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Abstract: Diabetes mellitus is an independent risk factor for atherothrombotic cardiovascular disease.
Adults with diabetes are two to four times more likely to develop heart disease or stroke than adults
without diabetes. The two major features of diabetes, i.e., hyperglycemia and insulin-resistance,
trigger arterial stiffening and increase the susceptibility of the arterial wall to atherosclerosis at
any given age. These pathological changes in the arterial wall may provide a functional and
structural background for cardiovascular events. The present paper provides a critical overview of
the clinical evidence linking diabetes-related metabolic abnormalities to cardiovascular risk, debates
the pathophysiologic mechanisms through which insulin resistance and hyperglycemia may affect the
arterial wall, and discusses the associations between vascular biomarkers, metabolic abnormalities
and cardiovascular events.
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1. Introduction

Diabetes mellitus is an independent risk factor for atherosclerosis-related cardiovascular (CV)
diseases (D) [1]. In the Framingham cohort, the incidence of CVD among diabetic men and women
was twice and three times that among non-diabetic men and women, respectively [2], and in a
large population-based retrospective study, people with diabetes entered the high CVD risk category
(a 10-year risk of 20% or more) 15 years before people without diabetes [3]. In a 25-year follow-up of
middle-aged men and women, the mortality in men with diabetes and without previous coronary heart
disease was equal to that of men with coronary heart disease and without diabetes (54.0 vs. 50.5 deaths
per 1000 person-years), whereas in women with diabetes only, the risk of death was considerably
higher than in women with coronary heart disease only (46.7 vs. 29.2 deaths per 1000 person-years) [4].

The abnormal metabolic state associated with diabetes promotes a number of alterations in the
arterial tree, and subsequent vascular impairment may represent a pathophysiologic link between
diabetes and CV risk. The two key metabolic abnormalities that characterize type 2 diabetes (T2DM)
are hyperglycemia and insulin-resistance, and the two main pathological processes in vascular wall
that can elicit CV events are atherosclerosis and arterial stiffening. From a pathologic point of view
arterial stiffening, reflecting the degenerative changes of extracellular matrix (ECM) in the media
layer, is distinct from atherosclerosis, a process involving the intima layer and characterized by lipid
accumulation, inflammatory cells infiltration, vascular smooth muscle cells (SMCs) migration and
foam cell development. Yet, the two processes often coexist in the same vascular territories, share
some common risk factors and pathophysiological mechanisms and may potentiate each other in the
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development of vascular changes underlying CVD. Indeed, patients with diabetes mellitus show both
premature atherosclerotic changes [5] and accelerated arterial stiffening [6].

The present review summarizes the clinical evidence demonstrating the link
betweendiabetes-related metabolic abnormalities and CV events, debates the putative mechanisms by
which hyperglycemia and insulin resistance may induce atherosclerosis and arterial wall stiffening,
and discusses the role of vascular biomarkers in CV risk assessment, as well as the associations of
different vascular measures with diabetes, hyperglycemia and insulin resistance.

