
An inverse-free ADI algorithm for
computing Lagrangian invariant subspaces

Volker Mehrmann∗ Federico Poloni†

04.08.14

The numerical computation of Lagrangian invariant subspaces of large scale
Hamiltonian matrices is discussed in the context of the solution of Lyapunov
and Riccati equations. A new version of the low-rank alternating direction
implicit method is introduced, which in order to avoid numerical difficulties
with solutions that are of very large norm, uses an inverse-free representation
of the subspace and avoids inverses of ill-conditioned matrices. It is shown
that this prevents large growth of the elements of the solution which may
destroy a low-rank approximation of the solution. A partial error analysis
is presented and the behavior of the method is demonstrated via several
numerical examples.
Keywords: Lagrangian subspace, permuted Lagrangian subspace, Lya-

punov equation, Riccati equation, low-rank ADI method, inverse-free arith-
metic, permuted graph basis.
Mathematical Subject classification: 65F15, 65F50, 15A18, 15A22,

93B36, 93B40

1 Introduction
The computation of Lagrangian invariant subspaces of Hamiltonian matrices and the
associated solution of Lyapunov and Riccati equations is an important task in the
numerical solution of different control related problems, such as stabilization, robust
control, Kalman filtering, subspace correction methods, model reduction and many other
applications, see e.g. [1, 2, 10, 22, 23, 25, 29, 39, 50, 49, 54].

∗Institut für Mathematik, MA 4-5, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin, Fed. Rep.
Germany. mehrmann@math.tu-berlin.de. Partially supported by DFG Research Center Matheon
‘Mathematics for key technologies’ in Berlin.
†Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa, Italy.

fpoloni@di.unipi.it. Partly supported by the A. von Humboldt Foundation and INDAM (Is-
tituto Nazionale di Alta Matematica).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80265840?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Given matrices F,W = W T ∈ Rn,n, the set of real n×n matrices, a Lyapunov equation
is a symmetric linear matrix equation of the form

F TX +XF +W = 0, (1)

to be solved for a symmetric matrix X = XT ∈ Rn,n.
Lyapunov equations are a well-known tool for the characterization of the stability of

dynamical systems [19, 30] and, furthermore, they arise as the linear systems in every
step of the Newton-Kleinman algorithm [29, 39] for the solution of algebraic Riccati
equations

F TX +XF +W −XGX = 0, (2)

with F,G = GT ,W = W T ∈ Rn,n. Lyapunov equations are just a special case of Riccati
equations with vanishing coefficient G of the quadratic term.

1.1 Stabilization and optimal control
Let us briefly recall the origin of the Riccati equation in optimal control and stabilization
of dynamical systems, see [22, 29, 39, 45, 47] for standard references. Consider a linear
constant coefficient dynamical system of the form

ẋ = Fx+Bu, x(t0) = x0, (3)

where x is the state, x0 is an initial vector, u is the control input of the system and the
matrices F ∈ Rn,n, B ∈ Rn,m are constant. The classical stabilization problem is to find
a state feedback control law u = Kx, such that the system matrix A+BK of the closed
loop system

ẋ = (F +BK)x. (4)

is stable, i.e., it has all eigenvalues in the open left half plane. A common approach
to compute such a stabilizing feedback in the solution of the stabilization problem but
also for other control tasks is to solve an optimal control problem to minimize the cost
functional ∫ ∞

t0
xTWx+ uTRu dt (5)

subject to (3), where W = W T ∈ Rn,n, is positive semidefinite and R = RT ∈ Rm,m is
positive definite.
The necessary optimality system [39] for this optimal control problem is given by the

boundary value problem 0 I 0
−I 0 0
0 0 0

λ̇ẋ
u̇

 =

 0 F B
F T W 0
BT 0 R

λx
u

 , x(t0) = x0, lim
t→∞

λ(t) = 0, (6)

where λ is a Lagrange multiplier. If (3) is stabilizable, i.e., rk[λI − F,B] = n for all λ in
the closed right half complex plane, then the optimal control u that gives the minimum
of (5) is of the feedback form u = Kx and it is a stabilizing feedback. The matrices W,R

2

in the cost functional are usually chosen to make the closed loop system (4) robust to
perturbations or uncertainties, [54]. Since R is positive definite, one can solve the last
equation in (6) as u = −R−1BTλ and insert it into the other equations to obtain, after
some permutation and scaling with −1, the Hamiltonian boundary value problem[

ẋ

λ̇

]
=
[
F −BR−1BT

−W −F T

] [
x
λ

]
, x(t0) = x0, lim

t→∞
λ(t) = 0, (7)

with the Hamiltonian matrix
H =

[
F −G
−W −F T

]
, (8)

where we have introduced G := BR−1BT .
The most common approach for the solution of the boundary value problem (7), that is

implemented in almost all design packages [11, 32] is to decouple the forward (for x) and
backward (for λ) differential equation in (7) by solving the algebraic Riccati equation
(2) or alternatively by computing an orthogonal Lagrangian invariant subspace of H
associated with the eigenvalues in the left half complex plane. Here, an n-dimensional
subspace S ⊂ R2n is called Lagrangian if uTJ2nv = 0 for all u, v ∈ S, where

J2n :=
[

0 In
−In 0

]
,

and to achieve backward numerical stability in the numerical computation of this subspace
usually an orthogonal basis is used.
For small or medium size problems the desired orthogonal basis of this Lagrangian

subspace can be computed with the backward stable methods of [13, 36, 52] and the
stabilizability condition assures that such an orthogonal Lagrangian invariant subspace
exists. Suppose that this subspace is spanned by the columns of a matrix

S =
[
S1
S2

]
,

with S1, S2 ∈ Rn,n, i.e.,
HS = ST

where T ∈ Rn,n has only eigenvalues in the open left half plane. Under the stabilizability
assumption, it is known, see e.g. [29, 39], that S1 is invertible, and that X = S2S

−1
1 is

the unique symmetric positive semidefinite solution of the algebraic Riccati equation (2),
while K = −R−1BTX is the feedback matrix, and C = F +BK = F −GX is the closed
loop system matrix.
This means that the Riccati solution and thus also the feedback matrix is associated

with the special representation of the Lagrangian invariant subspace[
I
X

]
= SS−1

1 (9)

3

and the closed loop system matrix is given by C = S1TS
−1
1 .

If any basis matrix S of the invariant subspace S has been computed, then the positive
semidefinite Riccati solution X can be determined by solving the linear system

XS1 = S2, (10)

the feedback matrix K is obtained by solving the system

RKS1 = −BTS2 (11)

and the closed loop matrix C from the linear system

CS1 = FS1 −BR−1BTS2. (12)

Thus we can determine K and C directly from the invariant subspace without first
computing the Riccati solution X. This observation is essential if large errors occur in the
solution of the Riccati equation due ill-conditioning of the equation, which happens e.g.
in optimal H∞ control, see [8, 7, 33, 54], and when the system is close to a system that
is non-stabilizable [14, 27, 39]. In these cases all three linear systems (10)–(12) may be
difficult to solve and the solutions may be highly inaccurate even though the computation
of the subspace S is still well-conditioned. This fact is exploited in [8, 7, 31, 33] to
improve the computation of optimal H∞ controllers, and it is obvious that first computing
an inaccurate X and then determining C and K via this X is worse than computing C
and K directly.

This observation is of particular importance in the low-rank approximation of Riccati
solutions from Lagrangian subspaces which we discuss in the next subsection.

1.2 Low-rank approximation of Lagrangian subspaces
In the case of small-scale dense problems, there exist accurate structure preserving-
methods of O(n3) complexity to compute an orthogonal basis of the desired Lagrangian
invariant subspace, [13, 36, 52]. These methods are, however, limited in the problem
size that can be handled, due to the complexity and the storage requirements (O(n2)
usually), and hence infeasible for n large.
In many problems originating form model based control with models described by

partial differential equations (after space discretization) the system matrices are large and
sparse, and the matrices G,W are of low rank, given by the usually low number of inputs
and outputs of the control system, respectively [9, 42]. Furthermore, often the eigenvalues
of the Riccati solution X decay very quickly [43], so that X can be well-approximated
by a low-rank matrix X ≈ ZZT , where Z has very few (say k) columns, i.e., there
exists an approximation to the stabilizing Lagrangian invariant subspace that is sparsely
represented via

SZ =
[

I
ZZT

]
.

