
BiDAl: Big Data Analyzer for Cluster Traces?

Alkida Balliu, Dennis Olivetti, Ozalp Babaoglu, Moreno Marzolla, Alina Ŝırbu

Department of Computer Science and Engineering, University of Bologna
Mura Anteo Zamboni 7, 40126 Bologna, Italy
{alkida.balliu, dennis.olivetti}@studio.unibo.it

{ozalp.babaoglu, moreno.marzolla, alina.sirbu}@unibo.it

Abstract. Modern data centers that provide Internet-scale services are
stadium-size structures housing tens of thousands of heterogeneous de-
vices (server clusters, networking equipment, power and cooling infras-
tructures) that must operate continuously and reliably. As part of their
operation, these devices produce large amounts of data in the form of
event and error logs that are essential not only for identifying problems
but also for improving data center efficiency and management. These
activities employ data analytics and often exploit hidden statistical pat-
terns and correlations among different factors present in the data. Un-
covering these patterns and correlations is challenging due to the sheer
volume of data to be analyzed. This paper presents BiDAl, a prototype
“log-data analysis framework” that incorporates various Big Data tech-
nologies to simplify the analysis of data traces from large clusters. BiDAl
is written in Java with a modular and extensible architecture so that dif-
ferent storage backends (currently, HDFS and SQLite are supported),
as well as different analysis languages (current implementation supports
SQL, R and Hadoop MapReduce) can be easily selected as appropriate.
We present the design of BiDAl and describe our experience using it
to analyze several public traces of Google data clusters for building a
simulation model capable of reproducing observed behavior.

1 Introduction

Modern Internet-based services such as cloud computing, social networks, on-
line storage, media-sharing, etc., produce enormous amounts of data, not only in
terms of user-generated content, but also in the form of usage activity and error
logs produced by the devices implementing them. Data centers providing these

? This is an author-generated version of a paper published and copyrighted by
Gesellschaft für Informatik e.V. (GI). The copyright holder grants the authors the
right to republish this work. Please cite as: Alkida Balliu, Dennis Olivetti, Ozalp
Babaoglu, Moreno Marzolla, Alina Ŝırbu, BiDAl: Big Data Analyzer for Cluster
Traces, in E. Plödereder, L. Grunske, E. Schneider, D. Ull (editors), proc. INFOR-
MATIK 2014 Workshop on System Software Support for Big Data (BigSys 2014),
September 25–26 2014, Stuttgart, Germany, Lecture Notes in Informatics (LNI) –
Proceedings, Series of the Gesellschaft für Informatik (GI), Volume P-232, pp. 1781–
1795, ISBN 978-3-88579-626-8, ISSN 1617-5468

ar
X

iv
:1

41
0.

13
09

v1
 [

cs
.D

C
]

 6
 O

ct
 2

01
4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80265648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

services contain tens of thousands of computers and other components (e.g.,
networking equipment, power distribution, air conditioning) that may interact
in subtle and unintended ways, making management of the global infrastructure
far from straightforward. At the same time, services provided by these huge in-
frastructures have become vital not only to industry but to society in general,
making failures extremely costly both for data center operators and their cus-
tomers. In this light, monitoring and administering data centers become critical
tasks. Some aspects of management, like job scheduling, can be highly auto-
mated while others, such as recovery from failures, remain highly dependent on
human intervention. The “holy grail” of system management is to render data
centers autonomous, self-managing and self-healing; ideally, the system should
be capable of analyzing its state and use this information to identify performance
or reliability problems and correct them or alert system managers directing them
to the root causes of the problem. Even better, the system should be capable
of anticipating situations that may lead to performance problems or failures,
allowing for proactive countermeasures to steer the system back towards desired
operational states. Needless to say, these are very challenging goals [1].

Given the size of modern data centers, the amount of log data they produce
is growing steadily, making log management itself technically challenging. For
instance, a 2010 Facebook study reports 60 Terabytes of log data being produced
by its data centers each day [2]. For live monitoring of its systems and analyzing
their log data, Facebook has developed a dedicated software called Scuba [3] that
uses a large in-memory database running on hundreds of servers with 144 GB of
RAM each. This infrastructure needs to be upgraded every few weeks to keep up
with the increasing computational power and storage requirements that Scuba
generates. Log analysis falls within the class of Big Data applications: the data
sets are so large that conventional storage and analysis techniques are not appro-
priate to process them. There is a real need to develop novel tools and techniques
for analyzing logs, possibly incorporating data analytics to uncover hidden pat-
terns and correlations that can help system administrators avoid critical states,
or to identify the root cause of failures or performance problems.