2. Hyperglycemia

Hyperglycemia is the major risk factor for microvascular complications like diabetic nephropathy,
retinopathy, and neuropathy [7], but its role in atherosclerosis and macrovascular disease is still under
discussion [8,9]. A meta-analysis of 26 prospective studies has demonstrated that every 1% increase
in HbA1c level among patients with T2DM is associated with a 17%, 15%, 11% and 29% increase in
respective hazard of CV disease, coronary heart disease, stroke and peripheral arterial disease [10].
A recent study in 16,492 T2DM patients with a history of established CV disease or multiple risk factors
has shown that HbA1c ě7% is associated with a 35% increase in risk of macrovascular events [11].
Even though an association between chronic glycemic control and CV risk has been demonstrated,
the studies evaluating the impact of strict glycemic control on CV events yielded controversial results.
In the United Kingdom Prospective Diabetes Study (UKPDS), the intensive blood-glucose control
in newly diagnosed T2DM patients, by either sulphonylureas or insulin, resulted in a long-term
(10 years after the cessation of randomized interventions) risk reduction for myocardial infarction
(15%), when compared with the conventional treatment group (diet) [12]. Yet, the Action to Control
Cardiovascular Risk in Diabetes (ACCORD) study and Action in Diabetes and Vascular Disease:
Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study [13] have failed
to confirm this beneficial effect, probably due to the fact that T2DM patients of these trials were
older and had longer duration of diabetes when the intensive glycemic control was initiated. In the
STENO-2 Study, multifactorial intensive interventions targeting not only hyperglycemia, but also
hypertension, dyslipidemia and microalbuminuria, reduced the risk of CV events in T2DM patients by
50% [14]. Altogether, the published data suggest that intensive treatment of hyperglycemia may result
in CV benefit when initiated early in patients with short duration of diabetes, and when accompanied
by treatment of other diabetes-related abnormalities, like hypertension, dyslipidemia and obesity.
There is clear evidence that statins and the targeted lowering of blood pressure are each associated
with substantial reduction of CV risk in patients with diabetes. A meta-analysis of 12 prospective
randomized trials has demonstrated that a lipid-lowering treatment of diabetic patients reduces major
coronary events by 21%, both in primary and secondary prevention [15]. In the UKPDS 38 study,
a tight control of blood pressure in T2DM was associated with a clinically important reduction in the
risk of myocardial infarction (21%), stroke (44%) and peripheral vascular disease (49%) [16], and in the
Hypertension Optimal Treatment (HOT) trial, diabetic patients whose diastolic blood pressure was
equal or less than 80 mm Hg had a 51% reduction in major CV events compared with diabetic patients
whose diastolic blood pressure was equal or less than 90 mm Hg [17].

Although the role of chronic hyperglycemia in macrovascular disease and CV risk is not clearly
established, there are no doubts that glucose may provoke structural and functional changes in
the vascular wall by various mechanisms (Figure 1). Hyperglycemia has been shown to trigger
endothelial dysfunction through decrease in nitric oxide (NO) synthesis, increase in free radicals
levels, and deterioration of antioxidant defense mechanisms [18,19]. Chronic glycemic exposure also
induces vascular SMCs proliferation and chronic inflammation [8,9], increases generation of advanced
glycation end-products (AGEs) and enhances collagen cross-linking within the arterial wall [20],
up-regulates matrix metalloproteinase-2 and -9 expression (enzymes degrading elastin) [21], augments
the generation of angiotensin 2 in vascular tissue [22] and increases endothelial permeability [23].
Acute blood glucose fluctuations, reflecting the upward (post-prandial) and downward (inter-prandial)
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circadian shift of glucose levels, may further affect arterial wall homeostasis by triggering the oxidative
stress and systemic inflammation and enhancing monocyte adhesion to the endothelium [24–26].
Described alterations may induce either arterial stiffening or early atherosclerotic changes or both.
For example, endothelial dysfunction is considered a key event in the initiation of atherosclerotic
process [27], yet it also leads to “functional” stiffening of arteries, as a continuous NO release by
endothelium contributes to the functional regulation of arterial elasticity [28], aimed to adapt peripheral
conduit artery mechanics to changes in blood flow.
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3. Insulin Resistance

Insulin resistance, a primary biochemical abnormality in T2DM, is associated with a metabolic
and CV cluster of disorders (central obesity, high blood pressure, dyslipidemia, hyperinsulinemia),
each of which is an independent risk factor for CVD. Several prospective studies have demonstrated
that insulin resistance, as assessed by various techniques, is related to CVD in both non-diabetic and
diabetic subjects, independently of established risk factors. In the population of San Antonio Heart
Study followed-up for 8 years, the risk of CVD events increased across quintiles of the homeostasis
model assessment of insulin resistance (HOMA-IR) [29]; the association between HOMA-IR index and
CVD was demonstrated also in a general population of the Bruneck Study, followed-up for 15 years [30].
In the elderly population of Uppsala, insulin resistance, as measured by the gold-standard method of
euglycaemic insulin clamp, predicted coronary heart disease over a 10-year period [31].

