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EARLY STRUCTURAL REASONING. GENTZEN 1932

ENRICO MORICONI

Dipartimento di Filosofia

Abstract. This paper is a study of the opening section of Gentzen’s first publication of 1932,
Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, a text which shows
the relevance of Hertz’s work of the 1920’s for the young Gentzen. In fact, Gentzen borrowed from
Hertz the analysis of the notion of consequence, which was given in terms of the rules of thinning
(Verdünnung) and cut (Schnitt) on sequents (there called “sentences”(Sätze)). Moreover, following
Hertz again, he also judged it necessary to justify the forms of inference of the system by providing a
semantics for them, so that it became possible to make precise the informal notion of consequence,
and to show that the inference rules adopted are correct and sufficient.

§1. Introduction. Gentzen’s first published paper, Über die Existenz unabhängiger
Axiomensysteme zu unendlichen Satzsystemen,1 has recently been stimulating an increas-
ing attention.2 One of the reasons is that, besides witnessing the relevance of Hertz’s
work for the young Gentzen, it allows us to know that “structural reasoning” predates the
formulation of Natural Deduction and Sequent Calculus. By structural reasoning I mean
reasoning based on structural rules which affect the way formulas are arranged in conse-
quence relations expressed by sequents, without reference to their internal articulation by
means of logical connectives and quantifiers. This means that moving to Sequent Calculus,
though strictly linked to difficulties encountered in the attempt to get the Hauptsatz within
the framework of Natural Deduction, was anyway a step which extended a perspective
already present in Gentzen’s work.3

The paper is organized as follows. Sections 2 and 3 outline the main features of Gentzen’s
system: the notation he uses and the characterization provided for the notions of inference,
proof, and consequence. It is moreover recalled how he defined, with respect to this sys-
tem, the soundness and completeness notions. In Section 4 we present Gentzen’s original
proof of the completeness theorem, and some points useful for its theoretical completion.

Received: July 21, 2014.
1 See Gentzen (1932).
2 Many interesting insights into this paper of Gentzen’s are for instance provided in Schroeder-

Heister (2002), Franks (2010), Franks (2013), and Tennant (2015). The paper Tennant (2015)
contains also remarkable generalizations to cases not considered by Gentzen, as to sentences
with empty antecedent or succedent, and to consequences of infinite sets of sentences.

3 In this paper I will deal only with the first of the three sections Gentzen’s article consists of. This
is a somewhat autonomous section which is devoted to provide a fully general account of the
notion of “following by logic”; an account which was meant to be independent of what the
elements of a sentence are and of any analysis of the structure of the sentences involved. As a
result of the choice to focus on this topic, I do not touch upon the issue that the title of Gentzen’s
paper alludes to, namely “the existence of independent axiom systems for infinite systems of
sentences”.
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In Section 5 we present a proof of the completeness theorem which exploits mainly
semantic tools, and an alternative proof of Gentzen’s normal form theorem that was just
mentioned as a possibility in Gentzen’ paper. In the last Section 6 we try in conclusion to
place Gentzen’s completeness theorem within his general proof-theoretic framework.

§2. Sentences. In Gentzen (1932) Gentzen refers to systems of sentences. A sentence,
a notion which of course predates the notion of sequent, is a finite string of elements of the
form4

u1u2 . . . un → v

“Elements” can be understood in various ways: as events, as elements in proper set the-
oretical terms, as properties, and as propositions, in the sense of (the propositional vari-
ables of the) propositional calculus. Gentzen stresses that his remarks do not depend on
any of these informal interpretations (inhaltliche Deutungen), but refer just to the formal
structure of the sentences. Anyway, here we will refer to the last interpretation, so that
the reading of the previous sentence is: “If the propositions u1, u2, . . . , un (which are
the antecedents) are true, then the proposition v (which is the succedent) is also
true”. The sets of antecedent(s) and succedent cannot be void, and the succedent must
always be a singleton. A sentence with only one antecedent element is called linear.
A system of finitely many elements is called a complex and is denoted by a capital letter:
K, L, M, . . . Therefore, a sentence can also be written as K → v , and the set-theoretical
interpretation entails that writing KL, or Ku, or uK we have to understand their set-
theoretical union. If the succedent of a sentence is identical with one of the antecedents,
then the sentence is called trivial; and a linear trivial sentence is called a tautologous
sentence.

§3. Inference and proof. Sentences can be arranged in tree-like structures to form
proofs by applying one of the following forms of inference, called Thinning, or Weakening
(Verdünnung), and Cut (Schnitt):

L → v
ThinML → v

L → u Mu → v
CutLM → v

Left and right premisses of the Cut are called, respectively, Lower and Upper sentences.5

M may be empty, but u is assumed not to occur in M. Note that two more structural rules
are hidden in the set-theoretical understanding of the elements of a sentence: Contraction
and Interchange.

The restriction imposed on the Upper premise of the Cut rule could seem puzzling, given
the set-theoretical interpretation of the (antecedents of) sentences. It is however dictated by
the will to save that precise formal structure of the rule. In fact, if u occurs in M then the
set-theoretical interpretation would produce the following inference schema

L → u M{u}u → v
Cut

LM{u} → v

4 In this paper we adopt Gentzen’s notation, even though it diverges from the one used nowadays.
Moreover, I chose to quote directly from the German text; the English translation (from Szabo,
1969, sometimes with minor changes) is anyway provided in the footnotes.

