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LOCAL AND NONLOCAL CONTINUUM LIMITS OF ISING-TYPE
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Abstract. We study, through a Γ-convergence procedure, the discrete to continuum limit of
Ising-type energies of the form Fε(u) = −∑

i,j c
ε
i,juiuj , where u is a spin variable defined on a

portion of a cubic lattice εZd ∩Ω, Ω being a regular bounded open set, and valued in {−1, 1}. If the
constants cεi,j are nonnegative and satisfy suitable coercivity and decay assumptions, we show that

all possible Γ-limits of surface scalings of the functionals Fε are finite on BV (Ω; {±1}) and of the
form

∫
Su

ϕ(x, νu) dHd−1. If such decay assumptions are violated, we show that we may approximate

nonlocal functionals of the form
∫
Su

ϕ(νu) dHd−1+
∫
Ω

∫
Ω K(x, y)g(u(x), u(y)) dxdy. We focus on the

approximation of two relevant examples: fractional perimeters and Ohta–Kawasaki-type energies.
Eventually, we provide a general criterion for a ferromagnetic behavior of the energies Fε even when
the constants cεi,j change sign. If such a criterion is satisfied, the ground states of Fε are still the
uniform states 1 and −1 and the continuum limit of the scaled energies is an integral surface energy
of the form above.
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1. Introduction. The description and prediction of mesoscopic pattern forma-
tion have been and continue to be an object of extensive research both in the physical
and in the mathematical literature. A possible approach in pursuing this task, usu-
ally adopted in statistical mechanics, is the analysis of discrete models, which aims at
predicting such patterns starting from discrete systems of particles in interaction. A
different but somehow complementary approach is the analysis of continuum models,
which very often correspond to a coarse-graining description of the previous ones,
which averages or smooths away fine details but is capable of capturing some of the
main features of the original problems.

Among the discrete models an efficient and celebrated example is given by the
Ising model, introduced originally to model ferromagnetism in statistical mechanics
but then applied successfully in many other contexts. In its original form it amounts
to considering a Hamiltonian of the form (where n.n. stands for nearest neighbor)

(1.1) F (u) = −
∑
n.n.

uiuj

which is the energy of a system of interacting spins through their nearest-neighbor
bonds. Here the spin variable u is defined on a portion L of a periodic lattice, say Z

d,
and takes values in {−1, 1}. By scaling Z

d by a small parameter ε > 0 and identifying
L with εZd ∩ Ω, where Ω is an open bounded open set of Rd, it can be proved that
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896 ROBERTO ALICANDRO AND MARIA STELLA GELLI

the discrete-to-continuum limit of suitable power scaling of E, as ε → 0, resembles
that of a Cahn–Hilliard-type functional. Namely, it leads in the limit as ε→ 0 to the
surface energy

∫
Su

|νu|1 dHd−1 for u ∈ BV (Ω; {±1}), where Su is the jump set of u,

that is the interface between the {u = 1} phase and the {u = −1} phase, νu is the
unit normal to Su, and | · |1 is the �1-norm in R

d.
Ising-type energies are more generally written in the form

(1.2) F (u) = −
∑

i�=j∈L
ci,juiuj .

Here, according to the sign of the constants ci,j , we speak of ferromagnetic inter-
actions, corresponding to ci,j > 0 and favoring uniform pairs ui = uj, or of anti-
ferromagnetic interactions, corresponding to ci,j < 0 and preferring instead alter-
nating pairs ui = −uj. Many studies have shown that models involving energies of
the form (1.2), for a suitable choice of the range of interactions and of the sign of
the constants ci,j , can be approximated in the continuum by models involving sur-
face energies of the form above, where the limiting interfaces may represent phase or
antiphase boundaries (see [3] for some relevant examples in a variational framework).

A general question is, then, whether an approximation by surface energies can
be used. The purpose of this paper is to answer this question and, more precisely,
to determine a large class of energies of the form (1.2) whose discrete-to-continuum
limits can be described by surface functionals.

We start our analysis by considering a bulk scaling of the functionals in (1.2) and
letting the constants ci,j depend also on the small parameter ε. Therefore we consider
energies of the form

(1.3) Fε(u) = −
∑

i�=j∈Ωε

εdcεi,juiuj,

defined for u : εZd∩Ω → {−1, 1}, where we have used the notation Ωε := Z
d∩(ε−1Ω),

ui := u(εi). The asymptotic behavior as ε→ 0 of energies of the form (1.3) has been
studied in [5] and leads in the continuum limit to a class of integral functionals of the
type ∫

Ω

f(x, u(x)) dx,

where the limit variable u represents the magnetization of the spin variable uε, that
is, loosely speaking, u(x) is the average value of uε around x. We underline that,
with this scaling, the asymptotic analysis gives some insight into the structure of
the ground states only when the constants cεi,j change sign, leading to a competition
between ferromagnetic and antiferromagnetic interactions.

Let us focus instead on the purely ferromagnetic case, i.e., assume cεi,j ≥ 0 for
all i, j ∈ Ωε. Note that with this assumption the ground states of Fε are trivially
the constant functions u ≡ 1 and u ≡ −1. Nevertheless, if boundary conditions or
additional constraints are added, minimizers are not trivial and it is interesting to
describe their behavior as ε → 0, i.e., when the number of indices diverge. To this
end, a higher order description of Fε is needed.

Let mε := minFε = Fε(±1) and consider a surface scaling of Fε given by

(1.4) Eε(u) =
Fε(u)−mε

ε
=
∑

i�=j∈Ωε

εd−1cεi,j(1− uiuj).
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CONTINUUM LIMITS OF ISING-TYPE ENERGIES 897

We identify the functions u with their piecewise constant interpolations on the cells of
the lattice εZd. Note that, with this identification, if we split Eε into the contribution
accounting for the interactions between nearest neighbors and between all the other
pairs, we may rewrite it as

(1.5) Eε(u) =

∫
Su

aε(x) dHd−1 +

∫
Ω

∫
Ω

Kε(x, y)|u(x) − u(y)| dxdy +O(1)

for suitable functions aε(·) and Kε(·, ·), where the additional O(1) term is due to the
energetic contribution of the interactions near ∂Ω.

The asymptotic behavior as ε → 0 of the energies Eε can be described by using
the methods of Γ-convergence (see [13, 18]). We make assumptions of two types on
the constants cεi,j : a coerciveness hypothesis on nearest neighbors, namely, that cεi,j ≥
c > 0 when |j − 1| = 1, which ensures that the limit is finite only on BV (Ω; {±1}),
and a decay assumption as |j − i| → +∞, that allows us to neglect very-long-range
interactions. We point out that in this case the nonlocal term on the right-hand side
of (1.5) gives only a contribution, as ε → 0, to the surface energy. Indeed, under
these conditions we show that, up to passing to a subsequence, the functionals Eε

Γ-converge to an integral surface functional defined on BV (Ω; {±1}) and of the form

(1.6)

∫
Su

ϕ(x, νu) dHd−1

(see Theorem 4.2).
To perform our analysis, we apply an abstract method, originally exploited in the

homogenization theory for multiple integrals and then adapted to a discrete setting
in the continuum approximation, by Γ-convergence, of discrete models in nonlinear
elasticity (see [4, 6]). It amounts to applying a localization argument which allows
us to regard our functionals and their Γ-limits as defined on functions and set and
then to prove that all the hypotheses of an integral representation result of [12] (see
Theorem 2.2) are fulfilled. We point out that, in applying this method, the surface
scaling of the energies considered here requires in some steps a finer analysis than
that developed in the bulk case considered in [4] and [6] (see in particular the proof
of Proposition 4.5).

In the case of periodic interactions, corresponding to having cεi,j = c(i, j− i) with

c(·, ξ) [0, k)d-periodic for some k ∈ N and for any ξ ∈ Z
d, we may derive by our integral

representation result an alternative proof of the homogenization result proved in [15].
Indeed, in this case the whole family of functionals Eε Γ-converges to a homogenized
surface energy of the form

(1.7)

∫
Su

ϕhom(νu) dHd−1

with ϕhom defined by a suitable asymptotic formula (see Theorem 4.7).
As a consequence of our Γ-convergence results, in section 4.2 we derive the con-

vergence of minimum problems involving discrete energies as in (1.4) to the corre-
sponding minimum problems involving the limiting energy. We focus on boundary
value problems and minimum problems with a prescribed volume fraction.

We underline that we limit our analysis to square lattices, but our results can be
easily extended to any Bravais lattice or multilattice (see also [7] for an extension of
these results to stochastic lattices). Moreover, we provide an extension of our analysis
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898 ROBERTO ALICANDRO AND MARIA STELLA GELLI

to the case of energies accounting for multibody interactions of the form, for a given
M ∈ N,

(1.8) EM
ε (u) =

∑
i1,...,iM∈Ωε

εd−1ψε(i1, . . . , iM , ui1 , . . . , uiM ).

Here the ferromagnetic behavior of EM
ε is ensured by the assumption that the poten-

tials ψε are nonnegative and equal 0 only on the uniform configurations u1 = u2 =
· · · = uM . Under coercivity and decay assumptions analogous to those given in the
case of pairwise interactions and applying the same argument exploited in that case,
it is possible to show that the same integral representation and homogenization re-
sults hold for the Γ-limits of energies of the form (1.8) (see Theorems 4.13 and 4.14).
Moreover, we provide an example of energies accounting for nearest-neighbor 3-body
interactions, obtained by adding a term in the potentials of the energies in (1.1) which
penalizes changes of direction in the interfaces. The interesting effect here is that such
an additional term does not give any contribution to the limiting energy, but acts as
a selector of the ground states of Eε (see Example 4.15).

Our decay assumptions on the constants cεi,j are somehow the most general to
guarantee the locality of the continuum limit. Indeed, in section 5 we show that, if
they are violated, we can approximate nonlocal functionals of the form

(1.9)

∫
Su

ϕ(x, νu) dHd−1 +

∫
Ω

∫
Ω

K(x, y)g(u(x), u(y)) dxdy,

which resembles the representation of Eε in (1.5). We focus on the approximation of
two relevant examples: fractional perimeters and Ohta–Kawasaki-type energies. The
first ones correspond to a nonlocal term on the right-hand side of (1.9) of the form∫

Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy

for s ∈ (0, 1), which is one quarter of the fractional Sobolev space seminorm 1
4 |u|W s,1(Ω).

The second ones correspond to a nonlocal term of the form

γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dxdy,

where γ0 > 0 and G is the Green’s function of the Laplacian with Neumann boundary
conditions on ∂Ω. The original model proposed by Ohta–Kawasaki in [23] in the
studies of energy-driven pattern forming systems is based on energies of the form

(1.10) OKε(u) = ε

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

(1− u2)2 dx + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dxdy

and in the analysis of their minima subject to a prescribed volume fraction. The
first two integrals in (1.10) form the so called “Modica–Mortola” energy which Γ-
converges as ε→ 0 to the perimeter functional (see [19]). It can be easily shown that
the nonlocal term in (5.9) is an L1 continuous perturbation of the Modica–Mortola
energy. As a consequence, the functionals OKε Γ-converge as ε → 0 with respect to
the L1(Ω) norm to the functional finite on BV (Ω; {±1}) and defined by

(1.11) OK(u) :=
8

3
Hd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy.
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CONTINUUM LIMITS OF ISING-TYPE ENERGIES 899

We provide a variational approximation of an anisotropic version of the functional in
(1.11), given by

(1.12)

∫
Su

|νu|1 dHd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy.

The idea is that the first term can be approximated by the discrete functionals in (1.1),
while the nonlocal term is approximated just by “discretizing” the double integral.
Hence we show that the functional in (1.12) is the Γ-limit of the sequence of functionals
defined by

Êε(u) = −
∑

|j−i|=1

εduiuj + γ0
∑

i,j∈Ωε

ε2d+1G(εi, εj)ujui.

The result can be also extended to the periodic case, when Ω = T
d, and to functions

satisfying a mean constraint. By virtue of a result proved in [1] and thanks to our
approximation, we deduce that lamellar configurations are nearby local minimizers of
Êε (see Theorem 5.9). We point out that the periodicity of minimizers of energies for
spin systems with competing interactions and different scalings, which resembles the
behavior of Ohta–Kawasaki-type energies, has been investigated in many papers (see,
for instance, [21, 22]). It would be interesting, in our opinion, to recast the analysis
of those models in our framework.

The last question we address is, in the case there is a competition between fer-
romagnetic and antiferromagnetic interactions, that is, no constraint on the sign of
the constants cεi,j is assumed, whether energies of type (1.3) still have a ferromagnetic
behavior or, equivalently, whether the ground states are still the uniform states u ≡ 1
and u ≡ −1 and the continuum limit of the scaled energies is an interfacial energy of
the form (1.6). We restrict our analysis to the homogeneous and “short-range” case,
that is, cεi,j = cj−i for all i and j and cξ = 0 if |ξ| > R, for some R > 0. We show

that, givenM ∈ N, with M ≥ R, and setting CM = [0,M ]d∩Z
d, the energies in (1.3)

can be rewritten as

Fε(u) =
∑
i∈Ωε

εdFcell(u, i+ CM ) +O(ε)

for a suitable function Fcell accounting for the interactions within the cells i + CM .
Then the condition which ensures ferromagnetic behavior is that Fcell is minimized
only by the uniform states 1 and −1 (see Definition 6.3). Under this condition we
study the Γ-limit of the scaled energies Eε defined as in (1.4). Since it is not our
purpose in this paper to investigate boundary layer effects, we limit our analysis to
the case in which Ω is a torus. Thus, by applying blow-up techniques, we show that
the Γ-limit of Eε still has an integral representation of the form (1.7) with ϕ defined
by a suitable asymptotic formula (see Theorem 6.5). Eventually, we provide some one
dimensional examples to better explain our analysis and to show its applicability.

