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ABSTRACT 

 

In industrial buildings explosion relief panels or doors are often used to reduce damages caused by gas 

explosion. Decades of research produced a significant contribution to the understanding of the phenomena 

involved, nevertheless, among the aspects that need further research, interaction between acoustic oscillation 

and the flame front is one of the more important. Interaction between the flame front and acoustic oscillation 

has raised technical problem in lots of combustion applications as well, and had been studied theoretically 

and experimentally in such cases. Pressure oscillation had been observed in vented deflagration and in 

certain cases they are responsible for the highest pressure peak generated during the event. At Scalbatraio 

laboratory of Pisa University CVE test facility was built in order to investigate vented hydrogen deflagration. 

This paper is aimed to present an overview of the results obtained during several experimental campaigns 

which tests are analysed with the focus on the investigation of flame acoustic interaction phenomenon. 

Qualitative and quantitative analysis is presented and the possible physic generating the phenomenon 

investigated. 
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1. INTRODUCTION 

A deflagration essentially involves an unsteady premixed flame front that develops from an ignition source 

and travels through a medium which may involve complex boundary conditions and obstructions of various 

geometries, generating an overpressure that can cause damages to personnel and structures. In practical 

situations venting is often used as a measure to prevent damages to the structures in an unlikely event of a 

deflagration, hence the understanding of the phenomenon is a critical issue for their safe design. 

The study of confined vented deflagrations is a very complex topic as many parameters affect their 

behaviour, i.e.: inhomogeneous concentration of the gas in the environment, volume’s geometry, presence of 

obstacles within the environment, location, size and strength of the vent, position of the ignition source, pre-

ignition turbulence, etc. One of the phenomena involved in vented deflagration is the interaction between the 

flame and acoustic oscillation that are generated during the process. Many authors who have contributed to 

the research in vented deflagrations report that oscillatory pressure peak are attained during the deflagration 

which may be attributed to coupling of the acoustic waves with the flame front [1,2,3,4,5,6,7].  

Coupling mechanisms between acoustic waves and flames have also become central issues in the 

development of many modern combustion devices and extensive research has been performed in the field 

focusing on stationary premixed flames such as the one involved in burners [9,10,11] and gas turbines [8]. 

Acoustic waves can be self-produced by the expanding flame [9], but the flame front can also interact and be 

influenced by acoustic waves generated by other mechanisms. Research has underlined that in combustors 

different possible mechanisms exists through which a flame can be affected by acoustic; one is through 

pressure variations, which lead to modification of the laminar flame speed and to combustion instabilities 

when these variations and fluctuations of the heat release rate obey the Rayleigh criterion, a second 

mechanisms is through oscillation of the flame area induced by the acoustic accelerations, a third 

mechanisms is through oscillation of the equivalent ratio (this mode being involved particularly when the 
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fuel is injected as a liquid), and a fourth one through oscillation of the flame area induced by convective 

effects [10]. 

Even though in vented deflagrations the generated overpressure can be affected by an oscillatory behaviour 

as well as in combustors, the physic of the phenomenon can be considered different due to the hydrodynamic 

field involved.  

The performed experiments show that pressure oscillation are triggered inside the vented volume after the 

flame front reaches the vent area, producing an high discharge rate that prompts acoustic resonances at 

frequencies characteristic of the enclosure. The mechanism of interaction between the flame front and the 

acoustic oscillation may be due to the acoustic accelerations. 

Following this scenario the flame front can be seen as an interface separating two fluids of different 

densities. The flame front will than react to the imposed acceleration field as well as it does to gravity. In fact 

in the presence of acoustic velocity field the flame front is subjected to an oscillating acceleration, when this 

acceleration is oriented toward the burnt gas the amplitude of the reaction zone will tend to decrease, while 

when it is oriented towards the unburnt gas, the amplitude of the reaction zone will tend to increase. In this 

way the acoustic field can thus modulate the total instantaneous heat release rate. 

This paper presents the analysis of experimental vented deflagration tests where flame acoustic interaction is 

involved and suggests a possible interpretation of the phenomenon. 