5 We will call them also Lower and Upper premises.
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in which the contexts are not preserved, since M [= M{u}u] occurs in the Upper premise,
but not in the conclusion.6 Moreover, if u occurs in M, then the conclusion of the Cut could
be obtained from its Upper premise simply by an application of Thinning

M{u}u → v
ThinML → v

so that the two inference rules would not be fully independent from each other.
As regards the notion of “proof”, it is to be stressed that Gentzen properly does not

define this notion but rather the notion

“proof” of a “sentence” from other “sentences”

by stating that

Unter einem Beweis eines Satzes q aus den Sätzen p1, . . . , pn (n ≥ 0)
verstehen wir nunmehr eine geordnete Anzahl von Schlüssen (d.h. Ver-
dünnungen und Schnitten), deren letzer q als Konklusion besitzt, und in
der jede Prämisse entweder zu den p gehört oder tautologisch ist, oder
mit einer vorangehenden Konklusion übereinstimmt7 (Gentzen, 1932,
p. 331).8

Immediately after the definition, Gentzen remarks that he considers tautologous sentences
as proved even though this constitutes an exception to the given definition. Thus, Identity
must be added as a further (maybe improper) inference rule, since tautologous sentence
of the form u → u are allowed to occur in proofs as top sentences.9 What is surpris-
ing, especially if compared with Gentzen’s later work, is that in this paper he rates it
necessary to justify the forms of inference of the system by providing a semantics for
them, so that it becomes possible to show that, “informally interpreted, they are correct
and sufficient”. Building on Hertz’s approach, Gentzen supplies an exact definition for the
vague (unklar) notion of consequence (Folgerung) by stating that if K is the complex of
all (finitely many) elements occurring in the sentences p1, ..., pn, q, then to assert that
q is a consequence of p1, ..., pn means that for every subset Kf of K, if Kf satisfies the
sentences p1, ..., pn , then Kf satifies also q.10 In turn, to say that a complex satisfies a
sentence p means that it either does not contain all antecedent elements of p, or alterna-
tively, it contain all of them and also the succedent of p.11 On this basis, the previously

6 Here, by writing M{u} we mean of course that the element u has been cut from the complex M.
7 [By a proof of a sentence q from the sentences p1, . . . , pn (n ≥ 0) we shall henceforth mean

an ordered succession of inferences (i.e., thinnings and cuts) arranged in such a way that the
conclusion of the last inference is q, and such that every premiss either belongs to the p’s or is a
tautology, or coincides with the conclusion of an earlier inference.]

8 As usual, in this case we will write: p1, . . . , pn � q.
9 Improper since a formal proof must always contain at least one proper rule application, so that a

formal proof of u → u would be
u → u
u → u .

10 As usual, the consequence relation will be denoted by writing: p1, . . . , pn |� q. As stressed
in Schroeder-Heister (2002), Gentzen makes it explicitly clear that, when considering the
question of whether p1, ..., pn |� q, the underlying domain of elements comprises just the
elements occurring in p1, ..., pn, q. In the terminology of logic programming, this corresponds
to considering the (propositional) Herbrand universe as a basis.

11 Thus, a sentence u1, . . . , un → w gets its natural reading as the formula (u1 ∧ . . . ∧ un) ⊃ w.
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reminded exception to the definition of proof gets immediately its justification: in fact,
any complex satisfies a tautologous sentence. Note that only tautologies can occur as
top sentences in a proof, and not also trivial sentences even though they share of course
the same semantic justification. The reason is that this way Thinning would be a built-
in feature of the system, making the presence of the rule superfluous. From the premise
L → v of an application of Thinning, we could in fact obtain its conclusion ML →
v by an application of Cut in which a(n appropriate) trivial sentence occurs as Upper
sentence:

L → v Mv → v CutLM → v

It seems therefore likely that the reason for not allowing the cut element to occur in the
context of the Upper premise and for permitting that only tautologous sentences may occur
in proofs as top sentences is to provide a thorough analysis of the notion of consequence
singling out its most elementary components.

Finally, Gentzen proceeds to state and prove the soundness and completeness of the
chosen forms of inference. Before considering the proof of the completeness theorem,
it is convenient to retrace Gentzen’s steps giving special attention to the terms he em-
ploys. Gentzen speaks of “informal interpretation” (inhaltlich Deutung) when he refers
to sentences, inference schemata and proofs, whereas he denotes as “vague” (unklar)
the notion of consequence (Folgerung). So, in order to be able to show the equivalence
between the formally specified notion “being provable from” and the informal notion
“being a consequence of”, he needs to provide an exact definition of the latter notion.
This is what he accomplishes following Hertz’s road, and interpreting as propositions
(Aussagen) the elements a sentence is made of. On this basis, the questions of the in-
formal soundness and completeness can be formally expressed as follows: p1, ..., pn � q
iff p1, ..., pn |� q. At the root, however, the two questions continue to be “informal”
since depending on a particular interpretation of the elements constituting the involved
sentences.

§4. The (semantic) completeness theorem. After having proved, in Satz 1, the sound-
ness of his system of rules with respect to the adopted semantics, Gentzen deals with the
more challenging task of its completeness. What makes the proof of the completeness
theorem remarkable is the fact that it is provided by proving, in Satz 2, a stronger result
which (together with the soundness theorem) yields a normal form theorem at the same
time.

First, a definition:

DEFINITION 4.1. A proof of a non-trivial sentence q from the sentences p1, . . . , pn, 1 ≤ n,
is a normal proof (in this case we will write p1, ..., pn �n q) if it consists of a series of
applications of Cut followed by a single, terminal application of Thinning.

