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Abstract—InfiniBand networks are commonly used in the high
performance computing area. They offer RDMA-based opera-
tions that help to improve the performance of communication
subsystems. In this paper, we propose a minimal message-passing
communication layer providing the programmer with a point-to-
point communication channel implemented by way of InfiniBand
RDMA features. Differently from other libraries exploiting the
InfiniBand features, such as the well-known Message Passing
Interface (MPI), the proposed library is a communication layer
only rather than a programming model, and can be easily used as
building block for high-level parallel programming frameworks.
Evaluated on micro-benchmarks, the proposed RDMA-based
communication channel implementation achieves a comparable
performance with highly optimised MPI/InfiniBand implemen-
tations. Eventually, the flexibility of the communication layer is
evaluated by integrating it within the FastFlow parallel frame-
work, currently supporting TCP/IP networks (via the ZeroMQ
communication library).

I. INTRODUCTION

The TCP/IP protocol stack is nowadays the most largely
exploited in distributed applications; many of them rely on
its features, either directly or indirectly (via a more abstract
communication library). Its popularity it is also due to the
fact that TCP/IP does not need specialised hardware and
supports the majority of the applications. TCP/IP modules
are usually implemented at the operating system (OS) level,
which means that OS is involved in every operation including
the buffer copy on both ends of the cable. For instance, if
an application wants to send a message, the OS places the
bytes into an anonymous buffer of the main memory and
when the transfer is complete the OS copies the data in the
receiving buffer of the application. This process is repeated
each time a message arrives until the entire byte stream is
received, which can reduce the performance when messages
are short and/or the distance is long. While most of the features
of TCP/IP, such as congestion control, are appreciated for long
distance connections, they are a limiting factor in the High
Performance Computing (HPC) area in terms of performance.
HPC requires high-performance and low-latency InterProcess
Communication (IPC) in order to provide performance and
scalability to applications [1], which is typically achieved by
fast user-level protocols such as Active Messages [2] and
VIA [3].

InfiniBand/OFED [4], has been introduced by Mellanox to
solve performance issues in HPC at cost of using dedicated
hardware. InfiniBand is a communication layer, which pro-
vides the application programmer with a communication inter-
face able to do kernel bypass, Remote Direct Memory Access
(RDMA) and asynchronous messaging operations. When a
message is sent over the Reliable Connection (RC) transport,
the InfiniBand hardware segments the message into packets
and delivers them directly into the application buffer provided
at the destination side (where the segments are reassembled
into a complete message). The receiving application gets
asynchronous notification once the entire message has been
received. This entire process happens without any system calls.
The combination of InfiniBand transport layer together with
the application transport interface allow to implement RDMA
operations at application level [5].

In this paper we present a minimal communication library
on top of the native InfiniBand layers implementing send and
receive primitives using InfiniBand RDMA mechanisms. The
library provides the application programmer with only efficient
and reliable point-to-point communication channels able to
transport messages of any size.

In order to assess the usability of the proposed library, we
integrate the library at the lower layer of the FastFlow parallel
framework [6]. The currently available FastFlow distributed
implementation (v.2.0.1) is based on the ZeroMQ (v2.2.0)
messaging layer [7], which lacks support for InfiniBand
networks. We replaced ZeroMQ with our native InfiniBand
communication library.

The main contributions of this paper are:
• a careful design and implementation of a minimal mes-

sage passing communication layer implemented on top of
InfiniBand RDMA mechanisms;

• the transparent porting of the FastFlow parallel frame-
work on InfiniBand network.

The rest of the paper is organised as follows. Recent
research works using InfiniBand for distributed computation
are presented in Sec. II. Section III briefly presents InfiniBand
background. Section IV discusses the library implementation
choices, whereas Sec. V presents the transparent porting of
FastFlow over native InfiniBand providing also some basic
FastFlow information. Section VI presents the experimental
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results obtained. Finally, Sec. VII proposes potential future
directions and draws conclusions.

