
Here you can’t: context-aware security?

Chiara Bodei, Pierpaolo Degano, Letterio Galletta, and Francesco Salvatori

Dipartimento di Informatica, Università di Pisa
{chiara,degano,galletta}@di.unipi.it,francesco.salvatori@sns.it

Abstract. Adaptive systems improve their efficiency by modifying their
behaviour to respond to changes of their operational environment. Also,
security must adapt to these changes and policy enforcement becomes
dependent on the dynamic contexts. We address some issues of context-
aware security from a language-based perspective. More precisely, we
extend a core adaptive functional language, recently introduced by some
of the authors, with primitives to enforce security policies on the code
execution. Then, we accordingly extend the existing static analysis in
order to insert checks in a program. The introduced checks guarantee
that no violation occurs of the required security policies.

1 Introduction

Context and Adaptivity Today’s software systems are expected to operate every
time and everywhere: they have therefore to cope with changing environments,
without compromising the correct behaviour of applications and without break-
ing the guarantees on their non-functional requirements, e.g., security or quality
of service. As a consequence, software needs effective mechanisms to sense the
changes of the operational environment, namely the context, in which the ap-
plication is plugged in, and to properly adapt to changes. At the same time,
these mechanisms must maintain the functional and non-functional properties
of applications after the adaptation steps.

The context is a key notion for adaptive software. It is usually a complex
entity independent from the single applications. It includes different kinds of
computationally accessible information coming both from outside (e.g., sensor
values, available devices, code libraries offered by the environment), and from
inside the application boundaries (e.g., its private resources, user profiles, etc.).

Context Oriented Programming (COP), introduced by Costanza [9], is a re-
cent paradigm that explicitly deals with contexts and provides programming
adaptation mechanisms to support dynamic changes of behaviour, in reaction
to changes in the context. Also subsequent work [16,1,18,3] follow this approach
to address the design and the implementation of concrete programming lan-
guages. The notion of context-dependent behavioural variation is central to this
paradigm: it is a chunk of behaviour that can be activated depending on the
current context hosting the application, so to dynamically modify the execution.

? This work has been partially supported by the MIUR-PRIN project Security Hori-
zons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80266343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Security and Contexts Security is one of the challenges arising in context-aware
systems. The combination of security and context-awareness requires to address
two distinct and interrelated aspects. On the one side, security requirements may
reduce the adaptivity of software, by adding further constraints on its possible
actions. On the other side, new highly dynamic security mechanisms are needed
to scale up to adaptive software. Such a duality has already been put forward in
the literature [26,6], that presents two ways of addressing it: securing context-
aware systems and context-aware security.

Securing context-aware systems aims at rephrasing the standard notions of
confidentiality, integrity and availability [24] and at developing techniques for
guaranteeing them [26]. The challenge is to understand how to get secure and
trusted context information. Contexts may contain indeed sensible data of the
working environment (e.g., information about surrounding digital entities) that
should be protected from unauthorised access and modification, in order to grant
confidentiality and integrity. A trust model is needed, taking also care of the roles
of entities that can vary from a context to another. Such a trust model is impor-
tant also because contextual information can be inferred from the environmental
one, provided by or extracted from digital entities therein. As a matter of fact,
these entities may misbehave and forge deceptive data. Since information is dis-
tributed, denial-of-service can be even more effective, because it can prevent a
whole group of digital entities to access relevant contextual information.

Context-aware security is dually concerned with the use of context informa-
tion to drive security decisions. It has therefore to do with the definition and
enforcement of high-level policies that talk about, are based, and depend on the
notion of dynamic context. Consider, for instance, the usual no flash photogra-
phy policy in museums. A standard security policy does not allow people to take
pictures, using the flash. A context-aware security is more flexible: it instead
forbids flashing only inside those rooms that exhibit delicate paintings.

Most of the work on securing context-aware systems and on context-aware se-
curity aims at implementing mechanisms at different levels of the infrastructure,
e.g., in the middleware [25] or in the interaction protocols [15]. More founda-
tional issues have instead been studied less within the programming languages
approach we follow; while some work has been already carried on considering
process algebras, e.g. the Ambient Calculus [7]. Moreover, the two dual aspects
of context-aware security sketched above are often tackled separately, thus we
still lack a unifying concept of security. Also, in the adaptive framework, the
most relevant concern is controlling the accesses to resources and smart things.
See e.g., [26,17,27], and [2,10] that show the relevance of role based access control
policies in e-health applications.

Our proposal The kernel of our proposal is MLCoDa, a core of ML extended with
COP features. Its main novelty is to be a two-component language: a declarative
constituent for programming the context and a functional one for computing
(see [14] for details about its design).

The context in MLCoDa is a knowledge base implemented as a Datalog pro-
gram [23,20]. To choose the right thing to do, adaptive programs can therefore

2

query the context by simply verifying whether a given property holds in it, in
spite of the fact that this may involve possibly complex deductions.

Programming adaptation is specified through behavioural variations, that
are activated depending on information picked up from the context, so to dy-
namically modify the execution. Differently from other proposals, a behavioural
variation of MLCoDa is a first class, higher-order construct: it can be referred to
by identifiers, and passed as argument to, and returned by functions. This is a
natural hook for programming dynamic and compositional adaptation patterns,
as well as reusable and modular code. As a matter of fact MLCoDa, as it is, offers
the features needed for addressing context-aware security issues, in particular
for defining access control policies and for enforcing them.

First, we can express system-defined policies in stratified Datalog with nega-
tion, which is one of the two components of MLCoDa. This version of Datalog is
sufficiently expressive for our policies. It is powerful enough to express all rela-
tional algebras [12]. In addition, it is fully decidable and guarantees polynomial
response time. Furthermore, adopting a stratified-negation-model is common and
many logical languages for defining control access policies compile in Stratified
Datalog, e.g., [5,19,11].

Secondly, the dispatching mechanism of MLCoDa, that selects behavioural
variations, suffices for checking whether a specific policy holds, and for choosing
the chunk of behaviour that does. Our language therefore requires no extensions
to deal with security policies.

Actually, we can distinguish two classes of policies: those specified by the
system to control the user’s behaviour, and those expressed by the application.
We are only interested in system policies. This is because the application de-
veloper has indeed full knowledge of his policies, and so he can specify them as
behavioural variation constructs. Instead, the application has no a priori knowl-
edge about the policies that contexts may require; there is then no warranty that
the application was designed to comply with them.

In the world of “secure” adaptive software, a runtime error can occur because
of two different reasons, besides the presence of usual bugs. An application can
fail because it cannot adapt to the current context (functional failure) or because
it violates a policy (non-functional failure). One would like to predict as earlier as
possible if either case may occur. Note that some information is only available
at runtime, e.g., the actual value of some elements in the running context is
only known when the application is linked with it. Consequently, a fully static
approach is not possible, and rather we have a two-phase verification: one at
compile time and one at linking time.

This is the approach followed in [13], which proposes a two-phase static tech-
nique for verifying whether a program adequately reacts to all context changes,
signalling possible functional failures. The first phase is based on a type and
effect system that safely computes an approximation of the behaviour of the
application at compile time. This approximation is then used at linking time to
verify that the resources needed by the application to run will always be available
in the actual context, and in its future modifications.

3

We extend here this technique to guarantee an application to never violate
the required policies, so making useless any runtime monitor. However, this
yes/no procedure may lead to reject too many applications. As a consequence,
our extension is designed to also provide us with the means for instrumenting the
code with suitable checks aimed at guarding the activities that can be considered
risky. Actually, we have a sort of runtime monitor that is switched on and off
at need, and, again, the dispatching mechanism of MLCoDa suffices for natively
supporting it.

The implementation of our runtime monitor requires a preliminar step to
detect the potentially unsafe operations the application may perform. Actually
these are the operations that update the context (tell and retract) and may
therefore lead to a violation of the policy Φ to be enforced.

Using the effects computed at compile time, we first build a graph G at linking
time. By visiting G, we safely predict which contexts the application will pass
through while running. Before launching the execution, we detect the dangerous
operations by checking the policy Φ on each node of the graph. While building G,
we also label its edges so to single out the risky tell/retract operations in the
code. Our runtime monitor can then guard them, while it will be switched off on
the remaining actions. Actually, we collect the labels of the risky operations and
associate the value on with them, and off with all the others. Note in passing
that this information becomes part of the context. Finally, each occurrence of a
tell/retract will be replaced by a behavioural variation, that checks if Φ holds
in the running context, when the value of its label is on.

