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Abstract

The usual approach to Laser-Induced Breakdown 8eacipy (LIBS) quantitative analysis is based on
the use of calibration curves, suitably built usiagpropriate reference standards. More recently,
statistical methods relying on the principles ofifigial Neural Networks (ANN) are increasingly use
However, ANN analysis is often used as a ‘black’ lsystem and the peculiarities of the LIBS spectra
are not exploited fully. Ara priori exploration of the raw data contained in the LKgf®&ctra, carried out
by a Neural Network to learn what are the significareas of the spectrum to be used for a subsequen
Neural Network delegated to the calibration, iseatal throw light upon important information initial
unknown, although already contained within the spet. This communication will demonstrate that an
approach based on neural networks specially taylfoe dealing with LIBS spectra would provide a
viable, fast and robust method for LIBS quantitatanalysis. This would allow the use of a relativel
limited number of reference samples for the trajniof the network, with respect to the current
approaches, and provide a fully automatizable aagrdor the analysis of a large number of samples.
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1. Introduction

The feasibility of Laser-Induced Breakdown Speatopy (LIBS) as an analytical technique has
been demonstrated by a number of applications lioh $quid and gas samples [1- 3]. However, thelavi
literature accumulated in the last years has adsoamstrated the main problems related to LIBS a@igly
i.e. its limited sensitivity and, most of all, tlor precision of the technique, which also affebts
global accuracy of the results [4].

In the attempt of improving this figure of meriteveral groups have proposed the use of
statistical methods for the treatment of the LIB®dra, such as Partial Least Squares (PLS) [5-7] o
Artificial Neural Networks (ANN) approaches [8-10The application of statistical algorithms has the
advantage of exploiting very well the intrinsic egeof the LIBS technique, which makes possible the
acquisition of many spectra in a very short timbe hegative side of these algorithms is relatethé¢o
need of a careful validation of the results obtdjria fact, as in all the methods based on calitmat
curves or reference samples, the capability ofstagstical algorithm to reproduce well the comgogi
of the calibration set does not automatically imgigt the composition of unknown samples would be
predicted with the same trueness [11]. In the adsArtificial Neural Networks, the validation of ¢h
method is made even more difficult by the fact it complexity of the algorithm does not allow an
easy interpretation of the results in terms offihgsical properties of the system under study. ldoge
the wide availability of ANN packages in the modffubed statistical software (Matl8p Statistic&,
etc...) allows their use even by persons without gpgcific knowledge of the potential, but also af th
limits, of these approaches. This contributes ¢orthive idea of the Artificial Neural Network akiag of
thinking ‘organism’ doted by an artificial intelligce that would provide in any case optimal results
without need for any external human interventionfact, taking literally the analogy, an ANN wouid
a very poor representation of the thinking mechanis the human brain; the elemental operator in a
Neural Network, the ‘neuron’, has in common with riiatural equivalent just the capability of acasgpti
multiple ‘inputs’ and providing an eventually ndndar response signal depending on them. Moreover,
the common implementation of an ANN, the algoritBrploits a very simple topology of the network,
were the processing of the information proceedsgal given direction, from the input to the output
through a series of ‘layers’ in which the neurcaigetthe input from the previous and give their atitp
the next, without any interaction between the nesimf the same layer. The ‘learning’ stage of ksl
of ANN is thus nothing else that the iterative optiation on a set of reference samples of the peatenn
of each neuron for obtaining, starting from a giveput, an output as close as possible to the known
results. On the other hand, this stage is essdntiamproving the predictive potential of an ANNMd
should be carefully planned because the trainindgp@Network, as well as the choice of its archites
very seldom can be optimized using the defaultemfproposed by the commercial statistical packages.

2. Experiment

In this paper we present a methodological appréactealing with the problem of modeling the
functional relationship between LIBS spectra anel ¢tbrresponding composition of a set of samples,
using ANN. For this study, we used six differenimpées of modern bronze alloys with known



concentrations, previously measured by X-Ray Flemeace, of four elements: Cu, Zn, Sn, andTPie.
composition (percent in weight) of the samplesimven in Table 1.

