
 Procedia Computer Science   68  ( 2015 )  163 – 172 

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Institute of Communication and Computer Systems.
doi: 10.1016/j.procs.2015.09.232 

ScienceDirect

HOLACONF - Cloud Forward: From Distributed to Complete Computing,

Automated deployment of a microservice-based

monitoring infrastructure

Augusto Ciuffolettia

aDept. of Computer Science - Univ. of Pisa, P.le B. Pontecorvo, Pisa I-56122, Italy

Abstract

We explore the specification and the automated deployment of a monitoring infrastructure in a container-based

distributed system. This result shows that highly customizable monitoring infrastructures can be effectively

provided as a service, and that a key step in this process is the definition of an expandable abstract model for

them.

So we start defining a simple model of the monitoring infrastructure that provides an interface between the

user and the cloud management system. The interface follows the guidelines of Open Cloud Computing Interface

(OCCI), the cloud interface standard proposed by the Open Grid Forum. The definition is simple and generic

and it is a first step towards the definition of a standard interface for Monitoring Services. It allows the definition

of complex, hierarchical monitoring infrastructure by composing multiple instances of two basic components,

one for measurement and another for data distribution,.

We illustrate how the monitoring functionalities that are defined through the interface are implemented as

microservices embedded in containers. The internals of each microservice reflects the distinction between core

functionalities which are bound to the standard, and custom plugin modules.

We describe the engine that automatically deploys a system of microservices that implements the monitoring

infrastructure. Special attention is paid to preserve the distinction between core and custom functionalities, and

the on demand nature of a cloud service.

A proof of concept demo is available through the Docker hub and consists of two multi-threaded Java appli-

cations that implement the two basic components.
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1. Introduction

The steady growth of the computational power of computing devices is driving a similar trend in

virtual resources: as a matter of fact, it is presently possible to implement virtual computers, networks

and hard drives on top of servers with an acceptable loss in performance, but with a tremendous gain

in flexibility. One of the notable effects of this evolution is the raise of the ”cloud computing” hype.

Cloud computing leverages the presence of enterprises with powerful data centers that provide

resources on demand: the provision mechanism relies on virtualization.

We distinguish two different approaches to virtualization:

• one uses the hypervisor technique, and envisions the realization of the whole operating system

stack over a slice of the hardware resource1;

• another uses the lower layers of the running operating system to implement one or more con-
tainers, that are isolated environments where to run an application11.

Both types of virtualization are currently available from public cloud providers, and it is difficult

for the user to determine which one is used. However they exhibit very different features, and they are

indeed oriented to distinct evolutions: the choice between the two approaches is a trade-off between

flexibility and efficiency. The hypervisor technique is less efficient, since it implements the whole OS

stack, but, for the same reason, it is agnostic with respect to the host OS: i.e., you can have a virtual

machine with a Linux operating system running on Windows. Instead the container is layered over

the current OS kernel, and therefore it is far more efficient, but OS dependent.

The difference between the two approaches may be immaterial for the public cloud provider but

the container-based approach is definitely more attractive for the designer that wants to implement

(or develop) a distributed architecture: the limit of adopting a certain OS may be irrelevant, while

performance issues are a key factor.

A container-based approach evolves towards the realization of complex but agile distributed ar-

chitectures, composed of small and specialized services: the microservice approach7 is a promising

design paradigm that is tightly bound to (or merging with) the container technology.

In this perspective it is of great importance the availability of configuration tools for the automated
deployment of containers hosting microservices: this to guarantee that an architecture can be cloned

reliably – for development, testing, and operation. This need has a strong practical impact, and

container technologies (like Docker, that we will consider in this paper) provide a basic tool (the

Dockerfile in our case) that automates the deployment of a new container. The same need arises in

the realm of hypervisor-driven virtualization:Vagrant, for instance, implements this feature with the

Vagrantfile. The automated provision of an infrastructure composed of several microservices is a topic

that has not been explicitly dealt with in the young field of fine grain Service Oriented Architectures
(the term is attributed to Adrian Cockcroft), but there are tools under the cloud computing label that

may fit the purpose: for instance, the aforementioned Vagrantfile may automate the deployment of a

network of virtual machines across several cloud providers.

One fundamental step to obtain an automated deployment of a distributed, container-based in-

frastructure is the formal description of the cloud provision: it is a well studied topic for which

standardization matters. And in fact many standards have been issued by major institutes (like NIST,

DMTF, OGF and other) to allow cross compatibility of cloud provision specifications.