Numerous studies have analyzed trace data from a variety of sources for dif-
ferent purposes, but typically without relying on an integrated software frame-
work developed specifically for log analysis [4–6]. This is partially due to the sen-
sitive nature of commercial log trace data prohibiting their publication, which in
turn leads to fragmentation of analysis frameworks and difficulty in porting them
to traces from other sources. One isolated example of an analysis framework is
the Failure Trace Archive Toolkit [7], limited however to failure traces. Lack of
a more general framework for log data analysis results in time being wasted by
researchers in developing software for parsing, interpreting and analysing the
data, repeatedly for each new trace [7].

In this paper we describe the Big Data Analyzer (BiDAl), a prototype soft-
ware tool implementing a general framework, designed for statistical analysis
of very large trace data sets. BiDAl integrates several built-in storage types
and processing frameworks and can be easily extended to support others. The

BiDAl prototype is publicly available through a GNU General Public License
(GPL) [8]. We illustrate the actual use of BiDAl for analyzing publicly-available
Google cluster trace data [9] in order to extract parameters for a cluster simu-
lator which we have implemented.

The contributions of this work are several fold. We first present the novel
architecture of BiDAl resulting in extensibility and ease of use. BiDAl incorpo-
rates several advanced Big Data technologies to facilitate efficient processing of
large datasets for data analytics. We then describe our experience with BiDAl
when used to extract workload parameters from Google compute cluster traces.
Finally, we describe a simulation model of the Google cluster that, when instan-
tiated with the parameters obtained through BiDAl, is able to reproduce a set
of behaviors very similar to those observed in the traces.

The rest of the paper is organized as follows. We provide a high level overview
of the framework followed by a detailed description of its components in Sec-
tion 2. The framework is applied to characterize machines and workloads in a
public Google cluster trace, and used in the development of a cluster simulator in
Section 3. We discuss related work in Section 4 and conclude with new directions
for future work in Section 5.

2 The Big Data Analyzer (BiDAl) prototype

2.1 General overview

BiDAl can import raw data in CSV format (Comma Separated Values, the typ-
ical format of trace data), and store it in different backends according to the
user’s preference. In the current prototype two backends are supported: SQLite
and Hadoop File System (HDFS), the latter being particularly well suited for
handling large amount of data using the Hadoop framework. Other backends can
easily be supported, since BiDAl is based on a modular architecture that will be
described in the next section. BiDAl uses a subset of the SQL language to handle
the data (e.g., to create new tables or to apply simple filters to existing data).
SQL queries are automatically translated into the query language supported by
the underlying storage system (RSQLite or RHadoop).

BiDAl also has the ability to perform statistical data analysis using both
R [10] and Hadoop MapReduce [11, 12] commands. R commands are typically
applied to the SQLite storage, while MapReduce to the Hadoop storage. How-
ever, the system allows mixed execution of both types of commands regardless
of the storage used, being able to switch between backends (by exporting data)
transparently to the user. For instance, after a MapReduce operation, it is pos-
sible to analyze the outcome using R; in this case, the software automatically
exports the result obtained from the MapReduce step, and imports it to the
SQLite storage where the analysis can continue using R commands. This is par-
ticularly useful for handling large datasets, since the volume of data can be
reduced by applying a first processing step with Hadoop/MapReduce, and then
using R to complete the analysis on the resulting (smaller) dataset.

2.2 Design

Fig. 1: UML diagram of BiDAl classes.

BiDAl is a modular application designed for extensibility and ease of use. It
is written in Java, to facilitate portability across different Operating Systems,
and uses a Graphical User Interface (GUI) based on the standard Model View
Controller (MVC) architectural pattern. The View provides a Swing GUI, the
Model manages different types of storage backends, and the Controller handles
the interaction between the two. Figure 1 outlines the architecture using the
UML class diagram.

The Controller class connects the GUI with the other components of the soft-
ware. The Controller implements the Singleton pattern, with the one instance
accessible from any part of the code. The interface to the different storage back-
ends is given by the GenericStorage class, that has to be further specialized by
any concrete backend developed. In our case, the two existing concrete storage
backends are represented by the SqliteStorage class to support SQLite, and the
HadoopStorage class, to support HDFS. Neither the Controller nor the GUI el-
ements communicate directly with the concrete storage backends, but only with
the abstract class GenericStorage. This simplifies the implementation of new
backends without the need to change the Controller or GUI implementations.

