇u′k(t)) + 2 (S(∇uk(t) + α(t)∇χ, α′(t)∇χ) .

Hence

t‖u′k(t)‖22 +
µ0t

2

d

dt
‖∇uk‖22 +

t

2

d

dt

∫
Σ

H(|∇uk(t) + α(t)∇χ|2) dx

= t (S(∇uk(t) + α(t)∇χ, α′(t)∇χ) + t (µ0α(t)∆χ− α′(t)χ, u′k(t))

≤ t‖S(∇uk(t) + α(t)∇χ)‖p′ ‖α′(t)∇χ‖p +
t

2
‖µ0α(t)∆χ− α′(t)χ‖22

+
t

2
‖u′k(t)‖22.

Integrating by parts in t the above inequality, we get, for any t ∈
[
0, 3

2T
]

∫ t

0

s

2
‖u′k(s)‖22 ds+

t

2

(
µ0‖∇uk(t)‖22 +

∫
Σ

H(|∇uk(t) + α(t)∇χ|2) dx

)
≤ µ0

2

∫ t

0

‖∇uk(s)‖22 ds+
1

2

∫ t

0

∫
Σ

H(|∇uk(s) + α(s)∇χ|2) dx ds

+
3

2
T

∫ t

0

‖S(∇uk(s) + α(s)∇χ)‖p′ ‖α′(s)∇χ‖p ds+ c‖α‖21,2

(5.10)
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Now we use (4.6), and (4.8) to get that, for any t ∈
[
T
2 ,

3
2T
]

we have

T

4

∫ t

T/2

‖u′k(s)‖22 ds+
T

4
µ0‖∇uk(t)‖22

≤ µ0‖∇uk‖2L2(Σ×(0,T )) + c

∫ t

0

‖∇uk(s)‖2 + ‖α(s)∇χ‖2 + ‖∇uk(s)‖pp ds

+c

∫ t

0

‖α(s)∇χ‖pp + ‖∇uk(s) + α(s)∇χ‖p−1
p ‖α′(s)∇χ‖p ds

+c(‖α‖1,2 + ‖α‖21,2)

≤ c
(
‖∇uk‖2L2(Σ×(0,T )) + ‖∇uk‖L2(Σ×(0,T )) + ‖∇uk‖pLp(Σ×(0,T ))

+‖α‖1,2‖∇uk‖p−1
Lp(Σ×(0,T )) + ‖α‖1,2 + ‖α‖21,2 + ‖α‖p1,2

)
.

(5.11)

Since 1 < p < 2, and taking into account the periodicity of the functions uk, by
(5.9) we get that∫ T

0

‖u′k(s)‖22 ds+ sup
t∈[0,T ]

‖∇uk(t)‖22 ≤ c‖α‖
1
2
1,2

(
1 + ‖α‖

3
2
1,2

)
≡ K(α). (5.12)

where K(α) depends also on Σ, T, k1, k3, µ0, p.
By (5.12) and (5.8) the sequence {uk(0)} is bounded in W 1,2(Σ) hence, by the

Rellich-Kondrachov theorem there exists U ∈ L2(Σ) such that, up to a subsequence,
uk(0)→ U strongly in L2(Σ). Applying [16, Theorem 8.30] we get that

uk ⇀ u weakly in L2(0, T ;W2) (5.13)

where u is a weak solution of problem (4.14). Moreover, by (5.12) we can select two
subsequences and find two functions z and w such that

∇uk
∗
⇀ z weakly ∗ in L∞(0, T ;L2(Σ))

u′k ⇀ w weakly in L2(Σ× [0, T ]).

By (5.13) we have that z = ∇u and w = u′ hence

u ∈ L∞(0, T ;W 1,2
0 (Σ)), u′ ∈ L2(Σ× (0, T )), (5.14)

u′k ⇀ u′ weakly in L2(Σ× [0, T ]). (5.15)

and, by (5.12),

‖u′‖2L2(Σ×(0,T )) + sup
t∈[0,T ]

‖∇u(t)‖22 ≤ K(α). (5.16)

Coming back from the lifted solution u to the original problem we get that v(x, t) =
u(x, t)+α(t)χ(x) is a weak solution of (4.9) in the sense of definition 4.2. Moreover,
by (5.14)

v ∈ L∞(0, T ;W 1,2
0 (Σ)), v′ ∈ L2(Σ× (0, T )). (5.17)
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In order to obtain the estimate (5.1) we need only to use (5.16), recall that
v = u + αχ and observe that the choice of χ is arbitrary and depends only on Σ.
We remark that, by the definition of K(α) (see (5.12)) we get

lim
‖α‖1,2→0

K(α) = 0.