We explore a ground that is between cloud provisioning interfaces and microservice architectures,

focusing on monitoring, and answer the question ”How would you implement an on demand moni-

toring service?”. We define a schema that describes an infrastructure composed of monitoring agents

and probes: it conforms to the OCCI core schema, a standard for cloud interfaces promoted by the

Open Grid Forum. After a formal description, we explain how it is used in practice. In essence,
2
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we propose a proof of concept of a complete solution for the provision of an on demand monitoring

service.

The reference architecture of the monitoring subsystem is composed by two entities: one that

manages data, a sort of proxy, another that produces data. Such two components are simple, yet

extremely variable from application to application: they are the ideal candidates for a micro-service

based architecture. More precisely, the first one is represented as a stand-alone microservice, the

other as a probe that may be embedded in the monitored resource: we do not make any assumption

about the monitored resource, which may be a LAMP server as well as a networking device.

Next we show how the monitoring infrastructure is automatically deployed and configured. In

particular we detail how the applications that implement the monitoring framework specialize their

operation after downloading their description, rendered as a JSON document (the JSON rendering of

OCCI entities is formally defined10) embedded in a web resource.

A prototype has been implemented and it is described in the last section: written in JAVA, it is

designed to be expandable with monitoring tools that may be developed separately, and seamlessly

integrated in the architecture as plugin modules.

The contribution of this paper is the description of all the steps in the design of an on demand
monitoring service based on microservices: from the model that describes the infrastructure to the

engine that deploys the probes. All steps are demonstrated in a proof of concept implementation.

Results can be easely reproduced (and extended) using resources available on the Docker repository.

The design of the plugins that implement metric probes and the management of the measurments falls

outside the scope of the paper, even if the demo includes fully functional examples for the sake of

completeness.

2. A reference architecture for a monitoring infrastructure

According with a widely applied and studied reference architecture5,4,6 we introduce a component

that is specialized in the management (not production) of the measurements, and in a probe, embedded

in other components, that produces and delivers the measurements. In our terminology, we call sensor
the former, and collector the latter.

The collector is a metering application: using appropriate probes it measures the relevant metrics

for the architectural component for which it has a privileged access. For instance, in the domain

of computing infrastructures, we may consider as typical the measurement of the workload for a

processor, of the free space for a storage, of the number of forwarded packets for a networking

device. But the range is unlimited as the number of resources types.

The sensor has a complex functionality. One of its functions is of receiving and processing the

measurements coming from the collectors; in other words the sensor transforms raw metrics into cus-

tom ones. This activity is viewed as a function that takes as input one/more streams of measurements,

and produces one/more streams on the output. As in the case of the probes, the range of functions is

endless: anonymization, averaging, aggregation are related keywords.

Another function of the sensor is the publication of custom measurements, to make them available

to other applications. For instance, the stream may be used to populate an SQL database, or sent to

a dashboard. Again, this kind of functionalities cannot be enumerated, since they strongly depend on

the application environment.

So we conclude that if we want be have a widely applicable reference architecture, we need to be

generic about the measurement techniques, about the way in which data are processed, and how they

are published. The user is in charge to design these functionalities, that should be seamlessly plugged

in the respective component.
3
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Fig. 1. A simple example using the reference architecture . The Sensor App implements a Sensor Resource hosted by a

container. The Collector App implements a Collector Link hosted by the same container of the target resource. Red plugins
implement OCCI Mixins of the indicated types associated with resource or link entities.

In summary, we have a reference architecture composed of one entity, the sensor, and of one

relation, the collector. Their definition is generic, and their operation is specialized by the designer

using appropriate plug-in modules.

There is another relevant concept in the reference architecture and it has to do with communication:

it is the stream of measurements. It is characterized being:

• discrete, as composed by items representing a single measurement

• time-related, since each measurement is significant only if associated with a time reference.

The reference architecture is thus completely defined. An instance of a monitoring architecture

is depicted in figure 1: it is a minimal system composed of a sensor, that averages a stream from

a collector, and sends the output to a dashboard. The collector and the sensor are specialized with

plugins that define their operation.

If we want this architecture to be deployed automatically, we need to formally define a language

for its description: for this we define an extension of a standard interface model.

3. An extension of the Open Cloud Computing Interface

The Open Cloud Computing Interface (OCCI) is a standard for the description of cloud provisions,

and gives the user the tools to define the resources that it wants to be instantiated in the cloud. It plays

a fundamental role in a cloud computing architecture, since it defines how the user submits its requests

and obtains feedback. The existence of a standard for this interface is of paramount importance for

interoperability, and must at the same time be simple, to be easely understood by the user, and flexible,

to allow extension and costumization.