The next section will introduce MLCoDa and our proposal with the help of a
running example, along with an intuitive presentation of the various components
of our compile time and linking time static analysis, as well as an informal
presentation of how security is dynamically enforced. The formal definitions and
the statements of the correctness of our proposal will follow in the remaining
sections. The conclusion summarises our results and discusses some future work.

2 Running example

We illustrate our methodology by considering a multimedia guide to a museum
implemented as a smartphone application, starting from the case study of [14].
Assume the museum has a wireless infrastructure exploiting different technolo-
gies, like WiFi, Bluetooth, Irda or RFID. When a smartphone is connected,
the visitor can access the museum Intranet and its website, from which he can
download information about the exhibit and further multimedia contents.

Each exhibit is equipped with a wireless adapter (Bluetooth, Irda, RFID)
and a QR code. They are only used to provide the guide with the URL of the
exhibit, which is retrieved by using one of the above technologies, depending
on the smartphone capabilities. If the smartphone is equipped with a Bluetooth
adapter, it can connect to the one of the exhibit and directly download the
URL; otherwise, if the smartphone has a camera and a QR decoder, the guide
can retrieve the URL by taking a picture of the code and by decoding it.

4

In MLCoDa the smartphone capabilities are stored in the context as Dat-
alog clauses. Consider, for instance, the following clauses defining when the
smartphone can either directly download the URL (the predicate device(d)

holds whether the device d ∈ {irda, bluetooth, rfid reader} is available) or
it can take the URL by decoding a picture (the parameter x in the predicate
use qrcore is a handle for using the decoder):

direct_comm () ← device(irda).

direct_comm () ← device(bluetooth).

direct_comm () ← device(rfid_reader).

use_qrcode(x) ← user_prefer(qr_code),

qr_decoder(x),

device(camera).

use_qrcode(x) ← qr_decoder(x),

device(camera),

¬ device(irda),

¬ device(rfid_reader),

¬ device(bluetooth).

Contextual data, such as the above predicates use qrcode(decoder) and
direct comm(), affect the download. To change the program flow in accordance
to the current context, we exploit behavioural variations, offered by the func-
tional part of MLCoDa. Syntactically they are similar to pattern matching, where
Datalog goals replace patterns and where parameters can additionally occur (see
below). Behavioural variations are similar to functional abstractions, but their
application triggers a dispatching mechanism that at runtime inspects the con-
text and selects the first expression whose goal holds.

For example, in the following function getExhibitData, we declare a be-
havioural variation (called url) with an unused argument “ ”, that returns the
URL of an exhibit. Retrieval of the URL depends on the smartphone capabili-
ties, as explained above. If the smartphone can directly download the URL, then
it does, through the channel returned by the function getChannel(), otherwise
the smartphone takes a picture of the QR code and decodes it. Note that, in this
second case, the variables decoder and cam will be assigned the handles of the
decoder and the one of the camera deduced by the Datalog machinery. These
handles are used by the functions take picture and decode qr to interact with
the actual smartphone resources.

fun getExhibitData () =

let url = (_){

← direct_comm ().

let c = getChannel () in

receiveData c,

← use_qrcode(decoder), camera(cam).

let p = take_picture cam in

decode_qr decoder p }

in

getRemoteData #url

5

The behavioural variation (bound to) url is applied before invoking the function
getRemoteData (for readability, here we use a slightly simplified syntax for be-
havioural variations application represented by #; for details see Section 3), that
connects to the corresponding website and downloads the required information.

Formally, applying the function getExhibitData to unit, we have the follow-
ing slightly simplified computation, where a transition C, e → C ′, e′ says that
the expression e is evaluated in the context C and reduces to e′ changing the
context C to C ′:

C, getExhibitData ()→? C, getRemoteData#u→?

C, getRemoteData(receiveDatan) (∗ n is retuned by getChannel ∗)

If the context C satisfies the goal ← direct comm(), moving from the second to
the third configuration in the computation above, the dispatching mechanism
selects the first expression of the behavioural variation u (the one bound to url

in the body of the function getExhibitData).
To update the context at runtime, MLCoDa provides us with the constructs

tell and retract, that add and remove Datalog facts, respectively. For instance,
in our example, the context stores information about the room in which the user
is, through the predicate current room. If the user moves from the room delicate
paintings to the one sculptures, the application updates the context by executing

retract current_room(delicate_paintings)

tell current_room(sculptures).

Assume now that one can take pictures in every room, but that in the rooms
with delicate paintings it is forbidden to use the camera flash not to damage
the exhibits. This policy is specified by the museum (the system) and it must
be enforced during the user’s tour. Since policies predicate on the context, they
are easily expressed as Datalog goals. Let the fact flash on hold when the flash
is active and the fact button clicked when the user presses the button of the
camera. The above policy Φ is then expressed in Datalog as the goal

phi ← ¬ current_room(delicate_paintings)

phi ← ¬ button_clicked

phi ← ¬ flash_on

that, intuitively, is the result of compiling the following logical condition:

current room(delicate paintings)⇒ (button clicked⇒ ¬flash on)

Of course, the museum can specify other policies, and we assume that there is
a unique global policy Φ (referred to in the code as phi), obtained by suitably
combining all the required policies. The enforcement is obtained by a runtime
monitor that checks the validity of Φ right before every context changes, i.e.,
before every tell/retract. We remark that the introduction of the runtime
monitor requires no modification of the language, because our policies are Data-
log goals and can be checked by simply invoking the dispatching mechanism.

6

An application fails to adapt to a context (functional failure), when the dis-
patching mechanism fails, i.e., when a behavioural variation gets stuck. Consider
to evaluate getExhibitData on a smartphone without wireless technology and
QR decoder. Of course, no context will ever satisfy the goals of the behavioural
variation url. Therefore, when url is applied, no case can be selected.

Another kind of failure happens when an application violates a policy (non-
functional failure). In our example, it happens when attempting to use the flash,
if the context includes current room(delicate paintings).

To avoid functional failure and to optimise the policy enforcement, we equip
MLCoDa with a two-phase static analysis: a type and effect system and a control-
flow analysis. The analysis checks if an application will be able to adapt to its
execution contexts, and detects which contexts can violate the required policies.

At compile time, we associate a type and an effect with an expression e. The
type is (almost) standard, and the effect is an over-approximation of the actual
runtime behaviour of e, called history expression. The effect abstractly represents
the changes and the queries performed on the context during its evaluation.

To intuitively understand how this phase works, take the expression ea:

ea = let x =

if always_flash then

let y = tell F1
1 in tell F2

2

else

let y = tell F3
1 in tell F4

3

in

tell F5
4

For clarity, here (and in the syntax in Sect. 3), we show the labels of tell/retract
in the code, inserted by the compiler during syntax analysis or type checking.
The facts above are intended to be F1 ≡ photocamera started; F2 ≡ flash on;
F3 ≡ mode museum activated; F4 ≡ button clicked.

The type of ea is unit, i.e. that of tell F4, and its history expression is

Ha = (((tell F 1
1 · tell F 2

2)3 + (tell F 4
1 · tell F 5

3)6)7 · tell F 8
4)9

(in Ha · means sequential composition, + is for conditional expression). De-
pending on the value of always flash, which records whether the user wants
the flash to be always usable, the expression ea can either perform the action
tell F1 followed by tell F2, or the action tell F1 followed by tell F3. The
context is informed that the flash is on or off, respectively. After that, ea will
perform tell F4, no matter what the previous choice was.

The labels of history expressions allow us to link the actions in histories to the
corresponding points inside the code. For instance, the first tell F1 in Ha, which
is labelled 1, corresponds to the first tell F1 in ea, which is also labelled 1, while
the tell F4, labelled 8 in Ha, corresponds to the label 5 in ea. More precisely, the
correspondences are {1 7→ 1, 2 7→ 2, 4 7→ 3, 5 7→ 4, 8 7→ 5}; instead, the abstract
labels that do not annotate tell/retract have no corresponding labels.

The effects are exploited at linking time (i) to verify that the application can
adapt to all contexts arising at runtime; and (ii) to identify which tell/retract

7

{F5, F8}

{F1, F5, F8}

{F1, F2, F5, F8} {F1, F3, F5, F8}

{F1, F2, F4, F5, F8} {F1, F3, F4, F5, F8}

{1, 4}
{2}

{5}

{8} {8}

Fig. 1. The evolution graph for the context C ⊇ {F5, F8} and the history expression
Ha = (((tell F 1

1 .tell F
2
2)3 + (tell F 4

1 .tell F
5
3)6)7.tell F 8

4)9

are risky and need to be checked by the monitor. If our static analysis discovers
that a tell/retract is possibly unsafe, i.e., it may lead to a violation, we can
activate the monitor during its evaluation, otherwise the monitor keeps inactive.
To do that, our control-flow analysis first builds a graph to trace how the initial
context evolves during execution, and then it finds out in which contexts there
might be a violation and which operation might cause it.