In view of the fact that the weak solution v just constructed has v′ ∈ L2(Σ ×
[0, T ]), the existence of the associated presure gradient Γ follows from remark 4.3.
Moreover, integrating in time (4.12), by (5.1), we have

‖Γ‖22 ≤ ‖χ‖2∞‖v′‖22 + T‖∇χ‖2∞
(
µ2

0‖∇v‖2∞ + k2
3

(
|Σ|+ ‖∇v‖2∞

))
≤ c (1 +K(α)) .

(5.18)
The proof of the existence part is thus completed.

Concerning uniqueness, we consider two solutions (v1,Γ1), (v2,Γ2) and we set
w = v1−v2. A straightforward calculation and remark 4.3 show that w is a solution
of the following distributional equation

w′ = µ0∆w +∇ · S(∇v1)−∇ · S(∇v2) in D′(0, T ;W ′2). (5.19)

Let us apply the above identity to the function w, obtaining, by (4.7)

〈w′, w〉 = −µ0

(
∇w,∇w

)
+
(
S(∇v1)− S(∇v2),∇v1 −∇v2

)
≤ −µ0‖∇w‖22.

Now we recall that w ∈ L2(0, T ;W2), w′ ∈ L2(0, T ;W ′2), W2 ⊂ L2(Σ) ⊂W ′2, hence
we have (see e.g. [18, lemma III.1.2])

1

2

d

dt
‖w‖22 = 〈w′, w〉 ≤ −µ0‖∇w‖22.

As a result, by the periodicity of w,
∫ T

0
‖∇w(·, t)‖22 = 0 that, observing that w = 0

on ∂Σ, gives w(x, t) = 0 for almost any t ∈ [0, T ] and x ∈ Σ. From (4.12) we also
get that Γ1 = Γ2.

Finally we prove the continuity of the map that brings the flux α to the cor-
responding solution (v,Γ). Let α ∈ W 1,2((0, T )) be a fixed flux and let (v,Γ) be
the corresponding weak solution. We begin proving the strong continuity of the
velocity v. By contradiction suppose there exist a number ε > 0 and a sequence
{αn} ⊂ W 1,2((0, T )) such that αn → α in W 1,2((0, T )) but the corresponding
sequence of solutions {vn} satisfies∫ T

0

∫
Σ

|vn − v|2 dx dt > ε ∀n ∈ IN. (5.20)

By remark 4.3 we have that

v′n = µ0∆vn +∇ · S(∇vn) in D′(0, T ;W ′2). (5.21)

Using the estimate (5.1) we get that the sequence {vn} is bounded in
L2(0, T ;W 1,2

0 (Σ)) hence, up to a subsequence not relabeled, we can find ṽ such
that

vn ⇀ ṽ weakly in L2(0, T ;W 1,2
0 (Σ)). (5.22)
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Now we can use the monotonicity to pass to the limit in equation (5.21) obtaining

ṽ′ = µ0∆ṽ +∇ · S(∇ṽ) in D′(0, T ;W ′2). (5.23)

For any t ∈ [0, T ] we set α̃(t) =
∫

Σ
ṽ(x, t) dx and observe that α̃ ∈ L2((0, T )).

In particular we can consider the function (x, t) 7→ α(t) − α̃(t) as an element of
L2(0, T ;W−1,2(Σ)) which can be applied to the function vn−ṽ ∈ L2(0, T ;W 1,2

0 (Σ)).
Hence

lim
n→∞

∫ T

0

〈
α(t)− α̃(t), vn(t)− ṽ(t)

〉
dt = lim

n→∞

∫ T

0

(α− α̃)(αn − α̃) dt = ‖α− α̃‖22.

