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Abstract 

In the Carrara Marble Basin (CMB; Apuan Alps, Italy) quarrying has accumulated widespread and 

thick quarry waste, lying on steep slopes and invading valley bottoms. The Apuan Alps are one of 

the rainiest areas in Italy and rainstorms often cause landslides and debris flows. The stability 

conditions of quarry waste are difficult to assess, owing to its textural, geotechnical and 

hydrogeological variability. Therefore, empirical rainfall thresholds may be effective in forecasting 

the possible occurrence of debris flows in the CMB. Three types of thresholds were defined for 

three rain gauges of the CMB and for the whole area: rainfall intensity–rainfall duration (ID), 

cumulated event rainfall–rainfall duration (ED), and cumulated event rainfall normalized by the 

mean annual precipitation–rainfall intensity (EMAPI). 

The rainfall events recorded from 1950 to 2005 was analyzed and compared with the occurrence of 

debris flows involving the quarry waste. They were classified in events that triggered one or more 

debris flows and events that did not trigger debris flows. This dataset was fitted using the logistic 

regression method that allows us to define a set of thresholds, corresponding to different 

probabilities of failure (from 10% to 90%) and therefore to different warning levels. The 

performance of the logistic regression in defining probabilistic thresholds was evaluated by means 
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of contingency tables, skill scores and receiver operating characteristic (ROC) analysis. These 

analyses indicate that the predictive capability of the three types of threshold is acceptable for each 

rain gauge and for the whole CMB. The best compromise between the number of correct debris 

flow predictions and the number of wrong predictions is obtained for the 40% probability thresholds. 

The results obtained can be tested in an experimental debris flows forecasting system based on 

rainfall thresholds, and could have implications for the debris flow hazard and risk assessment in 

the CMB. 

 

Keywords: Probabilistic rainfall threshold; Logistic regression; Debris flow; Human-modified 

landscape; Tuscany; ROC analysis 
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1. Introduction 

The famous marble and a spectacular mountain landscape close to the Versilia coastline make the 

Apuan Alps (Tuscany, Italy) well-known in the world. Here the marble excavation is intense and 

quarrying areas and quarry wastes, named ravaneti, can dominate the landscape. In the Carrara 

Marble Basin (CMB; Figs. 1 and 2) the quarry density is among the highest in the world with at 

least 7 quarries km
−2

, whilst the Apuan and the Italian averages are 0.33 and 0.03 quarries km
−2

, 

respectively (Cortopassi et al., 2008). Marble quarrying and working are sources of income and 

tourist attraction and remains of ancient quarries, excavation techniques and buildings are examples 

of industrial archeology and geosites (D’Amato Avanzi and Verani, 2000). A long-lasting quarrying 

activity can cause environmental and hydrogeological problems because waste materials are 

commonly discharged onto the slopes, without stabilization. At present they cover wide areas and 

often reach and occupy the valley bottoms (Figs. 1 and 2). 

The Apuan Alps are among the rainiest areas in Italy and frequently hit by heavy rainstorms, which 

often induce floods and landslides, sometimes causing damage and casualties (Giannecchini and 

D’Amato Avanzi, 2012). Mass movements and especially debris flows often involve these waste 

materials (Cortopassi et al., 2008). In this context, hazard assessment and early warning systems can 

be helpful in protecting population, workers and factories and reducing the risk. However, a lot of 

information is needed to model the processes leading to instability and to predict the time of failure. 

Various authors assert that the empirical rainfall thresholds can be used in a landslide early warning 

system to forecast the possible occurrence of rainfall-induced landslides (e.g., Chleborad et al., 

2008; Baum and Godt, 2010; Rossi et al., 2012; Vennari et al., 2014; Calvello et al., 2015; Gariano 

et al., 2015; Rosi et al., 2015; Segoni et al., 2015). Hence, a black box approach can help us to 

overcome some difficulties in determining the rainfall thresholds to be applied in warning and civil 

protection activities against quarry waste instability. Historical data on debris flows and related 

damage can allow us to define the rainfall thresholds for the CMB, in terms of duration, cumulated 

event rainfall, intensity, and mean annual precipitation. 
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2. Study area 

This paper focuses on the well-known CMB, where Michelangelo Buonarroti chose the marble for 

his masterpieces and a lot of quarries are working. The CMB is among the most famous and 

precious quarrying sites in the world. It is subdivided into the four Colonnata, Miseglia, Torano and 

Pescina-Boccanaglia sub-basins (Fig. 2). 

The Carrara marble consists of Hettangian limestone, metamorphosed to greenschist facies during 

Upper Oligocene–Upper Miocene. It is part of the Apuan Alps Metamorphic Complex (Paleozoic-

Upper Oligocene), the main tectonic structure of the Apuan Alps (Conti et al., 2004). The Carrara 

marble is a high quality, white or blue-grey ornamental stone, mostly used in sculpture and building 

decoration. Its beauty and many famous masterpieces make this marble very appreciated and 

renowned in the world. The marble exploitation has been documented since Roman times, with 

evidence of pre-Roman activity (Bruschi et al., 2004). In time, quarrying has more and more 

developed, because of increased demand and new developing markets; consequently, the number of 

quarries has greatly increased and the quarry waste has covered more and more vast areas. 