2. EXPERIENTAL CAMPAIGNS 

The CVE (Chamber View Explosion) apparatus is a nearly cubic structure characterized by an internal 

volume of about 25 m
3
; the roof and one side face are entirely covered with panels of glass (see Figure 1a) 

which allow to video record the flame, more details can be found in previous publications [5,6,7].  
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(a) CVE Test facility (b) Obstacle configurations 

Figure 1 – (a) Photo of the CVE test facility and (b) internal obstacle configurations 



CVE has been built in order to perform vented deflagration tests. In the experimental campaigns which 

results are presented in this paper the vent dimensions were kept fixed and characterized by a width of 0,62 

m and an height of 1,62 m (vent area 1,0044 m
2
). The vent area was closed with a plastic sheet having an 

opening pressure of approximately 2.4 kPa. 

Inside the CVE test facility different kind of obstacles had been placed (see Figure 1b), test collected and 

analysed in this paper were performed during various experimental campaign, one of which, called Reduced 

CVE campaign (RED-CVE), involved the presence of a smaller box of 0.68 m
3
 volume placed inside the test 

facility [6]. The vent of the inner box was kept constantly open, while the vent area could be varied having 

surfaces of 0.027675 m
2
 (vent1), 0.042025 m

2
 (vent2) or 0.05535 m

2 
(vent3).  

 

 
Igniters coordinates [mm] 

N. X Y Z 

1 20 1450 1060 

2 1250 1380 1380 

3 2680 1390 1360 

Figure 2 – Ignition location and coordinates (left)  

 

Hydrogen concentrations under investigation ranged between 7%vol. and 13% vol in all the experimental 

campaigns. 

During the release of hydrogen inside the facility the concentration had been homogenized through the use of 

a fan, at the end of the release phase the fan was turned off conveniently earlier to prevent initial turbulence 

inside the vented volume. A second fan was used to homogenise the atmosphere inside the RED-CVE box in 

tests were this configuration was adopted. Despite of the fans, hydrogen concentration showed a 

stratification behavior inside the facility, with lower concentration at the bottom and higher concentration 

under the facility ceiling, the difference of concentrations measured between the lower and the upper 

sampling points was about 1,5 %vol. in every tests. 

In the cited RED-CVE campaign three different ignition location were tested, the first of which was located 

on the CVE’s side opposite to the vent at 1 m high from the floor, the second inside the RED-CVE box and 

the third in between the RED-CVE box and the vent (see Fig.2). 

Pressure transducer were placed in the centre of the wall opposite the vent and in the centre of the wall 

opposite the glass one, in obstacle’s configuration 7 , RED-CVE campaign, the second pressure transducer 

was placed inside the RED-CVE box. Pressure readings were recorded at with a frequency of 5 kHz. 

Frequency analysis was performed through Discrete Fourier Transform of the signals recorded by the 

pressure transducers. 

  



3. ACOUSTIC WAVES – FLAME INTERACTION (RESULTS AND DISCUSSION) 

In all the tests performed whit ignition opposite the vent area and average H2 concentration higher than 

9%vol. the pressure time history inside the CVE test facility showed strong pressure oscillations. It is general 

belief that these pressure oscillation are generated by the interaction between the flame front and acoustic 

waves. The analysis performed on the data collected from the tests proved that these oscillation aroused after 

the flame front reached the vent, see Figure 3. 

(a) - H2 concentration 11.5 %vol. (b) Video 

Figure 3 – Pressure time history for tests performed with ignition opposite the vent (a) and photo of the flame 

inside the CVE test facility (b) 

As a matter of fact when the flame reaches the vent a great change is introduced inside the system since the 

burned mixture starts to flow out of the vent area having a much lower density and abruptly increasing the 

mass flow rate. This phenomenon was long recognized and addressed to be responsible of a pressure peak 

attained inside the enclosure. The results of the analysis described in the present paper support the hypothesis 

that when the flame reaches the vent it induces also a different burning regime in the flame front that 

continues to expand in direction perpendicular to the vent, which is, after this moment, more prone to be 

influenced by acoustic oscillation. 