Table 1. Composition of six samples of modern bronze alloys.

Sampleld  Composition

Copper (%) Zinc (%) Tin (%) Lead (%)
S160 83.6 1.9 11.4 3.1
S161 87.1 5 5.5 2.4
S162 90.9 0.3 7.8 1
S163 84.1 14 10.5 4
S164 85.7 9.5 3.6 1.2
S165 87.3 3.7 6.6 2.4

The same samples were used in a recent work bygaup, presenting a variation of the
Calibration-Free LIBS method [12]. In this way, thesults of the present paper would be immediately
comparable with a different analytical approachaoliin principle does not rely on the use of calibra
curves or reference samples.

The LIBS measurements on the bronze samples weferped using the Modi (Mobile Dual
Pulse Instruments) by Marwan s.r.l. (Pisa, Italy)the ‘Smart’ configuration [13]. The instrument is
equipped with a double pulse Q-switched Nd-YAG lgae 1064 nm), giving two collinear pulses with
an energy of 60 mJ per pulse in about 8 ns, ghetitn rate of 10 Hz.

The analysis was performed inside the internal exmmtal chamber of the instrument. The
sample was set in rotation for reducing the deptthe laser-induced crater. The delay betweenwle t
lasers was fixed to fis and the acquisition delay of the spectrometerseado 260 ns after the second
laser pulse. The two laser beams were focusedeosatmple surface using a 10 cm focal length lehs. T
plasma radiation was collected using an opticarfiand analyzed with a double grating spectrometer
(AvaSpec Dual-Channel Fiber Optic Spectrometer fAarantes), covering simultaneously the spectral
interval between 200 and 415 nm (with resolutionOdf nm) and between 415 and 900 nm (with
resolution of 0.3 nm). For each of the six samdB8 single spectra were acquired, distributed on a
circular portion of the sample determined by itstion. A total of 900 single spectra were acquined
processed.

A typical spectrum is shown in Figure 1.
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Fig. 1. LIBS spectrum of one of the bronze alloys (sangi160).

3. The approximating neural model

3.1. Problem description

The LIBS spectra of the samples represent the sittenf the LIBS signal (expressed as an
integer between 0 and 16383, 14 bits) at 3606 wagths. This means that the problem of associating
each spectrum with the corresponding compositioghtnbe described as the approximation of a
functional relationship between an inputfiff® and an output ifl* (representing the concentrations of
the four main elements in the alloy), based ont @f&data (900 in our case). The strategy of usihthe
spectral data as the input of the Neural Network baen used, in the past, but this approach is not
appropriate, for its high computational cost aralltkelihood of function overfitting [14]. The ouipof a
functional relationship must thus be determinedabgubset of the input variables. One theoretical
possibility would be to exhaustively evaluate alkpible combinations of the input variables (tyfhyca
referred to a$eature3, and then choose the best subset. Of coursénfiieed computational cost could
be prohibitive, as in our case. For this reasdmeromethods have been proposed.

One of the most frequently used methods for vagiaglection is théorward feature selection
(FFS) [15], which begins by evaluating all featatdbsets consisting of only one feature. Then FR&sfi
the best subset consisting of two features (the mmeeiously selected and another feature from the
remaining ones). Afterwards, FFS finds the bessstshwith three, four, etc. features. The finalt bes
subset is the best among all the subsets genefatexhurse, when the number of features that umderg
feature selection is sensibly high (e.qg., of th#eof a few thousands), FFS too may be too expensi
Taking into account the above observations, inphiser, we have adopted a hybrid approach in doder
find a good trade-off between high accuracy andllssime of the approximating model. More precisely,
based on heuristic considerations, we first idgrdifset of portions of the LIBS spectrum in which w



expect to find information useful to model the ityutput relationship. We will refer to the iderdid
portions asmeaningfulspectral windows of the LIBS spectrum. Then wefqrar FFS on the union of
these spectrum windows. In this way we make arc¥ie use of FFS by keeping time and computational
costs at acceptable levels.