A high frequency of intense rainfalls characterizes the Apuan area (Giannecchini and D’Amato 

Avanzi, 2012): because of shape, altitude (almost 2,000 m a.s.l.) and location close to the sea, the 

Apuan Alps intercept the Atlantic and Mediterranean humid air masses, forcing their lifting, 

adiabatic cooling and condensation in rain. Therefore, the mean annual precipitation (MAP) is 

higher than 3,000 mm (Fig. 3), exceeding 4,000 mm in the rainiest years. 

In the Apuan area very intense rainstorms can trigger shallow landslides and debris flows, which 

threaten the population and may cause great problems (Table 1; D’Amato Avanzi et al., 2004; 

Giannecchini, 2006; Giannecchini and D’Amato Avanzi, 2012). For example, on 19 June 1996, 325 

mm in 4 h and 158 mm in 1 h; and on 23 September 2003, 160 mm in 2 h and 46 mm in 15 min. 

The town of Carrara (about 70,000 citizens) is located along the Carrione Torrent, just downstream 

of the CMB (Fig. 2). The 23 September 2003 rainstorm caused flooding, debris flows, one death 

and severe damage to buildings, roads, quarries and factories, and quarrying was interrupted (Figs. 
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4 and 5). Less intense prolonged rainfalls are sometimes sufficient to induce failures in the Apuan 

area. In November 2000, shallow landslides were triggered by the rainfall of 160 mm in 13 h 

(maximum intensity of 30 mm h
-1

), preceded by a high antecedent rainfall amount – almost 600 mm 

within one month (Giannecchini, 2006). 

The landslides triggered by the Apuan rainstorms are typically those activated by very intense 

rainfall on steep slopes (Cruden and Varnes, 1996; Hungr et al., 2001, 2014). They consist of rapid 

shallow landslides and debris flows, with a width/length ratio typically less than one, usually 

mobilizing the soil covering the bedrock. In spite of the small volume involved, shallow landslides 

and debris flows are extremely destructive, because of their high speed and concentration. The 

materials involved in failures (earth, debris, blocks and trees) usually flow into the riverbeds, 

causing hyperconcentrated flows and debris floods. 

As previously highlighted, in the CMB, human activity has radically changed the natural 

environment, and the geomorphological features are very different from the rest of the Apuan area. 

A huge amount of discharged material is available and the debris flow is an usual type of 

movement. This demands that the rainfall thresholds for triggering debris flows are established, in 

order to prevent and control the risk conditions. 

 

3. Quarry waste features and instability problems 

The quarry waste is the residual material resulting from marble excavation and is formed of angular 

rock fragments, variable in size and mixed with sand and other materials. It has been discharged 

downslope of quarrying areas. An active quarry waste is frequently loaded with new material; shape 

and thickness frequently change, and instability is frequent. When discharge stops, a quarry waste 

becomes inactive and gradually tends to be stabilized. Old or ancient wastes dating back to tens of 

years or centuries ago are generally more stable, due to the bigger size of clasts with respect to 

recent wastes, and to the stabilizing effect of natural compaction and cementation. 
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The evolution of quarrying techniques has led to the modification of the grain size, composition and 

physical-mechanical and hydrogeological properties of the quarry waste (Baroni et al., 2003; 

Cortopassi et al., 2008). Old and ancient quarry dumps are well sorted and coarser, and exhibit 

greater uniformity, while recent or active dumps are poorly sorted and include a greater amount of 

finer materials and sawing residue, named marmettola (a muddy mix of cooling water and fine, 

carbonate clay-rich dust). Recent exploitation and on-site sieving of coarser materials for industrial 

uses (calcium carbonate, filling, etc.) induce a relative increase in finer materials within the quarry 

waste. Then, the texture is complex and highly variable, with boulders, blocks, small fragments and 

finer materials (less than 2 mm). Clast- and matrix-supported levels can be present in the same 

deposit (Fig. 5). Finally, the older quarry waste is more permeable than the recent one, where levels 

of semi-permeable or impermeable marmettola can favor saturation and pore pressure build-up, 

leading to instability. 

Even if the new technologies have improved efficiency in quarrying and reduced the production of 

waste, around 50% of the extracted material still results in waste. In the year 2000, the CMB 

included 167 quarries (90 were active), with a total amount of quarry waste assessed at more than 

80,000,000 tons (Cortopassi et al., 2008, and references therein). At present, the waste material 

covers about 4–5 km
2
 of the CMB (approximately 50% of the whole basin area). Thickness and 

surface of quarry waste are extremely variable in space and time: for example, surface and thickness 

of a large quarry waste in the Torano basin greatly increased and almost doubled, mainly in the last 

20–30 years (Cortopassi et al., 2008). Bedrock morphology and waste thickness are also mostly 

unknown, while the active quarry dumps can quickly change shape and profile for accumulation, 

excavation or mass movements. 