The user can inspect and modify the data storage using a subset of SQL; the
SqliteStorage and HadoopStorage classes use the open source SQL parser Akiban
to convert the queries inserted by users into SQL trees that are further mapped
to the native language (RSQLite or RHadoop) using the Visitor pattern. The
HadoopStorage uses also a Bashexecuter that allows to load files on the HDFS
using bash shell commands. A new storage class can be implemented by providing
a suitable specialization of the GenericStorage class, including the mapping of
the SQL tree to specific commands understood by the backend. Although the
SQL parser supports the full SQL language, the developer must define a mapping
of the SQL tree into the language supported by the underlying storage; this often

limits the number of SQL statements that can be supported due to the difficulty
of realizing such a mapping.

2.3 Functionality

The typical BiDAl workflow consists of three steps: instantiation of a storage
backend (or opening an existing one), data selection and aggregation and data
analysis. For storage creation, BiDAl is designed to import CSV files into an
SQLite database or to a HDFS file system, depending on the type selected.
Except for the CSV format, no other restrictions on the data type exist, so the
platform can be easily used for data from various sources, as long as they can
be viewed as CSV tables. Even though the storages currently implemented are
based on the the concept of tables (stored in a relational database by SQLite and
CSV files by Hadoop), in the future, other storage types can be supported by
BiDAl. Indeed, Hadoop supports HBase, a non-relational database that works
with <key, value> pairs. Since Hadoop is already supported by BiDAl, a new
storage that works on this type of non-relational databases can be easily added.

Fig. 2: Screenshot of the BiDAl analysis console displaying R commands.

Selection and aggregation can be performed using queries expressed using a
subset of SQL. At the moment, the supported statements are SELECT, FROM,
WHERE and GROUP BY. For the SQLite storage, queries are executed through

the RSQLite library of the R package (R is used quite extensively inside BiDAl,
and executing SQLite queries through R simplified the internal structure of
BiDAl as we could reuse some internal software components). For the Hadoop
backend, GROUP BY queries are mapped to MapReduce operations. The Map
function implements the GROUP BY part of the query, while the Reduce func-
tion deals with the WHERE and SELECT clauses. We used RHadoop as a
wrapper so that we can access the Hadoop framework through R commands.
This allows the implementation of Map and Reduce functions in R rather than
Java code.

Data analysis can be performed by selecting different commands in the spe-
cific language of the storage and applying them to the selected dataset. There
is a common set of operations provided by every storage. However it is possible
to concatenate operations on different storage backends since BiDAl can auto-
matically export data from one backend and import it on another. Therefore
it is possible to use a MapReduce function on an SQLite table, or execute a R
command on a HDFS store. This requires that the same data is duplicated into
different storage types so, depending on the size of the dataset, additional storage
space will be consumed. However, this operation does not generate consistency
issues, since log data does not change once it is recorded.

Using R within BiDAl BiDAl provides a list of pre-defined operations, imple-
mented in R, that can be selected by the user from a graphical interface (see
Figure 2 for a screenshot and Table 1 for a full list of available commands). When
an operation is selected, an input box appears asking the user to provide the
parameters needed by that specific operation. Additionally, a text box (bottom
left of Figure 2) allows the user to modify on the fly the R commands to be
executed.

All operations are defined in an external text file, according to the following
BNF grammar:

<file> ::= <command name> <newline> <number of parameters> <newline>

<list of parameters> <newline> <command code>

<list of parameters> ::= <parameter description> <newline>

<list of parameters> | <empty>

<command code> ::= <text> | <command code> <parameter>

<command code> | <empty>

<parameter> ::= ’$PAR’ <number of the parameter> ’$’

New operations can therefore be added quite easily by simply adding them
to the file.