Insulin receptors are present in endothelial cells, vascular SMCs and macrophages, yet the
question whether the vascular insulin receptors contribute directly to the vascular pathology of
metabolic insulin resistance is still open [32,33]. Insulin resistance has been shown to be associated
with decreased synthesis/release of NO and enhanced generation of reactive oxygen species [34–37],
as well as with an excessive free fatty acids release from adipose tissue. Increased circulating levels
of free fatty acids may impair endothelial function [35–37] and induce a low-grade inflammation
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(through activation of nuclear factor kB) [36,37] (Figure 1). Hyperinsulinemia augments hepatic
very-low-density lipoproteins synthesis, increases cholesterol transport/synthesis in cultured arterial
SMCs, stimulates the proliferation of arterial SMCs, augments collagen synthesis and turns on multiple
genes involved in inflammation [8,9,38–40].

4. Vascular Biomarkers

Diabetes-related vascular impairment can be already detected in a preclinical phase through
vascular biomarkers. A “biomarker” was defined by the National Institutes of Health as a
“characteristic that is objectively measured and evaluated as an indicator of normal biological processes,
pathogenic processes, or pharmacologic responses to a therapeutic intervention” [41]. Therefore,
biomarkers can be used to monitor the burden of subclinical disease in order to apply preventive
measures, and they also enable to assess the response of subclinical disease to preventive/therapeutic
interventions. Vascular biomarkers may be particularly informative, as they are capable to detect
subclinical structural or functional impairment in different vascular beds [42]. Endothelial function,
carotid intima-media thickness (CIMT) and arterial stiffness are the biomarkers more frequently used
in the assessment of CV risk.

5. Endothelial Function

The endothelium regulates vascular homeostasis through number of vasoactive molecules, and
a loss of normal endothelial function is believed a key event in the initiation of the atherosclerotic
process [43]. Endothelial function can be measured by different techniques, yet the most widely applied
technique is brachial artery flow-mediated dilation that allows appraising the endothelial function in a
noninvasive way without the use of pharmacologic stimuli [44]. Due to its technical complexity and
methodological shortcomings [42], this method is predominantly a research tool used to study the role
of different risk factors in atherosclerotic process and to monitor the effect of therapeutic interventions.

Number of clinical studies have demonstrated an impaired endothelium-dependent vasodilation
in conduit or resistance vessels of T2DM patients [45–47]; this impairment was related to
plasma glucose, glucose levels fluctuation, HbA1c and insulin resistance [48–50], low-density
lipoprotein size [46], serum concentration of AGEs [51], endothelial oxidative stress [52] and chronic
inflammation [53]. Endothelial dysfunction seems to precede the development of diabetes, as impaired
endothelium-dependent vasodilation was observed in healthy non-diabetic subjects who have a first
degree relative with T2DM [47], as well as in subjects with impaired glucose tolerance [47,48].

6. CIMT and Plaque Presence

CIMT is a combined measure of tunica intima and tunica media and is measured by
high-resolution ultrasound in different segments of extracranial carotid tree as the distance between
the intima-luminal and the medial-adventitial interfaces. CIMT and carotid plaques are considered
surrogate measures of atherosclerosis, and have been shown to be associated with CV risk factors
and CV outcomes [54,55]. Increased CIMT reflects very early atherosclerotic changes, whereas
plaque presence indicates more advanced atherosclerotic process. Both CIMT and plaques can
be measured during a single ultrasound examination and provide complementary prognostic
information. Indeed, the American Society of Echocardiography consensus statement specified that
carotid-artery ultrasonography for CV disease risk prediction should be based on a thorough scan of
the extracranial carotid tree to detect the presence of plaques, followed by the measurement of CIMT
in the common carotid artery (CCA) [56]. New advances in ultrasound, like accurate semi-automatic
radiofrequency-based CIMT measurement [57] and 3-D-based plaque volume estimation [58], might
further improve the accuracy, reproducibility and interpretation of carotid measures, and thus refine
their predictive value [42].