Back to our example, consider an initial context C that includes the facts
F8 ≡ current room(delicate paintings) and F5 (irrelevant here), but not the
facts {F1, F2, F3, F4}. Starting from C (and from the history expression Ha com-
puted above) our loading time analysis builds the graph described in Fig. 1 (we
show only the relevant facts of C). Nodes represent contexts, possibly reachable
at runtime, while edges represent transitions from one context to another. Each
edge is annotated with the set of actions in Ha that may cause that transition.
For instance, from the initial context it is possible to reach the context also in-
cluding the fact F1, because of the two tell operations labelled by 1 and by 4 in
the history expression. Therefore, an edge can have more than one label (e.g.,
the one labelled {1, 4}). Note also that the same label may occur in more than
one edge (e.g., the label 8).

As said, the labelling is done during the type checking and plays a key role
in enforcing security policies. Here, e.g., by visiting the graph, we observe that
the context corresponding to the node {F1, F2, F4, F5, F8} (in red in Fig. 1)
violates our no-flash policy. This amounts to identifying a possible runtime vio-
lation. Since this node has a single incoming edge, labelled with 8 (in red in the
Fig. 1), we can deduce that the possibly risky action is the corresponding dy-
namic tell F_4, labelled by 5 in the code. For preventing a violation, all we have
to do is activating the runtime monitor right before executing this operation.

8

(Dlet1)

ρ[(G.e1, ρ(x̃)) /x̃] ` C, e2 → C′, e′2

ρ ` C, dlet x̃ = e1 whenG in e2 → C′, dlet x̃ = e1 whenG in e
′
2

(Dlet2)

ρ ` C, dlet x̃ = e1 whenG in v → C, v

(Par)

ρ(x̃) = V a dsp(C, V a) = (e, θ)

ρ ` C, x̃→ C, e θ

(VaApp3)

dsp(C, V a) = (e, {−→c /−→y })
ρ ` C, #((x){V a}, v)→ C, e{v/x, −→c /−→y }

(Tell2)

dsp(C ∪ {F}, phi.()) = ((), ∅)
ρ ` C, tell(F)l → C ∪ {F}, ()

(Retract2)

dsp(C r {F}, phi.()) = ((), ∅)
ρ ` C, retract(F)l → C r {F}, ()

Fig. 2. The reduction rules for new constructs of MLCoDa

3 MLCoDa

We briefly survey the syntax and the operational semantics of MLCoDa; for more
details, and for a longer, fully worked out example see [14,13].

Syntax MLCoDa consists of two sub-languages: a Datalog with negation to de-
scribe the context, and a core ML extended with COP features.

The Datalog part is standard: a program is a set of facts and clauses. We
assume that each program is safe [8]; to deal with negation, we adopt Stratified
Datalog under the Closed World Assumption.

We enforce security properties by introducing policies Φ, expressed as Data-
log goals, one of the components of MLCoDa. As a consequence, the language
requires no extensions to deal with security policies. The mechanism for selecting
behavioural variations is already there, and can be used for checking whether a
specific policy holds, and for selecting the chunk of behaviour that does.

The functional part inherits most of the ML constructs. In addition to the
usual ones, our values include Datalog facts F and behavioural variations. More-
over, we introduce the set x̃ ∈ DynV ar of parameters, i.e., variables that assume
values depending on the properties of the running context, while V ar are stan-
dard identifiers, with the proviso that V ar∩DynV ar = ∅. The syntax of MLCoDa

is below, where C,Cp ∈ Context are contexts:

V a ::=G.e | G.e, V a
v ::=c | λfx.e | (x){V a} | F
e ::=v | x | x̃ | e1 e2 | let x = e1 in e2 | if e1 then e2 else e3 |

dlet x̃ = e1 whenG in e2 | tell(e1)l | retract(e1)l | e1 ∪ e2 | #(e1, e2)

9

The facilitate our static analysis (see Section 5) we require that each tell/retract
in the code is uniquely and mechanically associated with a label l ∈ LabC . As
usual, labels do not affect the dynamic semantics of the calculus.

COP- oriented constructs include behavioural variations (x){V a}, each con-
sisting of a variation V a, i.e., a list of expressions G1.e1, . . . , Gn.en guarded by
Datalog goals Gi. The variable x can freely occur in the expressions ei. At run-
time, the first goal Gi satisfied by the context determines the expression ei to be
selected (dispatching). Context-dependent binding is the mechanism to declare
variables whose values depend on the context. The dlet construct implements
the context-dependent binding of a parameter x̃ to a variation V a.

The tell/retract constructs update the context by asserting/retracting facts,
provided that the resulting context satisfies the system policy Φ.

The append operator e1∪e2 concatenates behavioural variations, so allowing
for dynamic compositions. The application of a behavioural variation #(e1, e2)
applies e1 to its argument e2. To do so, the dispatching mechanism is triggered
to query the context and to select from e1 the expression to run, if any.

Semantics We now endow MLCoDa with a small-step operational semantics.

For the Datalog evaluation, we adopt the top-down standard semantics of
stratified programs [8]. Given a context C and a goal G, C � Gwith θ means
that there exists a substitution θ, replacing constants for variables, such that
the goal G is satisfied in the context C.

The semantics of MLCoDa is defined for expressions with no free variable,
but possibly with free parameters, thus allowing for openendness. To this aim,
we have in an environment ρ, i.e., a function mapping parameters to variations
DynV ar → V a.

A transition ρ ` C, e→ C ′, e′ says that in the environment ρ, the expression
e is evaluated in the context C and reduces to e′ changing the context C to C ′.
We assume that the initial configuration is ρ0 ` C, ep where ρ0 contains the
bindings for all system parameters, and C results from the linking of the system
context and of the application context.

Most of the rules of the small-step operational semantics are inherited from
ML. Fig. 2 shows the inductive definitions of those for our new constructs. For
brevity, we omit the obvious congruence rules that reduce subexpressions, e.g.,
ρ ` C, tell(e)l → C ′, tell(e′)l if ρ ` C, e→ C ′, e′.

We briefly comment below on the rules displayed. The rules (Dlet1) and
(Dlet2) for the construct dlet, and the rule (Par) for parameters implement
our context-dependent binding. For brevity, we assume here that e1 contains
no parameters. The rule (Dlet1) extends the environment ρ by appending G.e1
in front of the existent binding for x̃. Then, e2 is evaluated under the updated
environment. Notice that the dlet does not evaluate e1, but only records it in
the environment in a sort of call-by-name style. The rule (Dlet2) is standard:
the whole dlet reduces to the value which eventually e2 reduces to.

The (Par) rule looks for the variation V a bound to x̃ in ρ. Then, the dis-
patching mechanism selects the expression to which x̃ reduces. The dispatching

10

mechanism is implemented by the partial function dsp, defined as

dsp(C, (G.e, V a)) =

{
(e, θ) if C � Gwith θ

dsp(C, V a) otherwise

It inspects a variation from left to right to find the first goal G satisfied by C,
under a substitution θ. If this search succeeds, the dispatching returns the cor-
responding expression e and θ. Then, x̃ reduces to e θ, i.e., to e whose variables
are bound by θ. Instead, if the dispatching fails because no goal holds, the com-
putation gets stuck, because the program cannot adapt to the current context.
Our static analysis is also designed to prevent this kind of runtime errors.

As an example of context-dependent binding, consider the simple conditional
expression if x̃ = F2 then 42 else 51, in an environment ρ that binds the
parameter x̃ to e′ = G1.F5, G2. F2 and in a context C that satisfies the goal G2

but not G1:

ρ ` C, if x̃ = F2 then 42 else 51→ C, ifF2 = F2 then 42 else 51→ C, 42

In the first step, we retrieve the binding for ~x (recall it is e′), where dsp(C, e′) =
dsp(C, G1.F5, G2. F2) = (F2, θ), for a suitable substitution θ. Note in passing that
facts are values, so we can bind them to parameters and test their equivalence
by a conditional expression.