But, by (5.22) we have that

lim
n→∞

∫ T

0

〈
α(t)− α̃(t), vn(t)− ṽ(t)

〉
dt = 0

hence α = α̃ almost everywhere in [0, T ]. If we set w = ṽ − v and we reason as in
the proof of uniqueness, we get that

ṽ = v. (5.24)

Since K(α) is continuous with respect to ‖α‖1,2 (see (5.12)), by the strong conver-
gence of αn to α in W 1,2((0, T )), we can conclude that

‖v′n‖L2(0,T ;W−1,2(Σ)) ≤ ‖v′n‖L2(0,T ;L2(Σ)) ≤ K(αn) ≤ cK(α)

so that the sequence {v′n} is bounded in L2(0, T ;W−1,2(Σ))). Since the sequence
{vn} is bounded in L2(0, T ;W 1,2(Σ)), the injection W 1,2(Σ) ⊂ L2(Σ) is compact
and the space W 1,2

0 (Σ) is reflexive, by [18, theorem III.2.1] we can extract from
{vn} a subsequence strongly convergent in L2(0, T ;L2(Σ)) to a function v∗. By
(5.22) and (5.24) we get, a fortiori, that vn ⇀ v weakly in L2(0, T ;L2(Σ)). By the
uniqueness of the limit, we infer v∗ = v, and the strong convergence contradicts
(5.20).

As far as the weak continuity of Γ is concerned, we write (4.12) for Γn, we multiply
it by a generic periodic function γ ∈ C∞((0, T )) and we integrate in time. By (5.18)
we have that, up to subsequences, {Γn} converges weakly in L2((0, T )) to a function

Γ̃ hence

lim
n→∞

∫ T

0

Γnγ dt =

∫ T

0

Γ̃γ dt.

The right-hand side, by monotonicity, converges to∫ T

0

〈v′, χγ〉+ (µ0∇v + S(∇v),∇χγ) dt =

∫ T

0

Γγ dt

by uniqueness. Hence Γ̃ = Γ.

We conclude with a regularity result for weak solutions, obtained by suitably com-
bining theorem 5.1 with known results for quasilinear parabolic equations. Specifi-
cally, we have the following.
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Theorem 5.2. Let v be the solution of theorem 5.1, then

v ∈ L∞(Σ× [0, T ]) and ‖v‖∞ ≤ K̃(α)

where the constant K̃(α) has the same properties of K(α) in theorem 5.1.

Proof. For any t ∈ [0, T ], we set

P (t) =

∫ t

0

Γ(s) ds (5.25)

so that P ′(t) = Γ(t) and P ∈ C([0, T ]). Moreover, let be

y(x, t) = v(x, t) + P (t)

hence, by (4.11),

y′ = µ0∆y +∇ · S(∇y) in D′(0, T ;W−1,2(Σ)).

We observe that

y(x, t) = v(x, t) + P (t) = P (t) ∀x ∈ ∂Σ

and that P ∈ L∞(∂Σ× [0, T ]). Moreover

y(x, 0) = v(x, 0) + P (0) = v(x, 0) ∀x ∈ Σ

and that v(·, 0) ∈ L2(Σ). Setting

a(ξ) = µ0ξ + S(ξ), ξ ∈ IR2,

we find at once that y is a weak solution of the Dirichlet problem
y′ −∇ · a(∇y) = 0 (x, t) ∈ Σ× (0, T ]

y(x, t) = P (t) (x, t) ∈ ∂Σ× (0, T )

y(x, 0) = v(x, 0) x ∈ Σ

(5.26)

Since
a(ξ) · ξ ≥ µ0|ξ|2 + k1|ξ|p − k2 ≥ µ0|ξ|2 − k2,

and
|a(ξ)| ≤ µ0|ξ|+ k3|ξ|p−1 + k3 ≤ (µ0 + k3)|ξ|+ 2k3

we may deduce that (5.26) is a quasilinear parabolic problem with quadratic growth.
We appeal to a result of boundedness for the solution of such a problem, as stated,
for instance, in [5]. Roughly speaking, [5, theorem V.3.2] states that the ‖y(·, t)‖∞
is bounded, for any time t > 0 by the L∞(∂Σ× [0, T ]) norm of the boundary datum
and by the L2(Σ × (0, t)) norm of y. This estimate is no longer true in the limit
t → 0. However, we get rid of this problem by means of the periodicity nature
of our solution. Let us remark that, since in our case y is both a sub and super
solution, the upper bound in [5, theorem V.3.2] is actually a bound on |y|. This is
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a consequence of the monotonicity of the principal part of the differential operator,
as stated in [5, lemma II.1.2].