T2DM patients have higher CIMT (on average by 130 µm), higher prevalence of carotid plaques
and higher plaque volume as compared to controls [59–61], and CIMT and carotid plaque prevalence
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have been shown to be associated with fasting plasma glucose levels, glucose fluctuation or HbA1c,
both in non-diabetic and in diabetic populations [62–66]. Within T2DM patients, a 1 SD difference in
fasting glucose (3.2 mmol/L) was associated with a 26-µm thicker CIMT [64], and each 1% increase in
HbA1c or each year of T2DM duration were associated with a 35% or 33% increased odds of a thicker
CIMT in CCA or in bulb, respectively [65]. However, increase in plasma glucose levels is only a part of
more complex metabolic impairment, and the association between CIMT and glucose exposure should
be adjusted for other components of metabolic syndrome, like obesity, hypertension and dyslipidemia.
Indeed, recent data from a large population-based study have shown that neither fasting glucose,
nor 2-h glucose, nor HbA1c were associated with CIMT when adjusted to sex, age, hypertension and
waist circumference [67]. This observation supports the premise that plasma glucose is a risk factor for
atherosclerosis, but probably of minor importance than traditional risk factors or other components of
metabolic syndrome [8,9].

Studies evaluating the impact of insulin resistance and fasting plasma insulin levels on carotid wall
thickness are not conclusive, probably due to differences in the methods used for insulin resistance
estimation, differences in population studied and different adjustment for possible confounders.
In the Atherosclerosis Risk in Communities (ARIC) study, fasting insulin levels were associated
to mean CIMT, however, the model was not adjusted for abdominal obesity and triglycerides [68].
In the Insulin Resistance Atherosclerosis Study (IRAS), insulin sensitivity was negatively associated
with CIMT, and this effect was partly explained by traditional CV risk factors, glucose tolerance and
adiposity [69]. In the Malmo study, the association between HOMA-IR index and CIMT in non-diabetic
subjects was fully explained by established cardiovascular risk factors, above all by hypertension [70],
and in the Salzburg Atherosclerosis Prevention program in subjects at High Individual Risk (SAPHIR)
study [71], the relationship between HOMA-IR index and carotid atherosclerosis was mostly dependent
on the clustered expression of the components of the metabolic syndrome. Finally, in a healthy
European population of the Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC)
study, the association between lower insulin sensitivity as measured by euglycemic hyperinsulinemic
clamp and CIMT was observed only in men, and was mediated by circulating free fatty acids and
adipocytokines [72]. In the women of the RISC study, CIMT was independently associated with fasting
plasma glucose levels. These results imply that insulin resistance per se has no strong influence on
carotid atherosclerosis, and that its effect on carotid wall is mediated by other metabolic, cellular and
hemodynamic abnormalities related to the insulin resistance syndrome and diabetes, like dyslipidemia,
free fatty acids, adipocytokines, chronic inflammation and hypertension [72–75].

It should be considered that increased CIMT in diabetic patients might also reflect adaptive
arterial remodeling in response to altered mechanical stimuli [76,77]. T2DM patients have increased
large artery stiffness, diameter and pulsatile load [77–79], and these changes may lead to increase
in circumferential wall stress and pulsatile strain. Previous works have demonstrated a mutual
adjustment between carotid wall thickness and luminal diameter aimed to maintain wall stress within
homeostatic targets [80,81], as well as an independent relationship between CIMT and local pulse
pressure [82], confirming the contribution of chronic cyclic stretching to arterial remodeling [83].