The OCCI model is represented as a UML class diagram where cloud resources and their rela-

tionships are represented as two subtypes of the Entity class: the Resource and the Link, the latter

representing a relationship between two Resources. The simplified diagram is included in figure 2

Using the core model8 entities, a new document can describe further entities fitting specific provi-

sion types: the term used for this document is extension. For instance, an extension exists to represent

an Infrastructure as a Service (IaaS) provision9. In that case three sub-types of the Resource kind

are introduced: one for Compute entities, one for Storage entities, another for Networks. Two link
sub-types are introduced to describe network interfaces, between a compute resource and a network
resource, and for storage/compute relationships.

One fundamental role is played by mixins, another category of the OCCI UML model: they rep-

resent an additional characterization of an already instantiated entity. For instance, in the OCCI-IaaS
4
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Fig. 2. The simplified UML diagram including the core OCCI classes (Resource and Link) and those in the monitoring

extension (Sensor and Collector) .

Attribute name Description
timebase timebase – a date
timestart start time offset – a number of seconds
timestop stop time offset – a number of seconds
period∗ sampling period – a number of seconds
granularity time granularity – a number of seconds
accuracy time accuracy – a number of seconds

Table 1. Sensor attributes (∗ mandatory attributes)

Attribute name Description
period∗ sampling period – a number of seconds
granularity time granularity – a number of seconds
accuracy time accuracy – a number of seconds

Table 2. Collector attributes (∗ mandatory attributes)

extension, an Operating System mixin is used to describe the operating system installed on a given

compute entity.

Our reference architecture for monitoring infrastructures is described as an extension of the OCCI

core model. The sensor is a sub-type of the resource kind: this reflects the intuition that its activity

is independent and distinguished from other activities. It receives raw measurement streams, and

produces in its turn streams of data.

A sensor inherits the attributes of the parent type, the resource, and introduces new specific at-

tributes that indicate the expected sampling rate, and the accuracy of the timing. This latter attribute

makes explicit the real-time nature of the measurement process: for instance, when a sensor attaches

a time-stamp to a measurement, we need to know how accurate is the time-stamp, as well as its

granularity. The resulting list of sensor attributes is in table 1.

The collector is represented as a sub-type of the OCCI link kind: intuitively, it means that a

given sensor monitors a resource. The sub-type of the monitored resource is unrestricted, and thus a

collector may interconnect two sensors: this allows the existence of a proxy sensor, one that receives

measurement streams and forwards them to other sensors.

Like in the case of the sensor, besides inherited attributes we have other attributes that specify

accuracy and expected frequency. The list is in table 2.

Summarizing, with the instantiation of collector links and sensor resources the designer defines

the topology of the monitoring infrastructure. Their functionality is described by mixins, that add

new attributes to those of a sensor or collector instance. We introduce three types of mixins, as sum-

marized in table 3: they are generic mixins, that are further specialized by custom mixins designed

and documented by the provider or by the user.
5
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Mixin name Description
metric mixin for collector links – a probe that performs a measurement
aggregator mixin for sensor resources – a processor that aggregates measurements
publisher mixin for sensor resources – an interface that publishes measurements

Table 3. Mixin types for monitoring

A special role among mixin attributes is played by those that define the endpoints of the streams;

they are described as <name:value> pairs, where the name is used in the mixin specification to

describe the operation of the mixin, and the value is the identifier of a channel: two endpoint attributes

that share the same value are considered as connected through a channel. The specifications of a given

mixin describe how communication is implemented, and the protocol used on the endpoint.

An exhaustive description of the above schema is in the OGF document dedicated to monitoring3.

In figure 3 we show a simple monitoring architecture: the sensor contains three plugins, one for

aggregation and two for publishing, while the collector contains two metric plugins, that implement

the monitoring of the internet connectivity and of the workload of a generic virtual machine.

Using the standard OCCI-JSON syntax10 in table 4 and 5 we give the JSON description of respec-

tively the sensor and the collector. Note how the value of channel attributes is used to specify the data

flow.

4. From the reference architecture to containers

We want to deploy a monitoring infrastructure in a system composed of a number of containers

following a description provided by the user. In this section we illustrate an abstract solution and its

prototype implementation.