The flame expanding inside the volume, before reaching the vent area, can be affected by different flow 

regime and instabilities, as the Darrenius Landau instabilities, as extensively studied in the past [12]. 

Nevertheless all kind of acoustic oscillation, either of external origin or self-produced by the expanding 

flame front, are counteracted by the expansion of the flame front itself. As a matter of fact the assumption 

leading to the definition of the burning velocity of the expanding flame front involve the expansion factor 

given by the ratio of the densities of unburnt and burnt gases, taking into account the production of burning 

products that “pushes” the flame front toward the unburned mixture contributing to stabilize it. After the 

flame front reaches the vent this assumption is not completely met anymore since the expansion of the 

burned gases towards the unburned mixture is prevented, or at least decreased, by the flow of burned 

products exiting the vented volume through the vent area.  

If the deflagration had been ignited close to the wall opposite the vent, when the flame front reaches it the 

burned gases occupy a sort of truncated cone having its base lying on the wall opposite the vent and its edge 

on the vent area. The combustion products tend to be ejected through the vent area due to the pressure 

difference between the enclosure and the outer atmosphere. So the combustion products do not influence 

anymore the flame front in direction perpendicular to the cone axis. During the first phase of the deflagration 

the influence of the expanding combustion products acts as a stabilizer to the flame front, opposing the 

acoustic perturbations. The discontinuity produced by the flame reaching the vent area may be than 

responsible for the change in the burning behaviour of the flame front making it more susceptible to be 

influenced by the acoustic perturbation. At the same time the abrupt increase of discharge rate may be 

considered also responsible of triggering acoustic waves at frequencies characteristic of the resonant 

response the enclosure. 

The Figure 4 shows the pressure time history of a test where two pressure transducers were present inside the 

test facility. The one placed on the lateral wall records pressure oscillations earlier than the one placed on the 



wall opposite the vent area. This behaviour is reported in all the tests performed with ignition opposite the 

vent and is meaningful of how the phenomena inside the enclosure are affected by the flow field generated 

after the combustion products reached the vent. 

 

 

Figure 4 – Detail of pressure oscillations recorded by the two transducers 

In order to make more clear the described behaviour, the pressure-time history of some test where the 

ignition took place inside the RED-CVE box (location 2 in Figure 2) are showed as an example in Figure 5. 

The vent of the RED-CVE box was open, facing the vent of the CVE facility that was closed by a plastic 

sheet. 

 

Figure 5 – Pressure-time history of RED-CVE box for H2 concentration of 11.8% with 3 different vent 

dimension 

 



 

 

Figure 6 – Pressure-time history of RED-CVE and CVE facility for test RED30 ignited inside the RED-CVE 

box 

After the ignition the pressure started to rise inside the small box, while due to the small vent of the RED-

CVE the pressure rose inside the facility after a delay (the pressure transmitter of the bigger volume is 

located on the wall of the facility opposite the vent). As soon as the vent opens the pressure in both of the 

environments (CVE and RED-CVE) dropped (see Figure 6). It can be noted how the low frequency 

Helmholtz oscillation affected each volume with their own characteristic frequency. Over these low 

frequency oscillations other were superimposed, which frequency could be related to the resonant mode of 

the enclosure. Helmholtz oscillation, as well as resonant mode of the enclosure, tended to be dumped out and 

did not really interact with the flame front in the first stage of the deflagration. As soon as the flame reached 

the vent in the RED-CVE box, anyway, pressure oscillations at frequency of the resonant mode started to 

interact with the flame front. A detailed analysis of the frequencies shows that these oscillations in the first 

stage overlapped the low frequency Helmholtz oscillations with amplitude 0.1 kPa, where the Helmholtz had 

amplitude of 0.5 kPa, resonant frequencies being 320 Hz. As the deflagration progressed, after the flame 

reached the vent, the oscillations increased in amplitude meaning the interaction between the acoustic waves 

and the flame front started to play an important role in the pressure build up. During the progress of the 

deflagration the oscillation increased its frequency in the time interval between the flame front reaching the 

vent and approaching the walls at the end of the deflagration. The initial frequency of 320Hz reached 390 

Hz. This result may be explained taking into account the increasing average sound speed inside the enclosure 

that is influenced by the increasing pressure as well as by the progressive filling by combustion products at 

higher temperature and lower density with respect to the unburned mixture. As a matter of fact the amplitude 

of the oscillations tended to increase at the same time when the frequency increased, than after the pressure 

peak was reached, when the flame extinguished, the oscillations were attenuated maintaining the same 

frequency measured during the peak. Similar results were reported by Tamanini [3]. 