Concretely, a proof in normal form can be written in the following form:

lr−1

l1
l0 u0

Cutu1 Cut
...

ur−1
Cutur

Thinq
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where 0 ≤ r , and if r = 0 the entire figure becomes

u0
Thinq

In the previous proof figure each step

li ui
ui+1

always denotes a Cut with li for its Lower premise, ui for its Upper premise, and ui+1
for its conclusion. The Lower premise of a Cut must always be a sentence belonging
to {p1, . . . , pn}. It is immediate to see that in such a normal proof no elements other
than those of p1, . . . , pn and q occur. Let us note that in a proof in normal form no
application of Thinning occurs before an application of Cut. Thus, in a normal proof no
element is introduced (by an application of Thinning) just to be eliminated afterwards
(by an application of Cut). In this sense, we can say that a normal proof does not contain
any detour.

Note that the range of Definition 1 is not at all narrowed by the reference to “non-trivial
sentences”. In fact, any trivial sentence K → u, u ∈ K, gets the following obvious one-step
normal proof

u → u
ThinK → u

The strengthened form of completeness proved by Gentzen is embodied in the following

THEOREM 4.2. If a non-trivial sentence q is a “consequence” of the sentences p1, ..., pn,
then there exists a “normal proof” for q from p1, ..., pn. We will write, more concisely,
that if p1, ..., pn |� q then p1, ..., pn �n q.

Proof. Suppose that the sentence q is of the form

L → v

where v /∈ L (otherwise, it would be a trivial sentence).
Gentzen considers the set of sentences p∗ such that:

i) the succedent of p∗ is v

ii) p∗ is not trivial, i.e. v does not occur in the antecedent of p∗

iii) there exists a normal proof of p∗ from p1, ..., pn which does not exploit the rule of
Thinning.

Let’s call this set S.12 Note that q, i.e. the sentence L → v , satisfies both conditions
i) and ii) of the definition of S, and what the theorem aims to state is that it satisfies
also condition iii), i.e. that q ∈ S. The proof proceeds by an indirect argument. It is
assumed that q /∈ S (which, by previous remarks, amounts to assume that there is no
normal proof without Thinning of q from p1, ..., pn). On this basis, and in contradiction
with the main assumption of the theorem, it is then proved that q is not a consequence
of p1, ..., pn .

To this aim, it is necessary to produce a set which is a counter-example to the claim that
q is a consequence of p1, ..., pn ; that is, a set which satisfies each pi ∈ {p1, ..., pn}, but

12 About the set S Gentzen notes only that it is finite, and that any sentence of the set {p1, ..., pn}
which satisfies conditions i) and ii) belongs to S. We will come back to this question later.
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does not satisfy q. The set we are searching for will be defined by induction, through a
sequence of steps, such that each of them adjoins an element to the previous set.13

1. Basis step. Let N0 be L. Note that clearly L ⊆ N0 and v /∈ N0.

2. Inductive step. Assume Nn has been defined. If there exists a p∗ ∈ {p1, ..., pn} s.t.
Nn does not satisfy p∗ and u is the succedent of p∗ (meaning that u /∈ Nn , whereas
the entire antecedent of p∗ is contained in Nn), then Nn+1 will be equal to Nnu.
Nn+1, of course, does satisfy p∗.
Otherwise, Nn+1 will be equal to Nn , and the procedure terminates.

Since there are finitely many sentences p1, ..., pn , the construction terminates after a finite
number of steps producing a sequence of sets, each of them properly included in the
following one, and eventually reaching a certain set, say Nk , which, it is to be shown,
is the set we were searching for. In other words, we have to prove that the set Nk satisfies
any sentence of the set {p1, ..., pn}, but not q. Being q of the form L → v , the last assertion
means that L ⊆ Nk , whereas v /∈ Nk .

Since L = N0 ⊆ Nk , we already know that L is contained in Nk , and all what we have
to show is that v /∈ Nk . Once this is done, we will have proved that Nk does not satisfy q,
in contradiction with the assumption that p1, ..., pn |� q. To this end, the following lemma
is proved:

LEMMA 4.3. For each Ni , i ≤ k, it holds that Ni satisfies all sentences in S, and
v /∈ Ni .14

Proof. The proof is by induction on the construction of Nk .

• Base. Since N0 = L, v /∈ N0, otherwise q, i.e. L → v , would be, against the
hypothesis, a trivial sentence. Moreover, L satisfies any p∗ belonging to S. To
prove this fact, let us assume that there is a p∗ ∈ S, of the form Q → v , such that

L 
|� (Q → v)

which means that

Q ⊆ L, and v /∈ L.

Since the latter fact is no doubt true, and since p∗ is by definition provable from
p1, ..., pn by a normal proof D without Thinning, should Q be a subset of L we
could provide, against the main assumption of the theorem, the following normal
proof of q from p1, ..., pn :

D
...

Q → v
ThinL → v

• Induction step. Let us assume now as induction hypothesis that Ni satisfies any
p∗ ∈ S, and that v /∈ Ni , and let us show that both properties are preserved moving
to Ni+1. If Ni = Ni+1, we are done. If Ni 
= Ni+1, then, by the construction
process, it must be Ni+1 = uNi , for a certain sentence p∗ ∈ {p1, ..., pn} such that

13 As stressed in Schroeder-Heister (2002), the construction used by Gentzen is the fixed point
construction which is now standard in the theory of logic programming.