Let us estimate P (t). By (5.25), (4.12) and (5.1), we have

|P (t)| ≤
∫ t

0

µ0‖∇v(s)‖2‖∇χ‖2 + ‖S(∇v(s))‖2‖∇χ‖2 ds+
(
‖v(t)‖2 + ‖v(0)‖2

)
‖χ‖2

≤ c
(
‖v‖L2(0,T ;W 1,2(Σ)) + ‖v‖L∞(0,T ;L2(Σ))

)
≤ cK(α)

1
2

for any t ∈ [0, T ]. Now we apply [5, theorem V.3.2] to get an estimate for the L∞

norm of y at time T

sup
x∈Σ
|y(x, T )| ≤ sup

t
|P (t)|+ c

(
T +

1

T

) 1
2

(
1

T

∫ T

0

∫
Σ

|y|2 dx dt

) 1
2

≤ cK(α)
1
2 + c‖y‖L2(Σ×(0,T ))

≤ cK(α)
1
2 + c

(
‖v‖L2(Σ×(0,T )) + c‖P‖L∞(0,T )

)
≤ cK(α)

1
2

We remind that v is time-periodic hence

y(x, 0) = v(x, 0) = v(x, T ) = y(x, T )− P (T )

and

sup
x∈Σ
|y(x, 0)| ≤ sup

x
|y(x, T )|+ |P (t)| ≤ cK(α)

1
2 .

We apply once again [5, theorem V.3.2] to obtain the desired global bound

sup
x∈Σ
|v(x, t)| ≤ sup

x
|y(x, t)|+ |P (t)|

≤ max{sup
t
|P (t)|, sup

x
|y(x, 0)|}+ c

(∫ t

0

∫
Σ

|y|2 dx dt
) 1

2

≤ cK(α)
1
2 ≡ K̃(α)

(5.27)
uniformly in t ∈ [0, T ].

Remark 5.3. We remark that we require the mere continuity of the shear viscosity
S, allowing to deal even with the singular case S(∇u) = |∇u|p−2∇u. In this respect
we observe that for this specific tensor S, the growth condition (4.6) becomes simply
|S(a)| = |a|p−1 and (5.2) can be improved to ‖Γ‖22 ≤ K(α) gaining the smallness
of the pressure gradient for a small total flow-rate.

6. The Shear-Thickening case

In this section we show how to get the same results stated so far, in the case p > 2
corresponding to the case of a shear-thickening liquid. The general scheme remains
unvaried, hence we will point out only the changes to be made to the proof. The
main theorem for the shear-thickening case is the following:
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Theorem 6.1. Let Σ ⊂ IR2 be a Lipschitz domain, µ0 > 0, p > 2 and α ∈
W 1,2((0, T )) such that α(0) = α(T ). If S satisfies (4.5), (4.6) and (4.7), then there
exist a unique pair of functions (v,Γ) with

v ∈ L∞(0, T ;W 1,2
0 (Σ)), v′ ∈ L2(Σ× (0, T )), Γ ∈ Lp

′
(0, T )

such that v is the weak solution of the problem (4.9), in the sense of definition 4.2,
and (v,Γ) satisfies (4.11). Moreover there exists a constant K1(α) depending also
on Σ, k1, k3, µ0, p, T such that∫ T

0

‖∇v(t)‖pp dt+

∫ T

0

‖v′(t)‖22 dt+ sup
t∈(0,T )

‖∇v(t)‖22 ≤ K1(α) + ck2 (6.1)

‖Γ‖p
′

p′ ≤ c(1 +K(α))

where K1(α) → 0 as ‖α‖1,2 → 0. Moreover the map Φ : W 1,2((0, T )) −→ L2(Σ ×
(0, T )) × Lp

′
((0, T )) defined by Φ(α) = (v,Γ) is continuous, strongly in its first

component and weakly in the second one. Finally, if k2 = 0 then v ∈ L∞([0, T ] ×
Σ) ∩ L∞(0, T ;W 1,p

0 (Σ)) with

‖v(x, t)‖∞ + sup
t∈[0,T ]

‖∇u(t)‖pp ≤ K1(α). (6.2)

Proof. Let Vk be as in Lemma 3.3 with p > 2. In analogy with (5.3) we consider{
(v′(t), φ) + 〈B(t, v(t)), φ〉 = (µ0α(t)∆χ− α′(t)χ, φ) a.e. in [0, T ], ∀φ ∈ Vk
v(0) = ψ in Σ

(6.3)
with B defined in (4.16). We find a solution uk of the above problem such that
uk ∈ L∞(0, T ;Vk), u′k ∈ Lp

′
(0, T ;Vk). By the coercivity of B (4.21) follows the

estimate

d

dt
‖uk‖22 ≤ −µ0‖∇uk‖22 −

k1

2
‖∇uk + α∇χ‖pp + c‖α‖1,2

(
1 + ‖∇χ‖pp

)
+2k2|Σ|+ (µ0‖α‖∞‖∆χ‖2 + ‖α′‖2‖χ‖∞) ‖uk‖2

≤ −µ0

2
‖∇uk‖22 −

k1

2p
‖∇uk‖pp +M1‖α‖1,2 + 2k2|Σ|

(6.4)

with

M1 = c‖α‖1,2
(

1 + ‖∇χ‖pp + µ0‖∆χ‖22 +
‖χ‖∞
µ0

+ ‖α‖p−1
1,2 ‖∇χ‖pp

)
.