7. Arterial Stiffness

The aorta and large arteries transform the pulsatile flow generated by ventricular contraction into
a continuous flow at the periphery. This cushioning function depends on the mechanical properties of
the arterial wall that are mainly determined by the composition and organization of ECM. Arterial
stiffening is characterized by degenerative changes of ECM (elastin fatigue fracture, collagen deposition
and cross-linking), but also by alterations of vascular endothelial cells and SMCs. Diabetes may induce
arterial stiffening through number of mechanisms related both to hyperglycemia and insulin resistance
(Figure 1).

Multiple approaches to arterial stiffness assessment are now available for clinical use. Regional
arterial stiffness estimates the propagation speed of the arterial pulse wave (pulse wave velocity,
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PWV) and is measured directly, as a ratio of distance between two measurement points divided by
the time required for the pressure wave to travel this path. Carotid-femoral PWV (Cf-PWV) reflects
above all the aortic stiffness and represents a gold standard for arterial stiffness measurement [84].
Brachial-ankle PWV (Ba-PWV) measures a pulse wave propagation speed over a longer arterial
length including also muscular segments; this method is being primarily used in Asian countries.
Local arterial stiffness, as assessed by radiofrequency-based ultrasound, describes the changes in
arterial diameter/volume during the cardiac cycle for the corresponding change in distending pressure
(i.e., pulse pressure) [85]. In large European populations, normal and reference values according
to age and blood pressure were established for Cf-PWV [86], and according to age and sex for
local carotid and femoral distensibility [87,88]. These reference values are essential for the correct
interpretation of stiffness measure in the individual subjects, as arterial distensibility is strongly
age- and pressure-dependent, and the age-related increase in stiffness may differ between men and
women [85]. Diabetes is supposed to accelerate the natural aging process of the arterial tree, i.e.,
to induce more pronounced and earlier stiffening than expected for a given age [89,90]. Furthermore,
a greater age-related stiffening of the aorta was described in diabetic women as compared to diabetic
men [91], and this finding is in agreement with the observation that diabetes negates the protective
effect of female sex and confers a greater relative risk in women than in men [2,92].

A predictive value of arterial stiffness for CVD has been clearly demonstrated. In a large
meta-analysis, CVD events increased by 30% per 1 SD increase in log Cf-PWV [93], and in a recent
prospective study, local stiffness of carotid and femoral artery was independently associated with CV
events and all-cause mortality [94]. A large body of evidence has also demonstrated the association
between diabetes, arterial stiffness and CV risk [6]. In the Hoorn study, in the Asklepios study and in
a number of smaller studies, T2DM patients had significantly higher Cf-PWV or local carotid PWV
as compared to healthy controls [77–79,95,96]. An increase in the indices of local carotid stiffness
paralleled the increase in Cf-PWV in the Hoorn study [79] but not in the Asklepios study [78],
suggesting that the impact of diabetes may differ in different parts of arterial tree [97]. Some
data indicate that increased large artery stiffness appears already in prediabetic conditions. In a
treatment-naïve and mostly “healthy” population from the ADDITION-Leicester cohort, Cf-PWV was
increased in individuals with impaired fasting glucose or impaired glucose tolerance as compared
to those with normal glucose metabolism, and the increase was identical to that of individuals with
newly diagnosed T2DM [98]. These data are in line with the observation that increased Cf-PWV is an
independent predictor of CV and overall mortality both in patients with T2DM and in subjects with
impaired glucose tolerance, and that in both groups the mortality risk doubled when compared to
controls [99].