Correlate the frequency of the observed oscillations with the calculated vibrational modes of the chamber is 

not an easy task since the sound speed inside the volume cannot be assessed with certainty. As a matter of 

fact, in order to calculate the time needed by a perturbation such as an acoustic wave to be reflected by a wall 

and reach the opposite one we should know the distribution of burned and unburned mixture inside the 

chamber; as well as the sound speed in the unburned mixture and in combustion products that in turns 

depends on hydrogen concentration. 



Using a generic method for calculating the properties of combustion products [14], sound speed had been be 

estimated for the environment completely filled by combustion product at atmospheric pressure, see table 1. 

Table 1. Estimated sound speed for different H2 concentrations 

%vol. H2 E.R. Adiabatic 
Flame T [°K] 

Sound speed 
[m/s] 

9 0.24 1010.6 651.7 

10 0.2693 1087.4 677.9 

11 0.3 1165.5 703.8 

12 0.3305 1240.73 728.3 

 

An air cavity in the shape of a rectangular box has a sequence of nonharmonic resonances. In such a case the 

walls are nodal points, and there are standing waves between two parallel walls and mixed standing waves 

involving several walls. The frequencies of such standing waves are given by the relation: 

 

𝑓 =
𝑐0
2
√[(

𝑛𝑥
𝑙𝑥
)
2
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)
2
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Where c0 is the speed of sound; lx, ly, and lz are the dimensions of the environment and Nx, Ny, and Nz are 

any integers. The acoustic response of the two chambers would depend on the sound speed, in table 2 and 3 

results calculated using the formula are listed for different sound speed.  

Table 2. Acoustic modes in RED-CVE box for different sound speed 

Sound speed 1
st

 [Hz] 2
nd

 [Hz] 3
rd 

[Hz] 

650 369 738 1108 

700 398 795 1193 

750 426 852 1278 

800 482 965 1363 

 

Table 3. Acoustic modes in CVE facility box for different sound speed 

Sound speed Resonances [Hz] 

[m/s] 
1st 

Lateral  
1st 

Vertical 
2nd 

Lateral 
2nd 

Vertical 
3rd 

Lateral 
3rd 

Vertical 

650 106 114 213 229 320 344 

700 115 124 230 247 344 371 

750 122 132 245 265 368 397 

800 131 141 262 283 393 424 
 

The estimation of the calculated frequencies, despite the approximations, can be related with the measured 

frequencies in the RED-CVE small box, see Figure 7.  

To give better evidence on the behaviour of the pressure oscillations with regard to their increasing 

frequency, the Figure 7 shows the results, in the range where the frequency had maximum amplitude, of the 

analysis performed on the overall pressure-time history measured inside the RED-CVE box for 5 tests with 

ignition located inside the box itself. The picture shows the presence of various peaks characterized by 

increasing amplitude. Performing this analysis with consecutive “time windows” selected during the progress 

of the deflagration it can be established that the peaks, represented in Figure 7, correspond to the overlap of 



frequencies that characterize the oscillation in consecutive periods. It has to be noted that in tests at higher 

concentrations, the frequency of the oscillation is also higher. This behaviour being reasonable considering 

that higher H2 concentrations results in higher combustion product temperature and hence higher sound 

speed. 

 

Figure 7 – Analysis of pressure oscillation inside the RED-CVE box in the frequency domain for tests in 

configuration 7 and ignition inside the box 

The amplitude of the oscillations obtained for tests performed with RED-CVE concentration 11.2% were 

higher than the one obtained in tests which concentration is higher 11.8%. Similar behaviour was reported by 

Dorofeev et al. [1] comparing results of tests with H2 concentrations 12%vol and 15%vol. The authors 

ascribe the higher coupling between the flame-acoustic oscillations at lower concentrations either with the 

increased thermal-diffusion effects or with the fact that the lower flame-speed of the leaner mixtures allows 

the oscillations to grow in amplitude for a longer time before the flame reaches the walls of the chamber.  