2. Notation and preliminary results. In what follows, given x, y ∈ R
d we

denote by (x, y) the usual scalar product in R
d and we set |x| = √(x, x). Moreover

we denote by | · |1 the �1-norm in R
d defined as |x|1 = |x1|+ · · ·+ |xd|. Given t > 0,

we will denote by [t] the integer part of t. For any measurable E ⊂ R
d we denote by

|E| the d-dimensional Lebesgue measure of E and by Hd−1(E) its (d−1)-dimensional
Hausdorff measure. Given x0 ∈ R

d, ν ∈ Sd−1, and ρ > 0, we denote by Qν(x0, ρ) any
cube centered in x0, with side length ρ and one face orthogonal to ν. We underline
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that, even if the choice of Qν(x0, ρ) is not unique, the results we will present in the
following are independent of such a choice. We drop the dependence on ν, x0, or
ρ whenever ν = ei for i ∈ {1, 2, . . . , d}, x0 = 0 or ρ = 1, respectively, and we set

Q :=
(− 1

2 ,
1
2

)d
.

Next we recall some basic properties of functions of bounded variation with values
in {−1, 1} (see [8, 11] for a general exposition of the subject). Let A be an open subset
of Rd. We denote by BV (A; {±1}) the set of measurable functions u : A → {−1, 1}
whose distributional derivative Du is a measure with bounded total variation. We
denote by S(u) the jump set of u and by νu(x) the measure theoretic inner normal to
S(u) at x, which is defined for Hd−1 a.e. x ∈ S(u). Note that if u ∈ BV (A; {±1}),
then E := {x ∈ A : u(x) = 1} is a set of finite perimeter in A and Hd−1(Su) =
Per(E,A), where Per(E,A) denotes the euclidean perimeter of E in A.

Eventually, for any measurable set E and for any positive real or vector measure μ,
we write μ E to denote the restriction of the measure μ to E defined as μ E(A) :=
μ(E ∩ A) for any measurable set A.

For the reader’s convenience we recall the following compactness result (see [8,
11]).

Theorem 2.1. Let uk ∈ BV (A; {±1}) such that

sup
k

Hd−1(S(uk)) < +∞.

Then there exists a subsequence (not relabeled) and u ∈ BV (A; {±1}) such that uk →
u in the L1 convergence.

A main tool in what follows will be the following representation result obtained
in [12]. We state here the result only in the particular case of functionals defined
on BV (Ω; {±1})×A(Ω) and satisfying an additional symmetry property, although a
more general theorem holds. Let Ω be a bounded open subset of Rd and denote by
A(Ω) the family of open subsets of Ω.

Theorem 2.2. Let F : BV (Ω; {±1})×A(Ω) → [0,+∞) satisfy for every (u,A) ∈
BV (Ω; {±1})×A(Ω) the following hypotheses:

(i) F(u, ·) is the restriction to A(Ω) of a Radon measure;
(ii) F(u,A) = F(v,A) whenever u = v a.e. on A ∈ A(Ω);
(iii) F(·, A) is L1(Ω) lower semicontinuous;
(iv) there exists C > 0 such that

1

C
Hd−1(Su ∩ A) ≤ F(u,A) ≤ CHd−1(Su ∩ A);

(v) F(u,A) = F(−u,A).
Then for every u ∈ BV (Ω; {±1}) and A ∈ A(Ω)

F(u,A) =

∫
Su∩A

ϕ(x, νu) dHd−1

with

(2.1) ϕ(x0, ν) = lim sup
ρ→0

m(ux0,ν , Qν(x0, ρ))

ρd−1
,

where

(2.2) ux0,ν(x) :=

{
1 if 〈x− x0, ν〉 ≥ 0,

−1 otherwise,
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and for any (v,A) ∈ BV (Ω; {±1})×A(Ω) we set

m(v,A) = inf{F(w,A) : w ∈ BV (A; {±1}), w = v in a neighborhood of ∂A}.

The sets of functions of bounded variation are also defined in a periodic setting:
we denote by T

d the d-dimensional flat torus of unit volume, which can be identified
with the semi-open unit cube [0, 1)d, and by BV (Td; {±1}) the set of functions u ∈
BVloc(R

d; {±1}) which are [0, 1)d-periodic. Moreover, with a slight abuse of notation,
for such functions u we identify S(u) with S(u) ∩ [0, 1)d.

Eventually we recall a result proved by Kohn and Sternberg in [20] on the ap-
proximation of local minimizers by Γ-convergence.

Theorem 2.3. Let (X, d) be a metric space and let (Fn)n be a sequence of lower
semicontinuous and equicoercive functionals from X to R ∪ {+∞}. Assume that
(Fn)n Γ-converges to F and let x be an isolated local minimizer of F . Then there
exist xn → x such that xn is a local minimizer of Fn for n large enough.

3. Setting. In what follows Ω will denote a bounded open set of Rd with Lips-
chitz boundary. For fixed ε > 0 we denote by PCε(Ω) the set of functions

PCε(Ω) := {u : εZd ∩Ω → {−1, 1}}.

In order to carry on our analysis, it is convenient to regard PCε(Ω) as a subset in
L1(Ω). To this aim we will identify a function u ∈ PCε(Ω) with its piecewise-constant
interpolation on the ε-cubes centered in the lattice, still denoted by u. More precisely,
we set u(z) = 0 if z ∈ εZd \Ω and u(x) = u(zεx), where z

ε
x ∈ Z

d is the closest point to
x (which is uniquely defined up to a set of zero measure). Other similar interpolations
could be taken into account, actually not affecting our asymptotic analysis.

Thus, with fixed ε > 0, we consider energies Fε : PCε(Ω) → R of the form

Fε(u) = −
∑

i�=j∈Ωε

cεi,jε
duiuj,

where we use the notation Ωε := Z
d∩(ε−1Ω), ui = u(εi). Up to the change of variable

ξ = j − i, setting cεi,ξ = cεi,i+ξ, we may equivalently write Fε as

(3.1) Fε(u) = −
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

cεi,ξε
duiui+ξ.

In what follows we will perform an asymptotic analysis of energies suitably scaled,
focusing first on the case of “ferromagnetic-type” pairwise interactions.

4. Ferromagnetic case: integral representation of the continuum limits.
In this section we treat the case cεi,ξ ≥ 0 for all i, ξ, and ε. Under this hypothesis
uniform states are ground states. Settingmε := minFε(u) = Fε(±1), we then consider
the scaled energies

(4.1) Eε(u) =
Fε(u)−mε

ε
=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1(1− uiui+ξ).
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902 ROBERTO ALICANDRO AND MARIA STELLA GELLI

Note that Eε can be rewritten as

Eε(u) =
1

2

∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1(ui+ξ − ui)

2

=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1|ui+ξ − ui|

=
∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξ|ξ|εd
|ui+ξ − ui|

ε|ξ| ,

i.e., our energies depend linearly on difference quotients.
We fix the following set of hypotheses on (cεi,ξ):

(H1) (coerciveness) cεi,ek ≥ c > 0 for all ε > 0, i ∈ Z
d, and k ∈ {1, . . . , d};

(H2) (growth) set cεξ = supi c
ε
i,ξ, lim supε→0

∑
ξ∈Zd |ξ|cεξ < +∞;

(H3) (decay) for all δ > 0 there exists Rδ > 0 such that lim supε→0

∑
|ξ|>Rδ

|ξ|cεξ
< δ.

With a little abuse of notation, we identify the functionals Eε by their extension on
L1(Ω) by setting

(4.2) Eε(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
ξ∈Zd

∑
i,i+ξ∈Ωε

cεi,ξε
d−1|ui+ξ − ui| if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω).

We also define a localized version of our energies on regular open sets. Let
Areg(Ω) be the subfamily of open subsets of Ω with Lipschitz boundary. For any
A ∈ Areg(Ω), we isolate the contributions due to interactions within the set A by
defining

(4.3) Eε(u,A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
ξ∈Zd

∑
i,i+ξ∈Aε

cεi,ξε
d−1|ui+ξ − ui| if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω),

where Aε = Z
d ∩ (ε−1A). Moreover we will denote by E′(·, A) and E′′(·, A) the

Γ-lim infε→0 and the Γ-lim supε→0 of Eε(·, A), respectively.
Remark 4.1. We could have also considered a localized version of Eε on any open

set A ∈ A(Ω). In such a case, in order to have an upper bound with a surface energy
of type Hd−1(Su ∩ A) (see Proposition (4.4)), we should have slightly modified the
definition of Eε(·, A) accounting only for pairwise contributions indexed by couples
(i, i+ ξ) such that the whole segment joining εi and ε(i+ ξ) lies in A. Note that this
alternative definition ofEε(·, A) is asymptotically equivalent to that in (4.3), as ε tends
to 0, in the case of an open set A with Lipschitz boundary. For the sake of simplicity
we prefer to deal with the class Areg(Ω), extending suitably E′(·, A), E′′(·, A) to A(Ω)
as a last step.

We now state the main result of this section.

Theorem 4.2. Let (cεi,ξ) satisfy (H1)–(H3) and let Eε be defined by (4.2). Then

for any sequence εn → 0 there exist a subsequence (εnk
) and a function ϕ : Ω×Sd−1 →
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[0,+∞) such that the functionals Eεnk
Γ-converge with respect to the L1(Ω) strong

topology to the functional E : L1(Ω) → [0,+∞] defined by

(4.4) E(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Su

ϕ(x, νu) dHd−1 if u ∈ BV (Ω; {±1}),

+∞ otherwise.

Moreover for any u ∈ BV (Ω; {±1}) and A ∈ Areg(Ω) there holds

(4.5) Γ- lim
k
Eεnk

(u,A) = E(u,A) :=

∫
Su∩A

ϕ(x, νu) dHd−1.

We postpone the proof of Theorem 4.2, as it will be a consequence of some propo-
sitions which show that our limit functionals satisfy all the hypotheses of Theorem
2.2.

In the next two propositions we show that, thanks to hypotheses (H1) and (H2),
for any A ∈ Areg(Ω) E′(u,A) and E′′(u,A) are finite only on BV (A; {±1}) and satisfy
hypothesis (4) of Theorem 2.2.

Proposition 4.3. Let (cεi,ξ) satisfy (H1) and let A ∈ Areg(Ω). If u ∈ L1(Ω) is
such that E′(u,A) is finite, then u ∈ BV (A; {±1}) and

E′(u,A) ≥ CHd−1(Su ∩ A)

for some positive constant C independent of u and A.

Proof. Let Gε be the functional accounting only for nearest-neighbor interactions
defined by

(4.6) Gε(u,A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d∑
k=1

∑
i,i+ek∈Aε

εd−1|ui+ek − ui| if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω).

In [3, Theorem 4] it was proved that G(·, A) := Γ-limε→0Gε(·, A) is finite only on
BV (A; {±1}) and

G(u,A) =

∫
Su∩A

|νu|1 dHd−1, u ∈ BV (A; {±1}),

where | · |1 is the �1-norm in R
d. Since by (H1) we have that Eε(·, A) ≥ CGε(·, A),

the conclusion easily follows.

Proposition 4.4. Let (cεi,ξ) satisfy (H2). Then for every u ∈ BV (Ω; {±1}) and
for every A ∈ Areg(Ω) there holds

(4.7) E′′(u,A) ≤ CHd−1(Su ∩ A)

for some positive constant C independent of u and A.

Proof. Let us fix A ∈ Areg(Ω). By a density argument, it suffices to prove (4.7)
for u such that Su is a polyhedral set. Indeed, by classical theorems (see [11, 17]), for
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904 ROBERTO ALICANDRO AND MARIA STELLA GELLI

every set E of finite perimeter in R
d there exists a sequence of polyhedral sets (Ek)k

such that lim
k→+∞

|(EΔEk)∩A| = 0 and lim
k→+∞

Per(Ek, A) = Per(E,A). With fixed u ∈
BV (Ω; {±1}), set E := {x ∈ A : u(x) = 1} and let Ek be the corresponding sequence
of polyhedral sets as above. Then the sequence of functions uk ∈ BV (Ω; {±1}) defined
as

uk(x) =

{
χEk

− χA\Ek
if x ∈ A,

u(x) if x ∈ Ω \A,

converges to u in L1(Ω) and the lower semicontinuity of E′′(·, A) yields that inequality
(4.7), satisfied by uk, passes to the limit as k → +∞.