II. RELATED WORK

In this section we briefly describe research works in the
domain of distributed computing which use the InfiniBand
communication layer.

In the HPC domain, InfiniBand is the most commonly used
network [8] and MPI represents the de-facto standard for
implementing parallel applications. Existing implementations
of MPI over InfiniBand use send/receive operations for small
data and control messages, and RDMA operations for large
data messages. Among these implementations MVAPICH [9]
and OpenMPI [10] are two important cases. The InfiniBand
implementations of MPI are highly optimised and fully com-
patible with the TCP/IP implementations, giving a simple way
for the programmers to migrate their software.

An open source RDMA layer for InfiniBand is librdmaPlus
developed in the Kitten Project [11], [12]. The library, avail-
able under GPLv2, supplies some abstraction of read and send
functions, as well as connection functionality and memory
sharing. While it is an interesting experiment and we used
the source code as a tutorial, the library seems tailored on
different needs than data flow streaming.

Other libraries have been recently developed, aiming at
giving a general purpose communication library over Infini-
Band [13],[14]. The project libvma [13] targets streaming
applications connected via standard sockets. This experiments
is interesting where it is required to keep standard socket API.

Works from the Ohio State University [15] [16] show
ways to integrate tools with high network communication re-
quirements such as Hadoop, Hadoop Distributed File System,
HBase and MemCached replacing sockets with InfiniBand
verbs communication. The purpose was to provide the Big
Data community with fast communication libraries in order to
take advantage of modern clusters infrastructures to improve
speed and scalability of Hadhoop middleware.

Example of projects that natively use the InfiniBand network
are distributed file systems because they need the highest per-
formance in bandwidth and latency: the porting of PVSF [17]
has been reported to give 40% to three times better perfor-
mance improvement in bandwidth.

High Performance-networking Block Device (HPBD) [18]
uses low-level InfiniBand network layers to access remote
memories in a cluster environment with an experienced re-
duction of latency of orders of magnitude compared to Gigabit
Ethernet.

III. INFINIBAND BACKGROUND

A. InfiniBand API

In InfiniBand Reliable Connection (RC) protocol, the con-
nection occurs between two peers; the one supplying the
connection is named passive side and the requester is the active
side. RDMA has hardware-managed protocol allowing the
direct transfer of memory areas between communicating peers.
The protocol supplies a way to register the local memory area

for being accessed by a remote peer, asynchronous RDMA
operations functions and a message notification system. In
Linux, the API for InfiniBand is named Verbs [5], [19], as de-
fined in the InfiniBand specification. The OFED (OpenFabrics
Enterprise Distribution) [20] is a packaging of the InfiniBand
related code, drivers and protocols. The main data structures
and concepts related to our implementations are given below:
• Event Channel (EC): it is a communication channel

used to manage events like connection and disconnection
between remote nodes. It is supplied by the RDMA Con-
nection Manager, an OFED module aiming at simplifying
the connection stage.

• Protection Domain (PD): it is an object where its
members, such as memory regions and queue pairs, are
allowed to interact to each other.

• Queue Pair (QP): it is the coupling of receiving and
sending queues used to transfer data between the nodes.

• Memory Registration: this is the Verbs call that
registers specific memory for the local kernel and HCA.
In order to be used by RDMA operations, the Rkey,
pointer and size need to be passed to the remote side.

• Work Request (WR): it is a request for the data
transfer. For a write request, this includes a list of
addresses and sizes included into the registered memory
to be transferred. A read request on the receiver must
always match a write request on the sender, and this may
generate a completion event on both sides, depending on
the operation flags.

• Completion Queue (CQ): it is a queue containing
asynchronous completions. Completions are sent to re-
ceiver or sender peers depending on the flags set on the
Work Request.

IV. RDMA-BASED MESSAGE-PASSING LIBRARY

In this section, we will describe the implementation of the
minimal send-receive library. The main requirements are the
following:
• The library must be single threaded and shouldn’t call

any pthread function. This will avoid adding overhead to
the software developer at higher layers.