Instability of quarry waste is consequently a present issue, which has also historical roots, linked to 

the above-mentioned evolution of quarrying techniques. Continuous discharge and accumulation of 

material, excavation, slope cutting or road construction leads to overload the waste and/or to exceed 

its friction angle, causing slope instability. However, heavy rainfall, rainstorms and stream erosion 
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are probably the most important triggers of debris flows involving quarry waste and threatening 

population, villages and infrastructures. 

A debris flow usually starts as a planar slide, which quickly disaggregates and becomes a very or 

extremely rapid debris flow, travelling in an erosive channel (Baroni et al., 2000, 2010). A 

contraction mechanism is probably responsible for a reduction of the consistency, and consequently 

of the collapsing and flowing of the saturated material (Ellen and Fleming, 1987; Cruden and 

Varnes, 1996; Iverson et al., 1997). In the CMB the channelized debris flows prevail, while open-

slope debris flows are a minority; travel distance vary between some tens and hundreds of meters. 

In steep riverbeds, saturation of the waste and free water flowing can directly mobilize the deposit, 

triggering channelized debris flows. The latter can travel long distances downstream and reach 

populated areas. These particular mass movements can be classified either as complex, rapid to 

extremely rapid debris slide-debris flows (Cruden and Varnes, 1996), or as extremely rapid, 

saturated debris flows following established channels over a large part of their path (Hungr et al., 

2001). 

This high-risk state needs to be controlled and prevented by means of good practices in the 

quarrying sector and environmental management. In this context, hazard assessment and early 

warning systems can be crucial in protecting the population, workers and factories and reducing the 

risk. However, a lot of information is needed to know the processes leading to instability, apply 

physically based models and predict the time of failure. A complete characterization of quarry 

waste would be very time and money consuming. Therefore, at present the physical and mechanical 

properties of quarry waste are virtually unknown and information is sporadic and incomplete. 

The strength of quarry waste usually depends on the friction angle, unless abundant finer materials 

or cementation provide it with cohesion. The few available data come from literature, back-analysis 

of failed material or design of remedial works (Marachi et al., 1972; Barton and Kjaernsli, 1981; 

Panei et al., 2000; Barton, 2008). Due to the above-mentioned scarcity of data, the stability analyses 
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of the quarry waste in the CMB are rare and at present do not allow a zonation of the stability 

condition of the quarry waste. 

 

4. Rainfall thresholds: state of art 

In the scientific literature, two approaches have been proposed in evaluating the relationship 

between rainfall and landslide occurrence. The first one is based on physical threshold models 

(Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Iverson, 2000; Baum et al., 2010; Bartelletti 

et al., 2015), whereas the second approach relies on the definition of empirical thresholds (Caine, 

1980; Aleotti, 2004; Giannecchini, 2006; Guzzetti et al., 2007, 2008; Cannon et al., 2008, 2011; 

Dahal and Hasegawa, 2008, Brunetti et al., 2010; Saito et al., 2010; Giannecchini et al., 2012; 

Martelloni et al., 2012; Peruccacci et al., 2012; Tien Bui et al., 2013; Segoni et al., 2014a,b; Vennari 

et al., 2014; Zêzere et al., 2015; Melillo et al., 2015; Gariano et al., 2015). Physical threshold 

models require detailed spatial information on the hydrological, lithological, morphological and 

geotechnical characteristics of the materials involved in landsliding, and therefore may be applied 

only in small areas (D’Amato Avanzi et al., 2013b). 

The empirical approach can be obtained in relation to the geographical extent over which the 

rainfall threshold is defined (i.e., global, national, regional or local), and to the type of rainfall 

information used to determine it (Guzzetti et al., 2007, 2008). Rainfall duration (D), cumulated 

event rainfall (E), intensity (I), and antecedent rainfall (AD) are the typically investigated variables. 

Landslide initiation is frequently related to I and D (Caine, 1980; Aleotti, 2004; Giannecchini, 

2006; Guzzetti et al., 2007, 2008; Cannon et al., 2008; Dahal and Hasegawa, 2008; Giannecchini et 

al., 2012). 

Antecedent rainfall, geological and climatic context play important roles in triggering landslides, 

but the rate of water infiltration and its movement below the surface are the key aspects of landslide 

initiation and are considered in physically based, process driven methods (Caine, 1980; Iverson, 

2000; Giannecchini et al., 2007; D’Amato Avanzi et al., 2009; Zizioli et a., 2013 Ma et al., 2014; 
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Rianna et al., 2014; Bordoni et al., 2015). The empirical approach avoids the quantification of the 

parameters required by the physically-based models and allows us to investigate wider areas. 

As highlighted by Cannon et al. (2008), an empirical rainfall threshold is typically obtained by one 

of the three following approaches. The first one is the determination of the lower limit of rainfall 

conditions (e.g., rainfall duration and intensity) above which shallow landslides occurred (e.g., 

Caine, 1980; Godt et al., 2006; Cannon et al., 2008). The thresholds obtained by this limit represent 

the most conservative rainfall conditions (e.g., lower rainfall intensity) for the shallow landslides 

initiation (Staley et al., 2013). The second approach defines the threshold at the upper limit of 

rainfall conditions that did not induce failures (e.g., Cannon and Ellen, 1988; Cannon et al., 2008). 