Up to a localization argument we can further reduce to the case when Su is
a hyperplane, that is u = u0,ν defined in (2.2). Thus, having defined uε as the
pointwise interpolation of u, i.e., (uε)i := u(εi), we have that uε → u strongly in
L1(Ω). Moreover, for any pair i, i + ξ ∈ Z

d ∩ ε−1A such that u(εi) �= u(ε(i + ξ)),
the segment joining εi and ε(i + ξ) crosses the jump set Su. Hence, the energetic
contribution of uε in A can be estimated by

Eε(uε, A) ≤ C
∑
ξ∈Zd

εd−1cεξ#(Aξ
ε ∩ εZd),

where Aξ
ε := {x = y + tξ : y ∈ Su, −ε ≤ t ≤ 0} ∩ A. Since, by the regularity of Su

and ∂A,
#(Aξ

ε ∩ εZd) ≤ Cε−d|Aξ
ε| ≤ Cε1−d|ξ|Hd−1(Su ∩A),

we eventually get

Eε(uε, A) ≤ CHd−1(Su ∩ A)
∑
ξ∈Zd

|ξ|cεξ.

Passing to the limit as ε→ 0, by (H2) we get the conclusion.

Proposition 4.5. Let (cεi,ξ) satisfy (H1)–(H3) and let A,B,A′ ∈ Areg(Ω) be
given with A′ ⊂⊂ A. Then for any u ∈ BV (Ω; {±1})

E′′(u,A′ ∪B) ≤ E′′(u,A) + E′′(u,B).

Proof. It is not restrictive to assume as a further hypothesis that A′ is an open set
with smooth boundary. Indeed, being E′′(u, ·) an increasing set function on Areg(Ω),
it is enough to notice that there exists an open set A′′ with smooth boundary such
that A′ ⊂⊂ A′′ ⊂⊂ A. Such a set can actually be selected by using a convolution and
selection of level sets procedure.

Without loss of generality we may also suppose E′′(u,A) and E′′(u,B) finite. Let
uε, vε both converge to u in L1(Ω) and be such that

lim sup
ε→0

Eε(uε, A) = E′′(u,A), lim sup
ε→0

Eε(vε, B) = E′′(u,B).

Fix δ > 0 and let Rδ be provided by hypothesis (H3). Since A′ has a smooth
boundary, the distance function d(x) := dist (x,A′) inherits the same regularity in a
suitable neighborhood U of A′. Set

d := dist (A′, U c), Nε :=

[
d

εRδ

]
.
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For t ∈ [0, d̄] denote also

At := {x ∈ A : dist (x,A′) ≤ t}.

Plugging the classical Sard theorem in the Fleming–Rishel coarea formula, for L1-a.e.
t ∈ [0, d̄] At is a set of finite perimeter with smooth boundary. Moreover, for any fixed
integer k ∈ {1, . . . , Nε}, we can select values tk ∈ (kεRδ, (k + 1)εRδ) such that Atk is
a smooth set and satisfies

εRδHd−1(∂Atk) ≤
∫ (k+1)εRδ

kεRδ

Hd−1(∂∗At) dt

≤
∫
{kεRδ≤d(x)≤(k+1)εRδ}

|∇d(x)| dx = |A(k+1)εRδ \AkεRδ |.(4.8)

For any k ∈ {1, . . . , Nε} consider then the family of functions wk
ε still converging

to u in L1(Ω) defined by

wk
ε := χAtkuε + (1− χAtk )vε.

By taking into account the regularity of Atk , we easily compute

Eε(w
k
ε , A

′ ∪B) ≤ Eε(uε, A
tk ∩ (A′ ∪B)) + Eε(vε, (A

tk)c ∩ (A′ ∪B))

+
∑
ξ∈Zd

∑
i∈Sk,ξ

ε

cεi,ξ ε
d−1|(wk

ε )i+ξ − (wk
ε )i|

≤ Eε(uε, A) + Eε(vε, B)

+
∑
ξ∈Zd

∑
i∈Sk,ξ

ε

cεi,ξ ε
d−1|(wk

ε )i+ξ − (wk
ε )i|,(4.9)

where Sk,ξ
ε := (ε−1{x = y+tξ, y ∈ ∂Atk , −ε ≤ t ≤ 0}∩(A′∪B))∩Zd. In order to get

the desired estimate we will argue by splitting the last term in (4.9) in interactions in
Sk,ξ
ε with |ξ| > Rδ and with |ξ| ≤ Rδ, respectively. We will provide different estimates

for the two terms.
By arguing as in the proof of Proposition 4.4, thanks to the regularity of Atk , we

get that ∑
|ξ|>Rδ

∑
i∈Sk,ξ

ε

cεi,ξ ε
d−1|(wk

ε )i+ξ − (wk
ε )i| ≤ CHd−1(∂Atk)

∑
|ξ|>Rδ

|ξ|cεξ.

By using the mean property (4.8) of Atk we may refine the inequality above,

(4.10)
∑

|ξ|>Rδ

∑
i∈Sk,ξ

ε

cεi,ξ ε
d−1|(wk

ε )i+ξ − (wk
ε )i| ≤ Cδ

|A(k+1)εRδ \AkεRδ |
εRδ

.

We are left with the estimate of the energy accounting for the interactions in Sk,ξ
ε

when |ξ| ≤ Rδ. Note that in this case, by the definition of AkεRδ , we have that
Sk,ξ
ε ⊆ (A(k+1)εRδ \A(k−1)εRδ ) ∩B ∩ εZd =: Sk

ε . Moreover, we easily get that

|(wk
ε )i+ξ − (wk

ε )i| ≤ 2(|(uε)i+ξ − (uε)i|+ |(vε)i+ξ − (vε)i|+ |(vε)i − (uε)i|);D
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hence, ∑
|ξ|≤Rδ

∑
i∈Sk,ξ

ε

cεi,ξ ε
d−1|(wk

ε )i+ξ − (wk
ε )i|(4.11)

≤ C(Eε(uε, S
k
ε ) + Eε(vε, S

k
ε )) + Cδ

∑
i∈Sk

ε

εd−1|(vε)i − (uε)i|

for some constant Cδ depending only on Rδ.
Therefore, summing over k ∈ {1, . . . , Nε − 1} and averaging, by (4.9), (4.10), and

(4.11), we get

Iε :=
1

Nε − 1

Nε−1∑
k=1

(
Eε(w

k
ε , A

′ ∪B)
)
≤ Eε(uε, A) + Eε(vε, B)

+
2

Nε − 1
(Eε(uε, A ∩B) + Eε(vε, A ∩B)) + C′

δ

∑
i∈Ωε

εd|(vε)i − (uε)i|+ Cδ|A \A′|

≤ Eε(uε, A) + Eε(vε, B) +
C

Nε
+ Cδ + Cδ‖vε − uε‖L1(Ω),

(4.12)

where we have also used that ∪Nε

k=0A
(k+1)εRδ \AkεRδ = U \A′ ⊆ A \A′.

Eventually, for any ε > 0 let kε ∈ {1, . . . , Nε − 1} be such that

(4.13) Eε(w
kε
ε , A′ ∪B) ≤ Iε.

Setting wε := wkε
ε , we have that wε → u strongly in L1(Ω) and, by (4.12), (4.13),

passing to the limit as ε→ 0 we infer also that

E′′(u,A′ ∪B) ≤ lim sup
ε→0

Eε(wε, A
′ ∪B) ≤ E′′(u,A) + E′′(v,B) + Cδ.

The conclusion follows by the arbitrariness of δ > 0.
In the following proposition we show that E′′(·, ·) satisfies hypothesis (ii) of The-

orem 2.2.

Proposition 4.6. Let (cεi,ξ) satisfy (H1)–(H3). Then, for any A ∈ Areg(Ω) and
for any u, v ∈ BV (Ω; {±1}) such that u = v a.e. in A, there holds

E′′(u,A) = E′′(v,A).

Proof. Let A ∈ Areg(Ω) and u, v ∈ BV (Ω; {±1}) be fixed with u = v a.e. in A.
Up to reversing the role of u and v, it is enough to prove that

(4.14) E′′(v,A) ≤ E′′(u,A).

With δ > 0 fixed, let Aδ ∈ Areg(Ω) such that Aδ ⊂⊂ A and

Hd−1 Su(A \Aδ) < δ.

Note that A \Aδ ∈ Areg(Ω) and by Proposition 4.4, there holds

(4.15) E′′(v,A \Aδ) ≤ CHd−1 Su(A \Aδ) ≤ Cδ.
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Let uε and vε be converging to u and v in L1(Ω), respectively, and such that

lim sup
ε→0

Eε(uε, A) = E′′(u,A),

lim sup
ε→0

Eε(vε, A \Aδ) = E′′(v,A \Aδ).

Arguing as in the proof of Proposition 4.5, with A′ = Aδ, B = A \ Aδ, we may
choose for any ε > 0 a set Atkε and the relative interpolated function

wkε
ε := χAtkε uε + (1− χAtkε )vε

such that wkε
ε converges to v in L1(Ω) and, by passing to the limsup as ε→ 0, it holds

E′′(v,A) ≤ lim sup
ε→0

Eε(w
kε
ε , A) ≤ E′′(u,A) + E′′(v,A \Aδ) + Cδ.

Hence (4.14) follows by (4.15) and the arbitrariness of δ > 0.

Proof of Theorem 4.2. Taking into account Propositions 4.4 and 4.5, one can infer
that for any u ∈ BV (Ω; {±1}), E′′(u, ·) is inner regular and subadditive on Areg(Ω)
(see as a reference for this procedure [14, Proposition 11.6]). By the compactness
property of the Γ-convergence and arguing as in [14, Theorem 10.3], we may construct
a subsequence (εnk

) such that, for any (u,A) ∈ BV (Ω; {±1})×Areg(Ω) there exists

Γ- lim
k
Eεnk

(u,A) =: E(u,A).

Moreover by setting E(u,A) := sup{E(u,A′) : A′ ∈ Areg(Ω), A′ ⊂ A} we can extend
E(u, ·) to A(Ω) and easily verify that all the properties enjoyed by E′′(·, ·) stated in
Propositions 4.3, 4.4, 4.5, and 4.6 still hold true for E(·, ·). Moreover, by Proposition
4.3,

Γ- lim
k
Eεnk

(u) = +∞

for u ∈ L1(Ω) \ BV (Ω; {±1}). So far, it suffices to check that, for every (u,A) ∈
BV (Ω; {±1})×A(Ω), E(u,A) satisfies all the hypotheses of Theorem 2.2. In fact, the
superadditivity property of Eε(u, ·) is preserved in the limit. Thus, thanks to the De
Giorgi–Letta criterion (see [14, Theorem 5.2]), hypotheses (i), (ii), and (iv) hold true.
By the lower semicontinuity property of the Γ-limit, hypothesis (iii) is also fulfilled
and finally hypothesis (v) holds since it is satisfied by Eε(·, A) for any ε > 0.

The previous argument actually also provides a proof of (4.5).

4.1. Homogenization. Theorem 4.2 allows us to give an alternative proof of
the homogenization result proved in [15] when the interaction potentials are periodic
in the independent variable. More precisely, assume that cεi,ξ = cξ(i), where, for any

ξ ∈ Z
d, cξ : Zd → [0,+∞) is [0, l]d-periodic for some l ∈ N. In this case hypotheses

(H1)–(H3) reduce to
(H1′) cek(i) ≥ c > 0 for all i ∈ {0, . . . , l− 1}d and k ∈ {1, . . . , d};
(H2′)

∑
ξ∈Zd |ξ|cξ(i) < +∞ for all i ∈ {0, . . . , l − 1}d.

Then the following theorem holds (see [15, Theorem 2.4 and Remark 2.5]).

Theorem 4.7 (homogenization). Let Eε be defined by (4.2) and let cεi,ξ = cξ(i),

where, for any ξ ∈ Z
d, cξ : Zd → [0,+∞) is [0, l]d-periodic for some l ∈ N. If (H1′)

and (H2′) hold, then the functionals Eε Γ-converge with respect to the L1(Ω) strong
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topology, as ε→ 0, to the homogenized functional Ehom : L1(Ω) → [0,+∞] defined by

Ehom(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Su

ϕhom(νu) dHd−1 if u ∈ BV (Ω; {±1}),

+∞ otherwise,

where

ϕhom(ν) = lim
T→+∞

T 1−d inf

{ ∑
ξ∈Zd

∑
i∈Zd∩TQν

cξ(i)uiui+ξ : u ∈ PC1(R
d),(4.16)

u(i) = u0,ν(i) for i �∈ TQν

}
.

Sketch of the proof. The proof strongly relies upon some arguments and tech-
niques well established in homogenization theory, suitably combined with the results
of Theorem 4.2 of the previous section. Here we highlight only its main steps for the
reader’s convenience.

First of all, by Theorem 4.2, given a sequence εn → 0, we can extract a subse-
quence εnk

such that the functionals Eεnk
Γ-converge to a functional E defined as in

(4.4) and for any u ∈ BV (Ω; {±1}) and A ∈ Areg(Ω) there holds

Γ- lim
k
Eεnk

(u,A) =

∫
Su∩A

ϕ(x, νu)Hd−1.

Hence, the theorem is proved if we show that ϕ does not depend on x and ϕ ≡ ϕhom.
In order to establish the first claim, by using the periodicity assumption, one easily
shows that if we set E(u,A) =

∫
Su∩A ϕ(x, νu)Hd−1, then

(4.17) E(ux,ν, B(x, ρ)) = E(uz,ν , B(z, ρ))

for any ν ∈ Sd−1, x, z ∈ Ω and ρ > 0, such that B(x, ρ) ∪ B(z, ρ) ⊆ Ω. Thus, the
independence of ϕ on x follows from (4.17).