3.2. Methodology steps

The proposed methodology includes two main stgpfgature selection on the union of the meaningful
spectral windows of the LIBS spectrum, and ii) degenent of a neural network whose input variables
are the selected features. The second step indadeisg, checking and testing of the network.

3.2.1. Feature selection

Hereafter, each spectral line will be referredsdemture. The feature selection step aims totfiednost
significant features able to discriminate amongdifierent bronze alloys. Stated in other terms weaat

to transform the input space, i.EﬁGOﬁ, into a spac@n with n << 3606, by guaranteeing at the same time
the possibility to reproduce the mapping betweeactp and alloys’ compositions with the desired
accuracy. The intensities of the selected spelitres will be the input variables of a neural netwo
trained to faithfully reproduce the mapping itself.

To reduce the dimensionality of the problem, wefqgrer a preliminary step. Based on heuristic

considerations, we consider the following six maghil spectral windows (wavelength ranges in

nanometers) [279.7-286.6], [295.8-306.6], [324.5-88 [356.9-369.5], [405.0-407.0], [640.0-680.0],

corresponding to intervals including wavelengthseadly successfully used for a Calibration-Free
measurement of the composition of the bronze allmger analysis [12]. This means that there are 480
spectral points (obtained by concatenating thegectral windows above) that could be used to semte

each spectrum. So each spectrum could be reprdsjer{téso. These features are still too many. In fact,
heuristic guidelines state that there should bmfiiwe to ten training examples for each neuralghei
Therefore we perform a feature selection procesgjube FFS [16]. As previously stated, FFS consist
in iteratively picking the feature that, in unionthvthe features selected so far, optimizes thditgua
function. In our case, the quality function is #reor made by the neural network on the test set.

More precisely, for each set of features generbteBFS, a neural network with these features astinp
variables is considered. Latbe the number of features in the set. The netlwasga input neurons, 10
hidden neurons (for the sake of simplicity, in thisase of the modeling process, we have maintaheed
default value proposed by Matfjband 4 output neurons. This network is trainedidated and tested
with 70%, 15% and 15%, respectively, of the 900Cilakike spectra. Here too we maintain the default
values proposed by Matl@bThe network is evaluated based on the mean sgueoe (MSE) made on
the test set.

As the error of the network may depend on theahitandom values of the neural weights, for each
network the experiment is repeated 30 times ancethar of the network is actually computed as the
average of MSEs over the 30 executions.

For improved efficiency and reliability, we repdhe whole FFS process more times so as to select
“stable” features, i.e., features that appearlifoalmost of) the experiments. Indeed, the featweadected
by the FFS may vary from one trial to another. idep to guarantee a higher level of generalization,
are, therefore, interested in identifying the minimnumber of features that are significant for(aH



most of) the training sets. We set the nhumber pétidons of the FFS to 30, which is suggestedll®y fo
be a typical value used in simulation. At the saimee, in each trial we fix a maximum number of
features equal to 10 (based on heuristic considastso as to keep the computational complexitgrat
acceptable level.

3.2.2. Neural network development

The most used Neural Network architecture and itrgiralgorithm are the multi-layer feed-forward
neural network (MLP), and the Levenberg-Marquatdil) back-propagationtraining algorithm [17],
which shows good generalization capability and $iitp.

In an MLP there are three kinds of layers: i) theut layerwhich receives the input signals, ii) one or
morehidden layersavhere the processing takes place, and iii)othtput layerwhich provides the output.
Neurons in each layer are characterized by a spdc#nsfer function. In particular, hidden neurons
usually have a non-linear transfer function, whilgput neurons may have a linear or non-linearsfean
function. The number of hidden neurons is chos@ementally to minimize the average error acrdss a
training patterns.