14 Note that, being L ⊆ Ni , i ≤ k, the latter assertion is what is needed to complete the proof.
Proving that Ni , i ≤ k, satisfies all sentences in S is subsidiary to the main line of argument.
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Ni 
|� p∗ and u is the succedent of p∗. So, p∗ is of the form (O → u), for a certain
O, and p∗ is such that

1. O ⊆ Ni

2. u /∈ Ni

i.e. Ni 
|� (O → u). Moreover,

3. v /∈ Ni

by induction hypothesis on Ni ;

4. v /∈ O
because of 1. and 3. Moreover,

5. u 
= v
otherwise, in fact, (O → u) would be a sentence which i) has v as succedent,
ii) is not trivial (because of 4.), and iii) would be normally provable from
p1, ..., pn without Thinning. That is to say, (O → u) would be, contrary to
the inductive hypothesis on Ni , a sentence of S which is not satisfied by Ni .

6. v /∈ Ni+1
because of 3. and 5., since Ni+1 = uNi .
Fact 6. is the first half of what we had to show. Now we must prove that

Ni+1 satisfies any p∗ ∈ S.

Also this step is accomplished through an indirect argument: so let us as-
sume that there exists a p∗ ∈ S not satisfied by Ni+1. Note, however, that
by the inductive hypothesis on Ni , such p∗ is satisfied by Ni . This sentence
p∗ will be necessarily of the following form:

Pu → v (possibly being P = ∅)

in fact, since p∗ ∈ S, its succedent must be v , and v cannot occur in the
antecedent (otherwise it would be trivial). The latter fact is assured by 5.
(u 
= v), 6. (v 
∈ Ni+1) and

7. Pu ⊆ Ni+1
Fact 7., in turn, depends on the assumption that p∗ is not satisfied by Ni+1;
which means, by definition, that Ni+1 contains the antecedent but not the
succedent of p∗. Moreover, P ⊆ Ni , from which, by 2., it follows:

8. u /∈ P.
Let us now consider the following application of Cut:

O → u Pu → v
CutOP → v

where, we remind, the Lower premise belongs to {p1, ..., pn}, and the Upper
premise to S. As regards the conclusion OP → v we can note that: i) it has
v as succedent; ii) it is not trivial, since v /∈ P, by 6. an 7., and v /∈ O,
by 4; and iii) it has been obtained by a Cut and without Thinning from two
sentences belonging, respectively, to {p1, ..., pn} and to S. Therefore:

9. (OP → v) ∈ S.
But

10. (OP → v) is not satisfied by Ni .
In fact, O ⊆ Ni (by 1.), P ⊆ Ni (since Pu ⊆ Ni+1, and u is the new
element taken into account in the step from Ni to Ni+1), but v /∈ Ni (by 3.).
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Thus, fact 10. is in contradiction with the inductive hypothesis on Ni , i.e.
with the assumption that Ni satisfies any p∗ ∈ S. The contradiction obtained
allows us to state that also Ni+1 satisfies any p∗ ∈ S, and does not contain v .
The proof of the Lemma is now complete, and we can state that the same
holds also for Nk . �

Therefore, Nk satisfies any sentence in {p1, ..., pn} (by construction), but does not satisfy
q (since L ⊆ Nk and v /∈ Nk). And the proof of the theorem, Gentzen’s original proof, is
now concluded. �

4.1. More details. We recall the definitional clauses of the set S: it is the set of sen-
tences p∗ such that:

i) the succedent of p∗ is v;

ii) p∗ is not trivial, i.e. v does not occur in the antecedent of p∗;

iii) there exists a normal proof of p∗ from p1, ..., pn which does not exploit the rule of
Thinning.

Let us first prove that the set S is finite:

LEMMA 4.4. S is finite.

Proof. This fact follows immediately from condition iii) in the definition of S: in fact,
since any Cut makes an element disappear without giving rise to new elements, by using
only Cuts only a finite number of sentences can be obtained from the finite set of sentences
{p1, ..., pn}. Note that to this aim the exclusion of Thinning from the considered inferences
is essential: Thinning would possibly make S an infinite set. �

Let us now prove that the set S is non void:

LEMMA 4.5. S 
= ∅
Proof. First, note that, simply by using tautologous sentences, we can see that any pi ,

i ≤ n, satisfies condition iii). For instance, let pi be of the form E → t , then the following
is a normal proof of pi from p1, ..., pn which does not exploit the rule of Thinning:

E → t t → t
CutE → t

Moreover, some of the p1, ..., pn must satisfy condition i). Otherwise, in fact, we would
get a contradiction with the assumption that p1, ..., pn |� q; i.e. that if a finite subset
of the complex K of all (finitely many) elements of p1, ..., pn, q satisfies the sentences
p1, ..., pn , then it satisfies also L → v . In fact, let K∗ be the subset of K which contains all
the succedents of the premises and the antecedent of q. By the assumptions made, v /∈ K∗,
so that K∗ 
|� q. On the other hand, for any pi , i ≤ n, with antecedent, say, P, it must of
course hold that either K∗ is properly contained in P or P ⊆ K∗. In both cases, K∗ |� pi ,
contradicting our assumption that p1, ..., pn |� q.