This sparse low-rank representation needs only storage of O(nk) for the low-rank matrix
Z ∈ Rn,k. It is, however, directly connected to the Riccati solution and thus, in view

4

of the discussion in the last subsection, may be very inaccurate when the full Riccati
solution is inaccurate, so that ZZT is of low rank but of very large norm.
A low-rank approximation of the positive semidefinite Riccati solution X and the

feedback matrix K can be also be determined directly from a partial Lagrangian invariant
subspace associated to some particular part of the spectrum of the Hamiltonian matrix
H. It is however, in general an open problem to decide which low-dimensional partial
Lagrangian subspace of S corresponds to the low-rank part of the Riccati solution, see [3].
If it were known in advance to which eigenvalues of H this subspace belongs then one
could employ structure preserving shift-and-invert Krylov-subspace methods [4, 5, 35, 38]
to determine approximations to the subspace associated with this part of the spectrum.
From this partial Lagrangian invariant subspace we could then determine low-rank
approximations, since from ZZT ≈ S2S

−1
1 it follows that for a low-rank representation

we would need S2 = ZL with some matrix L = ZTS1. Thus, if we would know which
invariant subspace we should compute, we could directly compute Z andW from a Krylov
subspace method, rather than computing the full representation S. We will discuss the
theoretical background, and how to obtain such a representation in Section 1.3.
The currently most widely used method for large scale problems in practice, however,

uses the approximate sparse representation of the positive semidefinite Riccati solution.
A classical method for this approach is the Newton-Kleinman algorithm [24, 29, 39],
which for a given initial matrix X0 = XT

0 for which X0 −X is positive semidefinite, the
iteration generates a monotonically decreasing sequence Xj+1 = Xj + Yj , j = 0, 1, 2, . . .,
where the correction term Yj is obtained as the solution of the Lyapunov equation

0 = F Tj Yj + YjFj +Wj ,

with Fj := F−GXj being a low-rank approximation to the closed loop system matrix C =
F +GX, andWj := W −XT

j GXj−XjF −F TXj being the residual of the approximation.
Furthermore, if the Riccati solution has a sparse low-rank approximation, then also the
iterates Xj in the Newton-Kleinman algorithm can be effectively approximated by a
low-rank matrix Xj ≈ ZjZTj . This property is heavily exploited in the current numerical
solution methods, which proceed by computing the approximate low-rank factor Zj
instead of the Lyapunov solution Xj , see [9, 12, 42, 43, 48] and the references therein.

At each step of the Newton-Kleinman algorithm one has to solve a large scale Lyapunov
equation and also this typically is approached by iterative methods such as the alternating
direction implicit (ADI) method, see e.g. [20, 42, 43, 51] or other iterative techniques such
as [21, 40]. Thus, for the Riccati equation and the optimal control problem, one obtains
an iteration with an outer loop given by the Newton-Kleinman method and an inner
iteration for the solution of the Lyapunov equation in every step. Furthermore, to reduce
storage requirements and complexity, one ideally works only on low-rank representations
of the current iterate.

1.3 Analysis of Riccati solutions and low-rank approximations
To analyze the properties of Riccati solutions, in particular, in the case of low-rank
approximations to Riccati solutions, we use the following result of [41] on the CS-

5

decomposition of matrices representing orthogonal Lagrangian subspaces.

Lemma 1.1. [CS-decomposition] If the columns of

S =
[
S1
S2

]
∈ R2n,n (13)

form an orthogonal basis of a Lagrangian subspace, then there exist real orthogonal
matrices U, V ∈ Rn,n such that

UTS1V = Γ = diag(γ1, . . . , γn), UTS2V = ∆ = diag(δ1, . . . , δn), (14)

with Γ 2 +∆2 = In.

Applying the CS-decomposition of Lemma 14 to S, as in (13), spanning the stabilizing
Lagrangian invariant subspace of a Hamiltonian matrix H as in (8), we see that the
solution of the Riccati equation (2) X = S2S

−1
1 has the spectral decomposition

X = UT∆Γ−1U

with eigenvalues
λi = δiγ

−1
i = δi√

1− δ2
i

, i = 1, . . . , n,

and the small eigenvalues of X (which we can omit in the low rank representation) are
related to δi being close to 0 while the large eigenvalues of X (which we would like
to keep) are related to δ2

i being close to 1. Thus, to obtain a low-rank approximation
X = ZZT + Ψ with ‖Ψ‖2 ≤ ε, we can use the CS-decomposition and obtain

∆Γ−1 = (I − Γ 2)1/2Γ−1 = UTΛ1U + UTΛ2U = UTZZTU + UTΨU.

where Λ1 is obtained by setting in ∆Γ−1 all those λi to zero that are smaller than ελ`,
with ` being an index where λi is maximal. A simple calculation shows that this is the
case if

|(1− γi2)γ`2| ≤ ε2|γi2(1− γ`2)|. (15)

We also have a measure for the error that we commit in this way which is given by
‖Ψ‖ = ‖Λ2‖.

Example 1.2. Let ε� 1 and consider the subspace

S =

γ1 0 0
0 γ2 0
0 0 γ3
δ1 0 0
0 δ2 0
0 0 δ3

, γ1 = δ3 = ε, γ3 = δ1 =

√
1− ε2, γ2 = δ2 =

√
2

2 .

6

The associated Riccati solution is

X =

√

1−ε2

ε 0 0
0 1 0
0 0 ε√

1−ε2

 .
A perturbation in X of magnitude O(ε2)‖X‖2 = O(ε) will translate into a perturbation
of magnitude O(ε2) on the largest eigenvalue, of magnitude O(ε) on the second one, and
O(1) on the smallest eigenvalue. On the other hand, a perturbation in S of magnitude
O(ε2)‖S‖ will give rise to a perturbation of magnitude O(ε2) in the second eigenvalue
and O(ε) on the other two. So using S as a representation to compute and store the
invariant subspace will give a solution that is less accurate on the dominant eigenvalues,
but overall more faithful to the original one if one keeps into account all the components.
For instance, numerical experiments with an artificial perturbation on all the matrix
entries, ε = 10−6, for an input coefficient B =

[
ε 1 ε

]T
and a weight matrix R = 1

show that the feedback matrix computed with a perturbed X and K = −R−1BTX
satisfies

K − K̃ =
[
O(ε) O(ε) O(ε)

]
,

while an artificially perturbed S and (11) give

K − K̃ =
[
O(ε) O(ε2) O(ε2)

]
.

The difference in accuracy is not evident in a norm-wise bound, but the difference in
precision between the smallest components is significant.

We also see from the CS-decomposition when large ill-conditioning of the matrix S1
arises. Since the diagonal elements δj in the bottom block are bounded by 1 in absolute
value, large eigenvalues of X arise from small elements γi (in absolute value) in the
top block. These are, however, also responsible for the ill-conditioning of the top block
which may lead to inaccuracies in the Riccati solution. The CS-decomposition allows
to determine when this ill-conditioning happens and shows how large inaccuracies can
be avoided. If the orthogonal basis of the Lagrangian invariant subspace is computed
with small error, i.e., the computed matrices S̃1, S̃2 are close to the exact S1, S2 then the
CS-decomposition presents an ideal method to compute accurate approximations and
to determine the error in the computed Riccati solution X̃, the computed closed loop
matrix C̃ and the computed feedback matrix K̃.
The same analysis can also be applied when (in the large scale case) only a subspace

of the Lagrangian subspace is computed, which would be the case if an isometric Krylov-
subspace method is used to compute the space associated with a particular subset of
eigenvalues of the Hamiltonian matrixH. As mentioned before, it is not known in advance,
which eigenvalues of the Hamiltonian matrix are associated with the large eigenvalues of
X and thus with the best low-rank solution. Approximations of these desired eigenvalues
would be ideal candidates for the shifts in the shift-and-invert isometric Arnoldi methods
of [35, 38].

7

1.4 Permuted graph representations
Due to the unresolved difficulty with the use of Krylov subspace methods, in this paper
we discuss an improvement of the Newton-Kleinman iteration for the case that the Riccati
solution is ill-conditioned. We mainly discuss the inner loop, i.e., the iterative solution of
a Lyapunov equation of the form (1) that has a positive semidefinite solution X which
can be well-approximated by a low-rank matrix X = ZZT . The low-rank alternating
directions implicit (LR-ADI) method [9, 20, 42, 43, 51] approaches the solution of (1)
by alternating the approximate, low-rank solution of linear systems with A − piI and
(A− piI)T for specially chosen ADI parameters pi. One of the challenges in the practical
use of the LR-ADI method is the choice of these parameters as well as the control of the
convergence speed and the approximation quality of the low-rank approximation, see [9].