So far, assuming for the sake of simplicity that 0 ∈ Ω, by using the characterization
of ϕ in (2.1), we have

ϕ(ν) = lim sup
ρ→0

m(u0,ν , ρQν)

ρd−1
,

where for any (v,A) ∈ BV (Ω; {±1})×A(Ω)

m(v,A) = inf{E(w,A) : w ∈ BV (A; {±1}), w = v in a neighborhood of ∂A}.

Taking into account the convergence of boundary value problems stated in Theorem
4.9 of the subsequent section, applied to m(v,A), together with Remark 4.10, we infer
the validity of the cell formula

ϕ(ν) = lim
k→+∞

T 1−d
k inf

{ ∑
ξ∈Zd(M−1)

∑
i∈Zd∩TkQν

cξ(i)uiui+ξ : u ∈ PC1(R
d),(4.18)

u(i) = u0,ν(i) for i �∈ TkQν
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for a suitable sequence Tk → +∞. Using the periodicity assumption and hypotheses
(H1’), (H2’) and following a standard procedure in homogenization theory (we refer
for instance to the proof of [4, Proposition 4.2] in the context of discrete models in
nonlinear elasticity), it can be shown that the limit in (4.16) exists and is finite for
any ν ∈ Sd−1. Hence, by (4.18), we conclude that ϕ ≡ ϕhom.

As a straightforward application of Theorem 4.2, in the following example we show
that if the constants cεi,ξ do not satisfy the periodicity assumptions stated above, we
may obtain in the continuum limit more general inhomogeneous surface functionals.

Example 4.8. Let Ω = (−1, 1)2 and let c : [−1, 1]2 → R be defined as

c(x) =

⎧⎪⎨
⎪⎩
1 if x ∈ [0, 1]× [−1, 1],

2 otherwise in [−1, 1]2 .

Let Eε : L
1(Ω) → [0,+∞] be defined as in (4.2) with d = 2, cεi,ξ = 0 if ξ /∈ {e1, e2}, and

cεi,e1 = cεi,e2 = c(εi). Then the functionals Eε Γ-converge with respect to the L1(Ω)
strong topology to the functional E(u) defined as in (4.4) with ϕ(x, ν) = |ν|1 if x ∈
[0, 1)× (−1, 1) and ϕ(x, ν) = 2|ν|1 if x ∈ (−1, 0)× (−1, 1). Indeed, by Theorem 4.2, it
suffices to show that Γ-limε→0Eε(ux0,ν) = E(ux0,ν) for every (x0, ν) ∈ Ω×Sd−1. The
Γ-lim inf inequality follows by a slicing argument, while, for the Γ-lim sup inequality,
a recovery sequence for ux0,ν is provided by an infinitesimal right translation of the
pointwise interpolation of ux0,ν , defined by (uε)i = ux0,ν(εi− εe1).

More generally, an analogous convergence result could be inferred in any dimen-
sion, considering a finite collection of disjoint sets {Ak}Nk=1 in Ω with Ak ∈ Areg(Ω)

and positive constants c1, . . . , cN . Indeed, set c(x) =
∑N

k=1 ckχAk
(x) and let Eε be

defined as in (4.2) with cεi,ξ = 0 if ξ /∈ {e1, . . . , ed} and cεi,e1 = · · · = cεi,ed = c(εi).
Then as a consequence of Theorem 4.2 and applying the argument above, we could
deduce that the functionals Eε Γ-converge with respect to the L1(Ω) strong topology
to the functional E(u) defined as in (4.4) with ϕ(x, ν) = a(x)|ν|1 and a : Ω → (0,+∞)

defined by a(x) =
∑N

k=1 ckχAk
(x) +

∑N
k,h=1 ck ∧ chχ∂Ak∩∂Ah

(x). Moreover the same
result holds if we replace the piecewise-constant function c(·) with the sequence of
continuous functions cε(·) := c ∗ ρε(·), where ρε is a convolution kernel supported in
the ball {x ∈ R

d : |x| ≤ ε}. Hence, the continuity of ϕ(·, ν) cannot be inferred by the
regularity of cε.

4.2. Convergence of minimum problems. In this section we established the
convergence of minimum problems involving discrete energies as in (4.2) to the corre-
sponding minimum problem involving the limiting energy. We focus first on boundary
value problems and afterwards we also treat the case of minimum problems with pre-
scribed volume fraction.

In order to state boundary value problems, let A ∈ Areg(Ω) and assume u0 ∈
BVloc(R

d; {±1}) to be fixed with Su0 polyhedral and transverse to A, that is
Hd−1(Su0 ∩ ∂A) = 0. Actually, more general boundary data could also be taken
into account. Here we restrict our analysis for a boundary datum u0 as above just for
the sake of simplicity.

For any ε, η > 0 set

Aη := {x ∈ A : dist (x, ∂A) < η},
PCu0,η

ε (A) := {u ∈ PCε(Ω) : u(εi) = u0(εi) for any i ∈ Z
d ∩ (ε−1Aη)},
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and

(4.19) mη
ε(u0, A) := inf{Eε(u,A) : u ∈ PCu0,η

ε (A)}.
It is easy to show that mη

ε(u0) is increasing in η and bounded uniformly in η and ε.

Theorem 4.9. Let (cεi,ξ) satisfy (H1)–(H3) and let Eε and mη
ε (u0) be defined by

(4.1) and (4.19), respectively. Given a sequence εn → 0 let (εnk
) and E(u,A) be as

in Theorem 4.2. Then

lim
η→0

lim sup
k→+∞

mη
εnk

(u0, A) = m(u0, A),

where

m(u0, A) := inf{E(u,A) : u ∈ BV (A; {±1}), u(x) = u0(x)

in a neighborhood of ∂A}.
Proof. Let η > 0 be fixed and let uk ∈ PCu0,η

εnk
(A) such that Eεnk

(uk, A) ≤
mη

εnk
(u0, A) + k−1. Since, by the coerciveness assumption (H1), Hd−1(Suk

∩A) ≤ C,

then, by Theorem 2.1, up to extracting a subsequence, uk converge strongly in L1(A)
to some u ∈ BV (A; {±1}). Moreover it is easy to show that u = u0 on Aη. Hence,
by Theorem 4.2, we get

m(u0, A) ≤ E(u,A) ≤ lim inf
k

Eεnk
(uk, A) ≤ lim inf

k
mη

εnk
(u0, A).

By the arbitrariness of η it follows that

m(u0, A) ≤ lim
η→0

lim sup
k→+∞

mη
εnk

(u0, A).

It remains to prove the opposite inequality. To this end, we fix δ > 0 and u ∈
BV (A; {±1}) such that u = u0 in a neighborhood of ∂A and E(u,A) ≤ m(u0, A)+ δ.
Let uk → u strongly in L1(A) such that limk Eεnk

(uk, A) = E(u,A) and let η > 0

be such that u = u0 in A2η. We may then argue as in the proof of Proposition 4.5
in order to modify the values of uk in Aη without increasing the energy too much.
More precisely, for any δ′ > 0 we can select open sets Ak,δ′ ∈ Areg(Ω) such that
A \ A2η ⊂⊂ Ak,δ′ ⊂⊂ A \ Aη and the functions vk,δ′ := χAk,δ′uk + (1 − χAk,δ′ )u0
satisfy

(i) vk,δ′ ∈ PCu0,η
ε (A);

(ii) vk,δ′ → u strongly in L1(A);
(iii) Eεnk

(vk,δ′ , A) ≤ Eεnk
(uk, A)+Eεnk

(u0, A
2η)+Cδ′+O(1)+Cδ′‖uk−u0‖L1(A2η).

Hence, since lim sup
k→+∞

Eεnk
(u0, A

2η) ≤ CHd−1(Su0 ∩ A2η), we get

lim sup
k→+∞

Eεnk
(vk,δ′ , A) ≤ E(u,A) + CHd−1(Su0 ∩ A2η) + Cδ′.

By the arbitrariness of δ′ and since lim sup
η→0

Hd−1(Su0 ∩ A2η) = 0, we infer that

lim
η→0

lim sup
k→+∞

mη
εnk

(u0, A) ≤ E(u,A) ≤ m(u0, A) + δ.

The conclusion follows by the arbitrariness of δ.
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Remark 4.10. It can be shown that if the density function ϕ(x, ν) in Theorem 4.2
is continuous in A× Sd−1, then

m(u0, A) = inf

{∫
SuA,u0

∩A

ϕ(x, νuA,u0
) dHd−1 : u ∈ BV (A; {±1})

}
,

where

uA,u0(x) :=

{
u(x) if x ∈ A,

u0(x) if x �∈ A.

Moreover in this case it can be proved that

m(u0, A) = lim
k→+∞

min{Eu0
εnk

(u,A) : u ∈ PCεnk
(A)},

where

Eu0
ε (u,A) :=

∑
ξ∈Zd

∑
εi∈Aε

cεi,ξε
d−1|uA,u0(ε(i+ ξ)) − uA,u0(εi)|

(see Theorems 4.2 and 4.4 in [7]).
In fact Example 4.8 shows that ϕ(·, ν) is not necessarily continuous.

We conclude the section presenting the convergence result of minimum problems
with prescribed volume fraction. More precisely, we consider minimum problems of
the type

mε := min{Eε(u) : #{i ∈ Ωε : ui = 1} = lε},
where lε ∈ {0, . . . ,#Ωε}. We suppose that there exists p ∈ [0, 1] such that

(4.20) lim
ε→0

lε(#Ωε)
−1 = p

(this is not restrictive, up to passing to a subsequence). Set

PClε
ε (Ω) := {u ∈ PCε(Ω) : #{i ∈ Ωε : ui = 1} = lε}

and let Elε
ε : L1(Ω) → [0,+∞] be defined by

Elε
ε (u) =

⎧⎪⎨
⎪⎩
Eε(u) if u ∈ PClε

ε (Ω),

+∞ otherwise in L1(Ω)

with Eε as in (4.1). The following Γ-convergence theorem holds.

Theorem 4.11. Let (cεi,ξ) satisfy (H1)–(H3) and let lε satisfy (4.20). Given any

sequence εn → 0, let (εnk
) and E(u) be as in Theorem 4.2. Then the functionals E

lεnk
εnk

Γ-converge with respect to the L1(Ω) strong topology to the functional Ep : L1(Ω) →
[0,+∞] defined as

Ep(u) =

⎧⎪⎨
⎪⎩
E(u) if |{u = 1}| = p|Ω|,

+∞ otherwise in L1(Ω).
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912 ROBERTO ALICANDRO AND MARIA STELLA GELLI

Proof. For the sake of notation, in what follows we drop the dependence on
the sequence nk. Let uε ∈ PClε

ε (Ω) converge to u strongly in L1(Ω) such that
lim infε Eε(uε) < +∞. By (4.20) and taking into account that εd#Ωε → |Ω|, we
immediately infer that |{u = 1}| = p|Ω|. In addition, Theorem 4.2 yelds that

lim inf Elε
ε (uε) ≥ Ep(u).

It remains to prove the Γ-limsup inequality. Thanks to the density result stated
in Theorem A.1 and Remark A.2, it is enough to consider u ∈ BV (Ω; {±1}) with
|{u = 1}| = p|Ω| and Su a polyhedral set. Let uε be a recovery sequence for E(u).
Note that, arguing as in the proof of Proposition 4.5 and taking into account that
Eε(u,A) is negligible as ε → 0 for any open set A ⊂ Ω \ Su, we could replace uε
by χAεuε + (1 − χAε)u, where Aε is a suitable neighborhood of Su, still obtaining a
recovery sequence for E(u). Hence, it is not restrictive to assume uε = u in Ω \ Sδ,
where Sδ is a δ-neighborhood of Su for some suitable δ > 0 such that |Ω \ Sδ| > 0.

Having set l̃ε = #{i ∈ Ωε : uε(εi) = 1}, we have that limε→0 |l̃ε − lε|εd = 0. If
l̃ε = lε for infinite infinitesimal values of ε, there is nothing left to prove. Assume on
the contrary that l̃ε > lε (the other case being totally symmetric). Let hε := (l̃ε−lε) 1

d ,
hε := [hε], where we denote by [t] the integer part of t ∈ R. Note that εhε → 0 and

0 < hdε − h
d

ε ≤ dhd−1
ε . Setting Gδ

ε := {u = 1} ∩ (Ω \ Sδ), we choose iε ∈ Ωε such that

Qε := εiε + [0, hεε)
d ⊂ Gδ

ε and let Jε ⊂ (Gδ
ε \Qε) ∩ εZd be such that #Jε = hdε − h

d

ε .
We thus set

vε(εi) =

{
−1 if εi ∈ Qε ∪ Jε,
uε(εi) otherwise.