As regards condition ii), we stress that at least the premises which have v as succedent
cannot be trivial. Otherwise, in fact, also in this case it would be possible to build a
counterexample, say K∗, to p1, . . . , pn |� q. To give an idea of the procedure that we
can adopt, let us assume that n = 1, so that just one premise occurs. Let us suppose,
besides, that this premise is trivial and has v as succedent. So, it will be something like
Mv → v . Then, let the complex K∗ be the set {M, L}. Of course, the premise Mv → v
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is satisfied by {M, L}, since {M, L} does not contain all antecedent elements of Mv → v .
On the other hand, {M, L} does not satisfy L → v since it contains L but not v . Thus, we
have obtained that, contrary to our assumption, Mv → v 
|� q. In the general case, we can
shape K∗ in an analogous way with respect to other possibly occurring premises which are
trivial and have v as succedent, and we adjust in the obvious way the complex K∗ in order
to satisfy the remaining premises. So, we would get a counterexample to the assumption
that p1, . . . , pn |� q.15 This concludes the proof of the lemma. �

§5. Variations on Gentzen’s proof procedures. It could be interesting to note that it
is possible to devise a (slightly) different proof procedure, which does not go through the
set S. Also in this case we’ll argue by contraposition: we assume that there is no normal
proof of q from p1, ..., pn , then concluding that consequently q is not a consequence of
p1, ..., pn . The countermodel to p1, ..., pn |� q which we exploit is the same set Nk used
by Gentzen,16 but we show, in a sense directly, that in the construction ofNk the succedent
of q cannot be added to the countermodel without thus making possible the existence of a
normal proof of q from p1, ..., pn .

Firstly, we stress that, by construction, Nk satisfies each of the sentences p1, ..., pn .
Therefore, what remains to prove is that Nk does not satisfy q; i. e. that

L ⊂ Nk and v /∈ Nk .

The first half of the claim is guaranteed by the way the set Nk has been defined.
As regards the second half of the claim, we remind that it is obviously satisfied by the
basis of the construction, since we assumed that v /∈ L, which in turn entails that
L 
|� L → v . Therefore, in order to prove the theorem we need to show that the second
half of the claim (i.e., that v /∈ Nk) is preserved along the steps of the construction of the
set Nk .

Speaking from a general point of view, we observe that

• To drive home the point it is necessary that L satisfies any sentence pi , i ≤ n,
which is non-trivial and has v as succedent. Otherwise, in fact, the construction of
Nk would reach a step where v is added to the previous set, so that, contrary to
what we need, we would get that v ∈ Nk .

• Then, if L must satisfy any such pi , it is necessary that the antecedent of such pi is
not completely contained in L (since L does not contain its succedent).

• On the other hand, any trivial pi having v as succedent is no doubt satisfied by L,
since L does not contain the entire antecedent of pi .

That granted, let us now proceed to prove that

v /∈ Nk

Also in this case we will argue by an indirect argument. So, we’ll try to obtain a contradic-
tion by the assumption that v ∈ Nk . In turn, this means of course that in the construction
of Nk there is a certain step j < k where we met a sentence, say (Q → v), which is

15 Note that this argument could not work with respect to a trivial premise of the form Ms → s,
s 
= v , since in this case nothing could rule out the possibility that v ∈ M with the consequence
that the complex {M, L} would satisfy also L → v .

16 We preserve throughtout notations used in Section 4.
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non-trivial, has v as succedent, and it is not satisfied by N j .
17 Since N j 
|� (Q → v),

it holds that Q ⊂ N j and that v 
∈ N j . By construction, N j+1 is then defined as N jv .
Therefore, our next goal is to prove the following lemma:

LEMMA 5.1. There is no j ≤ k such that v ∈ N j .

Proof. In this case we will argue by induction on the construction of Nk .
Base. The set N j we are searching for cannot be L; i.e., j cannot be 0. In fact, this would

mean that L 
|� (Q → v): in this case, in fact, the construction rule would prescribe to add
v , obtaining N0+1 = Lv . Of course, it must be L ⊂ Q or Q ⊆ L.

• In the first case, i. e. if L is properly contained in Q, then, it would hold, contrary
to our assumption, that L |� (Q → v).

• If Q ⊆ L then the following

Q → v
ThinL → v

would be, contrary to the main assumption of the theorem, a normal proof of L → v
from p1, ..., pn .

Induction step. Let us assume now that there exists an i , 0 < i < k, s.t. Ni 
|� Q → v .
Again, this means that Q ⊆ Ni , and v /∈ Ni . Thus, by the production rule we have to
expand Ni obtaining Ni+1 = Niv , and Ni+1 |� Q → v . Of course one of the following
alternatives must hold:

1. Q is properly included in L
2. Q = L
3. L is properly included in Q.

In the first two cases it is easily seen that we would get

Q → v
ThinL → v

so that, contrary to the main assumption of the theorem, a normal proof of L → v from
p1, ..., pn could be constructed.18

Let us consider the last case: L is properly included in Q. Since we tested Q → v at
the step i (> 0), we know that L |� Q → v , and since, by assumption, v /∈ L, this
fact necessarily depends on being L properly contained in Q. On the other hand, since Ni

contains Q, we can assert that the production process has adjoined step by step to L the
elements belonging to Q and not to L. In other words, in the construction process we must
have met finitely many sentences from the set {p1, ..., pn} which are not satisfied by L.
Without any loss of generality, let us assume that these sentences are

s, n → t
r → m

l, k → o,

where, of course, it must hold that t 
= v, m 
= v, o 
= v . Spelling out what this means, we
can state that

17 Note that this fact can happen just once in the production process leading toNk .
18 In the second case, properly, the rule applied would be rather Identity.
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1. L 
|� s, n → t , L 
|� r → m, L 
|� l, k → o,

2. s ∈ L, n ∈ L, r ∈ L, l ∈ L, k ∈ L
3. t 
∈ L, m 
∈ L, o 
∈ L,

4. N1 = Lt , N2 = Ltm, N3 = Ltmo = Q, and lastly

5. N3 
|� Q → v .

It is now possible to construct the following proof

l, k → o

r → m

s, n → t Q → v
Cut

Q{t}sn → v
Cut

Q{tm}rsn → v
Cut

Q{tmo}lkrsn → v

where, we remind, by writing Q{∗} we mean that the element ∗ has been removed from Q.
Now, the previous facts 2. and 3. warrant that writing Q{tmo}lkrsn is the same as writing
Llkrsn, which in turn is the same as writing L. Thus, in conclusion, we have got that,
contrary to our main assumption, there is a normal proof for L → v from p1, ..., pn .