These thresholds represent a less conservative estimation of triggering conditions (e.g., higher 

rainfall intensity), even if shallow landslides often initiate at lower rainfall intensity (Cannon et al., 

2008). The third approach defines the rainfall thresholds separating rainfall events that triggered 

shallow landslides from events that did not (Wieczorek and Sarmiento, 1988; Larsen and Simon, 

1993; Terlien, 1998; Jakob and Weatherly, 2003; Giannecchini, 2006, 2012, 2014; Frattini et al., 

2009; Staley et al., 2013). This separation process is however difficult; some authors (Chang et al., 

2008; Frattini et al., 2009; Giannecchini et al., 2014) used the logistic regression to define the 

probability that a rainfall of a given duration and intensity triggers a landslide. This method was 

applied in this study. 

 

5. Rainfall events in the study area 

All the main rainfall events occurred in the CMB from 1950 to 2005 were identified and analyzed. 

Unfortunately, no rain gauge of the study area has a continuous record of hourly rainfall for this 

period. Therefore, three rain gauges were considered, located at Fossacava (624 m a.s.l., 1950–

1964), Rif. Belvedere (1,276 m a.s.l., 1968–1990) and Carrara (55 m a.s.l., 1990–2005) (see Fig. 2 

for their locations). In this way, the 1950–2005 interval was almost fully covered. The historical 

series of rainfall data of the Fossacava and Rif. Belvedere rain gauges are quite short, while the 
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Carrara rain gauge has a long historical series. The latter was placed in 1929, but hourly rainfall 

records are available only after 1990. The three rain gauges are quite close (7 km from Carrara to 

Rif. Belvedere and Fossacava and 5 km from Rif. Belvedere to Fossacava; Fig. 2), but their 

altitudes are different; consequently their MAP value is also different, rising with the altitude: 1,376 

mm at Carrara, 1,540 mm at Fossacava, and 1,664 mm at Rif. Belvedere. Rain gauges placed at 

different location and altitude can record different rainfall values for the same event. The MAP 

normalization of the rainfall data can decrease the influence of the simultaneous use of two or more 

rain gauges in the rainfall threshold definition, and allows us to analyze and compare the rainfall 

thresholds at different elevations. The frequency of the extreme rainfall events estimated by the rain 

gauges can also influence the rainfall thresholds. However, the return periods of extreme rainfall 

events of short duration (1, 3, 6, 12 and 24 h), for the whole CMB are similar (Caporali et al., 2014a; 

Centro Funzionale Regione Toscana, 2015). Considering the short distance among the rain gauges 

and the homogeneous frequency of extreme rainfall events in the study area, the simultaneous use 

of three rain gauges in determining the CMB rainfall thresholds may be acceptable. 

All the rain gauges have been equipped with pluviographs for all the recording period. The 

pluviographs require a manual extraction of the hourly rainfall data, which is a hard and time 

consuming activity. We assume that the rainfall events less intense than 1 mm h
−1

 (irrespective of 

their duration) have little influence on the computation of rainfall thresholds by logistic regression, 

and can be neglected to save time and resources. Therefore, 191 significant rainfall events were 

found and analyzed in the 1950–2005 period. Events with short duration (2–3 h) and high intensity 

(20–30 mm h
−1

), or those with long duration (100–120 h) and low intensity (1–2 mm h
−1

), and 

intermediate events were considered. For each event the following data were collected: (i) 

cumulated event rainfall (E, in mm), (ii) rainfall duration (D, in h), and (iii) rainfall intensity (I, in 

mm h
−1

). Afterwards, a detailed archive research was performed on the consequences of the 

selected events on quarry wastes stability. Usually in areas characterized by intense human 

activities, scars and deposits of debris flows and shallow landslides are rapidly restored, whilst in a 
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natural environment vegetation can hide them, without leaving any significant geomorphological 

evidence (Giannecchini and D’Amato Avanzi, 2012). In this context, the landslides of quarry waste 

should be detected within few days after their initiation by field surveys. Otherwise, they can be 

mapped by analysis of aerial photographs (if available). In the latter instance, it is difficult or even 

impossible to determine the time of landslide occurrence. If landslide inventory maps are not 

available or the time of occurrence of the mapped landslides is unknown, an archive research can be 

a valid, and maybe the only means to identify the size of the consequences of past events. 

The archive research was based on the analysis and verification of data coming from different 

sources: (i) municipal administrations, (ii) the Civil Protection Service of the Massa-Carrara 

Province, (iii) fire brigades, (iv) technical and scientific reports, (v) newspapers, (vi), and 

population and workers. Most of information came from the local newspapers. 

Based on their consequences, the 191 events investigated were subdivided into two groups: (i) 

events that triggered one or more debris flows (DF) and (ii) events that did not trigger debris flows 

(NDF). Table 2 shows number and percentage of DFs and NDFs for each rain gauge and for all the 

rain gauges of the CMB. 

Debris flows frequently occur before the end of a rainfall event. The rainfalls recorded after the 

time of occurrence were not used in selecting the rainfall events responsible for debris flows; 

consequently, the rainfall variables of DF events were computed between the start of the event and 

the time of debris flow occurrence. All the DF events triggered debris flows in the quarry waste and 

sometimes shallow landslides on natural slopes. However, there is often little information on the 

consequences of the past rainstorms. 