• Sending data can be asynchronous, for achieving better
performance, but reading must be synchronous to easily
integrate to the FastFlow programming model.

• It should be possible to connect many active peers to a
single passive peer. An implementation of communication
patterns is not required at this level.

A. Design of the library

The schematic representation of the point-to-point channel
for the InfiniBand network is sketched in Fig. 1. It connects
two communicating peers: sender and receiver. Sending and
receiving data is performed via push and pop operations on
the messages queue. Both nodes have to allocate the memory
for the messages queue, but only the sender can actually write
data into it. The sender also manages the head of the queue, a
pointer to the last sent message, and it calculate the tail while



Fig. 1: Schematic representation of the point-to-point channel.

processing the Completion Queue. The receiver can just read
data from the queue, it updates the pointer to the last read
message (tail) and it calculates the head.

B. Connecting nodes

In InfiniBand, it is possible to initiate a reliable connection
using the RDMA Connection Manager. It allows to use IP
address and TCP ports, which simplify the integration to other
system tools.

In TCP, when the server listens to a port and a request
is received from a client, it opens a random port to be used
for the actual communication. In InfiniBand there is no such
protocol and the choice on how to connect multiple nodes to
a passive side is left to the developer. In a managed cluster
environment, it is possible that a subset of TCP ports may be
reserved to a specific program. Therefore we implemented a
simple connection protocol with a static port assignation:
• The passive side listens to a number of ports equal to the

number of active sides.
• The active side connects to the passive side through a

system or user statically assigned port.
• The passive side processes all the incoming connections,

one by one.
• The connection is done when all the passive sides are

connected to all the active sides. As a connection is
established, a rdma cm id structure for each active side
will be created on the passive side, while, on the active
side, a single rdma cm id structure is created to identify
the opened connection.

Once the connection is setup, the Protection Domain,
Queue Pair and Completion Queue structures are cre-
ated and can be used to perform communication between
the peers. The first operation performed is to allocate all
data structures needed and to initiate the phase of memory
registration.

C. Memory Registration

The operation of Memory Registration is needed to
define the memory areas where the network card can access
directly: for such areas, virtual to physical mapping cannot
be changed by the system and they must be protected from
unauthorized remote access. It consists of ”pin down” memory
by the OS and exchanging Rkeys between the peers. Our
implementation follows this order:
• Memory allocation: For performance reasons, in Infini-

Band, it is recommended to allocate memory using

posix memalign, that gives an aligned buffer, or a buffer
where starting address is multiple of a given value.

• Locally record the allocated memory: This operation is
performed with the function ibv reg mr, that returns a
structure of type ibv mr. Each allocated area can be
read or write locally or remotely. If more memory area
is desired, then the function ibv reg mr is called more
times.

• Rkey dispatch: The is contained in the structure ibv mr
and must be sent to the other peer. Unlike the Data Dis-
patch, we use the Send/Receive model for Memory Regis-
tration, instead of RDMA. The function ibv post send is
called with a Work Request operation having the opcode
flag set to IBV WR SEND and it must contain the key
to send and its size. The peer, after having received the
key, will be able to use the local copy of the registered
memory area, respecting the permissions declared.

Our implementation includes two methods to automatically
send and wait the reception of the needed key. The operation
is synchronous: the passive side sends the key and the active
side sends back its key after the message is received. To
allocate and register the memory, we developed the class
registeredMemory. It contains the pointers and size of the
memory area to register. There is also a flag indicating if the
memory is local or a copy of a remote accessible area. The
class type to be allocated is specified using the C++ template.

D. Work Request

Once registered, the memory areas may be fully or partially
sent to the other side. The memory may be sent through the
creation of two lists; Work Request (WR) and Scatter Gather
Elements (SGE). We have implemented the workRequest class
to simplify the creation of the lists with the methods addRD-
MASendWithImm, addRDMASend and addSendMsg.