The contradiction we reached allows us to state that there is no j ≤ k such that v ∈ N j ,
and the proof of the lemma is concluded. �

From the lemma follows that

L ⊂ Nk and v /∈ Nk

so that Nk meets the required conditions: it satisfies each of the sentences p1, ..., pn , and
does not satisfy q.

The proof of the theorem is now complete: as requested by the indirect argument,
in fact, starting from the assumption that p1, ..., pn 
�n q, we arrived to prove that
p1, ..., pn 
|� q.

As an easy consequence of the soundness and completeness theorems previously proved,
Gentzen obtains the following normal form result:

Satz 3. Ist ein nicht trivialer Satz q aus den Sätzen p1, . . . , pn beweisbar,
so gibt es einen Normalbeweis für q aus p1, . . . , pn .19

Immediately afterwards, Gentzen adds

Man kann diesen Satz auch ohne den Umweg über den Folgerungsbegriff
direkt gewinnen, indem man einen beliebigen Beweis schrittweise in
einen Normalbeweis umformt. Wir haben den Umweg gewählt, weil er
nicht wesentlich langwieriger ist und wichtige zusätzliche Ergebnisse,
nämlich die Richtigkeit und Vollständigkeit unserer Schlußweisen
lieferte.20

19 [Theorem III. If a nontrivial sentence q is provable from the sentences p1, . . . , pn , then there
exists a normal proof for q from p1, . . . , pn .]

20 [This theorem can also be obtained directly without the detour through the notion of consequence
by transforming any given proof step by step into a normal proof. We have chosen the detour
since it is not essentially more laborious and yet provides us with important additional results,
viz. the correctness and completeness of our forms of inference.]
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Two remarkable points are stressed here by Gentzen, and we will deal with them in turn.
In the first half of the quotation, when speaking of a reduction process to be performed
on a given derivation, in order to transform it in a derivation in normal form, Gentzen of
course hints at the method of shifting down Thinning by permuting application of Cut with
Thinning. We can make this suggestion explicit by proving the normal form theorem in a
purely proof-theoretic way. First, a definition:

DEFINITION 5.2. Let D be a derivation and let ρ be an application of Thinning in D: we
call Order of ρ, say O(ρ), the number of applications of Cut which occur under ρ in D.
The order of the derivation, say O(D), is the sum of the orders of all applications of
Thinning in D.

THEOREM 5.3. If a non trivial sentence q is provable from the sentences p1, . . . , pn, then
there exists a normal proof of q from p1, . . . , pn.

Proof. The proof is by induction on O(D). We consider two cases.

• O(D) = 0. Then the derivation is already in normal form.
• O(D) > 0. Thus, there is at least an application of Thinning, say ρ, which occurs

above an application of Cut. We distinguish two subcases.
[a] The element introduced by ρ is then eliminated by an application of Cut. The

relevant subtree of the derivation D is of the form:

...
t → r

...
u → s

Thinr, u → s
Cutt, u → s

...

We get a new derivation D∗ by removing both the application of Thinning and
Cut, and by inserting a new application of Thinning, say σ , in order to recover the
previous sentence:

...
u → s

Thint, u → s
...

Of course, O(σ ) = O(ρ) − 1, and the same holds for the order of the two deriva-
tions; so, by induction hypothesis, the theorem follows.

[b] The element introduced by the application ρ of Thinning is not eliminated
by a subsequent application of Cut, so that D looks like:

...
t → u

...
u → s

Thinr, u → s
Cutt, r → s

...

We permute applications of Thinning and Cut by obtaining a new derivation D∗ of
the following form:

...
t → u

. . .
u → s

Cutt → s
Thint, r → s
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Calling again σ the new application of Thinning in D∗, we see that O(σ ) =
O(ρ) − 1, and the same holds for the order of the two derivations; so, by induction
hypothesis, also in this case the theorem follows. �

§6. Some remarks. In the second half of the previous quotation Gentzen explains
why he chose the Umweg über den Folgerungsbegriff. In order to properly understand
this passage we remind that a different route was adopted by Gentzen in his thesis. In
Gentzen (1934–1935), in fact, the notion of completeness which shapes Gentzen’s formu-
lation of the N-calculi (and, through the proof of equivalence, also of the L-calculi) is
deployed in terms of their ability to adequately (completely) capture the informally correct
inference-patterns usually associated with each individual logical operator. Consequently,
the completeness question was not something that could be answered by proving (what we
are now accustomed to call) the semantic completeness of a given system of (axioms and)
rules. Coping adequately with this question was a task that Gentzen entrusted to the choice
of (the axioms and) the rules. And, actually, he was confident to have successfully met this
task thanks to the formulation of the N-calculi.