Since the three analyzed rain gauges have different operating periods, the rainfall thresholds were 

defined for each rain gauge and for the whole study area (CMB), using the rainfall data recorded in 

all the rain gauges in the 1950–2005 period. 
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6. Definition of rainfall thresholds 

In this work, three types of rainfall thresholds were defined: (i) rainfall intensity–rainfall duration 

(ID), (ii) cumulated event rainfall–rainfall duration (ED), and (iii) cumulated event rainfall 

normalized by MAP–rainfall intensity (EMAPI). They were chosen for the following reasons: 

(i) In the scientific literature, the ID type rainfall thresholds prevail (Guzzetti et al., 2007, 2008, and 

references therein) and are available for comparisons. 

(ii) Considering the rainfall amount needed to trigger a debris flow, ID and ED thresholds are 

equivalent. Indeed, the mean rainfall intensity I is obtained by dividing the cumulated rainfall E by 

the duration D of the event, I = E/D (Guzzetti et al., 2007; Perruccacci et al., 2012). As suggested 

by Peruccacci et al. (2012), in a landslide forecasting system the use of ED thresholds is handier 

than that of ID thresholds. During a rainfall event, the use of ED does not imply the conversion of 

the cumulated rainfall E (measured at rain gauges or forecasted by numerical meteorological 

models) in the corresponding mean intensity rainfall I, without consuming time and resources. 

(iii) Various authors assert that each area is in equilibrium with its rainfall conditions (Guidicini and 

Iwasa, 1977; Cannon, 1988; Aleotti, 2004; Giannecchini, 2006; Giannecchini et al., 2012). 

Therefore, in order to normalize the rainfall data, they are commonly compared with MAP. The use 

of EMAP facilitates the comparison between rainfall thresholds obtained for regions with different 

rainfall conditions. 

 

6.1. Outline of logistic regression 

The rainfall thresholds were determined using statistical techniques to separate rainfall events that 

induced DFs from NDFs. As explained above, the events with I < 1 mm h
−1

, independently of their 

duration, were not considered in the analysis. A partial overlapping of the DF and NDF events 

makes it difficult, and probably inappropriate, to define a single threshold curve. Thus, it is better to 

define the probability (p) that a couple of rainfall variables can trigger a debris flow. This 

probability of occurrence can be estimated using logistic regression. 
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Logistic regression is useful when the dependent variable is categorical (e.g., presence/absence) and 

the explanatory variables are categorical, numeric or both (Menard, 2001; Agresti, 2010). The logit 

model from a logistic regression has the following form: 

 

                                    (1) 

 

where logit(p) is the dependent variable, xi is the i-th explanatory variable, βi the regression 

coefficient associated with the explanatory variable xi, with i = 1…n. 

logit(p) is the natural logarithm of the odds: 

 

                              (2) 

 

where p is the probability of occurrence of DFs and p/(1−p) is the odds. Converting logit(p) to the 

probability p, Eq. (2) can be rewritten as: 

 

  
 

                            
         (3) 

 

A posteriori values of probability p = 1 and p = 0 were assigned to DF and NDF events, 

respectively. The best-fit values of βi were determined using a maximum-likelihood fitting 

technique in R software (generalized linear model – GLM, command of the built-in package 

STATS; R Core Team, 2014). For each dataset, several couples of variables (n = 2) were chosen: 

log10D − log10I, log10D − log10E and log10I − log10EMAP. 

For simplicity, it is possible to define                         , obtaining: 

 

  
 

                      
          (4) 
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and consequently: 

    
  

  
   

 

  
    

   

 
              (5) 

 

The relationship between the variables of the model can be simplified, defining: βʹ1 = 

β1log10[exp(1)], βʹ2 = β2log10[exp(1)] and βʹ0 = β0. In this way, Eq. (5) can be written as: 

 

         
 

  
   

   

 
 

 
 

  
 

 
 

  
 

  
 
         (6) 

 

Likewise for the other couples of variables, the final equations are: 

 

       
   

 

   
 

  
   

 
 

 
 

   
  

 
   

 
   

          (7) 

          
    

 

    
 

  
   

 
 

 
 

    
  

 
    

 
    

         (8) 

 

For simplicity, Eq. (6) can be expressed in the form: 

 

I = αD
-γ            (9) 

 

where α is the intercept on the y-axis and γ is the shape parameter that defines the slope of the 

power law curve. α and γ are defined as: 

 

       
  

 

  
   

   

 
 

 
 

  
 
          (10) 
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             (11) 

 

Eqs. (7) and (8) can be written in a simplified form, similar to Eq. (9). 

Being the graphs shown in the following sections in bi-logarithmic scale, the iso-probability curves 

are straight lines parallel to each other. For each fit (i) the maximum-likelihood estimates of the 

parameters, (ii) a test of significance for each variable, and (iii) some parameters for the evaluation 

of the goodness of fit are shown. 