In view of the previous discussion, for the computation of Lagrangian invariant spaces
or subspaces associated with low-rank approximations, we have two major alternative
approaches. We can either compute a low-rank approximate solution of the algebraic
Riccati equation with the potential danger of large inaccuracy due to the ill-conditioning
of the representation, or we can compute an orthogonal basis of the associate Lagrangian
subspace with the disadvantage of high storage requirements. Also at current we do not
know how to extract a low-rank representation from this subspace without computing
and storing the whole subspace first.
A compromise between these two extremes has recently been proposed in [33], for

small-scale dense control problems, where a special basis of the Lagrangian subspace,
called permuted graph representation, has been introduced. It has been shown that for
every Lagrangian subspace S there always exist an orthogonal matrix Π (in fact, a
permutation matrix except for some entries 1 being replaced by −1) and a symmetric
matrix N with bounded norm such that

S = imΠT

[
I
N

]
.

This choice of the basis combines the advantages of both approaches: like an orthogonal
basis, its condition number is moderate, which means that the column space is stable
with respect to perturbations in the matrix entries, and the Lagrangian structure is
preserved exactly, since it is equivalent to the symmetry of N .

In this paper we show that similar techniques can be used in the large and sparse case:
the low-rank ADI algorithm can be modified to use a similar implicit representation of
the iterates, returning in the end a basis matrix for S of the form

U =
[
In − U1U

T
2

U3U
T
4

]
, (16)

where U1, U2, U3, U4 are long thin matrices with bounded norm, and κ(U) can be bounded
explicitly.

The property of the ADI method of working with low-rank representations during the
iteration process can be used while at the same time avoiding the potentially large norm
growth of the Riccati solution due to ill-conditioning.

8

Our construction is based on the well-known fact, see e.g. [16], that computing the
eigenvalues and eigenvectors of a square matrix pencil λE − A, with E,A ∈ Rn,n, is
numerically much better than computing the eigenvalues of the matrix representation
E−1A. Not only is it possible to treat problems in which E (or the whole pencil) is
singular, but even when E is invertible, the resulting accuracy that can be achieved is
higher. The pencil representation not only allows to avoid forming E−1A, in [6] this idea
of a pencil arithmetic has been extended to all basic arithmetic operations on matrices
without computing the inverses explicitly.

In the context of this pencil arithmetic, however, the pair (E,A) is highly non-unique;
for every nonsingular M ∈ Rn,n, the pair (ME,MA) represents the same matrix. A
natural choice to achieve some kind of uniqueness is to require that the columns of
[E A]T are orthonormal, see [6], which however is usually a non-sparse representation.
Recently in [33, 34] the permuted graph representation was employed to achieve a

different choice, by requiring that [
ET

AT

]
= ΠT

[
In
N

]
, (17)

where Π ∈ R2n,2n is a permutation matrix and N ∈ Rn,n is bounded in norm. In this
representation the deviation from orthonormality can be controlled, while at the same
time getting a more sparse representation in which also the property of the subspace to
be Lagrangian is easier to control.
The pencil arithmetic has been applied to the solution of dense small-scale algebraic

Riccati equations [6, 33]. If care is taken in the representation of the non-unique pair
(E,A) and in the implementation of the arithmetic operations, then these algorithms can
be significantly more stable than their counterparts that work on M = E−1A directly
[33].

1.5 Aim and content
The aim of this paper is to demonstrate that the use of inverse-free and permuted graph
representations can be beneficial in the computation of Lagrangian subspaces and the
solution of large-scale Lyapunov and Riccati equations via the LR-ADI method. To
this purpose, we use similar representations for tall and skinny matrices M , and modify
the main LR-ADI loop to use them. We show how to apply sparse operators to them,
and add new operations such as horizontal concatenation and transpositions to the
framework of [6], while keeping the computational cost linear in the larger dimension.
The representation (17) plays an important role in the final part of the algorithm, as it
allows easier control of sparsity or approximate sparsity than an orthogonal representation
for both rectangular and square matrices.
We do not wish to propose the algorithm presented here as an ultimate solver for

sparse control problems; our goal in this paper is to demonstrate that these techniques
can be useful also for large and sparse matrices, at least in some cases: we give a proof
of concept showing that in some examples they give better numerical accuracy than the
standard methods.

9

The paper proceeds as follows. In Section 2 we recall some basic results on permuted
graph representations. In Section 4 we describe the low-rank version of the ADI method
using permuted graph bases. We discuss the different representations and their residuals
in Section 6 and present a partial error analysis in Section 7.
Numerical experiments in Section 8 are followed by a Conclusion.

2 Inverse-free arithmetic and permuted graph representations
In this section, we recall a few tools from [6] and [33, 34], although using a novel
presentation that is more suitable to our exposition.

Given a matrix M ∈ Rn,m, we call a pair (A,E) ∈ Rn,m ×Rm,m such that M = AE−1

a (right-looking) inverse-free representation of M . We use the notation

IF(M) :=
[
E
A

]
∈ Rn+m,m

to denote any block matrix
[
ET AT

]T
whose blocks satisfy this condition M = AE−1.

Note that this is a slight abuse of notation, since the matrix
[
ET AT

]T
is not uniquely

defined by this condition, but only the subspace im
[
ET AT

]T
is.

Let σmin(M) and σmax(M) denote the smallest and largest singular value of a matrix
M , see [16], and let κ(M) := σmax(M)/σmin(M) denote the spectral norm condition
number of M . The condition number of the column space imM as a function of the
matrix M is given by κ(M) (see [18] and Lemmas 7.1 and 7.3 in the following). We call
a matrix with full column rank whose columns form a basis for a subspace U a basis
matrix for U .

When computing an inverse-free representation of a matrix M , we usually aim for a
small value of its subspace condition number κ(IF(M)). Obviously, the best choice is to
use an orthogonal basis matrix. The following result gives a different well-conditioned
representation.

Theorem 2.1 ([26]). Let U ∈ Rn+m,m have full column rank, and let τ ≥ 1.

1. There exists an invertible submatrix T ∈ Rm,m of U , a permutation matrix Π ∈
Rn+m,n+m and N = [Ni,j] ∈ Rn,m with |Nij | ≤ τ for all i = 1, . . . , n, j = 1, . . . ,m
such that

Û = UT−1 = ΠT

[
Im
N

]
. (18)

2. If τ > 1, then the matrices Π, N and T can be computed in O
(
m2(n+m) logm

log τ

)
floating point operations.

10

3. The condition numbers of Û and T satisfy

κ
(
Û
)

= κ

(
ΠT

[
Im
N

])
≤
√
mnτ2 + 1,

κ(T) ≤ κ(U)
√
mnτ2 + 1.

Hence we can always choose a matrix IF(M) in the form (18) so that its conditioning
is controlled by the choice of τ . A typical choice for τ is a small constant such as 2, or, if
one is worried by the logarithmic factors in the computational cost, a small power of n
like n1/3.
The next trick that we need is a method to compute an inverse-free representation of

the transpose of a matrix.

Lemma 2.2. Let M ∈ Rn,m, and let U = IF(M) for some U ∈ Rn+m,m. Let[
ÂT −ÊT

]T
be any basis matrix for kerUT , with Ê ∈ Rn×n, Â ∈ Rm×n, then

[
ÊT ÂT

]T
=

IF(MT).

Proof. Let U =
[
ET AT

]T
, with E ∈ Rm×m, A ∈ Rn×m. First note that U has

full column rank, since its submatrix E is nonsingular, and hence a basis matrix for
kerUT has indeed n columns. By the definition of the kernel, ET Â = AT Ê, i.e.,
Â = (AE−1)T Ê = MT Ê. If Ê were singular, then Êv = 0 for some vector v ∈ Rm,
v 6= 0, hence also Âv = MT Êv = 0 and

[
ÂT −ÊT

]T
v = 0, which is impossible

since
[
ÂT −ÊT

]T
must have full column rank by construction. So Ê is invertible and

ÂÊ−1 = MT , as asserted.

If U = IF(M) is in the format given by Theorem 2.1, then we can determine a basis
IF(MT) in the same format.

Theorem 2.3. Consider U = IF(M) in the format given by Theorem 2.1, i.e.,

ΠT

[
Im
N

]
= IF(M).

Then, there exist a permutation matrix Π̂ and two real diagonal matrices D1 ∈ Rn,n,
D2 ∈ Rm,m with ±1 on the diagonal such that

IF(MT) = Π̂T

[
In

D2N
TD1

]
. (19)

Proof. Since [
0 −In
Im 0

]
Π

[
0 Im
−In 0

]

11

is nothing more than a permutation with some additional sign changes, we can find a
permutation matrix Π̂ and ±1 diagonal matrices D1, D2 such that[

0 −In
Im 0

]
Π

[
0 Im
−In 0

]
Π̂T

[
D1 0
0 D2

]
= I.