A new instance of the class corresponds to a new empty
WR list. The methods add different kind of Work Request.
The method addRDMASendWithImm prepares a WR to sends
a portion of registered memory to a remote one, attaching
to the message an integer. The methods addRDMASend and
addSendMsg are used to prepare a RDMA transfer or a simple
message transfer. For each call it is necessary to specify the
pointer to the outgoing message, included into the registered
memory, and its size.

The possibility to perform inline sending (i.e. a way to
send small messages where the send buffer is not checked)
is supported: a finite sequence of messages smaller than a
fixed size (typically 512K) will be automatically set as inline.
When the message is created, the rdmaSend method of the
class ofedConnection is called to send the data.

Usage of immediate data, sending inline messages, sending
only a WR at a time, and having a single scatter/gather element
helped to achieve the best performance.

E. Shared FIFO Queue

The data structure implemented for sending and receiving
the messages in the distributed FastFlow is a First In First



Out (FIFO) queue. This way it is ensured that messages exit
the queue in the same order as they enter. A requisite of
RDMA is to store the queue in a single virtual contiguous
memory area by calling a single malloc. The queue has
been implemented to circularly use this area, defining a head
pointer (the location where a new data has to be inserted),
and a tail pointer (where the next data will be removed). The
implementation manages the situation of full and empty queue,
as well as the passage of the pointers from the end to the
beginning of the buffer. The structure created to manage the
FIFO queue is rdmaQueue. The constructor accepts an object
of type senderSharedMemory, which contains the buffer used
to implement the queue. The queue contains the pointers to
the head, last send and tail, which have to be computed when
receiving a completion.

The queue is utilized through the methods (enqueue) and
(dequeue): their task is to insert and read a data, managing
the pointers. These methods return false when the queue is
empty (after dequeue) or full (after enqueue), otherwise true.
We keep a pointer to the last shipped data, to support further
developments in which data may be sent asynchronously. The
queue also supplies the methods to recompute the pointers
when receiving a completion: the sender updates the tail
pointer, while the receiver updates the head.

To implement the onDemand protocol, The memory shared
by the receiver also contains a counter to the request of new
data; this has to be incremented and sent each time that the
node is available to receive a new message from the sender.

F. Data Dispatch

Data dispatch is done when calling the send method of
the ofedConnection class. Sending data is asynchronous, as
allowed by InfiniBand: when data is sent, it is copied into
the pipe and a RDMA write with immediate data Work
Request is sent. When dealing with data streams, the time
lost in copying the buffer is lower than the time employed
for the network communication, so it is possible to queue a
list of send Work Requests and keep the network device
busy. The improvements given by this solution is evident when
comparing the same code with the TCP equivalent.

Other than data shipment, the send method takes care of
other aspects, such as flow control and Completion Queue
processing.

G. Data Reception

The method recv of the ofedConnection class is in charge
of data reception. Because of the asynchronous nature of
InfiniBand, the recv method has to enforce synchronization
in order to satisfy the requirements of the data streaming
model, in which the receiver side is always synchronous on
the incoming data. Data reception is made by polling the
Completion Queue until a new message is received, and
calling the dequeue method of the FIFO queue. Data are left
on the queue, so it is in charge of the user to consume it
before it will be overwritten by new incoming data. However,
the library offers the possibility to configure the channel to

make a copy of the data, at the cost of introducing additional
latency.

H. Completion Queue processing

The Mellanox OFED User’s manual [5] shows examples
where the Completion Queue (CQ) is processed by a
separate thread in order to ensure that the CQ is readily
emptied (to not saturate). However, in the present case this
cannot happen since the CQ is guaranteed to never saturate
by our protocol design because:
• There is CQ for each point-to-point channel, thus the

number of enqueued completion events can be kept bound
by throttling sender and receiver speed.

• The protocol is cooperatively executed in two “dedicated”
threads (one for sender one for receiver) which are not
meant to execute parallel business code thus are always
fully responsive in processing completion events.