The application of the behavioural variation #(e1, e2) evaluates the subex-
pressions until e1 reduces to (x){V a} and e2 to a value v. Then, the rule
(VaApp3) invokes the dispatching mechanism to select the relevant expression
e from which the computation proceeds after v is substituted for x. Also in
this case the computation gets stuck, if the dispatching mechanism fails. As
an example, consider the behavioural variation (x){G1.c1, G2.x} and apply it
to the constant c in a context C that satisfies the goal G2, but not G1. Since
dsp(C, (x){G1.c1, G2.x}) = (x, θ) for some substitution θ, we get

ρ ` C, #((x){G1.c1, G2.x}, c) → C, c

The rule for tell(e)l/retract(e)l evaluates the expression e until it reduces
to a fact F , which is a value of MLCoDa. The new context C ′, obtained from
C by adding/removing F , is checked against the security policy Φ. Since Φ is
a Datalog goal, we can easily reuse our dispatching machinery, implementing
the check as a call to the function dsp where the first argument is C ′ and the
second one is the trivial variation phi.(). If this call produces a result, then the
evaluation yields the unit value () and the new context C ′.

The following example shows the reduction of a retract construct violating
the policy Φ, of Section 2. Let the context be C = {F3, F4, F5} and apply the
function f = λx. if e1 then F5 else F4 to unit, assuming that the evaluation of
e1 reduces to false without changing the context:

ρ `C, retract(f ())
l →∗ C, retract(F4)

l 6→

11

C, (� ·H)l → C, H C, εl → C, � C, tell F l → C ∪ {F}, �

C, retract F l → C\{F}, �
C,H1 → C′, H ′1

C, (H1 +H2)l → C′, H ′1

C,H2 → C′, H ′2

C, (H1 +H2)l → C′, H ′2

C, H1 → C′, H ′1

C, (H1 ·H2)l → C′, (H ′1 ·H2)l C, (µh.H)l → C,H[(µh.H)l/h]

C � G

C, (ask G.H ⊗∆)l → C, H

C 2 G
C, (ask G.H ⊗∆)l → C, ∆

Fig. 3. Semantics of History Expressions

Since the policy requires that the fact F4 always holds, every attempt to remove
it from the context violates Φ. Consequently, the evaluation gets stuck because
dsp(C r {F4}, phi.()) fails.

Instead, if e1 reduces to true, there is no violation of the policy and the
evaluation reduces to unit:

ρ `C, retract(f ())
l →∗ C, retract(F5)

l → C r {F5}, ()

4 Type and Effect System

We now associate MLCoDa expressions with a type, an abstraction called history
expression, and a function called labelling environment. During the verification
phase, the virtual machine uses this history expression to ensure that the dis-
patching mechanism will always succeed at runtime. Then, the labelling environ-
ment is used to drive us in instrumenting the code with security checks. First,
we briefly present history expressions and labelling environments, and then the
rules of our type and effect system.

History Expressions They are a simple process algebra used to soundly abstract
the execution histories that a program may generate [4]. Here, history expres-
sions approximate the sequence of actions that a program may perform over the
context at runtime, i.e., asserting/retracting facts, and asking if a goal holds.

To support the following formal development, we assume that history expres-
sions are uniquely labelled on a given set of LabH . Labels allow us to go back
from static actions in histories to the corresponding actions inside the code. The
syntax of history expressions is described below:

H ::= �| εl | hl | (µh.H)l | tell F l | retract F l | (H1 +H2)l | (H1 ·H2)l | ∆
∆ ::=(ask G.H ⊗ ∆)l | faill

12

The empty history expression abstracts programs which do not interact with
the context. For technical reasons, we syntactically distinguish when the empty
history expression comes from the syntax (εl) and when it is instead obtained
by reduction in the semantics (�). The history expression µh.H represents pos-
sibly recursive functions, where h is the recursion variable; the “atomic” history
expressions tell F and retract F are for the analogous expressions of MLCoDa;
the non-deterministic sum H1 +H2 abstracts the conditional expression if -then-
else; the concatenation H1 ·H2 is for sequences of actions, that arise, e.g., while
evaluating applications; ∆ mimics our dispatching mechanism, where ∆ is an
abstract variation, defined as a list of history expressions, each element Hi of
which is guarded by an ask Gi.

For example, the history expression computed for the behavioural varia-
tion url in the function getExhibitData of Section 2, is Hurl = ask G1.H1 ⊗
ask G2.H2⊗fail, where the goalsG1 =← direct comm() andG2 =← use qrcode

(decoder), camera(cam) and where H1 is the effect of the expression guarded by
G1 and H2 is the effect of the one guarded by G2 . Intuitively, Hurl says that
at least one between G1 or G2 must be satisfied by the context in order to
successfully apply the behavioural variation url.

Given a context C, the behaviour of a history expression H is formalised
by the transition system, inductively defined in Fig. 3. Configurations have the
form C,H → C ′, H ′ meaning that H reduces to H ′ in the context C and yields
the context C ′. Most rules are similar to the ones presented in [4]: below we
only comment on those dealing with the context. An action tell F reduces to
� and yields a context C ′ where the fact F has just been added; similarly for
retract F . Differently from what we do in the semantic rules, here we do not
consider the possibility of a policy violation: history expressions approximate
how the application would behave in absence of any type of check. The rules
for ∆ scan the abstract variation and look for the first goal G satisfied in the
current context; if this search succeeds, the whole history expression reduces to
the history expression H guarded by G; otherwise the search continues on the
rest of ∆. If no satisfiable goal exists, the stuck configuration fail is reached, to
indicate that the dispatching mechanism fails.

Labelling Environment We assume as given the function h : LabH → H that
recovers a construct in a given history expression from a label l. Then, we will
define a way of going back from a tell/retract in a history expression to the
corresponding operations in the code, by exploiting their labels in the set LabC
(see Section 3). As an example, consider the history expression Ha of Section 2,
and the correspondence given there between its labels and those in the code:
{1 7→ 1, 2 7→ 2, 4 7→ 3, 5 7→ 4, 8 7→ 5}. The function below will do that and will
be computed by our type and effect system.

Definition 1 (Labelling environment). A labelling environment is a (par-
tial) function Λ : LabH → LabC , defined only if h(l) ∈ {tell(F), retract(F)}.

Typing rules Here, we only give a logical presentation of our type and effect
system. We assume that our Datalog is typed, i.e., that each predicate has a

13

fixed arity and a type (see [21]). From here onwards, we simply assume that
there exists a Datalog typing function γ that, given a goal G, returns a list of
pairs (x, type-of-x), for all the variables x in G.
The rules of our type and effect systems have:

– the usual environment Γ binding the variables of an expression:

Γ ::= ∅ | Γ, x : τ

where ∅ denotes the empty environment and Γ, x : τ denotes an environment
having a binding for the variable x (x does not occur in Γ).

– a further environment K that maps a parameter x̃ to a pair consisting of a
type and an abstract variation ∆. The information in ∆ is used to resolve
the binding for x̃ at runtime. Formally:

K ::= ∅ | K, (x̃, τ,∆)

where ∅ denotes the empty environment and K, (x̃, τ,∆) denotes an environ-
ment having a binding for the parameter x̃ (x̃ does not occur in K).

Our typing judgements have the form Γ ; K ` e : τ . H; Λ, expressing that in
the environments Γ and K the expression e has type τ , effect H and yields a
labelling environment Λ.

The syntax of types is

τc ∈{int, bool, unit, . . .} φ ∈ ℘(Fact)

τ ::=τc | τ1
K|H−−−→ τ2 | τ1

K|∆
===⇒ τ2 | factφ

We have basic types (int, bool, unit), functional types, behavioural variations
types, and facts. Some types are annotated for analysis reason. In the type
factφ, the set φ soundly contains the facts that an expression can be reduced
to at runtime (see the semantics rules (Tell2) and (Retract2)). In the type

τ1
K|H−−−→ τ2 associated with a function f , the environment K is a precondition

needed to apply f . Here, K stores the types and the abstract variations of
parameters occurring inside the body of f . The history expression H is the
latent effect of f , i.e., the sequence of actions which may be performed over the

context during the function evaluation. Analogously, in the type τ1
K|∆

===⇒ τ2
associated with the behavioural variation bv = (x){V a}, K is a precondition for
applying bv, while ∆ is an abstract variation. The variation ∆ represents the
information that the dispatching mechanism uses at runtime to apply bv.