We now employ Lemma 2.2. Since the matrix in the left-hand side of (19) has full column
rank, we only have to verify that

[
Im NT

]
Π

[
0 Im
−In 0

]
Π̂T

[
In

D2N
TD1

]
= 0.

We have indeed

0 =
[
−NT Im

] [In
NT

]
D1

=
[
−NT Im

] [0 −In
Im 0

]
Π

[
0 Im
−In 0

]
Π̂T

[
D1 0
0 D2

] [
In
NT

]
D1

=
[
Im NT

]
Π

[
0 Im
−In 0

]
Π̂T

[
In

D2N
TD1

]
.

Note that the presented proof of Theorem 2.3 is completely constructive and can be
turned into an algorithm to compute Π̂ and D2N

T
1 D1, which form a permuted graph

representation for IF(MT).
The ideas in the proofs of Lemma 2.2 and Theorem 2.3 have been developed in the

literature (in different forms) for the case m = n, but we argue that the more interesting
situation is when m � n. Indeed, in this case the basis 19 is sparse, while using
orthogonal matrix machinery to determine the kernel in Lemma 2.2 would yield a more
dense orthogonal matrix.

3 The low-rank ADI method
For the computation of low-rank approximations of Lagrangian invariant subspaces, using
the Newton-Kleinman iteration for the Riccati solution and in each step for solution of
the Lyapunov equation, we will employ the low-rank ADI (LR-ADI) method [9, 43]. We
assume in the following that the Lyapunov equation (1) has a factored matrix W = BBT ,
where B ∈ Rn,m and m� n. The low-rank ADI method, described in Algorithm 1, needs
a sequence of shifts pi. In some special cases optimal shifts are known and in general
there are several heuristic techniques available to choose these shifts [12, 42, 43, 51].
The column compression in Line 6 of Algorithm 1 can be performed with the help of a
rank revealing QR-decomposition [16], ZT = QRP with Q orthogonal, P a permutation
matrix that is used for pivoting, and R upper triangular. We can replace Zi with the

12

Input: F∈ Rn,n, B ∈ Rn,m, a sequence of shifts p1, p2, . . . , pimax such that Re pi < 0
for each i = 1, 2, . . . , imax

Output: Z such that ZZT ≈ X, where X solves (1)
1 V ←

√
−2 Re p1(F T + p1In)B;

2 Z ← V ;
3 for i = 2, 3, . . . , imax do
4 V ←

√
Re pi

Re pi−1

(
V − (pi + p̄i−1)(F T + piIn)−1V

)
;

5 Z ←
[
Z V

]
;

6 (optionally) Z ← a matrix Z(1) with less columns than Z s.t. Z(1)(Z(1))T ≈ ZZT
;

7 end

leading columns of P TRT , eliminating all those columns whose norm is below a certain
threshold. This operation is typically performed only every few steps, to amortize the
cost of the QRP decomposition. All the other lines of Algorithm 1 are self-explaining.
The majority of the computational cost comes from the solution of the sparse linear
systems with the matrices F T + piIn and this can be effectively solved via a Krylov
subspace method [46].
As discussed before, in many practically relevant examples the solution X is well

approximated by a low-rank matrix ZZT and thus Z can be effectively compressed to
have only a small number of columns.

4 Inverse-free LR-ADI
The goal of this paper is to perform the LR-ADI iteration using only an implicit inverse-
free representation of the iterates. Namely, we store at each step IF(Vi) and IF(Zi)
instead of Vi and Zi. For this to work, we need new methods to perform each step in
Algorithm 1 on an inverse-free representations directly. These new methods are described
in the following subsections.
After each operation, the representation is converted to an equivalent representation

by replacing IF(Vi) or IF(Zi) with their orthogonal QR-factor. Here and in the following,
when we refer to the QR-factorization of a rectangular matrix M = QR, we use the
so-called thin QR, i.e., the version in which Q is rectangular and R square. For simplicity,
we define the operator Q = orth(M) that maps a matrix to its orthogonal QR-factor.

4.1 Initialization
As a starting inverse-free representation, we take

IF (V1) = orth
([

Ip√
−2 Re p1(F T + p1In)B

])
.

13

4.2 Solution of sparse linear systems

For the operation in Line 4 of Algorithm 1, let E,A be such that
[
E
A

]
= IF (Vi−1). We

factor out E on the right to obtain

IF (Vi) = orth
([

E√
Re pi

Re pi−1

(
A− (pi + p̄i−1)(F T + piIn)−1A

)]) .
In principle, one could try to avoid the solution of linear systems with F T + piIn as
well, by replacing it with an equivalent inverse-free computation. However, this seems
challenging to do in a computationally feasible way, due to the large size of the matrices
involved.

4.3 Horizontal stacking
The operation in Line 5 of Algorithm 1 needs to be extended to inverse-free representations

as well. Let
[
EZ
AZ

]
= IF(Zi−1),

[
EV
AV

]
= IF(Vi−1), then it is simple to verify that we can

choose

IF(Zi) = IF
([
Zi−1 Vi−1

])
= orth

EZ 0

0 EV
AZ AV

 .

Again, we re-orthogonalize after the computation. If IF (Zi−1) is already an orthogonal
matrix, then the first block column of this matrix is already orthogonal, so there is only
a small amount of extra columns to orthogonalize against the previous columns in each
step.

4.4 Column compression
Column compression in the usual LR-ADI algorithm is performed using a rank-revealing
RQ decomposition. One determines an orthogonal matrix Y ∈ Rm,m such that ZiY =[
Z(1) Z(2)

]
, with ‖Z(2)‖2 < ε‖Zi‖2, and then replaces Zi with Z(1), which gives

‖ZiZTi − Z(1)(Z(1))T ‖2 = ‖Z(2)(Z(2))T ‖2 = ‖Z(2)‖22 ≤ ε
2‖Zi‖22 = ε2‖ZiZTi ‖2.

In our extension based on inverse-free arithmetic, we use the generalized singular value
decomposition (GSVD) instead, which is essentially an inverse-free version of the singular
value decomposition.

Theorem 4.1 (Generalized SVD, [16, Theorem 8.7.4]). Let E ∈ Rm,m, A ∈ Rn,m. There
exist square orthogonal matrices U ∈ Rm,m, P ∈ Rn,n and a nonsingular V ∈ Rm,m such
that E = UΓV , A = P∆V , with Γ = [γij] ∈ Rm,m, ∆ = [δij] ∈ Rn,m diagonal.

14

For a rectangular ∆, being diagonal means that all entries ∆ij with i 6= j are zero.
Note that if

[
ET AT

]T
were a (partial) Lagrangian subspace then this would just be

the CS-decomposition of Lemma 1.1 with P = Q and V orthogonal.
The following result shows how to perform column compression in inverse-free form.

Theorem 4.2. Let IF (Z) =
[
E
A

]
, with E ∈ Rm×m, and let E = UΓV , A = P∆V

be a GSVD of the pair E,A, with the elements in Γ and ∆ ordered so that the ratios
σi = |δiiγ−1

ii | are decreasing, Let k be such that σh ≤ εσ1 if and only if h > k, and

partition P =
[
P1 P2

]
, ∆ =

[
∆1 0
0 ∆2

]
, Γ =

[
Γ1 0
0 Γ2

]
so that the size of the first block

is k. Let Z(1) be the matrix such that

IF(Z(1)) =
[
Γ1
P1∆1

]
.

Then, ‖ZZT − Z(1)(Z(1))T ‖2 ≤ ε2‖ZZT ‖2.

Proof. We have

‖ZZT − Z(1)(Z(1))T ‖2 = ‖P∆Γ−2∆TP T − P1∆1Γ
−2
1 ∆T

1 P
T
1 ‖2

= ‖P2∆2Γ
2
2∆

T
2 P

T
2 ‖2 = ‖∆2Γ

2
2∆

T
2 ‖

= max
h>k

σ2
i ≤ ε2σ2

1 = ‖ZZT ‖2.

5 Representation of the Lagrangian invariant subspace
Algorithm 1 computes (A,E) such that Z = AE−1 is a good approximation of the
low-rank factor of X. In principle, one can now evaluate the matrix product AE−1 to
get Z. However, this defeats part of the purpose of the inverse-free computation. It is
better to consider the application (stabilization, optimal control, etc) where this factor is
used, and to see if we can do this next step without inversion. For instance, when using
Z to compute a the feedback matrix in stabilization or linear-quadratic optimal control,
then we need to compute the product BTZZT and the formulation BTAE−1E−TAT)
may be numerically more stable to evaluate if, for instance BTA is very small in norm.
Similarly, in the context of model reduction by balanced truncation [2], we need the
low-rank factors Z1 and Z2 of the solutions of two Lyapunov equations, and then we
compute a singular value decomposition of ZT2 Z1. Again, working directly on the product
form, for instance using algorithms for product eigenvalue problems [15, 53], is usually
more numerically stable.