 

6.2. ROC analysis 

The receiver operating characteristic (ROC) analysis is a method for assessing the performance of a 

classification model (Swets et al., 1988; Fawcett, 2006), and can be used to evaluate models that 

produce discrete predictions (two or more classes) or continuous ones (e.g., probability). Recently, 

the ROC analysis has been used to assess the performance of rainfall thresholds (e.g., Staley et al., 

2013; Mathew et al., 2014; Gariano et al., 2015), as in this study. 

Being the output of a logistic regression a continuous predictor (probability), it must be transformed 

in a dichotomous one using a threshold value. A binary classifier model presents four possible 

outcomes that can be graphically represented using a contingency table (Staley et al., 2013; Fig. 6a). 

For each event, the occurrence is considered to be either true or false (if either occurred or did not 

occur), while the model predictions are considered to be positive or negative (successful prediction 

or wrong prediction). Based on this classification, for each threshold type and probability of debris 

flow occurrence, the rainfall (DF + NDF) events were classified as follows: true positives (rainfall 

conditions exceed the threshold and at least a debris flow occurs; their number is referred to as TP), 

true negatives (no threshold overcoming, no debris flow; TN), false positives (threshold overcoming, 

no debris flow; FP), and false negatives (no threshold overcoming but at least a debris flow occurs; 

FN). In a landslide warning system, FP shows false alarms and FN shows missed alarms. Gariano 
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et al. (2015) observed that the use of high thresholds (high probability of debris flow occurrence), 

increases FN, while TP decreases. Conversely, using low thresholds (low probability of debris flow 

occurrence) FP increases and TN decreases. 

In a deeply human-modified landscape such as the CMB, the uncertainty on the consequences of the 

rainfall events is a big problem for an archive research. After a rainstorm the quarrying areas are 

quickly restored, in order to limit the consequences for population and working activities. In this 

context and using the past rainfall events, several false positives can result from the lack of 

information on landslides occurrence (i.e., debris flows may have occurred but may not be reported). 

For this reason, several events may be wrongly counted in TN and FP and, consequently, the 

probabilistic thresholds could be slightly underestimated. Furthermore, as highlighted in Section 5, 

many events without debris flows (hypothetically close to the lower left corner of the threshold 

graphs) were not used in the logistic regression, and consequently TN was underestimated. This 

underestimation influences some skill scores calculated by the contingencies. 

Using TP, TN, FP, and FN, the following skill scores were calculated (Fig. 6a): 

• Probability of detection (POD) or true positive rate (TPrate): proportion of debris flow events 

correctly predicted; 

• Probability of false detection (POFD) or false positive rate (FPrate): proportion of correct 

predictions when the event did not occur; 

• Probability of false alarm (POFA): ratio between the number of false alarms and the total 

number of forecasts; 

• Efficiency (Ef): ratio between the number of successful predictions and the total number of 

events; 

• Hanssen and Kuipers (1965) skill score (HK): accuracy of prediction for the events with and 

without debris flows. HK represents the difference between POD and POFD. 
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As suggested by Gariano et al. (2015), the skill scores were defined based on the terminology 

proposed by Barnes at al. (2009). Fig. 6a shows the formula of each skill score used to evaluate the 

performance of the thresholds. The values of POD, POFD, POFA, and Ef range between 0 and 1; 

for POD and Ef the optimal value is 1, while POFD and POFA the optimal value is 0. HK ranges 

between −1 and 1, where 1 is its optimal value. 

The predicting capability of rainfall thresholds for different probability of debris flow occurrence 

can be tested using an ROC analysis. In an ROC space the relationship between POD and POFD is 

plotted, obtaining the AUC (area under curve) value (Fig. 6b). The higher is the AUC value, more 

performing is the model; when AUC = 0.5 (Fig. 6b), the model has no prediction capability (the 

ROC curve is the diagonal of the square). In the opposite limit case (AUC = 1; Fig. 6b), the ROC 

curve corresponds to the upper side of the square and the model capability prediction is the best. 

 

7. Results and discussion 

7.1. Probabilistic rainfall thresholds for the CMB 

The analysis of the rainfall data highlighted that very heavy rainstorms occurred on 5 October, 1955, 

27 November 1962, 17 November 1968, 8 June 1973, 1 November 1977, 4 October 1978, 7 

November 1994, 30 October 2000, 21 September 2002, and 23 September 2003. The analyzed 

events mainly occurred in autumn (September–November period; Fig. 7). Giannecchini (2006) 

found a comparable distribution for the Southern Apuan Alps, while Guzzetti (2000) and Guzzetti 

et al. (2005) obtained similar results on a national scale for rainfall that caused deaths or missing 

people. Fig. 7 shows the seasonal distribution of all the analyzed rainstorms (DF + NDF; Fig. 7a) 

and of those inducing debris flows (DF; Fig. 7b). The most severe rainstorms usually occurred 

between September and November and, secondly, in the December–February period. 

For each rain gauge and for all the rain gauges (CMB), ID, ED and EMAPI thresholds for different 

probability of debris flow occurrence were defined using the logistic regression, as described in 

Section 6.1. Tables 3, 4 and 5 show the best-fit parameters (β0, β1 and β2) and the related p-values 
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(significant level) obtained for three sets of explanatory variables (D–I, D–E and I–EMAP) for 

Carrara, Fossacava, Rif. Belvedere and the CMB. A low p-value indicates that the introduction of 

the corresponding variable in the fitting function is significant, namely it is reasonable to assume 

that the parameter is significantly different from zero. When the p-value exceeds the typical value 

of 0.05, the associated parameter is considered not significant; this means that its introduction does 

not affect significantly the computed value of probability. 