We now introduce the orderings vH ,v∆,vK ,vΛ on H, ∆, K and Λ, respec-
tively (often omitting the indexes when unambiguous). We define:

– H1 vH H2 if and only if ∃H3 such that H2 = H1 +H3;
– ∆1 v∆, ∆2 if and only if ∃∆3 such that ∆2 = ∆1 ⊗ ∆3 (note that the

concatenation ∆2 has a single trailing term fail);

14

(Tfact)

Γ ; K ` F : fact{F} . ε; ⊥

(Tpar)

K(x̃) = (τ, ∆)

Γ ; K ` x̃ : τ . ∆; ⊥

(Tsub)

Γ ; K ` e : τ ′ . H ′;Λ′ τ ′ ≤ τ H ′ v H Λ′ v Λ
Γ ; K ` e : τ . H;Λ

(Tif)

Γ ; K ` e1 : int . H1; Λ Γ ; K ` e2 : τ . H2; Λ Γ ; K ` e3 : τ . H3; Λ

Γ ; K ` if e1 then e2 else e3 : τ . H1 · (H2 +H3);Λ

(Tlet)

Γ ; K ` e1 : τ1 . H1; Λ1 Γ, x : τ1; K ` e2 : τ2 . H2; Λ2

Γ ; K ` let x = e1 in e2 : τ2 . H1 ·H2; Λ1] Λ2

(Ttell)

Γ ; K ` e : factφ . H; Λ

Γ ; K ` tell(e)l : unit .

H ·
∑
Fi∈φ

tell F lii

l′

; Λ
⊎
Fi∈φ

[li 7→ l]

(Tretract)

Γ ; K ` e : factφ . H; Λ

Γ ; K ` retract(e)l : unit .

H ·
∑
Fi∈φ

retract F lii

l′

; Λ
⊎
Fi∈φ

[li 7→ l]

(Tvariation)

∀i ∈ {1, . . . , n} γ(Gi) = −→yi : −→τi
Γ, x : τ1,

−→yi : −→τi ;K′ ` ei : τ2 . Hi; , Λi ∆ = ask G1.H1 ⊗ · · · ⊗ ask Gn.Hn ⊗ fail

Γ ; K ` (x){G1.e1, . . . , Gn.en} : τ1
K′|∆

====⇒ τ2 . ε;
⊎

i∈{1,...,n}

Λi

(Tvapp)

Γ ; K ` e1 : τ1
K′|∆

====⇒ τ2 . H1; Λ1 Γ ; K ` e2 : τ1 . H2; Λ2 K′ v K
Γ ; K ` #(e1, e2) : τ2 . H1 ·H2 ·∆; Λ1] Λ2

(Tappend)

Γ ; K ` e1 : τ1
K′|∆1

====⇒ τ2 . H1; Λ1 Γ ; K ` e2 : τ1
K′|∆2

====⇒ τ2 . H2; Λ2

Γ ; K ` e1 ∪ e2 : τ1
K′|∆1⊗∆2

=======⇒ τ2 . H1 ·H2; Λ1] Λ2

(Tdlet)

Γ,−→y :
−→̃
τ ; K ` e1 : τ1 . H1; Λ1 Γ ; K, (x̃, τ1, ∆

′) ` e2 : τ . H; Λ2

Γ ; K ` dlet x̃ = e1 whenG in e2 : τ . H; Λ1] Λ2

where γ(G) = −→y :
−→̃
τ

if K(x̃) = (τ1, ∆) then ∆′ = G.H1 ⊗∆
else (if x̃ /∈ K then ∆′ = G.H1 ⊗ fail)

Fig. 4. Typing rules for new constructs

15

– K1 vK K2 if and only if ((x̃, τ1, ∆1) ∈ K1 implies (x̃, τ2, ∆2) ∈ K2 and
τ1 ≤ τ2 ∧ ∆1 v∆ ∆2);

– Λ1 vΛ Λ2 if and only if ∃Λ3 such that Λ2 = Λ1] Λ3.

Most of the rules of our type and effect system are inherited from those of
ML, and those for the new constructs are in Fig. 4, together with some other
which are relevant. A few comments are in order.

Subtyping and subeffecting We have rules for subtyping and sub-effecting (dis-
played Fig. 4, top). As expected, these rules say that subtyping relation is reflex-
ive (rule (Srefl)); a type factφ is a subtype of a type factφ′ whenever φ ⊆ φ′

(rule (Sfact)); functional types are contravariant in the types of arguments and
covariant in the result type and in the annotations (rule (Sfun)); analogously
for behavioural variations types (rule (Sva)). Also, we can add elements to Λ,
provided that there is no clash.

Type and effect of expressions The rule (Tsub) allows us to freely enlarge types
and effects by applying the subtyping and subeffecting rules. Rule (Tpar) looks
for the type and the effect of the parameter x̃ in the environment K. We de-
termine the type for each subexpression ei under K ′ and the environment Γ
extended by the type of x and of the variables −→yi occurring in the goal Gi (recall
that the Datalog typing function γ returns a list of pairs (z, type-of-z) for all
variable z of Gi). Note that all subexpressions ei have the same type τ2. We also
require that the abstract variation ∆ results from concatenating ask Gi with the
effect computed for ei. The type of the behavioural variation is annotated by K ′

and ∆.
Consider, e.g., the behavioural variation bv1 = (x){G1.e1, G2.e2}. Assume

that the two cases of this behavioural variation have type τ and effects H1 and
H2, respectively, under the environment Γ, x : int (goals have no variables), and

that the guessed environment is K ′. Hence, the type of bv1 will be int
K′|∆

===⇒ τ
with ∆ = ask G1.H1 ⊗ ask G2.H2 ⊗ fail and the effect will be empty.

The rule (Tvapp) type-checks behavioural variation applications and reveals
the role of preconditions. As expected, e1 is a behavioural variation with pa-
rameter of type τ1 and e2 has type τ1. We get a type if the environment K ′,
which acts as a precondition, is included in K according to v. The type of the
behavioural variation application is τ2, i.e., the type of the result of e1, and
the effect is obtained by concatenating the ones of e1 and e2 with the history
expression ∆, occurring in the annotation of the type of e1. Consider, e.g., bv1
above, its type and its empty effect ε. Assume to type-check e = #(bv1, 10)
in the environments Γ and K. If K ′ v K, the type of e is τ and its effect is
ε ·∆ = ask G1.H1 ⊗ ask G2.H2 ⊗ fail .

The rule (Tappend) asserts that two expressions e1,e2 with the same type τ ,
except for the abstract variations ∆1, ∆2 in their annotations, and effects H1 and
H2, are combined into e1 ∪ e2 with type τ , and concatenated annotations and
effects. More precisely, the resulting annotation has the same precondition of e1
and e2 and abstract variation ∆1 ⊗∆2, and effect H1 ·H2. Consider, e.g., again

16

l 1 2 3 4 5 6 7 8 9

Λ(l) 1 2 ⊥ 3 4 ⊥ ⊥ 5 ⊥
l 1 2 3 4 5 6 7 8 9

Λ′(l) 1 1 ⊥ 2 3 ⊥ ⊥ ⊥ ⊥

Fig. 5. The labelling environments Λ for the expression ea and its history expression
Ha of Section 2; and a non-injective environment Λ′.

the above bv1, its type int
K′|∆

===⇒ τ ; let bv2 = (w){G3.c2}, and let its type be

int
K′|∆′

====⇒ τ and its effect be H2. Then the type of bv1 ∪ bv2 is int
K′|∆⊗∆′

======⇒ τ ,
while the effect is H2.

The rule (Tdlet) requires that e1 has type τ1 in the environment Γ extended
with the types for the variables −→y of the goal G. Also, e2 has to type-check in
an environment K, extended with the information for parameter x̃. The type
and the effect for the overall dlet expression are the same of e2.

Handling the labelling environment The labelling environment generated by the
rules (tfact) and (tpar) is ⊥, because there is no tell or retract. Instead (Ttell)

updates the current environment Λ by associating all the labels of the facts
which e can evaluate to, with the label l of the tell(e) being typed; similarly for
(Tretract).

All the other rules behave inductively as briefly discussed below.
The rule (tlet) produces an environment Λ that contains all the correspon-

dences of Λ1 and Λ2 coming from e1 ed e2; note that unicity of the labelling
is guaranteed by the condition dom(Λ1) ∩ dom(Λ2) = ∅. As an example, Fig. 5
(left part) shows the correspondence of the labels in the expression ea and those
of its history expression Ha of Section 2.

Note that a labelling environment needs not to be injective. Consider, e.g.,
the ambient Λ′ in Fig. 5 (right part), computed for

e′a = let x = tell(if y then F1 else F2)
1 in

ask F5.retract F2
8, ask F3.retract F3

4

and for its history expression

H ′a = ((tell F 1
1 + tell F 2

2)3 · (ask F5.retract F
4
8 ⊗ (ask F3.retract F

5
4 ⊗ fail6)7)8)9

Soundness Our type and effect system is sound with respect to the operational
semantics. It is convenient to introduce the following technical definitions.