The design choice is motivated by the fact that the proposed
library is intended to be used in a multi-threaded programming
framework, where business code is typically executed in
separated threads.

Specifically, in the receiver, the CQ is polled when calling
the recv and the FIFO queue does not contain any new mes-
sage. Polling is performed with the RDMA call ibv poll cq,
which checks for any completion in the queue and return the
number of completions; this function also gives a list of work
completions with the inline data that, in our case, is used to
specify the size of the message. The completion processing is
blocking, so that if no completion are received, the receiver
will wait for incoming data indefinitely polling the queue.
When more than a completion is received, the queue is updated
with all the incoming messages, and the next recv would not
have to poll the CQ.

For the sender peer, the completion processing is more
complex. The CQ is polled when invoking the send method,
with a non blocking poll. This allows to update the tail of the
FIFO queue leaving the send call asynchronous. However, it
is possible that the send is invoked and no completions are
received. This may cause the WR to fill the outgoing queue,
or the FIFO queue to be filled. To solve this issue, a blocking
polling loop is performed in such cases.

When the data flow is ended, a new loop will consume
the remaining completions, to avoid the situation in which the
receiver may block forever waiting for the last completions.

I. Flow control

InfiniBand gives a partial responsibility to the programmer
to decide if and how to regulate the amount of data sent
between the peers. In our implementation, the flow control
is important to avoid filling the InfiniBand outgoing queues
and overwriting the buffer not yet completed by the send
operations.

The controls performed on the FIFO queue, partially regu-
late the data flow. The sender is blocked when the queue is
full, slowing down the flow of data. The buffer size, which
actually affects the number of messages to be placed in the



buffer, should be big enough to allow the system to achieve
good performance, and to allow data not being overwritten
before it is consumed. Thus, a more effective control is
performed comparing the number of send WR with the number
of received sent completion. When the flow is blocked, the
completion queue is continuously polled: the only event in
fact able to unblock the sender is the reception of a new
completion. Thus, the flow control block is actually an busy
waiting performing a CQ polling.

The flow may also be controlled by the amount of read
Work Requests available on the receiver side. A comple-
tion is received by the sender when a RDMA write work
request meets a Work Request on the receiver. Thus, it is
possible to write more data at once to more effectively saturate
the bandwidth. However, this can be risky because when the
sender receives a completion, he is legitimated to reuse the
buffer. A possible solution is to use a small amount of Work
Requests in the receiving queue so that it is not possible to
overwrite messages that are still not consumed.

V. PORTING FASTFLOW ON INFINIBAND NETWORK

We are interested to explore the native InfiniBand support
for communication in real distributed computation in order
to exploit the low latency feature and low CPU usage during
communication. We have chosen the FastFlow framework [21]
mainly because:
• it has support for distributed computation;
• it uses only point-to-point communication channels at the

lower level in the distributed implementation;
• it is relatively easy to integrate new communication

library.

A. Background

In this section we provide some basic details of the FastFlow
framework. FastFlow is a structured parallel programming
framework, originally designed to target shared-memory multi-
core and many-core architectures for fine-grain parallel ap-
plications. It is implemented in C++ using POSIX threads
and mainly targets stream parallelism [22]. Other kinds of
parallelism, e.g. data and task parallelism, are supported via
stream parallelism. A FastFlow program can be represented
as a graph of independent nodes executing simultaneously on
subsequent or independent data. As in Kahn process networks
[23], graph edges represent true data dependencies Each node
of the graph, reads one or more tasks from the input stream,
applies some computations on the stream and writes one or
more output tasks to the output stream.

FastFlow provides stream parallelism to the programmer
in the form of high-level patterns [24]. Basic patterns are:
pipeline, farm and farm-with-feedback.