Using Hadoop/MapReduce with BiDAl BiDAl provides also a list of Hadoop/MapReduce
commands that allow to distribute computation across several machines. Usu-
ally, the Mapper and Reducer functions are implemented in Java, generating

R command Description

get column Selects a column.

apply 1Col Applies the desired function to each element of a column.

aggregate Takes as input a column to group by; among all rows
selects the ones that satisfies the specified condition; the
result obtained is specified from the function given to the
third parameter.

difference between rows Calculates the differences between consecutive rows.

filter Filters the data after the specified condition.

exponential distribution Plots the fit of the exponential distribution to the data.

lognormal distribution Plots the fit of the lognormal distribution to the data.

polynomial regression Plots the fit of the n-grade polynomial regression to the
data in the specified column.

ecdf Plots the cumulative distribution function of the data in
the specified column.

spline Divides the data in the specified column in n intervals
and for each range plots spline functions. Also allows to
show a part of the plot or all of it.

Table 1: List of some R commands implemented by BiDAl.

files that need to be compiled and then executed. However, BiDAl abstracts
from this approach by using the RHadoop library which handles MapReduce
job submission and permits to interact with Hadoop’s file system HDFS using R
functions. Once the dataset of interest has been chosen, the user can execute the
Map and Reduce functions already implemented in RHadoop or create new ones.
Again, the MapReduce functions are saved in an external text files, using the
same format described above, so the creation of new commands does not require
any modification of BiDAl. At the moment, one Map function is implemented in
BiDAl, which groups the data by the values of a column. The Reduce function
counts the elements of each group. Other functions can be added by the user,
similar to R commands.

3 Case study

The development of BiDAl was initially motivated by the need to process large
data traces of compute clusters, such as those publicly released by Google [9].
The ultimate goal was to extract workload parameters from the traces in order
to instantiate a simulation model of the compute cluster capable of reproducing
the most important features observed in the real data. The simulation model,
then, can be used to perform “what-if analyses” by exploring different scenar-
ios where the workload parameters are different, or several types of faults are
injected into the system. In this section we first describe the use of BiDAl for
analyzing the Google traces, and then present the structure of the simulation
model instantiated with the parameters obtained from the analysis phase.

3.1 Workload Characterization of the Google Cluster

R command Parameter type Parameter value

get column column number 2

filter condition t[[1]]<11000.

log histogram column number, log step, log axis 1, 0.06, xy

Table 2: Commands used to generate Figure 3b.

(a) RAM requested by tasks. Values are
normalized by the maximum RAM avail-
able on a single node in the Google cluster.

(b) Number of tasks per job

Fig. 3: Examples of distributions obtained with BiDAl.

To build a good simulation model of the Google cluster, we needed to extract
some information from the traces. The data consist of a large amount of CSV
files containing records about job and task events, resources used by tasks, task
constraints, etc. There are more than 2000 files describing the workload and
machine attributes for over 12000 cluster nodes, reaching a total compressed size
of about 40 GB. In total, over 1.3 billion records are available. We used BiDAl to
extract the arrival time distribution of each job, the distribution of the number
of tasks per job, and the distributions of execution times of different types of
tasks (e.g., jobs that successfully completed execution, jobs that are killed by
the users, and so on). These distributions are used by the Job Arrival entity of
the simulation model to generate jobs into the system. Additionally, we analyzed
the distribution of machines downtime and of the time instants when servers are
added / removed from the pool.

Some of the results obtained with BiDAl are shown in the following (we are
showing the actual plots that are produced by our software). Figure 3a shows the
the amount of RAM requested by tasks, while Figure 3b shows the distribution
of number of tasks per job.

To generate the graph in Figure 3b, we first extracted the relevant informa-
tion from the trace files. Job and task IDs were required, therefore we generated a
new table, called job task id, from the task events.csv files released by Google [9].
The query generation is automated by BiDAl which allows for simple selection
of columns using the GUI. Since the DISTINCT clause is not yet implemented
in BiDAl, we added it manually in the generated query. The final query used
was:
SELECT DISTINCT V3 AS V1,V4 AS V2 FROM task_events

where V3 is the job id column while V4 represents the task id.On the result-
ing job task id table, we execute another query to estimate how many tasks each
job has, generating a new table called tasks per job:
SELECT V1 AS V1, COUNT(V2) AS V2 FROM job_task_id GROUP BY V1

Three R commands were used on the tasks per job table to generate the
graph. The first extracts the second column (job id), the second filters out some
uninteresting data and the third plots the result. The BiDAl commands used
are shown in Table 2.