Definition 2 (Typing dynamic environment). Given the type environments
Γ and K, we say that the dynamic environment ρ has type K under Γ (in symbols
Γ ` ρ : K) iff dom(ρ) ⊆ dom(K) and ∀x̃ ∈ dom(ρ) . ρ(x) = G1.e1, . . . , Gn.en
K(x̃) = (τ, ∆) and ∀i ∈ {1, . . . , n} . γ(Gi) = −→yi : −→τi Γ,−→yi : −→τi ;Kx̃ ` ei : τ ′ .Hi

and τ ′ ≤ τ and
⊗

i∈{1,...,n}Gi.Hi v ∆.

Definition 3. Given H1, H2 then H1 4 H2 iff one of the following cases holds

(a) H1 v H2; (b) H2 = H3 ·H1 for some H3;

17

(c) H2 =
⊗

i∈{1,...,n} ask Gi.Hi ⊗ fail ∧ H1 = Hi, i ∈ [1..n].

Intuitively, the above definition formalises the fact that the history expression
H1 could be obtained from H2 by evaluation.

The soundness of our type and effect system easily derives from the following
standard results.

Theorem 1 (Preservation). Let es be a closed expression; and let ρ be a dy-
namic environment such that dom(ρ) includes the set of parameters of es and
such that Γ ` ρ : K.
If Γ ; K ` es : τ . Hs;Λs and ρ ` C, es → C ′, e′s then
Γ ; K ` e′s : τ . H ′s;Λ

′
s and there exist H ′s, H, such that H · H ′s 4 Hs and

C,H ·H ′s →+ C ′, H ′s and Λ′s v Λs.

The Progress Theorem assumes that the effect H does not reach fail, i.e.,
that the dispatching mechanism succeeds at runtime. We take care of ensuring
this property in Section 5 (we write ρ ` C, e 9 to intend that there exists no
transition outgoing from C, e).

Theorem 2 (Progress).
Let es be a closed expression such that Γ ;K ` es : τ . Hs;Λs; and let ρ be a
dynamic environment such that dom(ρ) includes the set of parameters of es, and
such that Γ ` ρ : K.
If ρ ` C, es 9 ∧ C, Hs 9+ C ′, fail then es is a value.

The following corollary ensures that the history expression obtained as an
effect of e over-approximates the actions that may be performed over the context
during the evaluation of e.

Corollary 1 (Over-approximation). Let e be a closed expression.
If Γ ;K ` e : τ . H;Λs ∧ ρ ` C, e→? C ′, e′, for some ρ such that Γ ` ρ : K,
then there exists a sequence of transitions C, H →? C ′, H ′, for some H ′.

Note that the type of e′ is the same of e, because of Theorem 1, and the
obtained label environment is included in Λs.

5 Loading-time Analysis

Our execution model for MLCoDaextends that of [13]: the compiler produces
a quadruple (Cp, ep, Hp, Λp) composed by the application context, the object
code, the history expression over-approximating the behaviour of ep and the
labelling environment associating labels of Hp with those in the code. Given
(Cp, ep, Hp, Λp), at loading time, the virtual machine performs:

– a linking phase, in which the virtual machine of MLCoDa resolves system
variables and constructs the initial context C (combining Cp and the system
context); and

18

– a verification phase, in which, a graph G describing the possible evolutions
of C is built, starting from Hp.

We exploit G in order to (i) verify whether applications adapt to all evolutions
of C, i.e., that all dispatching invocations will always succeed (only programs
which pass this verification phase will be run), as done in [13]; and (ii) detect
which tell/retract may lead to a violation of the system policy (see Section 6).

Technically, we compute G through a static analysis, specified in terms of
Flow Logic [22]. Below, we describe the specification of our analysis, and we in-
troduce the notion of viable history expressions. Intuitively, a history expression
is viable for an initial context if the dispatching mechanism always succeeds.

To support the formal development, we assume that all bound variables oc-
curring in a history expression are distinct. So we can define a function K map-
ping a variable hl to the history expression (µh.H l1

1)l2 that introduces it.

Analysis The static approximation is represented by a pair (Σ◦, Σ•), called
estimate for H, with Σ◦, Σ• : Lab→ ℘(Context ∪ {•})and where • is the dis-
tinguished “failure” context representing a dispatching failure. For each label l,

– the set Σ◦(l) over-approximates the set of contexts that may arise before
evaluating H l (call it pre-set); while

– Σ•(l) over-approximates the set of contexts that may result from the evalu-
ation of H l (call it post-set).

The analysis is specified in terms of a set of clauses that operate upon judgments
in the form (Σ◦, Σ•) � H l, where

� ⊆ AE ×H

and AE = (Lab→ ℘(Context∪{•}))2 is the domain of the results of the analysis
and H the set of history expressions. The judgment (Σ◦, Σ•) � H l, expresses that
Σ◦ and Σ• is an acceptable analysis estimate for the history expression H l.

The notion of acceptability will then be used in Definition 5 to check whether
the history expressionHp, hence the expression e it is an abstraction of, will never
fail in a given initial context C.

In Fig. 6 we give the set of inference rules that validate the correctness of a
given estimate. Now, we comment on them, where E denotes the estimate (Σ◦, Σ•).

Intuitively, the estimate components take into account the possible dynamics
of the language evaluation. The checks in the clauses mimic the semantic evolu-
tion of contexts, by modelling the semantic preconditions and the consequences
of the possible reductions.

In the rule (Atell) the analysis checks whether the context C is in the pre-
set, and the context C ∪ {F} is in the post-set; similarly for(Aretract), where
C\{F} shold be in the post-set.

The rule (Anil) says that every pair of functions is an acceptable estimate
for the “semantic” empty history expression �. The estimate E is acceptable for
the “syntactic” εl if the pre-set is included in the post-set (rule (Aeps)).

19

The rules (Aseq1) and (Aseq2) handle the sequential composition of history
expressions. The rule (Aseq1) states that (Σ◦, Σ•) is acceptable for H = (H l1

1 ·
H l2

2)l if it is valid for both H1 and H2. Moreover, the pre-set of H1 must include
that of H and the pre-set of H2 includes the post-set of H1; finally, the post-
set of H includes that of H2. The rule (Aseq2) states that E is acceptable for
H = (� ·H l2

1)l if it is acceptable for H1 and the pre-set of H1 includes that of H,
while the post-set of H includes that of H1.

By the rule (Asum), E is acceptable for H = (H l1
1 + H l2

2)l if it is valid for
H1 and H2; the pre-set of H is included in the pre-sets of H1 and H2; and the
post-set of H includes those of H1 and H2.

The rules (Aask1) and (Aask2) handle the abstract dispatching mechanism.
The first states that the estimate E is acceptable for H = (askG.H l1

1 ⊗ ∆l2)l,
provided that, for all C in the pre-set of H, if the goal G succeeds in C then
the pre-set of H1 includes that of H and the post-set of H includes that of H1.
Otherwise, the pre-set of ∆l2 must include the one of H and the post-set of ∆l2

is included in that of H. The rule (Aask2) requires • to be in the post-set of
fail.

By the rule (Arec) E is acceptable for H = (µh.H l1
1)l if it is acceptable for

H l1
1 and the pre-set of H1 includes that of H and the post-set of H includes that

of H1.
The rule (Avar) says that a pair (Σ◦, Σ•) is an acceptable estimate for a

variable hl if the pre-set of the history expression introducing h, namely K(h),
is included in that of hl, and the post-set of hl includes that of K(h).

We are now ready to introduce when an estimate for a history expression is
valid for an initial context.

Definition 4 (Valid analysis estimate). Given H
lp
p and an initial context

C, we say that a pair (Σ◦, Σ•) is a valid analysis estimate for Hp and C iff

C ∈ Σ◦(lp) and (Σ◦, Σ•) � H
lp
p .

Semantic properties The following theorems state the correctness of our ap-
proach. The first guarantees that there exists a minimal valid analysis estimate,
showing that the set of acceptable analyses forms a Moore family [22].

Theorem 3 (Existence of solutions). Given H l and an initial context C,
the set {(Σ◦, Σ•) | (Σ◦, Σ•) � H l} of the acceptable estimates of the analysis for
H l and C is a Moore family; hence, there exists a minimal valid estimate.

As expected, we have a standard subject reduction theorem, saying that the
information recorded by a valid estimate is correct with respect to the operational
semantics of history expressions.