In the next sections, we show that a special representation of the subspace im
[
I
X

]
can be constructed directly from the pair (A,E), without constructing X or otherwise
passing through an explicit inversion.

15

5.1 A low-rank representation for S
Let Z ∈ Rn,m be the (approximate) low-rank factor of the solution X of a Lyapunov

equation. In the following, we show how to compute, starting from IF(Z) =
[
E
A

]
, matrices

U1, U2 ∈ Rn,r (for some r ≤ m) and U3, U4 ∈ Rn,m such that

IF(X) =
[
In − U1U

T
2

U3U
T
4

]
. (20)

1. Let M = A(ETE)−1; then clearly IF(M) =
[
ETE
A

]
. Given a threshold τ > 1,

using the method in Theorem 2.1, compute a permutation matrix Π ∈ Rn+m,n+m

and N ∈ Rn,m such that IF(M) = ΠT

[
Im
N

]
.

2. Using the method in the proof of Theorem 2.3, compute Π̂ ∈ Rn+m,n+m and

N̂ = D2N
TD1 ∈ Rm,n such that IF(MT) = Π̂T

[
In
N̂

]
.

3. Let Ê ∈ Rn,n and Â ∈ Rm,n such that Π̂T

[
In
N̂

]
=
[
Ê

Â

]
. Since Π̂T acts by permuting

rows, there are at most r ≤ m rows of Ê which are not rows of In. This means
that there exists a permutation matrix Π̃ such that EΠ̃ and In differ only in these
r rows. Hence, In − EΠ̃ is a rank-r matrix, which we can factor as U1U

T
2 , where

U1, U2 ∈ Rn,r. In particular, we can choose U1 to be a submatrix of In and U2 with
elements of magnitude at most τ + 1. Note that U1, U2 and Π̃ can be computed
from N̂ and (a compact representation of) Π̂ only, without forming full n × n
matrices.

4. We have

X = ZZT = AE−1E−TAT = ANT

= AÂÊ−1 = AÂΠ̃
(
ÊΠ̃

)−1
= AÂΠ̃

(
In − U1U

T
2

)−1
,

hence it suffices to set U3 = A ∈ Rn,m and U4 = (ÂΠ̃)T ∈ Rn,m to obtain (20).

The cost of the whole algorithm is O(nm2 logm
log τ), which is linear in n, hence this construc-

tion is feasible in the large-scale, low-rank case, i.e. if m is small.

5.2 Conditioning of the special right-looking representation
In view of the discussion in Section 2, to make sure that our special right-looking
representation (20) is a well-conditioned basis for its column space, we need to bound its
condition number. For this we start with a lemma.

16

Lemma 5.1. Let A, ÂT ∈ Rn,m, and two invertible matrices E ∈ Rm,m, Ê ∈ Rn,n be
given, such that

E−1E−TAT = ÂÊ−1.

Suppose that

σmin

([
Ê

Â

])
= σ̂, σmin

([
E
A

])
= σ.

Then,

σmin

([
Ê

AÂ

])
≥ σσ̂(

max (1, σ2) + 1
2

)1/2 .

Proof. Let v be any vector with ‖v‖ = 1. By the properties of the smallest singular value,
we have

‖Êv‖2 + ‖Âv‖2 ≥ σ̂2.

Similarly, working this time with the vector Âv, we have

‖AÂv‖2 + ‖EÂv‖2 ≥ σ2‖Âv‖2.

Moreover, we have

‖EÂv‖2 = ‖vT ÂTETEÂv‖ = ‖vT ÂTAT Êv‖ ≤ ‖AÂv‖‖Êv‖ ≤ 1
2
(
‖AÂv‖2 + ‖Êv‖2

)
.

Combining the three inequalities, we get

3
2‖AÂv‖

2 +
(
σ2 + 1

2

)
‖Êv‖2 ≥ σ2σ̂2,

from which the assertion follows.

Using Lemma 5.1, we obtain the following result.

Theorem 5.2. For the special low-rank representation U =
[
I − U1U

T
2

U3U4

]
constructed in

Section 5.1, we have

κ(U) ≤
√

3√
2

(mnτ2 + nτ).

Proof. We obtain the assertion directly from the definition κ(U) = σmax(U)
σmin(U) . It is easy to

bound the largest singular value as σmax(U) ≤ mnτ2 +nτ. To bound the smallest singular
value, we use Lemma 5.1. The matrix

[
ET AT

]T
is orthogonal, hence σ = 1, while[

ÊT ÂT
]T

contains In as a submatrix and thus σ̂ ≥ 1. The matrix Π̃ is orthogonal and

does not change the singular values, hence σmin(U) ≥
√

2√
3 .

17

6 Subspaces and residuals
To check the accuracy of a computed solution X = ZZT to the Riccati equation (2) (or
the Lyapunov equation (1), i.e., when G = 0), the standard choice is to compute the
relative residual

Ke = ‖F TX +XF +W −XGX‖
‖F T ‖‖X‖+ ‖X‖‖F‖+ ‖W‖+ ‖X‖2‖G‖

,

where the norm is either the Frobenius or the spectral norm. In the typical case in which
W factored as W = CTC and G = BR−1BT have low rank, in [9] an efficient method
is presented to compute the numerator in the relative residual in cost O(nm2), without
assembling the full n× n matrix, so this computation is feasible even in the large-scale
case. The method relies on the identity

F TX +XF +W −XGX = RLRT , R =
[
F TZ Z CT XB

]
, L =

0 I 0 0
I 0 0 0
0 0 I 0
0 0 0 −I

 ,
where the matrix R is tall and thin, so one can compute its QR-factorization R = QT ,
and ignore the Q factors, since the norms we are interested in are orthogonally invariant.
Hence

‖F TX +XF +W −XGX‖ =
∥∥∥TLT T ∥∥∥. (21)

In view of our goal to avoid the computation of the Riccati solution but of rather using
the Lagrangian invariant subspace, an alternative in our setting is to compute the residual
of a representation of the invariant subspace of the Hamiltonian matrix H, see [37], i.e.,
for an orthonormal basis matrix Q = IF(X) ∈ R2n,n, we can compute the quantity

Ks =

∥∥∥HQ−Q(QTHQ)
∥∥∥

‖H‖
, (22)

which is exactly zero when Q spans an exact invariant subspace (hence the matrix X
obtained from this subspace is a solution of the Riccati equation). This gives a direct
measure of the quality of the invariant subspace Q, however, in the large-scale case, this
is again unfeasible, as we would need an orthogonal basis.

Once again, inverse-free representations provide an alternative. Given any right-looking
representation X = AE−1, we can compute without inversions a generalized residual as

Kg = ‖ETF TA+ATFE + ETWE −ATGA‖
‖ET ‖‖F T ‖‖A‖+ ‖AT ‖‖F‖‖E‖+ ‖ET ‖‖W‖‖E‖+ ‖AT ‖‖G‖‖A‖

=

∥∥∥∥∥[ET AT
]
J2nH

[
E
A

]∥∥∥∥∥[
‖ET ‖ ‖AT ‖

] [‖F‖ ‖G‖
‖W‖ ‖F T ‖

] [
‖E‖
‖A‖

] .

18

Note that this residual coincides with Ke when
[
ET

AT

]T
=
[
I
XT

]T
, and is zero for a

Riccati solution, since its numerator equals ET (F TX + XF + W − XGX)E. If the
right-looking representation has the special form (20), then a trick analogous to the one
in (21) can be used to compute this numerator. We first determine

ETF TA+ATFE+ETWE−ATGA = R̂LR̂T , R̂ =
[
ETF TU3 U4 ETCT U3U

T
4 B

]
,

and continue as before in the non-inverse-free case.
To see, how good Kg is as an estimate of Ks, we perform a QR-factorization[

E
A

]
= QR.

Since X is symmetric and the subspace is invariant, it is well-known see [28, 39] that the
subspace spanned by Q is Lagrangian and thus[

Q J2nQ
]

is an orthogonal symplectic matrix. Thus, in particular,

I2n −QQT = −J2nQQ
TJ2n,

and therefore,

(I2n −QQT)HQ = −J2nQR
−T
[
ET AT

]
J2nH

[
E
A

]
R−1.