Using the results obtained with the GLM command of R software, equiprobability curves 

(probabilistic rainfall thresholds) can be drawn. Each curve corresponds to a probability of debris 

flow occurrence. The equations shown in Table 6 and Figs. 8, 9 and 10 allow us to define the ID, 

ED and EMAPI thresholds (at a chosen value of p) for Carrara, Fossacava, Rif. Belvedere and the 

CMB. By varying the value of p in the range from 0 to 1 in the equations; it is possible to get the 

rainfall threshold for each desired probability of debris flow occurrence. Figs. 8, 9 and 10 show the 

probabilistic ID, ED and EMAPI thresholds for 10%, 30%, 50%, 70%, and 90% probability of debris 

flow occurrence, for the Carrara, Fossacava and Rif. Belvedere rain gauges and for the CMB. 

The probabilistic ID thresholds are well-defined in the range of D 3–100 h for Carrara, Fossacava 

and the CMB, and in the range 2–100 h for Rif. Belvedere (Fig. 8 and Table 6). Inspection of Fig. 8 

indicates that for D = 3 h, the probabilistic thresholds (probability 10–90%) for Carrara, Fossacava, 

Rif. Belvedere and the CMB are defined in the range of rainfall intensity (I) 10.8–24.2, 20.8–29.6, 

15.1–26.7, and 11.9–26.8 mm h
−1

, respectively. While for D = 100 h, they are defined as 0.6–1.4, 

1.0–1.4, 1.2–2.0 and 0.9–2.1 mm h
−1

, respectively. 

The ID thresholds fall into an intensity range wider at Carrara (Fig. 8a) than at Fossacava (Fig. 8b) 

and Rif. Belvedere (Fig. 8c). This may be due to a greater number of rainfall data (69) and to a 

misclassifications between DF and NDF events; consequently, the thresholds for Carrara are more 

conservative than those for Fossacava and Rif. Belvedere. The ID thresholds for the CMB are 

included in the highest range of rainfall intensity (Fig. 8d). This is due to joining of the rainfall data 
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recorded at each of 191 rain gauges (Table 2) and the resultant highest number of misclassifications 

between DF and NDF events (Fig. 8d). 

The probabilistic ED thresholds are well-defined in the D range of 3–100 h (Fig. 9 and Table 6). 

The graphs in Fig. 9 indicate that for D = 3 h, the ED thresholds (probability 10–90%) are defined 

in the range of cumulated rainfall (E) 32.2–73.3, 62.3–88.2, 45.1–80.3, and 35.6–81.1 mm, for 

Carrara, Fossacava, Rif. Belvedere and the CMB, respectively (Fig. 9). For D = 100 h, the 

thresholds are defined as 59.5–135.5, 99.6–150.0, 115.8–206.3, and 93.5–212.8 mm, respectively 

(Fig. 9). Likewise for I, the range of the cumulated event rainfall between 10% and 90% probability, 

ED thresholds are wider for Carrara (Fig. 9a) and the CMB (Fig. 9d) than for Fossacava (Fig. 9b) 

and Rif. Belvedere (Fig. 9c). This is due to the larger number of overlapping between DF and NDF 

events for the Carrara rain gauge than for the others. 

The high p-values of β1'' for the Carrara and Fossacava rain gauges (0.127 and 0.254, respectively; 

Table 4) is related to the slope values of the lines very close to zero (0.18 and 0.13, respectively; Fig. 

9a,b and Table 6). This means that the probabilistic ED thresholds for Carrara (Fig. 9a) and 

Fossacava (Fig. 9b) are almost parallel to the x-axis. Differently, the p-value of β1'' and the slope 

values of the ED thresholds for the CMB are the highest. This means that the combination of the 

rainfall data of all the rain gauges allows us to increase the importance of the rainfall duration to 

discriminate the rainfall conditions triggering debris flows. 

Finally, inspection of the probabilistic EMAPI thresholds (Fig. 10 and Table 6) indicates that EMAP 

decreases with increasing I. The EMAPI thresholds for Carrara are the most conservative, while those 

for Fossacava are the highest, and those for the CMB fall between the two. The high p-values of β1''' 

for Carrara (0.117) and Fossacava (0.254; Table 5) are related to the slope of the lines very close to 

zero. The lines showing the EMAPI thresholds for Carrara (γ = 0.22) and Fossacava (γ = 0.15) are less 

steep than those for Rif. Belvedere (γ = 0.37) and the CMB (γ = 0.33). This means that for Carrara 

and Fossacava I is less important than EMAP to discriminate the rainfall conditions triggering debris 

flows. 
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7.2. ROC analysis of the logistic regression results 

In order to evaluate the results of the logistic regression in defining the probabilistic thresholds, the 

contingency tables were created, the contingencies and skill scores were computed, and an ROC 

analysis was performed. Contingencies and skill scores were computed for all the thresholds, but 

only those derived for the CMB (Tables 7, 8 and 9) are shown here. Tables 7, 8 and 9 show the four 

contingencies (true positives, false negatives, false positives, and true negatives) and six skill scores 

(POD, POFD, POFA, Ef, HK, and δ) for the ID, ED and EMAPI thresholds, at different probability 

levels (from 10% to 90%). The contingencies and skill scores for the ED and EMAPI thresholds are 

very similar to those for the ID thresholds; they are shown in Tables 8 and 9 but not discussed here. 