Then, by construction, vε ∈ PClε
ε (Ω), vε → u strongly in L1(Ω), and moreover

Eε(vε) ≤ Eε(uε) + Cεd−1(#(∂Qε ∩ εZd) + #Jε) ≤ Eε(ṽε) + C(εhε)
d−1,

from which we get the conclusion for d ≥ 2. For d = 1 we may assume that there exist
iε ∈ Ωε and η > 0 independent of ε such that εiε ∈ Suε and (εiε − η, εiε] ⊂ {uε = 1}
or [εiε, εiε + η) ⊂ {uε = 1}. Hence a recovery sequence vε ∈ PClε

ε (Ω) is given by
vε := uε − 2χ((iε−l̃ε+lε)ε,εiε]

in the first case or vε := uε − 2χ[εiε,(iε+l̃ε−lε)ε)
in the

second case.
As a consequence of Theorem 4.11, the compactness result stated in Theorem 2.1,

and the core properties of Γ-convergence, we eventually get the following result.

Theorem 4.12. Under the hypotheses of Theorem 4.11, we get

lim
k

min{Eεnk
: #{i ∈ Ωεnk

: ui = 1} = lεnk
} = min{E(u) : |{u = 1}| = p|Ω|}.

Moreover if (uk) is a converging sequence such that #{i ∈ Ωεnk
: ui = 1} = lεnk

and

lim
k
Eεnk

(uk) = lim
k

min{Eεnk
: #{i ∈ Ωεnk

: ui = 1} = lεnk
},

then its limit is a minimizer to min{E(u) : |{u = 1}| = p|Ω|}.
4.3. Generalization: Multibody interactions. In this section we extend the

previous results to the case of energies accounting for multibody interactions. More
precisely, given M ∈ N, we consider energies of the form

(4.21) Eε(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i1,...,iM∈Ωε

εd−1ψε(i1, . . . , iM , ui1 , . . . , uiM ) if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω).
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Here ψε : Z
dM × {−1, 1}M → [0,+∞) satisfies the following hypothesis:

(HM0) minu ψε(i, u) = ψε(i,±1) = 0 for any i ∈ Z
dM and either ψε(i, ·) ≡ 0 or

ψε(i, u) > 0 for all u �= ±1, where we have used the notation

i := (i1, . . . , iM ), u := (u1, . . . , uM ), 1 = (1, . . . , 1).

Hypothesis (HM0) implies that Eε has a ferromagnetic behavior, in the sense that

min Eε = Eε(u) = 0 if and only if u ≡ ±1.

As for pairwise interactions, through the change of variables i = i1, ξl = il+1 − i,
l ∈ {1, . . . ,M − 1}, we find it convenient to rewrite Eε(u) for u ∈ PCε(Ω) as

Eε(u) =
∑

ξ∈Zd(M−1)

∑
i,i+ξ1,...,i+ξM−1∈Ωε

εd−1ψε(i, i+ ξ, ui, ui+ξ),

where we have used the notation

ξ := (ξ1, . . . , ξM−1), i+ ξ := (i+ ξ1, . . . , i+ ξM−1), ui+ξ = (ui+ξ1 , . . . , ui+ξM−1).

The analogue of assumptions (H1)–(H3) is given by the following set of hypotheses:
(HM1) (coerciveness) min{ψε(i, i+ ξ, u) : ∃ l ∈ {1, . . . ,M −1} with ξl = ek, ul+1 =

−u1} ≥ c > 0 for all ε > 0 and k ∈ {1, . . . , d};
(HM2) (growth) setting cε,ξ = supi,u ψε(i, ξ, u), it holds lim supε→0

∑
ξ∈Zd(M−1) |ξ|cε,ξ

< +∞;
(HM3) (decay) for all δ > 0 there existsRδ > 0 such that lim supε→0

∑
|ξ|>Rδ

|ξ|cε,ξ <
δ,

where we denote by |ξ| the usual euclidean norm of ξ as a vector in R
d(M−1).

We define also a local version of the functionals in (4.21), by setting for any
A ∈ A(Ω)

Eε(u,A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i1,...,iM∈Aε

εd−1ψε(i1, . . . , iM , ui1 , . . . , uiM ) if u ∈ PCε(Ω),

+∞ otherwise in L1(Ω).

By applying the abstract method exploited in the previous section, we can show that
all the possible Γ-limits of Eε(u,A) satisfy the hypotheses of Theorem 2.2 and prove
the following theorem, which is the analogue of Theorem 4.2. We omit its proof since
it follows, step by step, the proof of Theorem 4.2 without any significant changes.

Theorem 4.13. Let ψε satisfy (HM0)–(HM3) and let Eε be defined by (4.21).
Then for any sequence εn → 0 there exist a subsequence (εnk

) and a function ϕ :
Ω × Sd−1 → [0,+∞) such that the functionals Eεnk

Γ-converge with respect to the

L1(Ω) strong topology to the functional E : L1(Ω) → [0,+∞] defined by

E(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Su

ϕ(x, νu) dHd−1 if u ∈ BV (Ω; {±1}),

+∞ otherwise.

Moreover for any u ∈ BV (Ω; {±1}) and A ∈ Areg(Ω) there holds

Γ- lim
k

Eεnk
(u,A) = E(u,A) :=

∫
Su∩A

ϕ(x, νu) dHd−1.
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914 ROBERTO ALICANDRO AND MARIA STELLA GELLI

Under periodicity assumptions on the interaction potentials, the analogue of the
homogenization result stated in Theorem 4.7 holds true. More precisely, assume that
(HMP) ψε(i, i + ξ, u) = ψ(i, ξ, u), where, for any ξ ∈ Z

d(M−1) and u ∈ {−1, 1}M ,

ψ(·, ξ, u) is [0, l]d-periodic for some l ∈ N.
In this case assumptions (HM2) and (HM3) reduce to
(HM2′)

∑
ξ∈Zd(M−1) |ξ| supu ψ(i, ξ, u) < +∞ for any i ∈ {0, . . . , l − 1}d.

Theorem 4.14. Let ψε satisfy (HM0), (HM1), (HMP), and (HM2′) and let Eε be
defined by (4.21). Then the functionals Eε Γ-converge with respect to the L1(Ω) strong
topology, as ε→ 0, to the homogenized functional Ehom : L1(Ω) → [0,+∞] defined by

Ehom(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Su

ϕhom(νu) dHd−1 if u ∈ BV (Ω; {±1}),

+∞ otherwise,

(4.22)

where

ϕhom(ν) = lim
T→+∞

T 1−d inf

{ ∑
ξ∈Zd(M−1)

∑
i∈Zd∩TQν

ψ(i, ξ, ui, ui+ξ) : u ∈ PC1(R
d),

u(i) = u0,ν(i) for i �∈ TQν

}
.

The proof follows step by step that of Theorem 4.7, taking into account that the
convergence of boundary value problems stated in Theorem 4.9 also holds in the
present case of multibody interactions.

The following example provides an approximation of the usual �1-anisotropic
perimeter in R

2 by means of energies accounting for nearest-neighbor 2-body and
3-body interactions. The related asymptotics highlights how the presence of nonpair-
wise interaction potentials may induce formation of special optimal patterns among
those arising in the simpler central case.

Example 4.15. Let Eε(u) be defined as in (4.21) with d = 2 and

ψε(i, j, k, ui, uj, uk) = |ui − uj |+ |ui − uk|+ |ui − uj||ui − uk|
if (i, j, k) = (i, i + e1, i + e2) and 0 otherwise. Note that Eε is obtained by adding
the 3-body interaction potential |ui − ui+e1 ||ui − ui+e2 | in the definition (4.6) of the
functionals Gε. In fact Eε and Gε share the same Γ-limit, that is Eε(u) Γ-converge
to the functional E(u) defined as in (4.22), with ϕhom(ν) = |ν|1. In order to prove
this result, since the functionals Eε satisfy the hypotheses of Theorem 4.14, it suffices
to check that Γ-limε→0 Eε(u0,ν) = E(u0,ν) for any ν ∈ Sd−1. The Γ-liminf inequality
follows at once by neglecting the 3-body interaction potential, that is, using the
inequality

Eε(u) ≥ Gε(u).

Conversely, it is easy to check that, given Nε ∈ N such that limε εNε = 0 and set
δε := εNε, then the functions uε ∈ PCδε(Ω) ⊂ PCε(Ω) defined by uε(δεi) = u0,ν(δεi),
i ∈ Z

d, are a recovery sequence for Gε at u0,ν. A direct computation shows that the
3-body potential gives a positive contribution to Eε(uε) only on the “corners” of the
interface of uε, that is when the interface of uε changes direction. Hence, whenever
ν �∈ {e1, e2} we get

Eε(uε) = G(uε) + CN−1
ε .
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CONTINUUM LIMITS OF ISING-TYPE ENERGIES 915

Thus, uε is a recovery sequence for Eε at u0,ν if and only if limε→0Nε = +∞. The
computation above shows that the 3-body potential does not give any contribution
to the limiting energy but acts as a selector of the optimal states of Gε.

5. Approximation of nonlocal continuum functionals. In this section we
show that if hypothesis (H3) is violated, then the Γ-limits of energies as in (4.1) can
be nonlocal functionals. We will focus on the approximation of two relevant examples
of nonlocal functionals: fractional perimeters and Ohta–Kawasaki-type energies.

5.1. Fractional perimeters. We first introduce a notion of fractional perime-
ters, suitably defined in order to deal with nonlocal contributions only inside the
target set Ω.

Definition 5.1. Let E ⊂ Ω and 0 < s < 1. The fractional s-perimeter inside Ω
Ps(E; Ω) of E is defined as follows:

(5.1) Ps(E,Ω) :=

∫
E

∫
Ec∩Ω

1

|y − x|d+s
dx dy.

Fractional perimeters and related minimization problems were first introduced in [16]
and since then they have been largely investigated (see, for instance, [24] in the
framework of phase transitions problems, and [10] for the convergence of scaled s-
perimeters to the classical one). Our definition of fractional s-perimeter differs from
the usual one, introduced by [16], as it neglects the contribution of couples in E×Ωc.
Starting with the pioneering work [2] nonlocal type energies as in (5.1) have been
studied in connection with both phase transitions and dislocations problems.

Note that Ps(E,Ω) is half of the fractional Sobolev space seminorm |χE |W s,1(Ω),
where χE denotes the characteristic function of E. Moreover, if u := χE − χEc then

Ps(E,Ω) =
1

4
|u|W s,1(Ω) :=

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy.

We recall that if E is a set of finite perimeter in Ω, then Ps(E,Ω) is also finite, since
in general BV (Ω) ⊂ W s,1(Ω) for any s ∈ (0, 1). We will approximate functionals
defined on BV (Ω; {±1}) and of the form

(5.2)

∫
Su

ϕ(νu) dHd−1 +

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy.

We may approximate the first term in (5.2) by ferromagnetic energies satisfying the
hypotheses of Theorem 4.7. In order to approximate the second term in (5.2), the
idea is simply to discretize it. In fact, setting Qε

i = εi+ [0, ε)d for i ∈ Z
d, we have∫

Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy =
∑
i,j

∫
(Ω∩Qε

i )×(Ω∩Qε
j )

|u(y)− u(x)|
|y − x|d+s

dx dy

=
∑

i�=j∈Ωε

ε2d
|u(εj)− u(εi)|
|ε(j − i)|d+s

+ o(1) =
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

εd−1cεξ|ui+ξ − ui|+ o(1),

where cεξ :=
ε1−s

|ξ|d+s .

Let Eε : L
1(Ω) → [0,+∞] be defined by

(5.3) Eε(u) := Eε(u) +
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

εd−s |ui+ξ − ui|
|ξ|d+s

,
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916 ROBERTO ALICANDRO AND MARIA STELLA GELLI

where Eε satisfies the hypotheses of Theorem 4.7, and set

Enl
ε (u) :=

∑
ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

εd−s |ui+ξ − ui|
|ξ|d+s

.

In the next proposition we show that Enl
ε is essentially a continuous perturbation of

Eε.

Proposition 5.2. Let uε : Ωε → {±1} be such that uε → u in L1(Ω) and
supε Hd−1(Suε) < +∞. Then u ∈ BV (Ω;±1) and

lim
ε→0

Enl
ε (uε) =

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy.

Proof. Let us extend uε outside Ωε by setting uε(εi) = 1 if i ∈ Z
d \ ε−1Ω. Since

∂Ω is Lipschitz, we still have that supε Hd−1(Suε) < +∞, which implies that for any
h ∈ R

d it holds

(5.4)

∫
Rd

|uε(x+ h)− uε(x)| dx ≤ C|h|

with C > 0 independent of ε and h. Given δ > 0, we split Enl
ε (uε) into two terms

accounting for the interactions at distances greater and less than δ, respectively, i.e.,

Enl
ε (uε) =

∑
ξ∈Zd∩Bδ/ε\{0}

∑
i,i+ξ∈Ωε

εd−s |(uε)i+ξ − (uε)i|
|ξ|d+s

(5.5)

+
∑

ξ∈Zd\Bδ/ε

∑
i,i+ξ∈Ωε

εd−s |(uε)i+ξ − (uε)i|
|ξ|d+s

=: I1ε,δ + I2ε,δ.

It is easy to show that

I2ε,δ =

∫
Ω×Ω∩{|y−x|>δ}

|uε(y)− uε(x)|
|y − x|d+s

dx dy + o(1)

from which we get that

(5.6) lim
ε→0

I2ε,δ =

∫
Ω×Ω∩{|y−x|>δ}

|u(y)− u(x)|
|y − x|d+s

dx dy.