Using the orthogonality, and denoting by Ns and Ng the numerators of Ks and Kg,
respectively, it follows that Ns ≤ Ng‖R−1‖2. Including the denominators as well, we
obtain

Ks ≤ 4
(
‖R−1‖‖R‖

)2
Kg = 4κ

([
E
A

])
Kg,

where the (non-important) factor 4 arises from the nested norms in the denominator. As
a consequence, for a basis matrix with bounded condition number, small Kg implies small
Ks, and hence the subspace is a good approximation to the exact invariant subspace. If,
however, ‖X‖ is large, then κ

([
I XT

]T)
is large as well, and hence the usual Riccati

residual Ke may not be a good measure.

7 Partial error analysis
A complete error analysis of the LR-ADI method is not available in the literature, and
it looks like a daunting task. Here we present a small part of the analysis that allows
a better understanding under which conditions our inverse-free approach will perform
better than the classical approach. For this, we simplify our analysis in several ways
using the symbol a ≤̇ b to denote a ≤ p(m)b+O(u2), where p(m) is a polynomial in the
dimension m and u is the machine precision.

19

• We ignore second-order terms in the perturbation and terms dependent on the
low-rank subspace dimension m (but not those depending on the full subspace
dimension n, which we assume to be significantly larger).

• We focus only on the accuracy of the computation of Vk+1. We denote an appropriate
orthogonal basis for the computed subspace in finite precision by Ṽk+1. Note that
this orthonormal basis does not depend on the sequence of low-rank factors {Zi}.

• With this in mind, we can reduce the analysis to the computation of the map
Vk 7→ Ṽk+1. Indeed, the computational strategies that we are comparing (standard
and inverse-free ADI) can be represented by taking two different routes in the
following diagram:

V0 V1 V2 . . . Vk−1 Vk

Ṽ0 Ṽ1 Ṽ2 . . . Ṽk−1 Ṽk

If we can prove that the computational error in taking one single step is higher
if one takes the upper road Vi−1 → Vi → Ṽi rather than the lower road Vi−1 →
Ṽi−1 → Ṽi, then the same holds (at least in first order approximation) for the whole
computation.

To achieve a partial error analysis we use the following bounds.

Lemma 7.1 ([49]). Let A = QR and A+ δA = (Q+ δQ)(R+ δR) be QR-decompositions,
then

‖δQ‖F ≤̇ ‖δA‖F ‖R
−1‖2.

Lemma 7.2 (Follows from [18, Section 19.3]). Let Q̂ be the computed QR-factor of a
matrix A. Then,

‖Q− Q̂‖F ≤̇ cn
3/2‖A‖F ‖R

−1‖2.

for a small integer constant c.

In some of our analysis we will compare orthogonal matrices Q̂ and Q that are not
close to each other, but span the same subspace. For this, it will be useful to convert the
bound of Lemmas 7.1 and 7.2 to bounds in terms of a subspace distance. The distance
between two subspaces [16] is defined as d(Q, Q̂) = ‖PQ − PQ̂‖2, where PQ = QQT is the
orthogonal projector on the subspace imQ and we have the following result.

Lemma 7.3. Let Q,Q+ δQ ∈ Rn,m be orthogonal. Then,

d(Q,Q+ δQ) ≤ ‖δQ‖2 ≤
√
m‖δQ‖F .

20

Proof. Let Q2 be chosen such that
[
Q Q2

]
is a square, orthogonal matrix. It is known

[16, Theorem 2.6.1] that d(Q,Q+ δQ) = ‖QT2 (Q+ δQ)‖2. Hence,

d(Q,Q+ δQ) = ‖QT2 (Q+ δQ)‖2 = ‖QT2 (δQ)‖2 ≤ ‖δQ‖2.

For our analysis we focus on computing W = Ṽi+1 from V = Vi. For simplicity, let
us drop the subscript i and consider the operation in line 4 of Algorithm 1 as a single
matrix product V ← DV , with

D :=
√

Re pi
Re pi−1

(
I − (pi + pi−1)(F T + piI)−1

)
.

We first show that the inverses of several triangular factors in QR-decompositions
are available explicitly to use in Lemma 7.1. Consider the subspace representation
Ṽ = [ET AT]T of [I V T]T which we obtain from the QR-decomposition[

E
A

]
T =

[
I
V

]
,

implying that E = T−1. Consider now the QR-decomposition of [ET (DA)T]T and let
Y be the inverse of the triangular factor. Then, with this choice, [(EY)T (DAY)T]T
is orthogonal, and E, Y are upper triangular, hence EY is the inverse of the triangular
factor in the QR-decomposition of [I (DV)T]T .
We are now ready to estimate the computational error in the two procedures. The

error ηR in the computation of the Riccati solution comes from two sources, the numerical
error in the product DV and the numerical error in the orthogonalization of [I (DV)]T .
Since we are only performing a first-order error analysis, we can consider both errors

separately and then sum up their contributions, see [18, Section 3.8].
For the error in computing DV we can write the computed product as DV + ∆DV

and have the bound ‖∆DV ‖F ≤ γ‖D‖F ‖V ‖F for an unspecified constant γ. If this were
an ordinary product between dense matrices stored in memory, one would have γ = n,
but in fact the expression of D involves a sparse system solution, multiplications and a
subtraction. Hence, the true value of c is complicated to estimate. Nevertheless, we may
expect it to scale, as stated, with the norms of the matrices. The orthogonal matrix W̃1
computed with this error then satisfies (using Lemmas 7.1 and 7.3)

d(W, W̃1) ≤̇ ‖W − W̃1‖F ≤̇ ∆DV ‖EY ‖2 ≤ γ‖D‖F ‖V ‖F ‖EY ‖2.

For the error in the last orthogonalization, the matrix W̃2 produced with machine
precision orthogonalization satisfies

d(W, W̃2) ≤̇ ‖W − W̃2‖F ≤̇ cn
3/2
∥∥∥∥∥
[
I
DV

]∥∥∥∥∥
F

‖EY ‖2 = cn3/2
√
‖DV ‖2F + n ‖EY ‖2,

21

where we have used Lemmas 7.2 and 7.3.
In contrast to this analysis, taking the route of using first an orthogonalization

and then proceeding has three possible sources of error, the numerical error in the first
orthogonalization producing Ṽ , the numerical error in the product DA, and the numerical
error in the last orthogonalization step producing W . Denoting the sum of these three
individual errors by ηO we have the following terms.

The first orthogonalization produces W̃3 with an individual error that can be estimated
via

d(W, W̃3) ≤̇ ‖D‖F cn
3/2
√
‖V ‖2F + n ‖E‖2‖Y ‖2. (23)

The individual error in the product DA produces a W̃4 satisfying

d(W, W̃4) ≤̇ γ‖D‖F ‖A‖F ‖Y ‖2 ≤̇ γ‖D‖F ‖Y ‖2,

where we have used that ‖A‖F ≤
√
m, because A is a submatrix of a matrix with

orthonormal columns. The final orthogonalization step produces a W̃5 with an individual
error satisfying

d(W, W̃5) ≤̇ cn3/2
∥∥∥∥∥
[
E
DA

]∥∥∥∥∥
F

‖Y ‖2 ≤ cn
3/2
√
‖D‖2F + n‖Y ‖2

Thus, we have the following two estimates for the errors in the two alternative routes.

ηR = γ‖D‖F ‖V ‖F ‖EY ‖2 + cn3/2
√
‖DV ‖2F + n ‖EY ‖2, (24)

ηO = ‖D‖F cn
3/2
√
‖V ‖2F + n ‖E‖2‖Y ‖2

+γ‖D‖F ‖Y ‖2 + cn3/2
√
‖D‖2F + n ‖Y ‖2. (25)

Assuming that ‖D‖F , ‖V ‖F are not significantly smaller than n, the two estimates are
essentially equivalent apart from a factor ‖EY ‖2 ≤ ‖E‖2‖Y ‖2 ≤ ‖Y ‖2.
However, looking at the two estimates, at first sight it seems that the new strategy

of performing first an orthogonalization is never better than the procedure used in
the standard LR-ADI method, and that ηR would be even be superior to ηO, if the
orthogonalization of [I (DV)T]T , which accounts for the factor ‖EY ‖2, happens to be
better-conditioned than that of [ET (DA)T]T , which accounts for the factor ‖Y ‖2. This
could happen due to subtractive cancelation for instance if ‖DV ‖ happens to be signifi-
cantly smaller than ‖D‖F ‖V ‖F . However, performing several numerical experiments, it
seems that the bound ηR is essentially accurate, while the ηO, and more precisely, (23) is
often a large overestimate.
Let us first give an intuitive argument of why (23) often overestimates the error.