Pressure-time history for test RED15 is provided in Figure 8, where the selected time window is centred in 

the phase where acoustic oscillation started to appear up to the moment when the flame reached the walls. 

Evidence of the increasing frequency of the acoustic oscillation can be clearly identified with the naked eyes 

in the enlarged graph. 

The graph of test RED15, Figure 8, represents the pressure behaviour inside the small box for a test where 

the ignition took place in the CVE test facility, and precisely on the wall opposite the vent. The average 

concentration was 9.5% in the CVE facility and 10.1% inside the box. After the facility’s vent opening 

pressure peak was attained, the pressure rose again since the flame front was influenced by the turbulent flow 

field generated by the flow of unburnt gases leaving the vent area. When the flame front reached the vent 

area a second minor peak was attained and pressure oscillation were triggered inside the bigger volume 

following the scenario mentioned earlier. At this stage the flame front did not yet entered inside the RED 

box, the pressure time history inside the box was following the pressure changes in the facility to which 

Helmholtz oscillation provoked by the movement of air through its vent were superimposed (left part of the 

upper graph in Figure 8). 



 

Figure 8 – Pressure time history for a flame entering in the RED-CVE box from the vent area (Test RED15) 

 

In fact, in this case, due to hydrodynamic movement that dragged the flame front towards the vent, the flame 

entered the box after it had already reached the vent area of the main facility. The flame front was than 

already affected by the pressure oscillation generated outside the box when it entered inside the smaller 

volume. The first part of the enlarged graph of Figure 8 shows how this oscillatory behaviour started to 

interact with the flame front increasing its amplitude as well as its frequency while the flame progressed 

inside the box. When the pressure reached the plateau between 3.45 and 3.5 sec of Figure 8, the flame 

burning regime changed abruptly increasing its frequency. In fact the slight decrease of the overall pressure 

recall the situation described earlier where the flow rate of combustion products exiting the vent becomes 

higher than the amount produced by the flame front, and, as in the case described for internal ignition, the 

flame becomes influenced by acoustic oscillation having frequency characteristic of the resonant response of 

the chamber. The frequency of these oscillations were similar to the ones measured in the cases described 

before, and higher than the one produced in the CVE facility. 

In fact, as a general behaviour, in tests where the flame front entered in the box through the opening the 

pressure oscillation measured had comparable frequency with the one generated outside the box in the early 

stage. Then, during the progress of the deflagration, the frequency increased. This increase of oscillating 

frequency can be clearly identified, but as a general rule, the amplitude of the oscillations was smaller than 

the one obtained when the flame surface was not affected at all by the expansion of the combustion products. 

In fact as described for cases where ignition was located inside the vented volume, as soon as the flow rate of 

the combustion product became bigger than their production, a different burning regime was introduced and 

oscillation of higher frequencies where prompted having higher amplitude as well, even if the net 

overpressure become negligible, as showed in the right part of the upper graph in Figure 8. 

For tests performed in the empty CVE test facility the correlation of the oscillating frequencies with the 

acoustic response of the vented volume is not so clear (see Figure 9). The same behaviour has been found 

independently of the obstacle configuration. A lot of different peaks can be identified during the frequency 

analysis for the oscillating pressure, this may be due either to the cohabitation of different phenomena 

generating acoustic waves in bigger environments as well as to reflection and diffraction of the generated 

acoustic response of the chamber. For tests performed at average concentration higher than 12%vol. a lower 

amplitude was recorded in the CVE test facility as well, especially concerning the 1
st
 resonant mode of the 

chamber. This behaviour may be due to the fact that the flame front was already touching the walls of the 



enclosure when the acoustic waves were prompted inside and the interaction with the flame front took place 

in the corners of the volume were reflection and refraction of the waves produced higher frequencies.  