The analysis was performed on a computer with 16 GB of RAM, a 2.7 GHz
i7 quad core processor and a hard drive with simultaneous read/write speed of
60 MB/s. For the example above, importing the data was the most time con-
suming step, requiring 11 minutes to load 17 GB of data into the SQLite storage
(which may be influenced by the disk speed). However, this step is required only
once. The first SQL query took about 4 minutes to complete, while the second
query and the R commands were almost instantaneous.

In Figure 4 we tried to fit the time between consecutive machine update
events (i.e., events that indicate that a machine has changed its list of resources)
with an exponential distribution; the four standard plots for the goodness of fit
show that the observed data is in good agreement with the fitted distribution.

Cumulative distribution functions (CDFs) have also been obtained from the
data and fitted with sequences of splines, in those cases where the density func-
tions were too noisy to be fitted with a known distribution. For instance, Fig-
ure 5a shows the distribution of CPU required by tasks while Figure 5b shows
machine downtime, both generated with BiDAl. Several other distributions were
generated, similar to CPU requirements, to enable simulation of the Google clus-
ter: RAM required by tasks; Tasks priority; Duration of tasks that end normally;
Duration of killed tasks; Tasks per job; Job inter-arrival time; Machine failure
inter-arrival time; Machine CPU and RAM.

3.2 Cluster Simulator

We built a discrete-event simulation model of the Google compute cluster cor-
responding to that from which the traces were obtained, using C++ and Om-
net++. According to the information available, the Google cluster is basically

Fig. 4: Machine update events, fitted with an exponential distribution. The left
panels show the density and cumulative distribution functions, with the lines
representing the exponential fitting and the bars/circles showing real data. The
right panels show goodness of fit in Q-Q and P-P plots (straight lines show
perfect fit).

a large batch system where computational tasks of different types are submit-
ted and executed on a large server pool. Each job may describe constraints
for its execution (e.g., a minimum amount of available RAM on the execution
host); a scheduler is responsible for extracting jobs from the waiting queue, and
dispatching them to a suitable execution host. As can be expected on a large
infrastructure, jobs may fail and be resubmitted; moreover, execution hosts may
fail and be temporarily removed from the pool, or new hosts can be added. The
Google trace contains a list of timestamped events such as job arrival, job com-
pletion, activation of a new host and so on; additional (anonymized) information
on job requirements is also provided.

(a) CPU task requirements (b) Machine downtime

Fig. 5: Examples of CDFs fitted by sequences of splines, obtained with BiDAl.
The circles represent the data, while the lines show the fitted splines.

The simulation model, shown in Figure 6, consists of several active and pas-
sive interacting entities. The passive entities (i.e., those that do exchange any
message with other entities) are Jobs and Tasks. A task represents a process in
execution, or ready to be executed; each task has an unique ID and the amount
of resources required; a Job is a set of (likely dependent) tasks. Jobs can ter-
minate either because all their tasks complete execution, or because they are
aborted by the submitting user.

The active entities in the simulation are those that send and receive messages:
Machine, Machine Arrival, Job Arrival, Scheduler and Network. The Machine
entity represents an execution node in the compute cluster. Machine Arrival and
Job Arrival generate events related to new execution nodes being added to the
cluster, and new jobs being submitted, respectively. These arrival processes (as
they are called in queueing theory) can be driven by the real trace logs, or by
synthetic data generated from user-defined probability distributions that can
be identified using BiDAl. The Scheduler implements a simple job scheduling

Fig. 6: Architecture of simulation model.

mechanism. Every time a job is created by the JobArrival entity, the scheduler
inserts its tasks in the waiting queue. For each task, the scheduler examines which
execution nodes (if any) match the task constraints; the task is eventually sent
to a suitable execution node. Note that the scheduling policies implemented by
the Google cluster allow a task with higher priority to evict an already running
task with lower priority; this eviction priority mechanism is also implemented
in our simulator. Finally, the Network entity is responsible for simulating the
message exchanges between the other active entities.

3.3 Trace-Driven Simulation of the Google Cluster

We used the parameters extracted from the traces to instantiate and run the
simulation model. From the the traces, it appeared that the average memory
usage of the Google machines is more or less constant at 50%. According to
Google, the remaining memory on each server is reserved to internal processes.
Therefore, in the simulation we also set the maximum available memory on each
server at half the actual amount of installed RAM.