In this step, we refer to an MLP neural networkhwiiked numbers of input and output neurons, and a
single hidden layer with a variable number of negtdVore precisely, the stable features identifiethe
previous step are used as input variables of theank, while the concentrations of the four elersent
represent the output variables of the network. &safs the hidden layer is concerned, based on best
practices and considering the available data, ya trtumber of hidden neurons from 5 to 20 with dtep
For each number of hidden neurons, the netwontaised 10 times. In each of the 10 trials, we gateer
different training, validation and test sets (7QB6% and 15%, respectively, of the total data). fiinal
best network is the one corresponding to the mininaverage MSE on the 10 different testing sets.

3.3. Analysis
3.3.1. Data preprocessing

As a preprocessing phase, the input features amatiaed in [0, 1] in order to make the features
independent from each other. To this aim, we reseath input value according to the max-min formula
in Eq. (1):

o x—min(x)

- max(x)—min(x) (1)
wherex is the original valuex’ is the normalized value, amdax(x)andmin(x) are the maximum and
minimum values that can take, respectively.

3.3.2. Feature selection

The FFS process applied to the 480 features wasteg 30 times. We noticed that, after adding ttte 4
feature, in almost all the executions of the FR&@ss the MSE error deeply increases while ingbeaf
the executions the error does not decrease in aingdal way. So we decided to consider only three
input features for the problem.



The most frequent set of three SFs throughouballeixecutions of the FFS process resulted to bsethe
of LIBS intensities corresponding to the wavelesgfmm nanometers) {334.45, 329.05, 304.81}. The
feature corresponding to the wavelength 334.45ausgciated to a strong emission line of Zn |, atway
resulted to be the most discriminant feature, baiglgcted as the first one in all repetitions & BFS
process. In fact, if we plot all the 900 spect@rfrthe six bronze samples, we can easily see hewixh
samples are clearly separated and distinguishalderrespondence of wavelength 334.45 nm, whilg the
are almost completely overlapping in correspondesicéhe neighboring spectral lines (Fig. 2). The
second wavelength corresponds to the emissiondina Cu | line (329.05 nm), while the third
wavelength is not associated to any spectral Wae that three independent spectral featurestere t
minimum number needed for determining the concéatreof the four major elements of the bronze
alloys, since the closure condition of the totamposition to 100% imposes a further relation to be
fulfilled, allowing in principle the determinatiasf the four elements considered.
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Fig. 2. The 900 spectra of the six bronze samples in spomdence of wavelength 334.45 nm. Each color sporeds to the
spectra of a sample.

3.3.3. Neural network development

We adopted the set of features {334.45, 329.05,83940 develop the neural network model.
We used a feed-forward neural network with one dididyer, to implement the fitting model. The néura
network had three inputs (the spectral lines sethcand four outputs (the element concentratioriseto
associated to the inputs). The transfer functiarstlie hidden neurons and the output neurons are,
respectively, hyperbolic tangent sigmoid functimad déinear functions, as Fig. 3 shows.



In order to find the optimal number of hidden newg,owe tried a number of hidden neurons from
5 to 20 with step 1, as stated before. The optimahber of hidden neurons resulted to be 15. Table 2
summarizes the parameter values of the chosenlreewmfigguration.

Hidden Output
-1 kg

15 4

Fig. 3. Network model employed in the experiments. The ehbds 3 inputs, 15 hidden neurons with hyperktaligent sigmoid
transfer function, and 4 outputs with linear trangtinction (the figure was depicted in the MaCﬁamvironment).

Table 2. Parameters of the neural network model employed.

Parameter Value
Number ofhidden layer 1
Number of hidden neurons 15
Hyperbolic tangent sigmoid
Transfer functions (hidden layer), linear (output
layer)
Training algorithm Levenberg-Marquardt
Early stopping criteric 6 validation failure
Number of input variables 3
Number of output variables 4

3.3.4. Fitting the composition of known samples

By “known” sample we mean a sample shown to thealeetwork during the training process.
This first kind of experiment aims to estimate gmeformances of the Neural Network on the reference
samples, given the SFs and the number of hiddemongyoreviously established. In particular, we
include examples (spectra) from all the six samplebronze alloys into the training set, and tést t
network on spectra, again from each sample, bigamduring training.