The computed orthogonal basis matrix U = Ṽ is affected by an error δU =
[
δE
δA

]
of

magnitude ‖δU‖F ≤̇ cn3/2
√
‖V ‖2F + n. The subspace U + δU is then multiplied with a

matrix D̂ = diag(Im, D). The bound (23) considers the resulting error D̂δU as a generic

22

error of norm ‖D̂‖F ‖δU‖F . This is, however, not entirely true, as both D̂U and D̂δU , in
the generic case, will be approximately associated with the singular vectors of D̂ of the
dominant singular values. Consider for instance the extreme case in which D̂ has rank
m. In this case, no matter how large δU is, the resulting subspace will be still im(D̂).
We can turn this intuition into a more formal bound, using a probabilistic analysis.

Theorem 7.4. Let U ∈ Rn×r be a random matrix with Gaussian distributed entries, and
let D̂ ∈ Rn×n be a given matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σn. Let U + δU be a
small perturbation of U and let D̂U = QR and D̂(U + δU) = Q̃R̃ be QR-decompositions
of these matrices, respectively. Then

E
[

d(Q, Q̃)
‖δU‖F ‖R̃−1‖2

]
≤
√

1 + r

 ∑
j>r−1

σ2
j

1/2

. (26)

Proof. The main part of the proof follows by applying [17, Theorem 10.5], which for the
special choice p = 2 and the notation adapted to our case states that

E
[
‖(In −QQT)D̂‖F

]
≤
√

1 + r

 ∑
j>r−1

σ2
j

1/2

. (27)

Let Q2 be a matrix such that [Q Q2] is square orthogonal. Then we have

d(Q, Q̃) = ‖QT2 Q̃‖2 = ‖Q2Q
T
2 Q̃‖2 = ‖(I −QQT)Q̃‖2 = ‖(I −QQT)D̂(U + δU)R̃−1‖2

= ‖(I −QQT)D̂(δU)R̃−1‖2 ≤ ‖(I −QQ
T)D̂‖F ‖δU‖F ‖R̃

−1‖2.

Combining this inequality with (27) then gives (26).

Theorem 7.4 states that, for generic values of V , we can replace the factor ‖D‖F with
√

1 + r
(∑

j>r−1 σ
2
j

)1/2
, i.e., instead of summing the squares of all the singular values

of D̂, we start from the (r − 1)st. Hence the modified version of (25) does not contain
anymore terms that depend on the product ‖D‖F ‖V ‖F . This reduction typically is more
pronounced than the one resulting from ‖Y ‖2 instead of ‖EY ‖2. Of course, this intuitive
analysis is far from being rigorous (mainly because U is not random in our setting, but
comes from the previous steps of the algorithm), but it captures the numerical behavior
of the method in many cases.

8 Numerical experiments
In this section we present some numerical experiments. We start with a standard example,
to show that there is little difference between the two algorithms in normal conditions,
with bounded X and well-conditioned matrices such as those coming from finite-difference
discretizations on regular grids, often used in ADI benchmarks [43].

23

We take the demo problem demo_l1 of Lyapack [44], with a Lyapunov equation resulting
from the discretization of a 2D convection-diffusion equation on a square grid. In detail,
we consider a 25×25 finite-difference discretization of the operator ∆(u)−10x d

dx−100y d
dy

and of the right-hand side function

g(x) =
{

1 0.1 ≤ x ≤ 0.3,
0 otherwise.

All parameters are unchanged with respect to the demo; in detail, we use
√

u, the square
root of the machine precision, as column compression tolerance, and 15 shift values
computed using 50 Ritz values for F and 25 for F−1.
We report in Figure 1 the residual obtained at each iteration (using the different

measures Ke, Ks, Kg introduced in Section 6) and the number of columns in the
approximation Z at each ADI step. For this problem, the norm of the solution is
moderate (‖Z‖ ≈ 0.27) and there is basically no difference between the results of the two
algorithms. The only notable difference is that the inverse-free method attains a slightly
lower accuracy in the equation residual Ke (although still below 10−15).

As a test with a significantly more ill-conditioned matrix, we created a sparse symmetric,
negative-definite matrix with the following Matlab commands

n=400;
reset(RandStream.getGlobalStream);
F=-sprandsym(n,4/n,1e-10,1);

We chose 400× 400 as the size of F to ensure that the subspace residual to be computed
in a reasonable time. In our experiments, a similar behavior arises also for larger sizes.
The matrix F has condition number ≈ 1.5× 1010 and norm ≈ 3× 100.

We tested Lyapunov equations with this matrix and three different right-hand sides:

R1 a random right-hand side, generated with C=randn(2,n);

R2 a right-hand side that has a norm approximately equal to the smallest eigenvalues of
F ; in this way, the pair (F,B) is close to uncontrollable and large entries appear in
Z starting from the very first iteration. We generated the coefficients with

[V D]=eigs(A,4,’sm’);
mu=1e-6;
V=V+mu*randn(size(V));
C=V’;

R3 the same as R2, but with mu=1e-9.

The other parameters are the same as in the other cases, with the exception of the column
compression tolerance which has been set to 10−12. The approximate low-rank factor Z
of the solution has norm ≈ 105 in all three cases. We depict the results in Figures 2, 3
and 4.

24

Figure 1: Comparison of ADI and PG-ADI, finite-difference discretization

0 5 10 15 20 25 30 35 40
10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

iterations

re
la
tiv

e
re
sid

ua
ln

or
m
s

ADI Ke

PG Ke

ADI Ks

PG Ks

PG Kg

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

iterations

co
lu
m
ns

in
Z
k

ADI
PG

25

Figure 2: Comparison of ADI and PG-ADI, random matrix and right-hand side R1

0 20 40 60 80 100 120 140 16010−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

iterations

re
la
tiv

e
re
sid

ua
ln

or
m
s

ADI Ke

PG Ke

ADI Ks

PG Ks

PG Kg

0 20 40 60 80 100 120 140 160

0

50

100

150

200

iterations

co
lu
m
ns

in
Z
k

ADI
PG

26

Figure 3: Comparison of ADI and PG-ADI, random matrix, RHS from eigs with µ = 10−6

0 5 10 15 20 25 30 35 40 45

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

iterations

re
la
tiv

e
re
sid

ua
ln

or
m
s

ADI Ke

PG Ke

ADI Ks

PG Ks

PG Kg

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

iterations

co
lu
m
ns

in
Z
k

ADI
PG

27

Figure 4: Comparison of ADI and PG-ADI, random matrix, RHS from eigs with µ = 10−9

0 5 10 15 20 25 30 35 40 45

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

iterations

re
la
tiv

e
re
sid

ua
ln

or
m
s

ADI Ke

PG Ke

ADI Ks

PG Ks

PG Kg

0 5 10 15 20 25 30 35 40 45

20

40

60

80

iterations

co
lu
m
ns

in
Z
k

ADI
PG

28

The experiments show that the permuted graph variant of LR-ADI computes a more
accurate basis for the invariant subspace associated with X = ZZT , at the expense of
dropping fewer columns of Z in the column compression. Indeed, the used compression
step drops only components of magnitude smaller than O(ε), not O(‖Z‖ε). Nevertheless,
it is not only a question of using a different tolerance, the new algorithm gets better
residuals because it is immune from element growth in Z, and thus the same quantities
can be computed more accurately.

Another interesting observation is that the generalized residual Kg in general achieves
better results as an estimator of Ks rather than the Riccati residual.

9 Conclusions
In this paper, we have presented an inverse-free version of the low-rank ADI algorithm.
We have shown that this technique, that was so far only used in iterative solvers for small-
scale dense Lyapunov and Riccati equations can be successfully employed also in medium
and large scale applications. Permuted graph bases allow the efficient representation of
sparse matrices and subspaces. While an expression based on a low rank representation
of graph subspace is perfectly manageable with low-rank arithmetic, an orthonormal
basis for the same subspace would in general be highly impractical.

The residual heuristic measure Kg suggested in Section 6 shows a numerical behavior
which is more similar to the real subspace residual Ks than the usual matrix equation
residual Ke, and it is possibly useful also independently from the remainder of the
algorithm.
Inverse-free algorithms for the basic matrix operations (sum, products, inverses)

appeared in [6]. As a useful by-product of our analysis we have shown how to perform
several new nontrivial tasks using these matrix representations: horizontal stacking,
column compression, and converting between left- and right-looking representations in a
large-scale low-rank context. The obtained results show that inverse-free arithmetic is a
viable tool for dealing with large low-rank matrices, and opens the way to new possible
uses for this technique.

References
[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank. Matrix Riccati Equations in

Control and Systems Theory. Birkhäuser, Heidelberg, 2003.