Theorem 4 (Subject Reduction). Let H l be a closed history expression such
that (Σ◦, Σ•) � H l.
If for all C ∈ Σ◦(l) it is C,H l → C ′, H ′l

′
then (Σ◦, Σ•) � H ′l

′
and Σ◦(l) ⊆

Σ◦(l
′) and Σ•(l

′) ⊆ Σ•(l).

20

(Anil)

(Σ◦, Σ•) ��

(Aeps)

Σ◦(l) ⊆ Σ•(l)
(Σ◦, Σ•) � ε

l

(Atell)

∀C ∈ Σ◦(l) C ∪ {F} ∈ Σ•(l)
(Σ◦, Σ•) � tell F

l

(Aretract)

∀C ∈ Σ◦(l) C\{F} ∈ Σ•(l)
(Σ◦, Σ•) � retract F

l

(Aseq1)

(Σ◦, Σ•) � H
l1
1

(Σ◦, Σ•) � H
l2
2 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) � (Hl1
1 ·H

l2
2)l

(Aseq2)

(Σ◦, Σ•) � H
l2
2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) � (� ·Hl2
2)l

(Asum)

(Σ◦, Σ•) � H
l1
1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦, Σ•) � H
l2
2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l)

(Σ◦, Σ•) � (Hl1
1 +Hl2

2)l

(Aask1)

∀C ∈ Σ◦(l) (C � G =⇒ (Σ◦, Σ•) � H
l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l))

(C 2 G =⇒ (Σ◦, Σ•) � ∆
l2 Σ◦(l) ⊆ Σ◦(l2) Σ•(l2) ⊆ Σ•(l))

(Σ◦, Σ•) � (askG.Hl1 ⊗∆l2)l

(Aask2)

• ∈ Σ•(l)
(Σ◦, Σ•) � fail

l

(Arec)

(Σ◦, Σ•) � H
l1 Σ◦(l) ⊆ Σ◦(l1) Σ•(l1) ⊆ Σ•(l)

(Σ◦, Σ•) � (µh.Hl1)l

(Avar)

K(h) = (µh.Hl1)l
′

Σ◦(l) ⊆ Σ◦(l′) Σ•(l
′) ⊆ Σ•(l)

(Σ◦, Σ•) � h
l

Fig. 6. Specification of the analysis for History Expressions

21

Σ1
◦ Σ1

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {{F2, F5}}
5 {{F2, F5, F8}} {{F2, F5}}
6 ∅ ∅
7 ∅ {•}
8 ∅ ∅
9 {{F2, F5, F8}} {{F1, F5, F8},{F2, F5}}

{F2, F5, F8}

{F1, F2, F5, F8} {F2, F5}

{F1, F5, F8}

{1} {5}

{2}

Fig. 7. The analysis result (on top) and the evolution graph (on bottom) for the
context C = {F2, F5, F8} and the history expression Hp = ((tell F 1

1 · retract F 2
2)3 +

(ask F5.retract F
5
8 ⊗ ask F3.retract F

6
4 ⊗ fail7)4)8.

Viability of history expressions We now define when a history expression Hp is
viable for an initial context C, i.e., when it passes the verification phase. Below,
let lfail(H) be the set of labels of the fail sub-terms in H:

Definition 5 (Viability). Let Hp be a history expression and C be an initial
context. We say that Hp is viable for C if there exists the minimal valid analysis
estimate (Σ◦, Σ•) such that ∀l ∈ dom(Σ•)\lfail(HP) it is • /∈ Σ•(l).

We present now a couple of examples to illustrate how viability is checked.
Since the focus here is on the technical details of the analysis of behavioural
variations, we resort to ad-hoc examples. Consider the history expression

Hp = ((tell F 1
1 ·retract F 2

2)3+(ask F5.retract F
5
8⊗(ask F3.retract F

6
4⊗fail7)8)4)9

and the initial context C = {F2, F5, F8}, consisting of facts only. For each label
l occurring in Hp, Fig. 7 shows the corresponding values of Σ1

◦(l) and Σ1
•(l),

respectively. We can observe, e.g., that the pre-set for the tell labelled with
1 includes {F2, F5, F8}, while the post-set includes {F1, F2, F5, F8}, while the
pre-set for the remove labelled with 5 includes {F2, F5, F8}, while the post-set
includes {F2, F5}. The column describing Σ• contains • only for l = 7 which is
the label of fail , so Hp is viable for C.

22

Σ2
◦ Σ2

•
1 {{F2, F5, F8}} {{F1, F2, F5, F8}}
2 {{F1, F2, F5, F8}} {{F1, F5, F8}}
3 {{F2, F5, F8}} {{F1, F5, F8}}
4 {{F2, F5, F8}} {•}
5 ∅ ∅
6 {{F2, F5, F8}} {•}
7 {{F2, F5, F8}} {{F1, F5, F8}, •}

{F2, F5, F8}

{F1, F2, F5, F8} •

{F1, F5, F8}

{1} {}

{2}

Fig. 8. The analysis result (on top) and the evolution graph (on bottom) for the
context C = {F2, F5, F8} and the history expression H ′p = ((tell F 1

1 · retract F 2
2)3 +

(ask F3.retract F
5
4 ⊗ fail6)4)7

Now consider the following history expression that fails to pass the verifica-
tion phase, when put in the same initial context C used above:

H ′p = ((tell F 1
1 · retract F 2

2)3 + (ask F3.retract F
5
4 ⊗ fail6)4)7

Indeed H ′p is not viable, because the goal F3 does not hold in C, and this is
reflected by the occurrences of • in Σ2

•(4) and Σ2
•(7), as shown in Fig. 8.

Now we exploit the result of the above analysis to build up the evolution
graph G. The graph describes how the initial context C evolves at runtime,
paving our way to security enforcement. Intuitively, G is a direct graph, whose
nodes are sets of contexts, and where an arc between two nodes C1 and C2

records that C2 is obtained from C1, through telling or removing a fact F .
In the following let Fact∗ and Lab∗H be the set of facts and the set of labels

occurring in Hp, i.e., the history expression under verification.

Definition 6 (Evolution Graph). Let Hp be a history expression, C be an
initial context, and (Σ◦, Σ•) be a valid analysis estimate.
The evolution graph of C is G = (N,E,L), where

N =
⋃

l∈Lab∗H

(Σ◦(l) ∪Σ•(l))

E = {(C1, C2) | ∃F ∈ Fact∗, l ∈ Lab∗H s.t. C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧
(h(l) ∈ {tell(F), retract(F)} ∨ (C2 = •))}

23

L : E → P(Labels)

∀t =(C1, C2) ∈ E, l ∈ L(t) iff C1 ∈ Σ◦(l) ∧ C2 ∈ Σ•(l) ∧ h(l) 6= fail

As examples of evolution graph, consider the context C and the history ex-
pressions Hp and H ′p introduced in the examples above. The evolution graph of
C for Hp is in Fig. 7. From the initial context there is an arc with label 1 to
the context C ∪ F1, because of the tell1. There is also an arc labelled 5 to the
context without F8, because of retract5.

Clearly, the evolution graph G tell us when the dispatching mechanism always
succeeds: it is sufficient to verify that the failure context • is not reachable from
the initial context C. Back to our examples, it is easy to see that Hp is viable
for C, because the node • is not reachable from C in the graph for Hp. Instead,
H ′p is not viable, because • is reachable in the evolution graph for H ′p, displayed
in Fig. 8.

Note that labels of G indicate which tell/retract may lead to a context vi-
olating the security policy Φ. To enforce Φ, we will exploit the correspondence
between these labels and the labels in the code.

6 Code instrumentation

We preliminarily detect which are the potential risky operations the application
can perform through a static analysis of the evolution graph G. The occurrence
of these risky actions will then be guarded by our runtime monitor ; on the others
the monitor will be switched off.

We proceed as follows. First, since a node n of G represents a context that
the application may reach during its execution, we verify whether n satisfies Φ. If
this is not the case, we consider all the edges with target n and the set R = {li}
of their labels. The labelling environment Λ, computed while type checking the
application, determines those portions of the code that require to be monitored
during the execution, indexed by the set Risky = Λ(R).

The actual implementation of our runtime monitor and the way to switch it
on and off requires, however, to consider all the tell/retract and to single out
which operations are risky and which are not. To do that, the compiler (labels the
source code as seen in Section 2 and) generates specific calls to trampoline-like
procedures. More in detail, we will define below a procedure for verifying whether
the policy Φ is satisfied or not, called check_whether_policy_violation(l), that
takes a label l as parameter and has unit as return type. Our compilation schema
requires to replace every tell(e)l in the source code with the following:

let z = tell(e) in

check_whether_policy_violation(l)

where z is a fresh name; and to do in a similar way for every retract. Note, in
passing, that we have a lightweight form of code instrumentation that does not
operate on the object code, differently from the standard instrumentation.