A pipeline models the functional composition of its stages,
being either node or other patterns. A farm (a.k.a. master-
workers) is a set of nodes that can run in parallel on indepen-
dent data items. A farm is equipped with an emitter, which
distributes the data on the worker and an optional collector
which collects the computed results from the workers. A

Fig. 2: The schematic representation of FastFlow nodes.

farm-with-feedback connects the collector to the emitter and
can be used to implement parallel recursion. All patterns
can be nested and therefore several other patterns can be
derived from the basic one. For example, map and reduce
can be derived from farm by properly configuring emitter and
collector to scatter data and reduce gathered data, respectively.
Divide&Conquer can be implemented by using the farm-with-
feedback skeleton.

FastFlow has been extended to support distributed com-
putation on cluster of multi-core platforms [25]. It executes
programs by coordinating, in a structured way, the fine-
grain parallel execution running on a single workstation. The
objectives of distributed memory implementation are twofold:
i) to exploit the distributed memory on a cluster of multi-core
systems, and ii) to investigate process multi-programming vs
multi-threading implementation on a single multi-core node.

The FastFlow nodes are shown in Fig. 2. A typical FastFlow
application is a graph of nodes (typically a pipeline having
farm and map nodes with feedback channels) that are executed
on a single machine. In the distributed memory version there
are distributed nodes (the dnodes) at the edges of the pipeline/-
farm structure in order to connect communicating programs on
different machines. The distributed nodes have communication
channels referred as “external channels” which connect a
graph of threads with other graphs of threads running on
separated hosts. The external channel in the distributed version
of FastFlow has been implemented on top of ZeroMQ [7]
communication library.

B. Architectural choices

As mentioned, the present work also aims to provide the
FastFlow programming framework with a native InfiniBand
compatibility layer. In the design, we identified two different
approaches to achieve this result:
• Use the existing interface of FastFlow. The advantage

of this approach is reduced development costs from
modifying the FastFlow framework. The disadvantage is
that the performance may be affected by the fact that
the internal FastFlow queues work independently from
RDMA queues. The RDMA queue will be treated as a
buffer in FastFlow and the same CPU clock will be used
to copy data to the RDMA queue.

• Develop a new interface of FastFlow. We can identify
the data structure to export and review FastFlow internal
structure to support RDMA and find a strategy to allocate
user’s memory regions directly in the RDMA buffer, with
all the advantages in terms of latency of a real ZeroCopy
solution. The disadvantage is high development cost of
changing the FastFlow internal structure.



Clearly, the development of a new interface in FastFlow
would have given the best performance to the framework but
the development cost was getting out of the time and budget
constraints so we decided to use the existing interface.

C. Requirements

The main requirements for using InfiniBand natively in Fast-
Flow, which must be given by our send-receive compatibility
layer and the FastFlow integration layer, are given below:
• Better performance compared to using ZeroMQ.
• Support most of the FastFlow skeletons on the InfiniBand

network.
• Scalability on up to 1024 processors (8 processors x 128

hosts).

D. Work description

Once having developed the message-passing library, the
integration of FastFlow and InfiniBand was trivial. The TCP
descriptor were replaced by our connection abstraction, and
all the TCP send and receive were changed to the InfiniBand
related calls. Most of the difficulties were about the implemen-
tation of one-to-many and many-to-one patterns in which we
had to replace the protocols developed for ZeroMQ to a more
simple protocol tailored for our solution. The tested patterns
were: one-to-one, scatter, allGather, onDemand and fromAny.

VI. EXPERIMENTAL EVALUATION

In order to evaluate the prototype we presented in this paper,
we use three different applications written in FastFlow. These
applications are:
• Unidirectional bandwidth test for measuring the maxi-

mum bandwidth for communication.
• Ping Pong for measuring the latency in communication.
• CWC for testing a real application developed on FastFlow.

A. Configuration of the host framework

All the experiments have been executed on a 48 cores (4
nodes) cluster connected by 40 Gb/s (4X QDR, MT26428)
InfiniBand cards. We have performed our tests with the
GNU compiler for all the implementations. The available
MPI implementation is MVAPICH2 1.9, which supplies native
InfiniBand support. The tests for FastFlow were made both on
the native interface and the ZeroMQ implementation on the
top of TCP/IP over InfiniBand network. The basic RDMA
benchmark shipped with InfiniBand (rdma bw) scores an
average of 25.8 Gb/s for a message size of 65535 bytes and
a average of 13.4 Gb/s (with a peak of 21 Gb/s) for a size of
1024 bytes.

