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MEMS Resonant Mass Sensors
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Design approach for high sensitivity

“Standard” approach

• resonator scaling (nanoresonators)
• Sub-micrometer thickness
• Lightweight structural material

This work
thick structures with periodic perforations (which
are often required anyway)
• decrease mass
• increase active surface

Phononic bandgaps can be introduced
• The perforated resonator is also a phononic crystal
• Explore the possibility of exploiting the band gaps in the sensing process
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The output spectrum scales down as  Δf = f0 S μ upon mass loading:

The shift is detected by exciting at  constant frequency f0 on the edge 
of the band gap before and after analyte interaction

Proposed sensing mechanism
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Proposed device

Clamped-clamped beam with periodic cross-section

input/output
piezoelectric
transducers

deflected shape

L total length
T thickness
lx spatial period

Ny holes along y
αy (Aholed /Afull) perforation

ratio along y

Design parameters
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Design strategy – one 

Goal: maximize the output signal

Spectrum shift
Dense and large holes
(i.e. small pitch) maximize S

How to do it:
• small αy (larger holes along y)
• small lx (many x repetitions)
• large Ny (many y repetitions)

αy = Aholed /Afull
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Design strategy – two

Band gap slope
Strong discontinuity increases 
wave reflection in the band gap

How to do it:
• small αy (larger holes along y)

αy = Aholed /Afull

Goal: maximize the output signal
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There is a synergy between the two goals

Large spectrum shift and steep band gap slope 
both require small αy
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Modelling – one

E Young's modulus
G shear modulus
ρ mass density
I section moment of inertia
A section area
k‘ shear coefficient

analyte interaction (i.e. µ > 0) increases 
both translational and rotational inertia

holed (h) 
cross-section

full (f)
cross-section

Full Timoshenko beam model used

full (f) holed (h)

flexural stiffness

shear stiffness

translational inertia

rotational inertia

Ktf , Krf , Kth , Krh are obtained from 
straightforward geometric considerations

4 parameters describe the cross-sections:
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Timoshenko beam theory

• State 4-vector:

• Two 4x4 transmission matrices 
for full and holed segments:

Modelling – two 

A transmission matrix approach* models the propagation of flexural waves:

at each
segment:
left (l) and 
right (r)
state vectors

*Adapted from L. Liu and M.I. Hussein, J. Appl. Mech. 79, 011003 (2012)

Extensions:
• damping
• boundary conditions (clamped-clamped: Uz(0) = Uz(L) = 0, Θ(0) = Θ(L) = 0)
• piezoelectric actuation/sensing

10



Longitudinal wave propagation

• State 2-vector:

• Two 2x2 transmission matrices 
for full and holed segments:

Modelling - three

Piezoelectric model:
• forcing: shear force τin at the input piezo-PnC interface
• sensing: average longitudinal εx strain at the output piezo-PnC interface

due to the nature of this excitation there is a  longitudinal load
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Results - one

Simulated geometry:  L = 640 μm,  lx = 100 μm,  T = 20 μm,  Ny = 4,  αy = 0.2

Material: 
monocrystalline silicon

Excellent agreement 
with ANSYS FEM 
simulations

Some features can only 
be caught if longitudinal 
effects are included
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Estimated analyte interaction (PSA prostate cancer marker) 

Results – two 

PSA mass ≈ 33 kDa
PSA diameter ≈ 4 nm
104 binding sites/μm2

Test on a flexural 
bandgap border
(f0 = 53.5MHz)

Effect of mass magnified (50x) for clarity
13



Conclusions and developments

● A new MEMS resonant mass sensor based on flexural PnCs
has been proposed

● The device was modelled with a fast, transmission matrix-
based approach in excellent agreement with FEM simulations

● Devices were fabricated in an Silicon-on-Insulator piezo-
MEMS technology

● Developments:

● Modelling of electrical transduction

● Frequency characterization
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More on the piezo model

● The measurable frequency response is the transconductance Y:

𝐻𝑜𝑢𝑡 ≜
 ε𝑥

τ𝑖𝑛
(𝑃𝑎−1)

● given the piezo properties a simplified model can be built:

τ𝑖𝑛 = 𝐾𝑉𝑉 𝐼 = 𝐾𝐼 ε𝑥

𝑌 ≜
𝐼

𝑉
(Ω−1)

𝑌 ≈ 𝐻𝑜𝑢𝑡𝐾𝑉𝐾𝐼

● comparison with FEM with piezo-layer ( 1 µm thick PZT-5H):

• good accordance on shape

•understimates the amplitude (FEM |Y| ≈ 60 µS @ f0)

• development of  a more accurate model ongoing
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Localized state

1-1

modal analysis: 
normalized longitudinal
displacement (ux)

● the resonance peak at f ≈ 48.8 MHz is a longitudinal peak located in the middle of 
longitudinal and flexural band gaps

● the simulated (FEM) mode shape shows that the energy is located at the anchors
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Effects of Q
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● high slopes are reached in the proximities of resonance peaks, but the frequency
response in these regions is strongly dependent from the losses (Q factor)

● the spectrum inside the band gaps depends only on the geometrical properties
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