Numbers of studies have also described the association between glycemic control, insulin
resistance and arterial stiffness. In the ARIC study, indices of carotid stiffness increased with fasting
plasma glucose, insulin and HbA1c [100,101], and in the Cardiometabolic Risk in Chinese Study,
Cf-PWV increased with HbA1c [102]. In a middle-aged population of the Malmo Diet and Cancer
study, fasting glucose, HOMA-IR index and HbA1c, together with waist circumference, triglycerides
and HDL cholesterol were all predictors of Cf-PWV after a follow-up of 17 years [103]. In T2DM
patients, stiffness of carotid artery was independently related to insulin sensitivity, measured by
euglycemic-hyperinsulinemic clamp, and to duration of diabetes [104], as well as to HbA1c [77].
Ba-PWV was independently and positively associated with fasting plasma glucose, with one-hour
post-challenge glucose or with HOMA-IR index in general population, in the pre-diabetic subjects, and
in non-diabetic hypertensive subjects [105–109]. Finally, a recent study in middle-aged subjects free of
CVD demonstrated the relationships of Cf-PWV with HOMA-IR index (direct) and telomere length
(inverse), and suggested that insulin resistance linked with chronic inflammation can enhance telomere
shortening (a marker of cellular senescence), and thus induce accelerated vascular aging [110].

The association between arterial stiffness and CV events or all-cause mortality can be explained,
at least partly, by the adverse hemodynamic effect of arterial stiffening. In physiologic conditions,
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there is a stiffness gradient from proximal, distensible elastic arteries to distal, muscular arteries, which
contributes to the wave reflection phenomenon. In a stiff arterial tree, the speed of propagation of
the arterial pulse through the aorta is increased, and the increased speed of the forward traveling
wave implies an earlier reflection of backward traveling wave from the periphery. Thus, the backward
waves arrives to ascending aorta in systole instead of in diastole, and this shift in timing leads to an
augmentation of aortic systolic blood pressure and pulse pressure and to a decrease in diastolic coronary
perfusion pressure [111]. As a result, left ventricular afterload increases, together with myocardial
workload, myocardial mass and oxygen demand, and diastolic coronary perfusion pressure decreases
together with myocardial oxygen delivery. Moreover, the stiffness gradient between proximal elastic
arteries and more distal muscular arteries decreases, and therefore, increases the transmission of
pressure to the microcirculation that may be already damaged by diabetic microvascular disease.

8. Conclusions

A great amount of data demonstrates that hyperglycemia and insulin resistance activate number
of mechanisms triggering the structural and functional changes in the arterial wall, which are likely to
contribute to accelerated vascular aging and increased CV risk in T2DM. Clinical data evaluating the
association between impaired glucose metabolism and vascular biomarkers of atherosclerosis suggest
that hyperglycemia and/or insulin resistance per se had only a minor impact on atherosclerotic process
when compared to traditional risk factors. On the other hand, accelerated arterial stiffening seems
a hallmark of impaired glucose metabolism, and aortic stiffness results an independent predictor
for CV and overall mortality not only in patients with T2DM but already in subjects with impaired
glucose tolerance. Moreover, T2DM is associated with other metabolic and systemic abnormalities, like
atherogenic dyslipidemia, hypertension and obesity that may cause atherosclerosis, arterial stiffening
or both. Vascular biomarker are valuable in the diabetes research; they may help in identifying the
mechanisms through which T2DM affects the vascular wall and induces CV complications, and they
can be used to test the effect of therapeutic/life-style interventions on preclinical atherosclerosis and
arterial stiffening. The clinical value of vascular biomarkers in CV risk estimation of diabetic patients
is still under discussion. It should be considered that not every diabetic patient has the same metabolic
phenotype, i.e., carries the same spectrum of metabolic abnormalities. Therefore, the assessment of
vascular age by means of vascular biomarkers might provide an integrated insight on diabetes-related
vascular impairment of each patient and facilitate a personalized approach to the prevention and
treatment. Finally, recent evidence suggests that childhood and adolescence are particularly vulnerable
periods of life to the effects of cardiometabolic risk and later development of atherosclerosis and
diabetes [112]. Screening of children and adolescents at high cardiometabolic risk (obese, off-springs
of diabetic parents) and assessing the impact of lifestyle interventions on vascular biomarkers might
help to mitigate CV complications in adulthood [113,114].
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