B. Unidirectional bandwidth test

In this test, messages are sent continuously from a process
located in peer A to a process in peer B. The message sizes
range from 10 bytes to 400,000 bytes. We show the results
of a single pipe from two implementations: FastFlow using
native InfiniBand support and TCP support through ZeroMQ.
We also compare the results with the command ib write bw,

a standard diagnostic test for RDMA, supplied with OFED,
giving a reference bandwidth measure, and a similar MPI test.

The following pseudo code shows how the test was de-
veloped. In MPI the send and recv are just replaced with
MPI Send and MPI Recv. The FastFlow test is composed
by a producer generating a number of messages of the same
size and a consumer, which processes such messages. The
distributed pipe connecting the two nodes is, in one case,
shared through the RDMA mechanism and, in the second case,
the ZeroMQ implementation running on the top of TCP/IP
over InfiniBand.

Host A:
−−−−−−
i n i t c o n n e c t i o n
message = new Message ( s i z e )
f o r ( i =0 ; i<LOOPS ; i ++)

send ( message )

Host B :
−−−−−−

i n i t c o n n e c t i o n
s t a r t t i m e r
f o r ( i =0 ; i<LOOPS ; i ++)

message = r e c v ( )
end t i m e r

The results shown in Table I prove the good performance
improvement for FastFlow on InfiniBand using our native
library with respect to ZeroMQ using TCP/IP over InfiniBand
(IPoIB). It also shows that our solution gives similar results
of MPI for most of message sizes, with some advantage
in the range of 25k/64k sized messages. MPI gives better
performance for messages bigger than 200k and smaller than
10K, because of the highly optimized implementation. While
we consider hard to reach the same transfer rate of MPI, we
think it is possible to improve our solution with better transfer
rates with some future software optimization.

We expected a big difference between using native Infini-
Band against ZeroMQ on TCP/IP over IB, but the second
performed under expectations for the biggest sized messages.
We suspect that the network cards we tested may be better
configured to achieve a better bandwidth. In any case, the
support for TCP/IP is attractive only when the network does
not have InfiniBand hardware.

C. Ping pong

The ping-pong benchmark is a standard test used for the
measurement of latency in a distributed environment. It sends
a single message from a node to another and back, measuring
the round trip time, for different message sizes. The pseudo-
code of the ping-pong test is shown in the following:

Host A:
−−−−−−
i n i t c o n n e c t i o n
message = new Message ( s i z e )



Message size ib write bw MPI FastFlow FastFlow/ZMQ
(bytes) (Mb/s) (Mb/s) /IB (Mb/s) /IPoIB (Mb/s)

10 300 192 129 0.7
100 3,600 1,816 1,300 7.0

1,024 22,900 13,936 10,591 70.0
5,000 25,200 23,880 19,761 300.0

10,000 25,500 25,128 20,479 500.0
25,000 25,700 12,408 20,051 1,100.0
50,000 25,800 16,232 21,019 1,950.0
65,536 22,900 17,472 20,889 1,980.0

200,000 25,800 21,208 21,211 3,800.0
400,000 25,800 22,532 21,226 6,200.0

TABLE I: Comparing throughput of different implementations
of the unidirectional bandwidth test for several message sizes.

message size MPI/IB FastFlow/IB FastFlow/ZMQ/IPoIB
(bytes) (us) (us) (us)

10 1.47 1.66 45
100 1.75 1.92 46

1,024 3.91 3.96 49
5,000 6.66 6.56 61

10,000 9.13 9.03 71
25,000 13.74 16.39 84
50,000 21.5 28.34 120

TABLE II: Communication latency (microseconds) of the
ping-pong benchmark for different message sizes and imple-
mentations

f o r ( i =0 ; i<LOOPS ; i ++)
send ( message )
message= r e c v ( )