As we have seen, the perspective offered in Gentzen (1932) is completely different. In
this paper Gentzen presents a “formal” definition of derivability and proves its soundness
and completeness with respect to a “formal characterization” of the informal notion of
consequence. Such a procedural difference needs of course some explanation. To this
end, it is first to be stressed again that the elements which constitute the sentences of
Gentzen (1932) bear no logical relation to each other. This bare level of syntactic analysis
is able to disclose just the most general features of the relation of consequence; in a
way—Gentzen emphasizes—which does not depend on what the elements of a sentence
are. So, the aspects by virtue of which sentences follow from one another cannot be the
specific features of the elements of a sentence, and the same holds for the ensuing notion of
consequence. On the other hand, this is reflected in the semantic analysis which Gentzen
borrows from Hertz’s work, which does not provide any distinction in kind between the
complexes that might satisfy a sentence and the parts of that sentence. In other words,
except for identities, no single logical law falls within this kind of analysis, so that no
reference to a realm of logical truths is assumed in Gentzen (1932). And what Gentzen
was confident of, and what he managed successfully to prove, was that an asymmetric
version of the rules which were subsequently called the structural rules of the L-calculi
is able to give a sound and complete description of the most general structural properties
of the consequence relation. Because of the normal form theorem something more can be
said: what Gentzen thought he had proved is that the Cut rule is the formal inference rule
underlying the intuitive consequence relation.21

The matter radically changes when expressions from propositional and quantificational
logic are taken into account. In this case, in fact, the analysis of their mutual logical
relations depends essentially on an accurate inspection of the way their meaning is de-
termined by their form; that is, by the way in which their constituent logical operators
occur. This way a realm of logical truths (that is, of assertions which are true only in virtue
of their logical structure), and of consequence relations among this kind of expressions
is disclosed, and it was impossible to take due account of them by means of the simple
semantic analysis provided by Gentzen in Gentzen (1932). As stressed by Curtis Franks in

21 This feature of Gentzen’s work has been duly emphasized by Curtis Franks in Franks (2010) and
Franks (2013).
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Franks (2010), the lack of interest for the question of the semantic completeness which
Gentzen will exhibit in the thesis stems from the indifference to the kind of semantic
analysis which was required in order to provide an appropriate treatment of the (semantic)
completeness question. Instead of this analysis, Gentzen, in accordance with the main
tendencies of the Hilbert’s School, chose an inferential analysis of the meaning of the
logical operators. Accordingly, as we said, the question of the semantic completeness will
be replaced by the question of warranting that the inferential rules of the system provided
are actually able to capture the way mathematicians use assertions built up from those
operators.22

6.1. Two paradigms at work. Previous remarks are of course pertinent and correct,
but maybe something more (interesting) can be said, concerning a possible change of
framework occurred in Gentzen’s intellectual development. We think that it is worth em-
phasizing that the question which is at the source of soundness and semantic completeness
underwent a significant change in passing from Gentzen (1932) to the thesis. In the former,
we stress again, the point of view is given by a structural reasoning which refers to the
notion of (logical) consequence, and is couched within the framework of Hertz’s calculus
for Satzsysteme (systems of sentences). The latter was devoted to analyse the independence
of axiom systems for systems of sentences, and its interest lays in the interdependen-
cies existing within systems of sentences rather than within sentences themselves. The
objects of (structural) reasoning are sentences, intended as specifications of consequence
relations, and to reason means to take into account one or several sentences with the aim
of getting a new consequence relation, simply thanks to an examination carried out in
terms of their structural features. As we learned from Jan von Plato’s enquiries,23 Gentzen
tried to accommodate within the structural framework of Gentzen (1932) also the logical
meaning. We mean the Logistic Dualistic Classical Calculus LDK, where a broadened and
symmetric set of structural rules were joined by a set of ground sequents intended to cover
the usual logical operators.24 For instance, negation is ruled by the following couple of
ground sequents

¬α, α → and → ¬α, α

Together with a single application of Cut they allow us to get the usual rules for introducing
negation in the antecedent and in the succedent:

→ α, ¬α α, � → �
Cut

� → �, ¬α
and

� → �,α ¬α, α →
Cut¬α, � → �

The LDK-project was characterized by the attempt to recover the logical meaning in
the form of basic, or initial, sequents, each of which deploys a relation of a particular
complex formula to (some of) its subformula(e). Since these specifications are not derived
but declared in the form of specifications, they can only occur as topmost points in a LDK-
derivation. A characterizing feature of LDK is that the Cut rule is obviously not eliminable
with respect to the other rules.

However, the project of LDK was abandoned by Gentzen. Two reasons, basically, seem
to be responsible for this shift. The first one was an inner reason: the ground sequent
method encountered significant difficulties in the case of implication (in the intuitionistic

22 For more details on this subject see also Moriconi (2014).
23 See von Plato (2009) and von Plato (2012).
24 Very interesting remarks on this subject can be found in Arndt & Tesconi (2014).
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version) and with the quantifiers. In the latter case, for instance, it is impossible to formu-
late the Eigenvariable condition in the context of a ground sequent, since it is a condition
not covered by the specification of the relations of a complex formula to its subformula(e),
but concerns the way in which the quantified formula has been derived.

