Design of Piezo-Actuated MEMS Flexural Phononic Crystals for Mass Sensing Applications

L. Luschi, **F. Pieri**

Dipartimento di Ingegneria dell'Informazione Università di Pisa

• MEMS resonant mass sensors

- working principle
- design approach
- Flexural phononic crystals as mass sensors
 - proposed sensing mechanism
 - proposed structure
 - design parameters, strategy
 - modeling
 - results
- Conclusions and developments

MEMS Resonant Mass Sensors

Design approach for high sensitivity

"Standard" approach

- resonator scaling (nanoresonators)
- Sub-micrometer thickness
- Lightweight structural material

This work

thick structures with periodic perforations (which are often required anyway)

- decrease mass
- increase active surface

Phononic bandgaps can be introduced

- The perforated resonator is also a phononic crystal
- Explore the possibility of exploiting the band gaps in the sensing process

The output spectrum scales down as $\Delta f = f_0 S \mu$ upon mass loading:

 $|H_{\text{out}}(f_0,\mu)| \approx |H_{\text{out}}(f_0(1+S\cdot\mu),0)|$

The shift is detected by exciting at constant frequency f_0 on the edge of the band gap before and after analyte interaction

Proposed device

Clamped-clamped beam with periodic cross-section

- L total length
- T thickness
- I_x spatial period

Design parameters

 $m{N}_{y}$ holes along y $m{lpha}_{y}$ ($m{A}_{holed}$ / $m{A}_{full}$) perforation ratio along y

Design strategy – one

Goal: maximize the output signal

Spectrum shift Dense and **large** holes (i.e. small pitch) maximize *S*

How to do it:

- small α_{y} (larger holes along y)
- small I_x (many x repetitions)
- large N_y (many y repetitions)

Design strategy – two

Goal: maximize the output signal

Band gap slope Strong discontinuity increases wave reflection in the band gap

How to do it:

• small α_y (larger holes along y)

There is a synergy between the two goals

Large spectrum shift and steep band gap slope both require small α_y

Modelling – one

Full Timoshenko beam model used

analyte interaction (i.e. $\mu > 0$) increases both translational and rotational inertia

4 parameters describe the cross-sections:

 K_{tf} , K_{rf} , K_{th} , K_{rh} are obtained from straightforward geometric considerations

- *E* Young's modulus
- **G** shear modulus
- **p** mass density
- I section moment of inertia
- A section area
- k' shear coefficient

Modelling – two

A transmission matrix approach* models the propagation of **flexural waves**:

Timoshenko beam theory

- State 4-vector: $\mathbf{v}_{\mathrm{F}} = [U_z,\,\theta,\,M,\,T]^T$
- Two 4x4 transmission matrices for full and holed segments: $\mathbf{M}_{\mathrm{F}}^{h}, \, \mathbf{M}_{\mathrm{F}}^{f}$

Extensions:

- damping
- boundary conditions (clamped-clamped: $U_z(0) = U_z(L) = 0$, $\Theta(0) = \Theta(L) = 0$)
- piezoelectric actuation/sensing

Modelling - three

Piezoelectric model:

- **forcing:** shear force τ_{in} at the input piezo-PnC interface
- sensing: average longitudinal ε_x strain at the output piezo-PnC interface

$$H_{\rm out} = \frac{\varepsilon_{\rm x}}{\tau_{\rm in}} \quad ({\rm Pa}^{-1})$$

due to the nature of this excitation there is a longitudinal load

Longitudinal wave propagation

• State 2-vector:

 $\mathbf{v}_{\mathrm{L}} = [U_x, F_x]^T$

• Two 2x2 transmission matrices for full and holed segments:

 $\mathbf{M}^h_{\scriptscriptstyle{\mathrm{L}}},\,\mathbf{M}^f_{\scriptscriptstyle{\mathrm{L}}}$

Results - one

Simulated geometry: $L = 640 \ \mu\text{m}$, $I_x = 100 \ \mu\text{m}$, $T = 20 \ \mu\text{m}$, $N_y = 4$, $\alpha_y = 0.2$

Material: monocrystalline silicon

Excellent agreement with ANSYS FEM simulations

Some features can only be caught if longitudinal effects are included

Results – two

Estimated analyte interaction (PSA prostate cancer marker)

PSA mass ≈ 33 kDa PSA diameter ≈ 4 nm 10⁴ binding sites/µm²

Test on a flexural bandgap border $(f_0 = 53.5 \text{MHz})$

$$\frac{\Delta H_{\rm out}}{H_{\rm out}} \approx 8.6\%$$

Conclusions and developments

- A new MEMS resonant mass sensor based on flexural PnCs has been proposed
- The device was modelled with a fast, transmission matrixbased approach in excellent agreement with FEM simulations
- Devices were fabricated in an Silicon-on-Insulator piezo-MEMS technology
- Developments:
 - Modelling of electrical transduction
 - Frequency characterization

Phononics 2015 – 3rd International Conference on Phononic Crystals/Metamaterials, Phonon Transport and Phonon Coupling

Thank

you!

More on the piezo model

• The measurable frequency response is the transconductance Y:

$$Y \triangleq \frac{I}{V} \ (\Omega^{-1})$$

$$H_{out} \triangleq \frac{\overline{\varepsilon}_x}{\tau_{in}} (Pa^{-1})$$

• given the piezo properties a simplified model can be built:

$$\tau_{in} = K_V V \qquad I = K_I \overline{\varepsilon}_x \qquad \qquad Y \approx H_{out} K_V K_I$$

- comparison with FEM with piezo-layer ($1 \mu m$ thick PZT-5H):
 - good accordance on shape
 - •understimates the amplitude (FEM $/Y \approx 60 \ \mu S @ f_0$)
 - development of a more accurate model ongoing

Localized state

- the resonance peak at *f* ≈ 48.8 MHz is a longitudinal peak located in the middle of longitudinal and flexural band gaps
- the simulated (FEM) mode shape shows that the energy is located at the anchors

Effects of Q

- high slopes are reached in the proximities of resonance peaks, but the frequency response in these regions is strongly dependent from the losses (*Q* factor)
- the spectrum inside the band gaps depends only on the geometrical properties

frequency (MHz)