24

At linking time, a global mask risky[] will be assigned for each label l ∈
LabC , using the information stored in the graph G and in the set Risky, as
follows:

risky[l] =

{
true if l ∈ Risky
false otherwise

Now we can specify the procedure check_whether_policy_violation. Intu-
itively, it looks at risky[l]: if the value is false, then the procedure returns to
the caller and the execution goes on normally; otherwise it calls for a check on
the policy Φ. Its code in a pseudo MLCoDa could be:

fun check_whether_policy_violation l =

if risky[l] then

ask phi .()

else

()

Note that the call ask phi.() triggers a call to the dispatching mechanism to
check the policy Φ: if this call fails then a policy violation has been observed
and the computation is aborted. This is exactly what we require to a runtime
monitor, i.e., to stop the application when a policy violation is about to occur.

It is easy to speed up the mechanism above, avoiding to invoke the procedure
check_whether_policy_violation when Risky is empty, i.e., when the analysis of
the evolution graph ensures that all occurrences of tell/retract are perfectly
safe, because there is no execution path leading to a policy violation. To do that,
we introduce the flag always_ok, whose value will be computed at linking time:
if it turns out to be true, no check is needed. Then, we change the previously
compilation schema by testing always_ok before calling our check procedure. All
the occurrences tell(e)l (retract(e)l, respectively) in the source code are now
replaced by

let z = tell(e) in

if not(always_ok) then

check_whether_policy_violation(l)

In this way, the execution time is likely to be reduced, because some costly,
and useless security checks are not performed

7 Conclusions

Following the Context-Oriented Programming paradigm, we considered the lan-
guage for adaptive programming MLCoDa [14]. Here, we addressed security is-
sues, by suitably extending the two-phase static analysis for MLCoDa [13]. Our
methodology and our main contributions can be summarised as follows.

– We introduced MLCoDa, a core of ML extended with COP features, coupled
with Datalog for dealing with contexts. We showed here that the Datalog
component of the language suffices for expressing and for enforcing context-
dependent security policies.

25

– We presented a type and effect system for MLCoDa for ensuring that pro-
grams adequately respond to context changes, and for computing as effect
an abstract representation of the overall behaviour. This representation, in
the form of history expressions, abstractly describes the sequences of dy-
namic actions that a program may perform over the context. Our present
extension also establishes a correspondence between the abstract actions in
effects and the actual ones in the code, relevant to security.

– We further developed the approach introduced in [13], where the effects are
exploited at loading time to verify that the application can adapt to all
contexts possibly arising at runtime. More precisely, we built above a graph
and a further static analysis that identifies the actions that may lead to
contexts which violate the required policy.

– We defined a runtime monitor that stops an application when about to
violate the policy to be enforced. The monitor exploits the link between the
effects and the code. It is switched on and off, depending on the information
collected by the static analysis mentioned above.

Future Work Still, our proposal is far from being definitive and many improve-
ments are possible, especially on the security side. Our efforts are now addressed
at implementing a smarter runtime monitor. For instance, our static analysis
can detect safe contexts. Once reached a safe context, we are guaranteed that
no policy violation will ever occur in the future. As a consequence, we could
definitely turn off the runtime monitor, when the execution reaches one of those
contexts.

Furthermore, we are thinking of providing the user with a kind of recovery
mechanism for behavioural variations. The idea is to give the possibility to undo
some risky actions and make different choices in some portions of the code,
labelled by the user as particularly sensitive.

References

1. Achermann, F., Lumpe, M., Schneider, J., Nierstrasz, O.: PICCOLA—a small
composition language. In: Formal methods for distributed processing. pp. 403–426.
Cambridge University Press (2001)

2. Al-Neyadi, F., Abawajy, J.: Context-based e-health system access control mecha-
nism. Advances in information security and its application pp. 68–77 (2009)

3. Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: ContextJ: Context-
oriented programming with java. Computer Software 28(1) (2011)

4. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

5. Bonatti, P., De Capitani Di Vimercati, S., Samarati, P.: An algebra for composing
access control policies. ACM Transactions on Information and System Security
5(1), 1–35 (2002)

6. Campbell, R., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas, M.D.: To-
wards security and privacy for pervasive computing. In: Proc. of the 2002 Mext-
NSF-JSPS international conference on Software security: theories and systems
(ISSS’02). Lecture Notes in Computer Science, vol. 2609, pp. 1–15. Springer-Verlag
(2003)

26

7. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

8. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. on Knowl. and Data Eng. 1(1), 146–166
(1989)

9. Costanza, P.: Language constructs for context-oriented programming. In: Proc. of
the Dynamic Languages Symposium. pp. 1–10. ACM Press (2005)

10. Deng, M., Cock, D.D., Preneel, B.: Towards a cross-context identity management
framework in e-health. Online Information Review 33(3), 422–442 (2009)

11. DeTreville, J.: Binder, a Logic-Based Security Language. In: Proc. of the 2002
IEEE Symposium on Security and Privacy. pp. 105–113. SP ’02, IEEE Computer
Society, Washington, DC, USA (2002)

12. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on
Database Systems 5(1), 1–35 (1997)

13. Galletta, L., Degano, P., Ferrari, G.L.: A staged static analysis for reliable adap-
tation, Submitted for publication - http://www.cli.di.unipi.it/~galletta/

staged_analysis.pdf

14. Galletta, L., Degano, P., Ferrari, G.L.: A two-component language for context
oriented programming, Submitted for publication - http://www.cli.di.unipi.

it/~galletta/mlcoda.pdf

15. Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S., Kumar, S., Wehrle, K.:
Security challenges in the IP-based internet of things. Wireless Personal Commu-
nications pp. 1–16 (2011)

16. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology, March-April 2008 7(3), 125–151 (2008)

17. Hulsebosch, R., Salden, A., Bargh, M., Ebben, P., Reitsma, J.: Context sensitive
access control. In: Proc. of the tenth ACM symposium on Access control models
and technologies. pp. 111–119. ACM (2005)

18. Kamina, T., Aotani, T., Masuhara, H.: Eventcj: a context-oriented programming
language with declarative event-based context transition. In: Proc. of the tenth
international conference on Aspect-oriented software development (AOSD ’11).
pp. 253–264. ACM, New York, NY, USA (2011)

19. Li, N., Mitchell, J.C.: DATALOG with Constraints: A Foundation for Trust Man-
agement Languages. In: Proc. of the 5th International Symposium on Practical
Aspects of Declarative Languages. pp. 58–73. PADL ’03, Springer-Verlag, London,
UK, UK (2003)

20. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233
(2004)

21. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for prolog. Artificial In-
telligence 23(3), 295 – 307 (1984)

22. Nielson, H.R., Nielson, F.: Flow logic: a multi-paradigmatic approach to static anal-
ysis. In: Mogensen, T.A., Schmidt, D.A., Sudborough, I.H. (eds.) The essence of
computation. Lecture Notes in Computer Science, vol. 2566, pp. 223–244. Springer-
Verlag (2002)

23. Orsi, G., Tanca, L.: Context modelling and context-aware querying. In: Moor, O.,
Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog Reloaded, Lecture Notes in
Computer Science, vol. 6702, pp. 225–244. Springer (2011)

24. Pfleeger, C., Pfleeger, S.: Security in computing. Prentice Hall (2003)

27

http://www.cli.di.unipi.it/~galletta/staged_analysis.pdf
http://www.cli.di.unipi.it/~galletta/staged_analysis.pdf
http://www.cli.di.unipi.it/~galletta/mlcoda.pdf
http://www.cli.di.unipi.it/~galletta/mlcoda.pdf

25. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrstedt,
K.: Gaia: a middleware platform for active spaces. ACM SIGMOBILE Mobile
Computing and Communications Review 6(4), 65–67 (2002)

26. Wrona, K., Gomez, L.: Context-aware security and secure context-awareness in
ubiquitous computing environments. In: XXI Autumn Meeting of Polish Informa-
tion Processing Society (2005)

27. Zhang, G., Parashar, M.: Dynamic context-aware access control for grid applica-
tions. In: Proc. of Fourth International Workshop on Grid Computing, 2003. pp.
101–108. IEEE (2003)

28

	Here you can't: context-aware security