 

Figure 9 – Analysis of pressure oscillation inside the CVE test facility in the frequency domain for tests with 

ignition on the wall opposite the vent 

For tests where the ignition was located close to the vent the maximum overpressure was comparable with 

the vent opening pressure. In these cases an interaction between the flame front and the acoustic waves 

having frequency comparable with the resonant response of the chamber can be identified more clearly, see 

Figure 10. The amplitude of the oscillations was very low in comparison with the one attained during test 

with ignition located close to the wall opposite the vent for the same H2 concentrations. Oscillation had also 

an higher amplitude for H2 concentration of 12% than for H2 concentration of 11.1% (see Fig. 10), showing 

an opposite behaviour with respect to the tests with ignition located opposite the vent. In this case when the 

vent opened the flame front was very close to the vent area and it reached it earlier, having no chance to 

build up significant overpressure inside the vented volume, the interaction between the acoustic oscillations 

and the flame front may than be weaker due to the weaker acoustic acceleration produced in this case as 

compared with back wall ignition tests. . This may be also the explanation of the cause of the lower “noise” 

observed in the frequency analysis for these tests. 

 

Figure 10 – Analysis of pressure oscillation inside the CVE test facility in the frequency domain for tests 

with ignition close to the vent 



4. CONCLUSIONS 

Experiments were performed at Scalbatraio laboratory, DICI Department of University of Pisa, to investigate 

phenomena involved in vented deflagration and analysis was performed with the focus on the interaction 

between acoustic waves and the flame front. The interaction in different volumes and geometries was 

investigated for lean hydrogen concentrations varying from 7% to 13%vol. 

Results for tests with ignition located on the wall opposite the vent, supported by video recording of the 

deflagration, showed that such interaction start to arise when the flame front reaches the vent area. The 

abrupt increase of discharge rate of burned products may than be claimed to be responsible of triggering 

acoustic waves inside the vented volume, as well as producing a change in the burning behaviour of the 

flame front that from this moment is more susceptible to be influenced by acoustic waves. The mechanism of 

interaction between the flame front and the acoustic oscillation may be due to the acoustic accelerations. 

Following this scenario the flame front can be seen as an interface separating two fluids of different 

densities. The flame front will than react to the imposed acceleration field as well as it does react to gravity. 

The presence of an acoustic velocity the flame front is subjected to an oscillating acceleration, when this 

acceleration is oriented toward the burnt gas the amplitude of the reaction zone will tend to decrease, while 

when it is oriented towards the unburnt gas, the amplitude of the reaction zone will tend to increase. In this 

way the acoustic field can thus modulate the total instantaneous heat release rate. 

Such interaction is enhanced when the flame front is close to the walls, only in this cases strong pressure 

oscillation and a significant net overpressure inside the vented volume are generated. For tests ignited on the 

wall opposite the vent, pressure oscillation had higher amplitude than the ones obtained for ignitions close to 

the vent for the same hydrogen concentrations. This results  being reasonable considering the stronger 

acceleration generated by the burned gas venting when significant overpressure is present inside the 

enclosure like in this case.  

Results shows that the flame front can interact with acoustic waves externally imposed, as in the case where 

the flame front entered inside the smaller box being already affected by acoustic response of the main 

facility. While the flame front progressed inside the enclosure the oscillating frequency tended to increase, as 

well as the amplitude of the oscillation, both frequency and amplitude being anyway smaller if compared 

with the one reached in the internal ignition scenario. In this case, when the production of the combustion 

products became smaller than the amount exiting the vent a new burning regime was introduced were the 

frequency was comparable with the resonant response of the enclosure and amplitude of the oscillation 

increased. 

In environments of higher volumes the frequencies of the oscillation showed much more “noise” if compared 

with cases were smaller volumes were under investigation, this behaviour may be due to the mechanism of 

reflection and refraction of the waves in bigger environments. 

Vent opening can also trigger the resonant response of the chamber as well as Helmholtz oscillations inside 

the enclosure, nevertheless in case of low strength vents the generated acoustic acceleration are weak and the 

flame front is still expanding far from the vent area, hence no substantial significant interaction with the 

flame front is found. 
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