We repeated the training and test of the neuralorét 30 times, each time exploiting different,
randomly generated, training, test and validatiets sorresponding to, respectively, 70%, 20%, &% 1
of the totality of data. These percentages haven lmb®sen to exploit the available data for testing
purposes as better as possible.

For each trial, to evaluate the goodness of thearkt we used the Mean Square Error (MSE) on the te
set defined in Eqg. (2):

MSE=%Z(I— )%, 2

wheret;ando, are, respectively, thmrgetandestimatedconcentration values associated with specirum
andSis the number of test spectra considered.

We achieved a mean MSE on the 30 test segs7®BR10°3with a standard deviation & 292103,



For a better interpretation of the results, we alsosidered the Mean Absolute Error (MAE), definmed
Eqg. (3):

1 S
MAE=§§‘ti -a|. 3)

We achieved a mean MAE on the 30 test se&@g01103with a standard deviation af116(102 .

To assess the goodness of the model, we used tiherfaools, namely, the regression graph and
the error histogram.

With reference to one of the 30 executions of tkgeement, Fig. 5 shows the regression graph
for the training, validation, and test sets, angl Whole data set: the R value = 1 indicates amabti
linear fitting of the model to the data; Fig. 6 sisathe error histogram for the training, validateomd test
sets: almost all training, validation and test egba® have errors significantly close to zero. Ak pther
executions of the experiment produce similar result
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Fig. 5. The error histogram.

To assess the validity of the model, we also coatptite test error (MSE and MAE) achieved on the
spectra of each sample separately, and the test MSE and MAE) achieved on each element
separately (independently of the sample), over3drials. Table 3 shows the mean MSE and mean

MAE obtained over the 30 executions by sample. @ddhows the mean MSE and mean MAE obtained
over the 30 executions by element.

Table 3. Mean MSE and mean MAE by sample.

Sampleld MSE MAE

S160 1.20810° 1.024107
S161 5.48310% 7.939010°
S162 2.40910% 5.19110°3
S163 2.03910° 1.475102
S164 1.441107? 1.2281072
S165 2.720010% 6.8380110°

Table4. Mean MSE and mean MAE by element.

Element MSE MAE

Copper 1.12310°3 7.4360110°
Zinc 6.85310° 1.091107?
Tin 2.16510°3 1.059110°2

Lead 1.030110° 7.41710°




3.3.5. Determining the composition of unknown saspl

By “unknown” sample we mean a sample not showrh&reural network during the training
process. In this second kind of experiment, we ardg a subset of the six samples to train the deura
network, and we test the network on the remainarges.

The choice of the training and ‘unknown’ samples wlane starting from the consideration that
the ANN method, as all the methods based on referen calibration samples, can be only used for
analyzing samples whose concentrations are uppkdcaver limited by the minimum and maximum
concentrations of the samples in the training lpcation) set [18].

For instance, referring to Table 1, we can notizd the Cu element assumes the minimum and
the maximum value in correspondence with sampleD&tl sample S162, respectively. Thus samples
S160 and S162 are chosen as training samples. Mlgententration has its minimum and maximum for
samples S162 and S164. Since sample S162 is almealg training set, only sample S164 has to be
added. The same considerations on the concensatibfead and tin result in a complete training set
corresponding to the samples {S160, S162, S1634}}S16

In the experiments, a neural network with the aqunfation of Fig. 3, was trained, validated, and
tested on the spectra in the set of samples {S3662, S163, S164}, using randomly generated sets of
respectively, 90%, 5%, and 5% spectra. These peges have been chosen to exploit the availabée dat
for training purposes as better as possible. Theergxent was repeated 30 times, and each time the
network (besides being tested on the 5% of the knepectra, exactly as in the previous kind of
experiment) was tested also on the spectra ofrikeawn samples S161 and S165 separately.