We consider that containers are OCCI resources, and that static configuration options, as well as

activities that are dynamically activated inside a container, are represented as OCCI mixins. Contain-

ers are service driven entities, closer to a PaaS than to an IaaS provision model: we consider that

the provision of a service is represented as an OCCI link directed from the user of the service (the

client) to the provider of the service (the server). This is a generalization of the model introduced

in12, which reflects commercial PaaS provisioning.

Coming to the entities that are specific for the monitoring, a sensor is implemented as a container

hosting the sensor application: it is a bus application that implements channels. Mixins for aggrega-

tion and publication are plugged into the sensor application and interconnected using channels.

The collector is implemented as a servlet hosted by a container. It measures the metrics of the

resource implemented by the container and forwards them to the sensor. For instance, a database

(resource) may host a mixin that counts (measures) the number of queries per time interval (metric).

Like the sensor application, the collector application is a bus hosting measurement plugins.

Let us see step by step how a sensor and a collector are deployed.

Fig. 3. A one-resource system with its monitoring: Container B is the monitored resource, Container A is the sensor
6
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{

"id": "urn:uuid:s1111",

"kind": "http :// schemas.ogf.org/occi/monitoring#sensor",

"mixins": [

"http :// example.com/occi/monitoring/publisher#SendUDP",

"http :// example.com/occi/monitoring/aggregator#EWMA"

"http :// example.com/occi/monitoring/publisher#Log",

],

"attributes": {

"occi": {

"sensor": {

"period": 60, "timebase": 1386925386 ,

"timestart": 600, "timestop": 3600,

"networkInterface": "eth1"}

},

"com": {

"example": {

"occi": {

"monitoring": {

"SendUDP" : {"udpAddr":"192.168.5.1:8888","input":"c"},

"EWMA" : {"gain":16,"instream":"a","outstream":"c"},

"Log" : {"filename":"my/log/file","in_msg":"b"}}}}

}

},

"links": ["urn:uuid :2345"]

}

Table 4. JSON description of the sensor in figure 3. The input attribute of the SendUDP publisher mixin, and the outstream

attribute of the SendUDP aggregator mixin are interconnected by the c channel.

The sensor obtains its OCCI description from the user interface. The plugins found in the descrip-

tion are launched as separate threads, and the channels between them are implemented.

The endpoints that receive measurements from the collectors are multiplexed across an input port.
There is a exactly one input port for each collector.

The description of the sensor contains also references to originating OCCI-links (see the links

attribute at the end of the JSON document in table 4), that represent the collectors. Once the sensor

is ready to operate, it downloads the description of the collectors (see the example in table 5) to

discover the monitored resources, and passes them the description of their monitoring activity through

a dedicated configuration port. The sensor application discovers the configuration port by inspection

of the OCCI document that describes the monitored resource.

The collector runs as a separate thread in the monitored container: its presence is configured with

a specific mixin — the metricContainer — that controls the creation of an input port used by the

sensors to pass the descriptions of monitoring activities.

Upon receiving a request across the configuration port, the collector launches the requested metric

mixins as distinct threads. The measurement streams originating from metric threads are multiplexed

across the input port of the sensor: each measurement is tagged with a channel id, and this allows the

demultiplexing of channels on sensor side.

The resulting architecture for the sample monitoring infrastructure is in figure 4. It implements

the monitoring of a plain host, producing two different streams: one that delivers a filtered average

(the filter is an Exponentially Weighted Moving Average, abbreviated with EWMA) of the workload

to a dashboard (in red), another that logs the reachability of a reference host (in green).
7
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{

"id": "urn:uuid :2345" ,

"kind": "http :// schemas.ogf.org/occi/monitoring#collector",

"mixins ": [

"http :// example.com/occi/monitoring/metric#CPUPercent"

"http :// example.com/occi/monitoring/metric#IsReachable"

],

"attributes ": {

"occi": {

"collector ": {" period ": 3 }

},

"com": {

"example ": {

"occi": {

"monitoring ": {

"CPUPercent" : {"out": "a"},

"IsReachable" : {

"hostname ":"192.168.5.2" ,

"maxdelay ":1000 ," out ":"b"

}

}}}}},

"actions ": [],

"target ":" urn:uuid:s1111",

"source ":" urn:uuid:c2222"

}

Table 5. JSON description of the collector in figure 3. The a channel interconnects the out attribute of the CPUPercent mixin

is with the instream attribute of the EWMA mixin in the sensor.