The purpose of the simulation run was to validate the model by comparing
the real traces with simulator results. Four metrics were considered: number of
running tasks (Figure 7a), completed tasks (Figure 7b), waiting tasks (ready
queue size, Figure 7c) and evicted tasks (Figure 7d). All plots show the time
series extracted from the trace data (green lines) and those produced by our
simulator (red lines), with the additional application of exponential smoothing
to reduce transient fluctuations. The figures show a very good agreement between
the simulation results and the actual data from the traces.

(a) Number of running tasks. (b) Number of tasks completed.

(c) Number of tasks waiting. (d) Number of tasks evicted.

Fig. 7: Simulation and real data for four different metrics.

4 Related work

With the public availability of the two Google cluster traces [9], numerous anal-
yses of different aspects of the data have been reported. These provide general
statistics about the workload and node state for such clusters [5, 6, 13] and iden-
tify high levels of heterogeneity and dynamicity of the system, especially in
comparison to grid workloads [14]. However, no unified tool for studying the
different traces were introduced. BiDAl is one of the first such tools facilitating
Big Data analysis of trace data, which underlines similar properties of the public
Google traces as the previous studies. Other traces have been analyzed in the
past [15, 16, 4], but again without a dedicated tool available for further study.

BiDAl can be very useful in generating synthetic trace data. In general syn-
thesising traces involves two phases: characterising the process by analyzing
historical data and generation of new data. The aforementioned Google traces
and log data from other sources have been successfully used for workload charac-
terisation. In terms of resource usage, classes of jobs and their prevalence can be
used to characterize workloads and generate new ones [17, 18], or real usage pat-
terns can be replaced by the average utilization [19]. Placement constraints have
also been synthesized using clustering for characterisation [20]. Our tool enables
workload and cloud structure characterisation through fitting of distributions
that can be further used for trace synthesis. The analysis is not restricted to
one particular aspect, but the flexibility of our tool allows the the user to decide
what phenomenon to characterize and then simulate.

Recently, the Failure Trace Archive (FTA) has published a toolkit for analysis
of failure trace data [7]. This toolkit is implemented in Matlab and enables anal-
ysis of traces from the FTA repository, which consists of about 20 public traces.
It is, to our knowledge, the only other tool for large scale trace data analysis.
However, the analysis is only possible if traces are stored in the FTA format in
a relational database, and is only available for traces containing failure informa-
tion. BiDAl on the other hand provides two different storage options, including
HDFS, with transfer among them transparent to the user, and is available for any
trace data, regardless of what process it describes. Additionally, usage of FTA
on new data requires publication of the data in their repository, while BiDAl
can be used also for sensitive data that cannot be made public.

Although public tools for analysis of general trace data are scarce, several
large corporations have reported building in-house applications for analysis of
logs. These are, in general, used for live monitoring of the system, and analyze
in real time large amounts of data to provide visualisation that helps operators
make administrative decisions. While Facebook use Scuba [3], mentioned be-
fore, Microsoft have developed the Autopilot system [21], which helps administer
their clusters. This has a component (Cockpit) that analyzes logs and provides
real time statistics to operators. An example from Google is CPI2 [22] which
monitors Cycles per Instruction for running tasks to determine job performance
interference. This helps in deciding task migration or throttling to maintain high
performance of production jobs. All these tools are, however, not open, apply
only to data of the corresponding company and sometimes require very large

computational resources (e.g. Scuba). Our aim in this paper is to provide an
open research tool that can be used also by smaller research groups that have
more limited resources.

5 Conclusions

In this paper we presented BiDAl, a framework that facilitates use of Big Data
tools and techniques for analyzing large cluster traces. BiDAl is based on a
modular architecture, and currently supports two storage backends based on
SQlite and Hadoop; other backends can be easily added. BiDAl uses a subset
of SQL as a common query language that is automatically translated to the
appropriate commands supported by each backend. Additionally, data analysis
using R and Hadoop MapReduce is possible.

We have described a usage example of BiDAl that involved the analysis of
Google trace data to derive parameters to be used in a simulation model of
the Google cluster. Distributions of relevant quantities were easily computed us-
ing our tool, showing how this facilitates Big Data analysis even to users less
familiar with R or Hadoop. Using the computed distributions, the simulator
produces results that are in good agreement with the observed data. Another
possible usage of the platform is for application of machine learning tools for
predicting abnormal behavior from log data. At the moment, BiDAl can be used
for pre-processing and initial data exploration; however, in the future we plan to
add new commands to perform this type of analysis directly. Both usage exam-
ples could provide new steps towards achieving self-* properties for large scale
computing infrastructures in the spirit of Autonomic Computing. In its current
implementation, BiDAl is useful for batch analysis of historical log data, which
is important for modeling and initial training of machine learning algorithms.
However, live log data analysis is also of interest, so we are investigating the
addition of an interface to streaming data sources to our platform. Future work
also includes implementation of other storage systems, especially to include non-
relational models. Improvement of the GUI and general user experience will also
be pursued.