We would like to stress that this is the only nedliscriminating test on the analytical capabititie
of the Neural Network, because during the trairsagthe samples S161 and S165 were never presented
to the network, so they can be considered as tulgnown’. In other words, the knowledge of their
composition is exploited only for assessing theueaty of the ANN, as shown in the regression graphs
of Figure 6a and 6b. Table 5 shows the mean MS&,ntkan MAE, and their standard deviation,
achieved on samples S161 and S165 over the 38 trial
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Fig. 6. Regression graph for a) Sample S161, b) Sampl6.S16



Tables 6 and 7 show the results (mean concentratiean MSE and mean MAE) obtained by
element on samples S161 and S165, respectively.

Table5. Mean MSE and mean MAE on samples S161 and S165.

Sampleld MSE MAE
S161 5.948 2.075
S165 8.26 241

Table 6. Mean concentrations, mean MSE and mean MAE on sa81#1 by element.

Element Concentration M SE MAE
Copper 85 2.133 1.406
Zinc 6 16.486 3.958
Tin 7 3.842 1.814
Lead 2 1.333 1.123

Table 7. Mean concentrations, mean MSE and mean MAE on 8185 by element.

Element Concentration M SE MAE
Copper 84 12.535 3.534
Zinc 2 2.020 1.336
Tin 11 18.151 4.195
Lead 3.1 0.345 0.565

The ANN results can be considered quite precise rfiean average error for all the elements is
around 2%), also considering the fact that only feflerence samples were used for the trainingoahy
three LIBS intensities were used, out of a spectnfn8606 elements. However, it should also be
considered that the ANN algorithm used aims tontiv@mization of the total MSE; therefore, the ralat
uncertainty on the elements at higher concentratitiroe proportionally lower than the relative @rron
the elements at low concentration. For example,cibygper concentration obtained for sample S165
corresponds to about 844 % (less than 5 % relative error) while the zionicentration corresponds to
about 2+ 1 % (50 % relative error). For obtaining a beéstimation of the low concentration elements, a
transformation of the target concentration (throubk application of a square root or logarithmic
function) would have been needed.

As a final consideration, we would like to compéne present approach with the results of the
application of the One-Point Calibration CF-LIBSthmed reported, on the same samples, in ref. [I12§. T
data for sample S165 (sample S161 cannot be cothpaeause it was used as a reference in [12]) are
reported in Table 8.



Table 8. Nominal concentrations, ANN results and OPC requdis [12]) on sample S165 by element.

Element concgr?tr:]étion ANN (%) OPC (%) [12]
(%)

Copper 87.3 84 86.6

Zinc 3.7 2 4.0

Tin 6.6 11 7.6

Lead 2.4 3.1 1.9

Apparently, the OPC CF-LIBS method gives more aateuresults, although it does not make use
of reference samples (besides one, for the reasgplained in the paper); however, the CF-LIBS
approach requires the use of complex algorithmghvhre not easy to apply to the analysis of a large
number of spectra, as in the present case. ThéchatiNeural Network method, on the contrary, wabul
take some time for its optimization but, after thawill perform in a very short time the analysif a
large number of spectra in a completely automatig.w

4, Conclusion

In this paper we have presented a methodologicptoagh to the LIBS analysis using the
Artificial Neural Networks method. A preliminaryegt of dimension reduction has been foreseen so as t
achieve the desired accuracy while keeping the &mxitp of the approximating neural model as low as
possible. To this aim, thiorward feature selectiomas been adopted to reduce the number of input
variables (the intensities of the spectral lineshhe neural network to the minimum number of Jaga,
representing the features selected as the mosificigm variables for approximating the functional
relationship. We performed a detailed optimizatmithe inputs of the network so as to study the
presence of matrix-specific information in the itppaxamined. The adopted neural model is a mulérla
feed-forward neural network with three input newo0one hidden layer, and four output neurons. With
the aim of applying the Network for the analysistbhé composition of bronze alloys, we used a
significant subset of the samples to train the alenetwork, and we tested the network on the reimgin
‘unknown’ samples. As a result of this experimeve, were able to achieve acceptable values of tesene
and precision in a way that could be easily autgradt for example, for the continuous monitoringhaé
composition of large numbers of metal samples dustrial applications.
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