The second reason was an external one: foundational questions coming from the
Hilbertian school —consistency and decidability above all— became predominant in
Gentzen’s investigations. To adequately deal with such topics, Gentzen considered it neces-
sary to take on a radical change of paradigm. The notion of logical consequence of Gentzen
(1932) was Hertzian, hence Aristotelian, in nature. The presence of the Cut rule makes
that notion synthetic: just knowing that a sentence u1u2 . . . un → v was obtained by an
application of Cut does not provide any clue to determine what sentences were used as
premises to infer that sentence. On the other hand, given a collection of sentences, it is
possible to attempt various pairings of sentences from the given set as premises of a Cut
inference in order to obtain new sentences. This is the paradigm of structural reasoning,
which was preserved in the intermediate calculus LDK, where the Cut rule continues to
play a fundamental role. In his thesis Gentzen opted for a different paradigm, which can
be defined analytic, Leibnizian, so to speak, remembering that when Leibniz started to
search for a logic of discovery (logica inveniendi) from within his mastery of Aristotelian
logic, he maintained that a perfect proof for a given sentence should be built by exploiting
only the analysis of the parts occurring in the sentence. Searching for analytic proofs was
the new goal, and Gentzen was able to attain it thanks to the Hauptsatz proved for that
“evolution” of LDK-calculi which is constituted by the LK-calculi. In the latter calculi,
structural reasoning was sharply separated from logical meaning, and the general setting
was purely inferential. The contribution of the Cut rule does no more consist in allowing
to derive the inference rules for the logical operators, but it now just allows to compose
consequence relations without adding further strength to the calculus. This way, the Cut
rule becomes of course eliminable, and Gentzen was able to use the Hauptsatz to obtain
meta-theoretical results which were important for the Hilbertian school, like the decid-
ability of intuitionistic propositional calculus and the consistency of Arithmetic without
induction.25

6.2. Two paradigms intertwined. Anyway, it is really interesting to note that a sort
of trace of the path Gentzen went through survives both in the thesis and in his first
published consistency proof. As for Gentzen (1934–1935), the obvious reference is to the
paragraph 2.2 of Section III, where he says that if one were to place no importance to
the Hauptsatz, as he himself did in Gentzen (1932) and in the intermediate LDK-calculus,
then the LK-calculi could be simplified in several respects by replacing some of the logical
inference figures by suitable ground sequents, which allow us to derive, together with the
Cut rule, the suppressed rules.26

The same mechanism —ground sequents together with (a generalized form of the)
Cut rule— is also working in Gentzen (1936). The framework here is quite different,

25 Interesting and detailed remarks about the origin of sequent calculus in the work of Hertz and
in Gentzen (1932) can be found in the relatively unknown paper Bernays (1965), whose starting
point is the examination of the connections between general consequence relations (in the style
of Tarski papers of 1930) and conditions on sequents.

26 Actually, all the rules are replaceable except ⊃-introduction in the succedent, ∀-introduction in
the succedent, and ∃-introduction in the antecedent; i.e., exactly the rules that disturbed the LDK-
project.
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since Elementary Arithmetic is formalized using a natural deduction calculus in sequent
formulation. However, when approaching the proper definition of the concept of a “re-
duction step on a derivation”, in the paragraph 14.1, Gentzen exploits a modified concept
of derivation. He introduces ground sequents of both mathematical and logical kind. The
latter ones are all sequents of the form α → α plus any sequent of the form α1 ∧ α2 → αi

(0 < i ≤ 2), α, β → α ∧ β, ∀xα(x) → α(t), ¬¬α → α, and α, ¬α → 1 = 2.27 Besides
“Complete Induction”, the inference rules still adopted are the rule for introducing the
universal quantifier, and a new rule concerning negation:

� → φ(a) ∀I
� → ∀xφ(x)

and
�, α → 1 = 2 ¬I

� → ¬α

A new structural rule is then added, the so-called Chain rule (Kettenschluß), which can
be displayed in the following form:

�1 → α1

...
�k → αk

...
�n → αn

K
�i1 . . . �ih → αih

where 1 ≤ n, ih ≤ n, and the sequence �i1 , . . . , �ih contains the antecedent formulas
occurring in the sequent of which αih is the succedent and in the sequents that preceed
that sequent according to the configuration. If the formula αih is a false atomic formula,
then any other false atomic formula may be taken in its place. An alternative formulation,
probably preferred by Gentzen since it displays the inference in a horizontal arrangement,
is the following:

�1 → α1 . . . �k → αk . . . �n → αn
K

�i1 . . . �ih → αih

As we said, the Chain rule is a sort of generalized Cut,28 and it is a very flexible tool:
together with the basic logical sequents, in fact, it allows one to recover the omitted rules
of inference. As instances of this procedure we consider &I , &E , and ∀E :

γ → α δ → β α, β → α&β
K

γ, δ → α&β

� → α&β α&β → β
K

� → β

� → ∀xφ(x) ∀xφ(x) → φ(t)
K

� → φ(t)

It goes without saying that Gentzen’s actual train of thought about such issues is only
a matter of speculation. Trying to explain why Gentzen gave different answers to a seem-
ingly analogous question, we arrived to single out the occurrence of at least two different
paradigms in Gentzen’s investigations. Previous remarks, in fact, seem to suggest that,
for Gentzen, to get purely analytical proofs, obeying the subformula principle, was an

27 We remind that symbols ∨, ⊃, and ∃ are not primitive in Gentzen (1936), but introduced by
definition.

28 Strongly cognate to the Syllogism rule of P. Hertz. Moreover, it is easy to see that all usual
structural transformations –Contraction, Cut, and Weakening– are special cases of the chain rule.
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expedient for meta-theoretical investigations, but not something bonum per se. He devised
also a different paradigm, strictly intertwined with the former, which we called structural
reasoning, and is characterized by the central role played by the Cut rule in accommodating
logical meaning.

What this radical change of paradigm entailed for the question of soundness and
semantic completeness which we are thinking about is that in the thesis its target is no
more the structural reasoning of Gentzen (1932) but the logical meaning governed by the
inferential rules of LK. As we have already suggested, however, Gentzen was not willing
to face the amount of questions connected with the project of establishing a semantics for
quantificational logic, neither he was interested in them. To say it in a nutshell, he was
confident to have solved any adequacy question for such kind of logic by the invention of
the calculi of Natural Deduction.29
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