The differential inequality (6.4) allows us to get that

‖uk(0)‖22 ≤ R∗ =⇒ ‖uk(t)‖22 ≤ R∗ ∀t ∈ [0, T ]

where

R∗ =
M1‖α‖1,2

cµ0
+ 2k2|Σ|.
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The Schauder fixed point theorem allows us to achieve the periodicity of the func-
tions uk and the uniform estimates, for any k ∈ IN

sup
t∈[0,T ]

‖uk(t)‖22 ≤ R∗

µ0

2

∫ T

0

‖∇uk(t)‖22 dt+
k1

2p

∫ T

0

‖∇uk(t)‖pp dt ≤ (M1‖α‖1,2 + 2k2|Σ|)T. (6.5)

Testing the equation (6.3) with tuk(t) bring us to the estimate (5.11) which remains
unchanged. Integrating in time, by the periodicity of the functions and (6.5) we have∫ T

0

‖u′k(s)‖22 ds+ sup
t∈[0,T ]

‖∇uk(t)‖22 ≤ K1(α) + ck2 (6.6)

where lim
‖α‖1,2→0

K1(α) = 0.

If k2 = 0, by lemma 4.1 we have that∫
Σ

H(|∇uk(t) + α(t)∇χ|2) dx ≥
∫

Σ

2k1

p
|∇uk(t) + α(t)∇χ|p dx

≥ 2k1

p

(
21−p‖∇uk(t)‖pp − ‖α(t)∇χ‖pp

)
Substituting this inequality in the left-hand side of (5.10) we can obtain the ana-
logue of (5.11) and conclude that

sup
t∈[0,T ]

‖∇uk(t)‖pp ≤ K1(α) (6.7)

with a little abuse of notation, since K1(α) is not exactly the same of (6.6) but
it has the same properties. The remaining part of the proof follows the one of
Theorem 5.1 with obvious changes. If k2 = 0, the claim v ∈ L∞(Σ× [0, T ]) and the
related bound (6.2), follow from estimate 6.7 and the Sobolev embedding theorem
considering that p > 2.

Remark 6.2. In the case k2 > 0 it is still possible to get an L∞ bound for v in
Σ×[0, T ]. This result can be achieved via parabolic regularity. Indeed a result similar
to theorem 5.2 holds true furnishing the following estimate

‖v(t)‖∞ ≤ c
(
‖α‖

p−1
p

1,2 + k2

)
.

7. The direct problem

In this closing section we show how to find the velocity field once the pressure
gradient is prescribed. Despite the fact that the problem is simpler than the one
treated in the previous section, we would like to address it for completeness, and
also because it was the one originally studied by J.R. Womersley in the Newtonian
case (see [20]).
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The problem consists in solving the following set of equations
u′ − µ0∆u−∇ · S(∇u) = Γ(t) in Σ× [0, T ]

u(x, t) = 0 on ∂Σ× [0, T ]

u(x, 0) = u(x, T ) in Σ

(7.1)

where Γ is a prescribed (time-periodic) function in L2((0, T )) or in Lp
′
((0, T )),

respectively, according to whether we are in the shear-thinning or in the shear-
thickening case. Due to the fact that, this time, the flow-rate is not prescribed, we
do not need to project the equation on the set of zero mean value functions. Hence
in the definition of weak solution we can use the test functions in the the class
C∞0,per.