We proceed now by estimating I1ε,δ. It can be easily shown that

I1ε,δ ≤
∑

ξ∈Zd∩Bδ/ε\{0}

ε−s

|ξ|d+s

∫
Rd

|uε(x+ εξ)− uε(x)| dx.

Hence, by (5.4), we get

(5.7) I1ε,δ ≤ Cε1−s
∑

ξ∈Zd∩Bδ/ε\{0}

1

|ξ|d+s−1
.
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CONTINUUM LIMITS OF ISING-TYPE ENERGIES 917

Note that

∑
ξ∈Zd∩Bδ/ε\{0}

1

|ξ|d+s−1
=

[δ/ε]−1∑
k=1

∑
ξ∈Zd∩(Bk+1\Bk)

1

|ξ|d+s−1

≤
[δ/ε]−1∑
k=1

#(Zd ∩ (Bk+1 \Bk))

kd+s−1
≤ C

[δ/ε]−1∑
k=1

1

ks
≤ C

(
δ

ε

)1−s

.

Thus, from (5.7) we deduce that

(5.8) I1ε,δ ≤ Cδ1−s.

Eventually, by (5.5), (5.6), and (5.8), we infer that

lim
ε→0

Enl
ε (uε) =

∫
Ω×Ω∩{|y−x|>δ}

|u(y)− u(x)|
|y − x|d+s

dx dy +O(δ1−s)

and the conclusion follows by the arbitrariness of δ > 0.
From Proposition 5.2 we derive the following Γ-convergence result.

Theorem 5.3. Let Eε satisfy the hypotheses of Theorem 4.7. Then the function-
als Eε, defined in (5.3), Γ-converge with respect to the L1(Ω) strong topology to the
functional E : L1(Ω) → [0,+∞] defined by

E(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Su

ϕhom(νu) dHd−1 +

∫
Ω

∫
Ω

|u(y)− u(x)|
|y − x|d+s

dx dy if u ∈ BV (Ω; {±1}),

+∞ otherwise,

where ϕhom is defined by (4.16).

Proof. The thesis follows by Theorem 4.7 and Proposition 5.2.

Remark 5.4. Note that the functional Eε defined in (5.3) is of the form (4.1)

with cεi,ξ = cξ(i) +
ε1−s

|ξ|d+s if ξ ∈ (Zd ∩ BR/ε) \ {0} and cεi,ξ = cξ(i) otherwise, where

R := diam(Ω) and cξ(·) satisfy hypotheses (H1’) and (H2’). A direct computation
shows that for any R > 0

lim sup
ε→0

∑
ξ∈Zd∩BR/ε\{0}

ε1−s

|ξ|d+s
< +∞; lim sup

ε→0

∑
ξ∈Zd∩(BR/ε\BR/2ε)

ε1−s

|ξ|d+s
≥ C > 0.

Hence hypotheses (H1), (H2) are satisfied, while (H3) is violated.

Remark 5.5 (generalization). The approximation result of Theorem 5.3 can be
extended to a general class of nonlocal functionals, without any significant changes
in its proof. More precisely, let K : Ω× Ω → [0,+∞) be such that K ∈ C1(Ω × Ω \
{x = y}) andK(x, y) ≤ C|y−x|−d−s in a neighborhood of {x = y} for some s ∈ (0, 1).
Moreover let Hε : L

1(Ω) → [0,+∞] be defined by

Hε(u) := Eε(u) +
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

ε2dK(εi, ε(i+ ξ))|ui+ξ − ui|,

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 1

31
.1

14
.1

14
.5

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

918 ROBERTO ALICANDRO AND MARIA STELLA GELLI

where Eε satisfies the hypotheses of Theorem 4.7, and let H : L1(Ω) → [0,+∞] be
defined by

H(u)=

⎧⎨
⎩
∫
Su

ϕhom(νu)dHd−1+

∫
Ω

∫
Ω

K(x, y)|u(y)−u(x)| dx dy if u ∈ BV (Ω; {±1}),
+∞ otherwise,

where ϕhom is defined by (4.16). Then Theorem 5.3 still holds with Hε in place of Eε

and H in place of E.

5.2. Ohta–Kawasaki-type energies. A canonical mathematical model in the
studies of energy-driven pattern forming systems is based on the following energy first
proposed by Ohta–Kawasaki (see [23]):

(5.9) Eε(u) = ε

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

(1 − u2)2 dx+ γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dxdy.

Here u is an H1(Ω) phase parameter describing the density distribution of the compo-
nents (u = −1 stands for one phase, u = +1 for the other), subject to the constraint
m = −∫Ω u dx, that is the difference of the phases’ volume fractions is prescribed, and G
is the Green’s function of the Laplacian with Neumann boundary conditions on ∂Ω.
The first two integrals in (5.9) form the so called Modica–Mortola energy which Γ-
converges as ε→ 0 to the perimeter functional (see [19]). It can be easily shown that
the nonlocal term in (5.9) is an L1 continuous perturbation of the Modica–Mortola
energy. Hence, the functionals Eε Γ-converge with respect to the L1(Ω) norm to the
functional E : L1(Ω) → [0,+∞] given by
(5.10)

E(u) :=

⎧⎪⎪⎨
⎪⎪⎩

8

3
Hd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy if u ∈ BV (Ω; {±1}),

+∞ otherwise.

We provide a variational approximation of an anisotropic version of the functional
in (5.10), namely, the functional finite on BV (Ω; {±1}) and defined by∫

Su

|νu|1 dHd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy.

We may “discretize” the nonlocal term as in the previous section, that is∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy =
∑
i,j

∫
(Ω∩Qε

i )×(Ω∩Qε
j )

G(x, y)u(x)u(y) dx dy

=
∑

i�=j∈Ωε

ε2dG(εi, εj)u(εi)u(εj) + o(1)

=
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

ε2dG(εi, ε(i+ |ξ|))ui+ξui + o(1).

We note that the Green’s function G satisfies

|G(x, y)| ≤ C

|x− y|d−2
≤ C

|x− y|d′
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for constants C depending on Ω and for some d− 2 ≤ d′ < d. In particular

(5.11)

∫
Ω

∫
Ω

|G(x, y)| dxdy < +∞.

A discrete version of (5.11) is provided by the following estimate

∑
ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

ε2dG(εi, ε(i+ |ξ|)) ≤ C
∑

ξ∈Zd∩Br/ε\{0}
εd

1

|εξ|d′(5.12)

= Cεd−d′ ∑
ξ∈Zd∩Br/ε\{0}

1

|ξ|d′ ≤ C,

where we have set r := diam(Ω).
Let F̂ε : L

1(Ω) → [0,+∞] be defined by

F̂ε(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
∑

|j−i|=1

εduiuj + γ0
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

ε2d+1G(εi, ε(i+ |ξ|))ui+ξui

=: F̂ loc
ε (u) + F̂nl

ε (u) if u ∈ PCε(Ω),

+∞ otherwise.

Note that F̂ε is of the form (3.1). Moreover, we point out that, since G(·, ·) changes
sign, F̂ε mixes ferromagnetic and antiferromagnetic interactions. Hence the uniform
states u ≡ ±1 are not absolute minimizers of F̂ε. Nevertheless, estimate (5.12) yields
that F̂nl

ε (u) vanishes uniformly with respect to u as ε goes to 0, and then

F̂ε(±1) = min F̂ε +O(ε) = F̂ loc
ε (±1) +O(ε).

We then consider the scaled energies

Êε(u) :=
F̂ε(u)− F̂ loc

ε (±1)

ε
,

which can be written as

Êε(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
|j−i|=1

εd−1|uj − ui|+ γ0
∑

ξ∈Zd\{0}

∑
i,i+ξ∈Ωε

ε2dG(εi, ε(i+ |ξ|))ui+ξui

=: Êloc
ε (u) + Ênl

ε (u) if u ∈ PCε(Ω),

+∞ otherwise.

(5.13)

Arguing as in the proof of Proposition 5.2, the following result can be proved.

Proposition 5.6. Let uε : Ωε → {±1} be such that uε → u in L1(Ω). Then

lim
ε→0

Ênl
ε (uε) =

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy.

By Proposition 5.6, we derive the following Γ-convergence result. Its proof is
straightforward.
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Theorem 5.7. The functionals Êε, defined in (5.13), Γ-converge with respect to
the L1(Ω) strong topology to the functional Ê : L1(Ω) → [0,+∞] defined by

Ê(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Su

|νu|1 dHd−1(Su) + γ0

∫
Ω

∫
Ω

G(x, y)u(x)u(y) dx dy

if u ∈ BV (Ω; {±1}),

+∞ otherwise.

Proof. Notice that Êloc
ε (u) = Gε(u) for u ∈ PCε(Ω), where Gε is defined in (4.6),

and we have already recalled that in [3, Theorem 4] it was proved that

Γ- lim
ε→0

Gε(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Su

|νu|1 Hd−1 if u ∈ BV (Ω; {±1}),

+∞ otherwise.

Hence, the thesis follows by Proposition 5.6.
The result in Theorem 5.7 can be extended to the periodic case, when Ω = T

d,
and to functions satisfying a mean constraint. More precisely, assume ε = 1

n and,
given ln ∈ {0, . . . nd}, set

PCln
n (Td) :=

{
u :

1

n
Z
d → {−1, 1},u [0, 1)d-periodic and

#{i ∈ ([0, n) ∩ Z)d : ui = 1} = ln
}
.

We assume that there exists p ∈ [0, 1] such that

(5.14) lim
n→+∞n−dln = p.

Then, consider the functionals Eln
n : L1(Td) → [0,+∞] defined as

(5.15)

Eln
n (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
|j−i|=1

n1−d|uj − ui|+ γ0
∑

ξ∈Zd\{0}

∑
i∈nQ∩Zd

n−2dG
( i
n
,
(i + |ξ|)

n

)
ui+ξui

if u ∈ PCln
n (Td),

+∞ otherwise

where G is the Green’s functions for the Laplacian with periodic boundary conditions.
Then, by following the same steps of the proof of Theorem 4.11 and taking into account
Theorem A.1 and Remark A.2, the following result can be proved.

Theorem 5.8. Let (ln) satisfy (5.14). Then, the functionals Eln
n , defined in

(5.15), Γ-converge with respect to the L1(Td) strong topology to the functional Ep :
L1(Td) → [0,+∞] defined by

Ep(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Su

|νu|1 dHd−1(Su) + γ0

∫
Td

∫
Td

G(x, y)u(x)u(y) dx dy

if u ∈ BV (Td; {±1}) and |{u = 1}| = p,

+∞ otherwise.
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The previous result allows us to deduce the existence of “lamellar-type” local
minimizers for the discrete energies Epn

n : according to a definition introduced in
[1], we say that a function u ∈ PCln

n (Td) is an isolated L1-local minimizer for the
functional Eln

n if there exists δ > 0 such that

Eln
n (u) ≤ Eln

n (v), ∀ v ∈ PCln
n (Td) with 0 < min

τ∈ 1
nZd

‖u− v(·+ τ)‖L1(Td) ≤ δ.

An analogous definition of isolated local minimizers can be given in the continuum
for the functional Ep(u).

In [1, Proposition 5.6] the following result was proved: given p ∈ (0, 1), set

Lk := T d−1 × ∪k
l=1

[
l − 1

k
,
l − 1

k
+
p

k

]
, k ∈ N

and denote by Lp,k the collection of all sets which may be obtained from Lk by
translations and relabeling of coordinates. Then, for any γ0 > 0 and L ∈ Lp,k,
the function uL := χL − χLc is an isolated L1-local minimizer for the functional
Ep : L1(Td) → [0,+∞] defined by

Ep(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hd−1(Su) + γ0

∫
Td

∫
Td

G(x, y)u(x)u(y) dx dy

if u ∈ BV (Td; {±1}) and |{u = 1}| = p,

+∞ otherwise

for k large enough. Since Hd−1(Su) ≤
∫
Su

|νu|1 dHd−1 and the equality holds for uL,

we get that uL is also an isolated L1-local minimizer for the functional Ep. Hence,
as a straightforward consequence of Theorems 2.3 and 5.8, we deduce the following
result.

Theorem 5.9 (local minimality of lamellae). There exists k0 ∈ N such that for
any k ∈ N, k > k0, and L ∈ Lp,k there exist n0 ∈ N and a family {un}n>n0 of isolated
local minimizers of Eln

n such that un → uL strongly in L1(Td), as n → +∞, where
uL := χL − χLc .

6. General criterion for a ferromagnetic behavior. In this section we con-
sider energies of the type (3.1) in the homogeneous case cεi,ξ = cξ for all i and ξ,
without constraints on the sign of such constants. Our main goal is to provide a
general criterion which ensures that such energies still have a ferromagnetic behavior,
that is the ground states are still the uniform states u ≡ 1 and u ≡ −1 and the
continuum limit of the scaled energies is an interfacial energy of the form (4.4). We
restrict our analysis to the case in which only short-range interactions are taken into
account, that is there exists R > 0 such that cξ = 0 if |ξ| > R. Hence, we consider
energies of the form

(6.1) Fε(u) = −
∑

ξ∈Zd∩B(0,R)

∑
i,i+ξ∈Ωε

cξε
duiui+ξ

on PCε(Ω) and equal to +∞ otherwise in L1(Ω). In order to introduce and better
explain the ferromagnetic criterion we are going to define, we first consider two one-
dimensional examples.
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922 ROBERTO ALICANDRO AND MARIA STELLA GELLI

Example 6.1 (nearest neighbor and next-to-nearest neighbor interactions). Let Ω
=(0, 1) and let Fε be the energy accounting for nearest and next-to-nearest neighbor
interactions defined by

Fε(u) := −c1
∑

i,(i+1)∈Z∩(0,ε−1)

εuiui+1 − c2
∑

i,(i+2)∈Z∩(0,ε−1)

εuiui+2.