Host B :
−−−−−−
i n i t c o n n e c t i o n
s t a r t t i m e r
f o r ( i =0 ; i<LOOPS ; i ++)

message = r e c v ( )
send ( message )

end t i m e r

Table II compares the mpptest [26] ping pong implemented
using MPI, against the equivalent FastFlow version using
ZeroMQ over InfiniBand and using the IPoIB driver, and the
same version using our native InfiniBand library. This test
again shows the benefits, for FastFlow, to adopt our solution in
a native InfiniBand environment instead of using IPoIB driver
and a TCP/IP-based communication library.

Comparing to mpptest, our implementation behaves well
for small sized messages, giving good results. It suffers some
extra latency when the message size increases, because of the
memory copy on the sender side. In fact, while data streams
may benefit from sending data asynchronously, the ping pong
test makes data sending synchronous, because every send has
to wait for a read. This makes the latency of the send call
more evident. In our tests, a simulation of a zero-copy send
where the copy is just not performed, cancels the gap between
the two versions.

Nodes/core-per-node FastFlow/IB FastFlow/ZMQ-IPoIB
Elapsed Elapsed

1/12 141 148
2/12 104 143
4/12 95 138

TABLE III: Elapsed time (seconds) for CWC on InfiniBand
and TCP/IP over InfiniBand. CPU-U is the CPU time utilisa-
tion (seconds) measured for the master process.

D. CWC: Calculus of Wrapped Compartments

CWC is a rewriting-based calculus for the representation
and simulation of biological systems [27]. It originally was im-
plemented using multi-threading on multi-core using FastFlow,
and then taking advantage of the FastFlow evolution, it was
possible to run a distributed version of CWC in the Cloud [28].
We wanted to compare the existing distributed version, running
on TCP/IP over InfiniBand using the IBoIP protocol, against
the same code where the ZeroMQ communication layer has
been replaced by the proposed RDMA library. The objective
was to test if the library is able to provide benefits on real
applications.

The schema adopted in the implementation of the distributed
version of the CWC application, is a classic master/slave,
where the master is connected to the slaves by using a
scatter pattern, and it receives the results back using a non-
deterministic collection pattern (fromAny).

The obtained results are reported in Table III. The tests show
that, for 400,000 samples of the test Phosphate Regulation
Mechanism in Escherichia Coli, running 192 simulations on 48
cores, the elapsed time for the ZeroMQ-based implementation
is about 138 seconds, whereas on InfiniBand, it is about 95
seconds. The performance improvement obtained just replac-
ing the communication library is more than 30% in this test.

VII. CONCLUSION AND FUTURE WORK

TCP/IP-based libraries suffer from high latency and low
bandwidth that is not acceptable in the high performance
computing setting. The latency can be dramatically reduced
using InfiniBand as a native communication layer. In this paper
we present and assess a minimal message-passing RDMA-
based communication library for InfiniBand networks. Tests
performed on simple benchmarks, demonstrate that the pro-
posed library is able to obtain performance close to ideal and
up to five times better than that achieved using TCP/IP over
InfiniBand using the IPoIB driver.

We also port the distributed version of the FastFlow paral-
lel framework, which natively uses ZeroMQ communication
layer, on InfiniBand network by transparently integrating our
library at the lower level of the framework. We tested the
performance of our library on a real-world application already
developed in the distributed version of FastFlow. The results
obtained demonstrate that our RDMA-based library is able
to improve the performance of the application more than
30% with a consistent reduction of CPU time utilisation with
respect to the original TCP/IP implementation.



As future work we are interested to tightly integrate the
native InfiniBand network in the FastFlow framework. We
would like to modify the code to provide tight integration
in order to provide internal data structure directly mapped
in RDMA and to extend the FastFlow memory allocator to
allocate new messages directly in the RDMA channel avoiding
extra memory copies.
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