Definition 7.1. We say that u is a weak solution of the problem (7.1) if u ∈
L2(0, T ;W 1,2

0 (Σ)) ∩ Lp(0, T ;W 1,p
0 (Σ)) ∩ L∞(0, T ;L2(Σ)) and

∫ T

0

(u, φ′)− (µ0∇u+ S(∇u),∇φ) + (Γ, φ) dt = 0 ∀φ ∈ C∞0,per

u(x, 0) = u(x, T ) for a.e. x ∈ Σ

(7.2)

The existence and uniqueness of the solution to the above problem for a shear-
thinning liquid is contained in the following theorem

Theorem 7.2. Let Σ ⊂ IR2 be a Lipschitz domain, µ0 > 0, 1 < p < 2 and
Γ ∈ L2((0, T )). If S satisfies (4.5), (4.6) and (4.7), then there exist a unique weak
solution u of the problem (7.1) with

u ∈ L∞(0, T ;W 1,2
0 (Σ)) ∩ L∞(Σ× [0, T ]), u′ ∈ L2(Σ× (0, T ))

and

sup
(x,t)

|u(x, t)|+ sup
t
‖∇u(t)‖2 +

∫ T

0

‖u′(t)‖22 dt ≤ K(Γ)

where K depends also on Σ, T, k1, k3, µ0, p and K(Γ)→ 0 as ‖Γ‖2 → 0.

Proof. The proof is along the same arguments used in the previous sections, hence
it will be only sketched here. We use the Galerkin scheme of Theorem 5.1. For an
arbitrary ψ ∈ L2(Vk) let uk be the solution of the following problem{

(u′k, φ)− (∇ · (µ0∇uk + S(∇uk)) , φ) = (Γ(t), φ) a.e. in [0, T ], ∀φ ∈ Vk
uk(0) = ψ in Σ

The existence is guaranteed by the monotonicity, coercivity and suitable growth
condition of the operator v 7−→ −∇ · (µ0∇v + S(∇v)) in W 1,2

0 (Σ). Testing the
above equation with φ = uk(t) we get

1

2

d

dt
‖uk‖22 +

µ0

2
‖∇uk(t)‖22 ≤

c

µ0
|Σ||Γ(t)|2. (7.3)
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Integrating in time and applying the Schauder fixed point theorem we get the
periodicity of the solution along with the estimates

‖uk(t)‖22 ≤
c

µ0
|Σ|‖Γ‖22ecµ0T

(
1− e−cµ0T

)−1 ∀ t ∈ [0, T ],

µ0

∫ T

0

‖∇uk(t)‖22 dt ≤
c

µ0
|Σ|‖Γ‖22.

Testing the equation with φ = tu′k(t) we obtain the estimate

t‖u′k(t)‖22 +
µ0t

2

d

dt
‖∇uk(t)‖22 +

t

2

d

dt

∫
Σ

H(|∇uk(t)|2) dx ≤ t

2
‖Γ‖22 +

t

2
‖u′k(t)‖22

where H is defined in lemma 4.1. Integrating in time and employing the time
periodicity, we conclude that∫ T

0

‖u′k(t)‖22 dt+ sup
t
‖∇uk(t)‖22 ≤ cK(Γ)

where K(Γ)→ 0 when ‖Γ‖2 → 0.
Passing to the limit in the Galerkin sequence (see [16, Theorem 8.30]) we get the

existence result. The uniqueness follows straightforward by the strict monotonicity
and the time periodicity, like in theorem 5.1.

Finally, the uniform bound for |u(x, t)| is a consequence of parabolic regularity,
exactly as in theorem 5.2.

By suitably combining the proofs of theorem 6.1 and theorem 7.2, we may show
the following result –analogous to theorem 7.2 in the shear-thickening case– whose
proof will be, therefore, omitted.

Theorem 7.3. Let Σ ⊂ IR2 be a Lipschitz domain, µ0 > 0, p > 2 and Γ ∈
Lp
′
((0, T )). If S satisfies (4.5), (4.6) and (4.7), then there exists a unique weak

solution of the problem (7.1) u with

u ∈ L∞(0, T ;W 1,2
0 (Σ)) ∩ Lp(0, T ;W 1,p

0 (Σ)) ∩ L∞(Σ× [0, T ]), u′ ∈ L2(Σ× (0, T )).

Moreover there exists a constant K1(Γ) depending also on Σ, k1, k3, µ0, p, T such
that∫ T

0

‖u′(t)‖2 dt+

∫ T

0

‖∇u(t)‖pp dt+ sup
t
‖∇u(t)‖22 + sup

x,t
|u(x, t)| ≤ K1(Γ) + ck2

where K1(Γ)→ 0 as ‖Γ‖p′ → 0. If k2 = 0 then u ∈ L∞(0, T ;W 1,p
0 (Σ)) and

sup
t
‖∇u(t)‖pp ≤ K1(Γ). (7.4)
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