[2] A. C. Antoulas. Approximation of large-scale dynamical systems, volume 6 of
Advances in Design and Control. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2005.

[3] A. C. Antoulas, D. C. Sorensen, and Y. Zhou. On the decay rate of Hankel singular
values and related issues. Systems Control Lett., 46(5):323–342, 2002.

29

[4] P. Benner and H. Faßbender. On the numerical solution of large-scale sparse
discrete-time Riccati equations. Adv. Computational Math., 35:119–147, 2011.

[5] P. Benner, H. Faßbender, and M. Stoll. A Hamiltonian Krylov-Schur-type method
based on the symplectic Lanczos method. Linear Algebra Appl., 435:578–600, 2011.

[6] P. Benner and R. Byers. An arithmetic for matrix pencils: theory and new algorithms.
Numer. Math., 103(4):539–573, 2006.

[7] P. Benner, R. Byers, P. Losse, V. Mehrmann, and H. Xu. Robust formulas for
optimal h∞ controllers. Automatica, 47:2639–2646, 2011.

[8] P. Benner, R. Byers, V. Mehrmann, and H. Xu. A robust numerical method for the
γ-iteration in H∞-control. Linear Algebra Appl., 425:548–570, 2007.

[9] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lyapunov
equations, Riccati equations, and linear-quadratic optimal control problems. Numer.
Linear Algebra Appl., 15(9):755–777, 2008.

[10] P. Benner, V. Mehrmann, and D. Sorensen (Editors). Dimension Reduction of
Large-Scale Systems, volume 45 of LNSCE. Springer-Verlag, Heidelberg, 2005. ISBN
3-540-24545-6.

[11] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT -
a subroutine library in systems and control theory. Applied and Computational
Control, Signals and Circuits, 1:505–546, 1999.

[12] P. Benner and J. Saak. Numerical solution of large and sparse continuous time
algebraic matrix Riccati and Lyapunov equations: A state of the art survey. GAMM-
Mitteilungen, 6:32–52, 2013.

[13] D. Chu, X. Liu, and V. Mehrmann. A numerical method for computing the
Hamiltonian Schur form. Numer. Math., 105(3):375–412, 2007.

[14] G. Freiling, V. Mehrmann, and H. Xu. Existence, uniqueness and parametrization of
Lagrangian invariant subspaces. SIAM J. Matrix Anal. Appl., 23:1045–1069, 2002.

[15] Gene Golub, Knut Sølna, and Paul Van Dooren. Computing the SVD of a general
matrix product/quotient. SIAM J. Matrix Anal. Appl., 22(1):1–19 (electronic), 2000.

[16] G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third
edition, 1996.

[17] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev., 53(2):217–288, 2011.

30

[18] N.J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[19] D. Hinrichsen and A. J. Pritchard. Mathematical Systems Theory I. Modelling, State
Space Analysis, Stability and Robustness. Springer-Verlag, New York, NY, 2005.

[20] D.Y. Hu and R. Reichel. Krylov subspace methods for the Sylvester equation. Linear
Algebra Appl., 172:283–313, 1992.

[21] I.M. Jaimoukha and E.M. Kasenally. Implicitly restarted Krylov subspace methods
for stable partial realizations. SIAM J. Matrix Anal. Appl., 18:633–652, 1997.

[22] T. Kailath. Systems Theory. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[23] R.E. Kalman, P.L. Falb, and M.A. Arbib. Topics in Mathematical System Theory.
McGraw-Hill, New York, 1969.

[24] D. L. Kleinman. On an iterative technique for Riccati equation computations. IEEE
Trans. Automat. Control, AC-13:114–115, 1968.

[25] H.W. Knobloch and H. Kwakernaak. Lineare Kontrolltheorie. Springer-Verlag,
Berlin, 1985. in German.

[26] D. E. Knuth. Semioptimal bases for linear dependencies. Linear and Multilinear
Algebra, 17(1):1–4, 1985.

[27] M.M. Konstantinov, D.W. Gu, V. Mehrmann, and P.Hr. Petkov. Perturbation
Theory for Matrix Equations. Elsevier, North Holland, 2003.

[28] Daniel Kressner. Numerical methods for general and structured eigenvalue problems,
volume 46 of Lecture Notes in Computational Science and Engineering. Springer-
Verlag, Berlin, 2005.

[29] P. Lancaster and L. Rodman. Algebraic Riccati equations. Oxford University Press,
Oxford, 1995.

[30] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Orlando,
2nd edition, 1985.

[31] P. Losse. The H∞ Optimal Control Problem for Descriptor Systems. Dissertation,
Fakultät für Mathematik, Technische Universität Chemnitz, February 2012. Available
from http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-83628.

[32] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass, 01760.
The MATLAB Control Toolbox, Version 5.0, 2000.

[33] V. Mehrmann and F. Poloni. Doubling algorithms with permuted Lagrangian graph
bases. SIAM J. Matrix Anal. Appl., 33:780–805, 2012. http://dx.doi.org/10.
1137/110850773.

31

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-83628
http://dx.doi.org/10.1137/110850773
http://dx.doi.org/10.1137/110850773

[34] V. Mehrmann and F. Poloni. Robust control via the computation of permuted graph
bases. Automatica, 49:1790–1797, 2013. DOI: 10.1016/j.automatica.2013.02.039.

[35] V. Mehrmann, C. Schröder, and V. Simoncini. An implicitly-restarted Krylov
subspace method for real symmetric/skew-symmetric eigenproblems. Linear Algebra
Appl., 436:4070–4087, 2012. DOI: 10.1016/j.laa.2009.11.009.

[36] V. Mehrmann, C. Schröder, and D. S. Watkins. A new block method for computing
the Hamiltonian Schur form. Linear Algebra Appl., 431(3-4):350–368, 2009.

[37] V. Mehrmann and E. Tan. Defect correction methods for the solution of algebraic
Riccati equations. IEEE Trans. Automat. Control, AC–33:695–698, 1988.

[38] V. Mehrmann and D. Watkins. Structure-preserving methods for computing eigen-
pairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput.,
22:1905–1925, 2001.

[39] V.L. Mehrmann. The autonomous linear quadratic control problem, volume 163 of
Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, 1991.
Theory and numerical solution.

[40] W. Niethammer and G. Starke. SOR for AX − XB = C. Linear Algebra Appl.,
154–156:355–375, 1991.

[41] C.C. Paige and C.F. Van Loan. A Schur decomposition for Hamiltonian matrices.
Linear Algebra Appl., 14:11–32, 1981.

[42] T. Penzl. A cyclic low-rank Smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comput., 21:1401–1418, 1999.

[43] T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the
symmetric case. Systems Control Letters, 40:139–144, 2000.

[44] T. Penzl. LYAPACK users’ guide: a MATLAB toolbox for large Lyapunov and
Riccati equations, model reduction problems, and linear quadratic optimal control
problems. Technical report, Technical University Chemnitz, SFB 393, 2000. Version
1.0.

[45] P.H. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Methods for
Linear Control Systems. Prentice-Hall, Hertfordshire, UK, 1991.

[46] Y. Saad. Iterative methods for sparse linear systems. Society of Industrial and
Applied Mathematics, Philadelphia, PA, 2nd edition, 2003.

[47] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and
Applied Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

[48] V. Simoncini, D.B. Szyld, and M. Monsalve. On two numerical methods for the
solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal., 2013.

32

[49] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, New
York, 1990.

[50] G.W. Stewart. Error and perturbation bounds for subspaces associated with certain
eigenvalue problems. SIAM Rev., 15:727–764, 1973.

[51] E.L. Wachspress. Iterative solution of the Lyapunov matrix equation. Appl. Math.
Lett., 1:87–90, 1988.

[52] D. S. Watkins. On the reduction of a Hamiltonian matrix to Hamiltonian Schur
form. Electron. Trans. Numer. Anal., 23:141–157, 2006.

[53] David S. Watkins. Product eigenvalue problems. SIAM Rev., 47(1):3–40, 2005.

[54] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall,
Upper Saddle River, NJ, 1995.

33

	Introduction
	Stabilization and optimal control
	Low-rank approximation of Lagrangian subspaces
	Analysis of Riccati solutions and low-rank approximations
	Permuted graph representations
	Aim and content

	Inverse-free arithmetic and permuted graph representations
	The low-rank ADI method
	Inverse-free LR-ADI
	Initialization
	Solution of sparse linear systems
	Horizontal stacking
	Column compression

	Representation of the Lagrangian invariant subspace
	A low-rank representation for S
	Conditioning of the special right-looking representation

	Subspaces and residuals
	Partial error analysis
	Numerical experiments
	Conclusions