References

1. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Computing Surveys (CSUR) 42(3) (2010) 1–68

2. Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy,
R., Liu, H.: Data warehousing and analytics infrastructure at facebook. Proceed-
ings of the 2010 international conference on Management of data - SIGMOD ’10
(2010) 1013

3. Abraham, L., Allen, J., Barykin, O.: Scuba: diving into data at facebook. Pro-
ceedings of the VLDB Endowment 6(11) (2013) 1057–1067

4. Chen, Y., Alspaugh, S., Katz, R.H.: Design Insights for MapReduce from Di-
verse Production Workloads. Technical Report, University of California Berkeley
UCB/EECS-2 (2012)

5. Liu, Z., Cho, S.: Characterizing Machines and Workloads on a Google Cluster. In:
8th International Workshop on Scheduling and Resource Management for Parallel
and Distributed Systems (SRMPDS). (2012)

6. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and Dynamicity of Clouds at Scale : Google Trace Analysis. In: ACM Symposium
on Cloud Computing (SoCC). (2012)

7. Javadi, B., Kondo, D., Iosup, A., Epema, D.: The Failure Trace Archive: Enabling
the comparison of failure measurements and models of distributed systems. Journal
of Parallel and Distributed Computing 73(8) (2013)

8. Balliu, A., Olivetti, D., Babaoglu, O., Marzolla, M., Ŝırbu, A.: Bidal source code
(2014) Download from http://cs.unibo.it/~sirbu/bidal.zip.

9. Wilkes, J.: More Google cluster data. Google research blog (Novem-
ber 2011) Posted at http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.
10. R Development Core Team: R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria. (2008) ISBN
3-900051-07-0.

11. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on. (May 2010) 1–10

12. Dean, J., Ghemawat, S.: Mapreduce: A flexible data processing tool. Communi-
cations of the ACM 53(1) (January 2010) 72–77

13. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards under-
standing heterogeneous clouds at scale : Google trace analysis. Carnegie Mellon
University Technical Reports ISTC-CC-TR(12-101) (2012)

14. Di, S., Kondo, D., Cirne, W.: Characterization and Comparison of Google Cloud
Load versus Grids. In: International Conference on Cluster Computing (IEEE
CLUSTER). (2012) 230–238

15. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An Analysis of Traces from a
Production MapReduce Cluster. In: 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing. Number December (2010)

16. Chen, Y., Ganapathi, A., Griffith, R., Katz, R.: The Case for Evaluating MapRe-
duce Performance Using Workload Suites. 2011 IEEE 19th Annual International
Symposium on Modelling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (July 2011) 390–399

17. Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards Characterizing
Cloud Backend Workloads : Insights from Google Compute Clusters. Sigmetrics
performance evaluation review 37(4) (2010) 34–41

18. Wang, G., Butt, A.R., Monti, H., Gupta, K.: Towards Synthesizing Realistic Work-
load Traces for Studying the Hadoop Ecosystem. In: 19th IEEE Annual Inter-
national Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). (2011) 400–408

19. Zhang, Q., Hellerstein, J.L., Boutaba, R.: Characterizing Task Usage Shapes in
Google’s Compute Clusters. In: Proceedings of the 5th International Workshop on
Large Scale Distributed Systems and Middleware. (2011)

20. Sharma, B., Chudnovsky, V., Hellerstein, J.L., Rifaat, R., Das, C.R.: Modeling
and Synthesizing Task Placement Constraints in Google Compute Clusters. In:
2nd ACM Symposium on Cloud Computing (SoCC). (2011) 3:1–3:14

21. Isard, M.: Autopilot: automatic data center management. ACM SIGOPS Operat-
ing Systems Review 41(2) (2007) 60–67

22. Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.: CPI 2 :
CPU performance isolation for shared compute clusters. In: Proceedings of the 8th
ACM European Conference on Computer Systems, ACM (2013) 379–391