Note that, given λ ∈ R, we may rewrite Fε as

(6.2) Fε(u) =
∑

i∈Z∩(0,ε−1−2)

ε(−c1(λuiui+1 + (1− λ)ui+1ui+2)− c2uiui+2) +O(ε),

where the additional infinitesimal term is due to the energetic contribution of the
interactions near 0 and 1. Set, for v : {0, 1, 2} → {−1, 1},

F 2
cell(v) := −c1(λv0v1 + (1 − λ)v1v2)− c2v0v2.

Then, a condition which guarantees that the uniform states −1 and 1 are the only
two minimizers of Fε up to lower order terms is the following

(6.3) F 2
cell(v) > F 2

cell(±1) = −c1 − c2 ∀ v : {0, 1, 2} → {−1, 1}, v �≡ ±1.

Indeed, if (6.3) is satisfied, formula (6.2) immediately infers that

Fε(±1) = minFε +O(ε).

It is easy to show that (6.3) is satisfied with λ = 1
2 if and only if c1, c2 ∈ A :=

{c1 > 0, 2c2 > −c1}. Moreover, easy computations show that
(1) if c1, c2 ∈ B := {c1 < 0, 2c2 > c1}, we have two ground states given by the

alternating states (−1)i and (−1)i−1;
(2) if c1, c2 ∈ C := {c1 < 0, 2c2 < c1} ∪ {c1 > 0, 2c2 < −c1}, we have four

ground states given by (−1)[
i+k
2 ], k = 0, 1, 2, 3;

(3) if c1, c2 ∈ A ∩ B = {c1 = 0, c2 > 0}, we have four ground states given by
the uniform states 1 and −1 and the alternating states given by (−1)i and
(−1)i−1; if c1, c2 ∈ A ∩ C = {c1 > 0, 2c2 = −c1}, we have six ground states

given by the uniform states 1 and −1 and the states (−1)[
i+k
2 ], k = 0, 1, 2, 3;

if c1, c2 ∈ B∩C = {c1 < 0, 2c2 = c1}, we have six ground states given by the

alternating states (−1)i and (−1)i−1 and the states (−1)[
i+k
2 ], k = 0, 1, 2, 3.

Example 6.2. (nearest neighbor, next-to-nearest neighbor, and next-to-next-to-
nearest neighbor interactions) Let Ω = (0, 1) and let Fε be the energy accounting for
nearest, next-to-nearest, and next-to-next-to-nearest neighbor interactions, defined
by

Fε(u) := −c1
∑

i,(i+1)∈Z∩(0,ε−1)

εuiui+1 − c2
∑

i,(i+2)∈Z∩(0,ε−1)

εuiui+2

−c3
∑

i,(i+3)∈Z∩(0,ε−1)

εuiui+3.

Following the same strategy as the previous example, given λ, α, β ∈ R, we may
rewrite Fε as
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CONTINUUM LIMITS OF ISING-TYPE ENERGIES 923

Fε(u) =
∑

i∈Z∩(0,ε−1−3)

ε(−c1(αuiui+1 + βui+1ui+2 + (1− α− β)ui+2ui+3)

−c2(λuiui+2 + (1− λ)ui+1ui+3)− c3uiui+3) +O(ε).

Set, for v : {0, 1, 2, 3} → {−1, 1},
F 3
cell(v) := −c1(αv0v1 + βv1v2 + (1− α− β)v2v3)− c2(λv0v2 + (1 − λ)v1v3)− c3v0v3.

In this case the uniform states −1 and 1 are the only two minimizers of Fε up to lower
order term if there holds

(6.4) F 3
cell(v) > F 3

cell(±1) = −c1 − c2 − c3 ∀ v : {0, 1, 2, 3} → {−1, 1}, v �≡ ±1.

If c1, c2, c3 ∈ {c1 > −3c3 > 0, 3c2 > −c1 − 3c3} ∪ {c1 = 0, c2 > 0, c3 > 0} one
can check that (6.4) is satisfied. Note that for other values of c1, c2, and c3 it is
in principle possible that neither the uniform states 1 and −1 nor different periodic
states are minimizers of F 3

cell. In this case one could further push the argument before
as follows: given M ∈ N, M ≥ 3, the three sets of constants {αk

1 , . . . , α
k
M−k+1},

k = 1, 2, 3, satisfying
∑M−k+1

j=1 αk
j = 1 for any k, one can rewrite Fε as

Fε(u) =
∑

i∈Z∩(0,ε−1−M)

ε

⎛
⎝− 3∑

k=1

cl

M−k+1∑
j=1

αk
jui+j−1ui+j+k−1

⎞
⎠+O(ε)

and define, for v : {0, 1, . . . ,M} → {−1, 1},

FM
cell(v) := −

3∑
k=1

ck

M−k+1∑
j=1

αk
j vj−1vj+k−1.

Then, as before, the uniform states −1 and 1 are the only ground states if there holds

FM
cell(v) > FM

cell(±1) = −c1 − c2 − c3 ∀ v : {0, 1, . . . ,M} → {−1, 1}, v �≡ ±1.

We now generalize the argument exploited in the previous examples. Let Fε be
defined by (6.1). Note that, for any M ∈ N, M ≥ R, we may rewrite Fε as

(6.5) Fε(u) =
∑

εi∈ΩM
ε

εd

⎛
⎝− ∑

|ξ|≤R

cξ
∑

j,j+ξ∈CM

φM (j, ξ)ui+jui+j+ξ

⎞
⎠+O(ε),

where CM := [0,M ]d ∩ Z
d, ΩM

ε := {i ∈ Z
d : εi+ εCM ⊂ Ω}, and φM : CM × Z

d → R

satisfies for any fixed ξ ∈ Z
d

∑
j,j+ξ∈CM

φM (j, ξ) = 1.

Note that the additional infinitesimal term in (6.5) is due to the energetic contribution
of the interactions near the boundary of Ω. Set, for v : CM → {±1},

FM
cell(v) := −

∑
|ξ|≤R

cξ
∑

j,j+ξ∈CM

φM (j, ξ)vjvj+ξ.D
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924 ROBERTO ALICANDRO AND MARIA STELLA GELLI

Definition 6.3 (ferromagnetic criterion). We say the family {cξ : ξ ∈ Z
d ∩

B(0, R)} has a ferromagnetic behavior if there exists M ∈ N, M ≥ R, and φM :
CM × Z

d → R such that ∑
j,j+ξ∈CM

φM (j, ξ) = 1 ∀ ξ ∈ Z
d

and

(6.6) FM
cell(v) > FM

cell(±1) = −
∑
|ξ|≤R

cξ ∀ v : CM → {±1}, v �≡ ±1.

Formula (6.6) is a sufficient condition for the minimality of the uniform states 1 and
−1. Indeed, if (6.6) is satisfied, formula (6.5) immediately infers that

Fε(±1) = minFε +O(ε).

We may, then, consider the scaled energies

(6.7) Eε(u) =
Fε(u)− Fε(±1)

ε
,

which can be written on PCε(Ω) as

Eε(u) =
∑

εi∈ΩM
ε

εd−1

⎛
⎝∑

|ξ|≤R

cξ
∑

j,j+ξ∈CM

(1 − φM (j, ξ))ui+jui+j+ξ

⎞
⎠+O(1).

Let us set

EM
cell(v) := FM

cell(v) − FM
cell(±1) =

∑
|ξ|≤R

cξ
∑

j,j+ξ∈CM

(1 − φM (j, ξ))vjvj+ξ .

Moreover, with a little abuse of notation, set for u ∈ PCε(Ω) and i ∈ Ωε

(6.8) EM
cell(u, i+ CM ) := EM

cell(u(1/ε ·+i)).
Note that we get

(6.9) Eε(u) =
∑

εi∈ΩM
ε

εd−1EM
cell(u, i+ CM ) +O(1).

In the next proposition we show that the functionals Eε are equicoercive with re-
spect to the L1(Ω)-topology and their possible Γ-limits are finite only onBV (Ω; {±1}).

Proposition 6.4. Assume that the family {cξ : ξ ∈ Z
d ∩ B(0, R)} has a ferro-

magnetic behavior, according to Definition 6.3, and let Eε be defined by (6.7). Let uε be
such that supε Eε(uε) < +∞. Then there exist a subsequence εk and u ∈ BV (Ω; {±1})
such that uεk converge to u strongly in L1(Ω).

Proof. Let
{
Ωk
}
be an increasing sequence of open sets compactly contained in

Ω such that ∪k∈NΩ
k = Ω. By (6.6) and (6.9), we have that for any k ∈ N

Hd−1(S(uε) ∩ Ωk) ≤ Cεd−1#{i ∈ Z
d ∩ 1

ε
Ωk : EM

cell(uε, i+ CM ) > 0}
≤ CEε(uε) ≤ C

By Theorem 2.1 and by a diagonalization argument we get the conclusion.
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Now we pass to show that the Γ-limit of Eε is an interfacial energy of the form
(4.4). Since it is not our purpose in this paper to investigate boundary layer effects,
we assume that Ω = T

d, ε = 1
n , n ∈ N. Moreover from now on we will use the

notation En in place of E 1
n
. In this periodic setting En turns out to be defined on all

[0, 1)d-periodic functions u : 1
nZ

d → {−1, 1} as

En(u) =
∑

ξ∈Zd∩B(0,R)

∑
i∈Zd∩nQ

cξn
1−d(1 − uiui+ξ)(6.10)

=
∑

i∈Zd∩nQ

n1−dEM
cell(u, i+ CM )

is equal to +∞ otherwise in L1(Td), and

En(±1) = minEn = 0.

Theorem 6.5. Assume that the family {cξ : ξ ∈ Z
d ∩ B(0, R)} has a ferro-

magnetic behavior, according to Definition 6.3, and let En be defined by (6.10). Let
M > R and φM : CM ×Z

d → R such that (6.6) is satisfied. Then the functionals En

Γ-converge with respect to the L1(Td)-topology to the functional E : L1(Td) → [0,+∞]
defined by

E(u) =

⎧⎨
⎩
∫
S(u)

ϕ(νu) dHd−1 if u ∈ BV (Td; {±1}),
+∞ otherwise,

where ϕ : Sd−1 → [0,+∞) is the restriction to Sd−1 of a convex and positively
homogeneous function of degree one and it is defined by

(6.11) ϕ(ν) := lim
T→+∞

1

T d−1
min

⎧⎨
⎩
∑

i∈Zd∩TQν

EM
cell(u, i+ CM ) : u ∈ D(TQν)

⎫⎬
⎭ ,

where EM
cell is defined by (6.8) and

(6.12) D(TQν) := {u : Zd → {−1, 1} : u(i) = u0,ν(i) ∀ i ∈ Z
d \ (T −R)Qν}.

Remark 6.6 (bounds). The function ϕ defined in (6.11) satisfies the following
bounds

α|ν|1,∞ ≤ ϕ(ν) ≤ β|ν|1,∞ ∀ ν ∈ Sd−1,

where α := min{EM
cell(v) : v �≡ ±1}, β := max{EM

cell(v) : v �≡ ±1}, and |ν|1,∞ :=
max{∑k �=l |νk| : l ∈ {1, . . .N}}. The proof of the lower bound can be obtained by

using a slicing argument along the directions el, where l ∈ argmax |ν|1,∞, and taking
into account that, by (6.6), the transition between the two states 1 and −1 costs a
positive energy. The proof of the upper bound can be easily obtained by testing the
minimum problem in (6.11) with u = u0,ν and using again a slicing argument.

The next proposition shows that the definition of ϕ in (6.11) is well-posed. We
omit its proof, since it relies on a classical procedure in homogenization theory and
use the argument exploited in the construction of the recovery sequence in the proof
of Theorem 6.5.
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926 ROBERTO ALICANDRO AND MARIA STELLA GELLI

Proposition 6.7. Let M > R and ϕ : CM × Z
d → R such that (6.6) is satisfied

and let D(TQν) be defined by (6.12) for all ν ∈ Sd−1 and T > 0. Then the limit

lim
T→+∞

1

T d−1
min

⎧⎨
⎩
∑

i∈Zd∩TQν

EM
cell(u, i+ CM ) : u ∈ D(TQν)

⎫⎬
⎭

exists for all ν ∈ Sd−1.

Proof of Theorem 6.5. We first prove the lim inf inequality. Let un → u in L1(Td)
such that lim infnEn(un) < +∞. Up to passing to a subsequence we may assume that
lim infnEn(un) = limnEn(un). Since un is [0, 1)d-periodic, then u is [0, 1)d-periodic.
By Proposition 6.4, we immediately deduce that u ∈ BV (Td; {±1}). We now use a
blow-up argument. Let Q = [0, 1)d and set

μn :=
∑

i∈Zd∩nQ

n1−dEM
cell(un, i+ CM )δ 1

n i.