4.1. The prototype

We have implemented a prototype that demonstrates the applicability of the above abstract control

flow. We have used plain Java as the application programming language (a Ruby version is on the

way), and Docker for the containers. OCCI descriptions follow the OGF standard8 and the transport

of OCCI documents is delegated to HTTP. The code is circa 1000 lines of Java, detailed comments

included, and privileges readability to efficiency.

The prototype implements:

• the Docker container that hosts the sensor;

• the servlet associated with the metricContainer mixin, to be run in a generic resource that is

the target of a collector link;

• a small number of plugins, those needed to implement the sample infrastructure in Figure 3

Fig. 4. JSON description of the monitoring system in figure 3
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The channels that connect aggregator and publish mixins within a sensor are implemented as

Unix pipes, while measurements from metric mixins are multiplexed across a TCP connection —

that implements the input port — from the monitored resource (client side) to the sensor (server

side).

The configuration port is implemented as an RMI interface on the monitored resource.

A running version of the prototype is available on the Docker hub as occimon-live1: the inter-

ested reader finds instructions for an on premises deployment of the sample infrastructure used in the

example. The implementation of the proof of concept is not a complex task and can be carried out

without applying to exhotic libraries in a couple of weeks. With limited effort it is possible to add

new plug-ins and a more complex infrastructure.

5. Discussion: open problems and non-problems

We have formally defined an interface for the specification of a monitoring infrastructure as a

system of microservices, and we have prototyped the entities that collaborate for its automatic de-

ployment. The schema is based on the Open Cloud Computing Interface, following the guidelines of

the OCCI monitoring document.

We consider the adherence to a standard as a primary feature, since it warrants that our conclusions

can be effectively reused in other contexts, and may facilitate the convergence to an open and portable

architecture. We immersed our schema in an ecosystem composed of microservices, which is a

rapidly evolving paradigm that may have a strong impact in the design of future distributed systems.

The choice of a classical language and of outdated communication patterns (pipes, TCP Sockets,

RMI) contrasts with the definition of an advanced environment. It is however justified since we

want to suggest an architecture, and not to develop a product: it is therefore pointless for us to

optimize implementation, our first goal being the delivery of readable code. For the same reason

we implemented only the mixins that are strictly needed for the demo: the user is free to add more.

Those included in the demo are examples that are included only for the sake of completeness.

Regarding the sensor/collector schema, one challenging use case is that of a system consisting of

an array of hundredths of micro-servers: the SWARM2 clustering system is an example. Here the

apparent problem is in the definition of the OCCI monitoring infrastructure: one distinct collector for

each micro-server would not solve the problem. However, consider that the same issue would emerge

for the description of the system itself: one distinct OCCI resource for each micro-service would be

prohibitive. We conclude that to address this use case there should be a syntax to express a collection
of similar resources: using that same syntax we might describe a collection of similar collectors, and

convey the monitoring streams across the same sensor.

There are two features that limit the power of the sensor/collector schema: one is that a single col-

lector cannot feed more than one sensor. In other words the output of a collector cannot be multicast to

more than one sensor: this is intrinsic in the fact that a collector is an OCCI link. However a resource

may be the target of several collectors, possibly connected with different sensors: this preserves the

possibility to have multiple monitoring activities (as sensors) attached to the same resource.

Another feature that limits the applicability of our schema is the tight relationship with timing. The

schema is designed to cope with periodic measurements, and it is not prepared to manage (but may

produce) asynchronous alarms. This is our response to the intent of keeping the schema as simple

as possible: asynchronous alarms need a completely different management, and a dedicated scheme

looks more appropriate.

1 https://registry.hub.docker.com/u/mastrogeppetto/occimon-live/
2 https://github.com/docker/swarm
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The time driven approach highlights a delicate issue concerning virtualized environments: clock

accuracy and, in general, real time. In our case, it means how accurate are the time-stamps attached

to measurements, and how precise is the period between measurements. This may or may not be an

issue, and in fact the accuracy attributes are optional in our model: however, when it is the case, clock

accuracy is supported.

In this respect, operating system virtualization, represented in our work with Docker, has a sig-

nificant advantage against the hypervisor approach. In fact, the container shares the same clock with

the hosting machine, and inherits the same characteristics: if the hosting machine is not a virtual ma-

chine in its turn, clock synchronization is obtained with the appropriate accuracy using well known

protocols (like NTP or PTP/IEEE1588). This is not true in the case of hypervisors, and the problem

is actively investigated2.

Our further steps with this work will probably go in the direction of implementing a set of plugins

tailored on a specific use case, suggested by one of the institutes and agencies that are active in the

definition of standards for on-demand cloud monitoring.
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