Since supn μn(Q) = supnEn(un) < +∞, we may suppose, up to passing to a
further subsequence, that there exists a positive finite measure μ such that μn ⇀ μ.
By the Radon–Nikodym theorem, we may decompose μ into two mutually singular
positive measures as

μ = ψHd−1�S(u)+μs.

The conclusion follows by showing that

ψ(x0) ≥ ϕ(νu(x0)) for Hd−1�S(u) a.e. x0 ∈ S(u).

For Hd−1�S(u) a.e. x0 ∈ S(u) it holds

(i) limρ→0
1
ρd

∫
x0+ρQ±

νu(x0)

|u(x)−±1| dx = 0,

(ii) limρ→0
1

ρd−1Hd−1(S(u) ∩ {x0 + ρQνu(x0)
}) = 1,

(iii) limρ→0

μ(x0+ρQνu(x0)
)

Hd−1(S(u)∩{x0+ρQνu(x0)
}) = ψ(x0).

Fix such an x0 ∈ S(u) and let (ρm) be a sequence of positive numbers converging to
zero such that μ(x0 + ρmQνu(x0)

) = 0. By (ii) and (iii) we get

ψ(x0) = lim
m

μ(x0 + ρmQνu(x0)
)

ρd−1
m

= lim
m

1

ρd−1
m

lim
n

∑
i∈Zd∩n(x0+ρmQνu(x0)

)

n1−dEM
cell(un, i+ CM ).

Observe that, for any m and n we can find ρm,n with limn ρm,n = ρm and xn0 ∈ Z
d

with 1
nx

n
0 → x0, such that

Z
d ∩ (xn0 + nρm,nQνu(x0)

) = Z
d ∩ n(x0 + ρmQνu(x0)

).

Then

ψ(x0) = lim
m

lim
n

∑
i∈Zd∩(xn

0+nρm,nQνu(x0)
)

(nρm,n)
1−dEM

cell(un, i+ CM )

= lim
m

lim
n

∑
j∈Zd∩(nρm,nQνu(x0)

)

(nρm,n)
1−dEM

cell(un, x
n
0 + j + CM )
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Let vm,n : 1
nρm,n

Z
d → {−1, 1} be defined by

vm,n

(
1

nρm,n
j

)
= un

(
1

n
(xn0 + j)

)
, j ∈ Z

d.

By (i) and since un → u in L1(Q) we get

lim
m

lim
n

∫
Qνu(x0)

|vm,n − u0,νu(x0)
| dx = 0.

Hence, by a diagonalization argument, we can find a sequence of positive numbers
λk → 0 and a sequence vk : λkZ

d → {−1, 1} such that vk → u0,νu(x0)
in L1(Qνu(x0)

)
and

ψ(x0) ≥ lim
k

∑
j∈Zd∩λkQνu(x0)

λd−1
k EM

cell(vk, j + CM ).

By Lemma 6.8, there exists wk : λkZ
d → {−1, 1} such that wk(λkj) = uν(λkj) if

j ∈ Z
d \ ( 1

λk
−R
)
Qνu(x0)

and

ψ(x0) ≥ lim inf
k

∑
j∈Zd∩ 1

λk
Qνu(x0)

λd−1
k EM

cell(wk, j + CM ).

Eventually the functions ŵk : Zd → {−1, 1} defined as

ŵk(j) := wk(λkj), j ∈ Z
d,

belong to D
(

1
λk
Qνu(x0)

)
and, setting Tk := 1

λk
, by (4.13), (6.11), and Proposition

6.7, we get

ψ(x0) ≥ lim inf
k

T 1−d
k

∑
j∈Zd∩TkQνu(x0)

EM
cell(ŵk, j + CM ) ≥ ϕ(νu(x0)).

We now pass to the construction of a recovery sequence. We perform this construction
just for functions u ∈ BV (Td; {±1}) such that S(u) is a polyhedral set, since the set
of these functions is dense in BV (Td; {±1}). We further restrict to the case in which
S(u) is the restriction to Q of a hyperplane, since this construction is easily generalized
to each face of a polyhedral boundary. Fix, then, ν ∈ Sd−1 and let u be such that
S(u) = Πν ∩Q, where Πν is a hyperplane orthogonal to ν. Without loss of generality
we may assume Πν = {x ∈ R

d : 〈x, ν〉 = 0}, which corresponds to u = u0,ν on Q.
Given δ > 0, by Proposition 6.7, there exist Tδ > 0 and uδ ∈ D(TδQν) such that
Tδ > Rδ−1 and

1

T d−1
δ

∑
i∈Zd∩TQν

EM
cell(uδ, i+ CM ) ≤ ϕ(ν) + δ.

Let {b1, . . . , bd} be an orthonormal base of Rd such that we have bd = ν and Qν =

{x ∈ R
d : |〈x, bl〉| < 1/2, l = 1, . . . , d}. For any j ∈⊕d−1

l=1 Z(Tδ +2R)bl set xj = [j] =
([j1], . . . , [jd]). Then let un : 1

nZ
d ∩Q→ {−1, 1} be such that

un

(
i

n

)
= uδ(i− xj) for i ∈ Z

d ∩ (Tδ + 2R)Qν + xj , j ∈
d−1⊕
l=1

Z(Tδ + 2R)bl,
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and u ≡ uν otherwise. It can be easily verified that un → u in L1(Q). Note that, by
(6.6), the interactions giving nonzero energetic contribution are only those which are
inside the domains of the form 1

n ((Tδ + 2R)Qν + xj) and in an R
n -neighborhood of

∂( 1n ((Tδ + 2R)Qν + xj)) ∩ Πν ∩Q. Summing up all such contributions, we get

E′′(u) ≤ lim sup
n

En(un) ≤ Hd−1(S(u)(Tδ + 2R)1−d
∑

i∈Zd∩TQν

EM
cell(uδ, i+ CM )

+CR
(Tδ + 2R)d−2

(Tδ + 2R)d−1
≤ Hd−1(S(u)(1 + δ)d−1(ϕ(ν) + δ) + CRδ.

The conclusion follows by letting δ tend to 0.

Lemma 6.8. Let λk → 0 and let vk : λkZ
d → {−1, 1} be such that vk → u0,ν

in L1(Qν). Then there exist wk : λkZ
d → {−1, 1} such that wk(λkj) = u0,ν(λkj) if

j ∈ Z
d \ ( 1

λk
−R
)
Qν and

lim inf
k

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EM

cell(wk, j + CM )

≤ lim inf
k

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EM

cell(vk, j + CM ).(6.13)

Proof. Note that #{j ∈ Z
d∩(Qν \

(
1
λk

−R)Qν) : vk(λkj) �= u0,ν(λkj)} ≤ Cλ2−N
k

if ‖vk − u0,ν‖L1(Qν) ≤ Cλ2k. In this case it can be easily verified that the thesis holds
for

wk := χ(1−Rλk)Qν
vk + (1− χ(1−Rλk)Qν

)u0,ν .

Otherwise, we may assume that lim infk
1
λ2
k

‖vk − u0,ν‖L1(Qν) = +∞. In this case, set

Nk :=

[√‖vk−u0,ν‖L1(Qν )

λk

]
and, for l ∈ {1, . . . , Nk}, set

Qk
ν,l := {x ∈ Qν : dist(x,Qc

ν) ≥ Rlλk}.
Then for any k ∈ {1, . . . , Nk} consider the family of functions wl

k defined by

wl
k := χQk

ν,l
vk + (1− χQk

ν,l
)u0,ν .

Arguing as in the proof of Proposition 4.5, we can find lk ∈ {1, . . . , Nk} such that∑
j∈Zd∩ 1

λk
Qν

λd−1
k EM

cell(w
lk
k , j + CM ) ≤

∑
j∈Zd∩ 1

λk
Qν

λd−1
k EM

cell(uk, j + CM )

+
∑

j∈Zd∩ 1
λk

(Qν−λkNkQν)

λd−1
k EM

cell(u0,ν , j + CM ) + o(1).

The conclusion follows by choosing wk := wlk
k and noticing that

lim
k

∑
j∈Zd∩ 1

λk
(Qν−λkNkQν)

λd−1
k EM

cell(u0,ν , j + CM ) = 0.

Appendix A. In this section we consider sets of finite perimeter in a bounded
Lipschitz set Ω with assigned measure and prove a density result with sets having
polyhedral boundary in Ω and maintaining the assigned measure.
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Theorem A.1. Let Ω ⊆ R
d be a bounded open set with Lipschitz boundary and

let m ∈ (0, 1) be fixed. Then for any set E with |E| = m|Ω| there exists a sequence
En such that ∂En ∩ Ω is a polyhedral set, |En| = m|Ω|, limn→+∞ |En�E| = 0, and
limn→+∞ Per(En) = Per(E).

Proof. Let us fix a set E of finite perimeter and measure equal to m|Ω|. By
a classical density result (see [11, 17]) we may select a sequence (Fn)n of sets with
polyhedral boundary converging in measure and in perimeter to E. Then the measures
of Fn satisfy |Fn| = mn|Ω| with limn→+∞mn = m but in general mn �= m. In the
sequel we will slightly modify the sets Fn taking care that all the convergence and
structure properties remain valid.

Let 0 < η < 1 be fixed to be chosen later. By the regularity of Ω it is possible to
find a positive r > 0 and a finite set of disjoint cubes of side r such that their union
covers Ω up to an error less than η, that is, there exists a (finite) set Ir such that

|Ω \ �x∈IrQr(x)| ≤ η|Ω|.
We now claim that there exist 0 < h < k < 1 and points xh, xk ∈ Ir such that

(A.1) |E ∩Qr(xh)| > hrd, |E ∩Qr(xk)| < krd.

In fact, assuming by contradiction on k, h that |E ∩Qr(x)| ≤ hrd, |E ∩Qr(x)| ≥ krd

for any x ∈ Ir we get

m|Ω| = |E| ≥
∑
x∈Ir

|E ∩Qr(x)| ≥ k
∑
x∈Ir

rd#(Ir) ≥ k(1− η)|Ω|

and

m|Ω| = |E| = |E \ �x∈IrQr(x)|+ | �x∈Ir E ∩Qr(x)|
≤ |Ω ∩ �x∈IrQr(x)| +

∑
x∈Ir

|E ∩Qr(x)| ≤ |Ω| − (1 − h)rd#(Ir)

≤ h|Ω|+ η(1 − h)|Ω| = (h(1− η) + η)|Ω|.
Hence, according to fixing η < min{m, 1 − m}, we may select h, k such that 0 <
h(1− η) < m− η < m < k(1 − η) and also k < 1, and get a contradiction in both of
the inequalities above.

Thus let xk, xh be such that the inequalities in (A.1) hold for the initial set E.
By taking into account the L1 convergence of Fn to E, a weak version of (A.1) is
satisfied by Fn for n large enough, with h, k replaced by h/2, (k + 1)/2, i.e.,

|Fn ∩Qr(xh)| > h

2
rd, |Fn ∩Qr(xk)| < k + 1

2
rd.

In addition we also assume that |mn − m| < min{(h/4)rd, (1 − k)/4rd}. We will
modify Fn in Qr(xk) or alternatively in Qr(yk), accordingly to the sign of the gap
mn −m.

Let us treat first the case in which mn < m. Set rn = (4|mn −m|/(1 − k))1/d

and consider a collection of disjoint cubes Qrn(y) of radius rn in Qr(xk), intersecting
along faces. We have that

∑
Qrn (y)⊆Qr(xk)

|Qrn(y) ∩ Fn| ≤ |Qr(xk) ∩ Fn| < k + 1

2
rd,
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hence, by the mean value theorem, taking into account that the cubes well-contained
in Qr(xk) are [r/rn]

d, we can find Qrn(y
n
k ) such that, refining h, k as above,

(A.2) |Fn ∩Qrn(y
n
k )| <

k + 3

4
rn

d.

Note that the function (0, rn) � t→ |Qt(y
n
k ) \Fn| is continuous and, thanks to (A.2),

surjective on the set [0,m−mn], so we may select tn such that En = Fn ∪ Qtn(y
n
k )

satisfies the measure constraint. In the case mn > m we will argue analogously
subdividing Qr(xh) into small cubes with a slightly different radius r′n depending on
h but still proportional to |mn −m|1/d and select znh , t

′
n such that En = Fn \Qt′n(z

n
h )

has mean volume fraction equal to m. Clearly, in both cases the regularity result of
the boundary is maintained as well as the convergence in measure and in perimeter
thanks to the fact that the additional perimeter of En with respect to Fn is contained
in the boundary of a cube of radius tn or t′n of order |m−mn|1/d.

Remark A.2. By the locality of the construction above the same result holds for
more general settings, for instance when Ω is substituted for by the d-dimensional flat
torus. Actually in this last case it is enough to work locally on a single chart of the
torus. Moreover, Theorem A.1 can be extended to a density result with prescribed
measure also for functions assuming a finite set of fixed values, as for instance spin
functions. Analogously one can replace the convergence of perimeters with suitable
surface energies satisfying the hypotheses of Theorem 2.2. Note that in the case Ω is
the whole space R

d or a cone, for example, the same result can be directly achieved
by means of homothety arguments.
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