Table 7 and Fig. 8d indicate that, for the 10% probability ID threshold: two false negatives (red 

diamonds in Fig. 8d) fall below the threshold, 69 true positives (red diamonds) fall above the 

threshold, 85 false positives (green squares in Fig. 8d) fall above the threshold, and 35 true 

negatives (green squares) fall below the threshold. Consequently, the POD, POFD, and POFA 

values are 0.97, 0.71, and 0.55, respectively. Otherwise, for the 90% probability ID threshold (Fig. 

8d and Table 7), 57 false negatives (red diamonds in Fig. 8d) fall below the threshold and 14 true 

positives (red diamonds) fall above the threshold, while no false positives (green squares) fall above 

the threshold, and 120 true negatives (green squares) fall below the threshold. Hence, the POD, 

POFD and POFA values are 0.20, 0.00 and 0.00, respectively. Tables 7, 8 and 9 indicate that, for all 

types of rainfall threshold, the optimal value of POD is obtained for the 10% probability threshold, 

while the optimal values of POFD and POFA are obtained for the 90% probability threshold. 

Fig. 11 shows ROC curves and AUC values of the ID, ED and EMAPI thresholds for each rain gauge 

(Carrara, Fossacava and Rif. Belvedere) and for the CMB. All the AUC values are similar and 

higher than 0.84. This means that the predictive capability of the three types of threshold is 

acceptable both for each rain gauge and for the whole study area. In particular, the best predictions 
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of debris flow occurrence were obtained for the Fossacava rain gauge, as evidenced by its AUC 

values. Each black dot in the graphs of Fig. 11 represents a CMB threshold (POD and POFD 

couple) for a different probability of debris flow occurrence. As proposed by Gariano et al. (2015), 

for each couple of (POD, POFD) data, the Euclidean distance δ from the perfect classification was 

calculated (black square in the upper left corner of the ROC spaces; Fig. 11). 

Contingencies and skill scores listed in Tables 7, 8 and 9 allow us to choose the optimal probability 

threshold for each threshold type (ID, ED, and EMAPI). Independently of the threshold type, the 

highest values of HK were obtained for the 40% probability threshold; whereas the highest values 

of Ef were obtained for 40% probability ID threshold and for 60% probability ED and EMAPI 

thresholds. The smallest distance δ from the perfect classification was also obtained for the 40% 

probability threshold. The best compromise between the maximum number of correct debris flow 

predictions (TP and TN) and the number of wrong predictions (FP and FN) was calculated for the 

40% probability ID threshold and for the 60% probability ED and EMAPI thresholds. The largest 

difference between correct and incorrect predictions corresponds to the 60% probability EMAPI 

threshold: (TP + TN)–(FP + FN) = 117. Moreover, based on the analysis of contingencies and skill 

scores, the 40% probability threshold can be considered the best performing (optimal) for all types 

of regression from a statistical point of view. 

The median of the duration of the DF events for the CMB is 19 h, while 24 h is a typical value used 

in determining the intensity–duration–frequency curves (Chen, 1983; Kao and Ganguly, 2011) and 

in defining the return periods of extreme rainfalls (Caporali et al., 2014b). Therefore, the use of 

these rainfall duration values is considered appropriate to describe the thresholds with the 40% 

probability of debris flow occurrence. For the 40% probability ID threshold, the intensities are 4.6 

and 3.7 mm h
−1

 for rainfall durations of 19 and 24 h, respectively. For the 40% probability ED 

threshold, the cumulative rainfalls are 82.8 and 88.3 mm for rainfall durations of 19 and 24 h, 

respectively. Finally, the average intensity of the rainfall analyzed for the CMB is 5 mm h
−1

. For 

this intensity the EMAP value related to 40% probability EMAPI threshold is 5.1. 
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7. Conclusions 

Large amounts of quarry waste in the CMB can be involved in slope instability and represent a 

danger to people and their activities. Quarrying causes morphological changes, making difficult to 

provide countermeasures for landslide prevention, such as slope re-profiling, retaining walls and 

check dams. On the other hand, the complete removal of the waste could be counterproductive, 

because it can mitigate and slow down flooding. Therefore, the knowledge of the minimum rainfall 

amount inducing debris flows is very helpful. 

With this goal, the data recorded from 1950 to 2005 by three rain gauges in the CMB were analyzed 

and compared with the occurrence of debris flows involving the quarry waste. The three rain gauges 

have different elevations and operating periods; consequently, the rainfall thresholds were 

determined for each rain gauge and for the whole study area, based on three couple of rainfall 

variables: ID, ED, and EMAPI. 

The rainfall events were classified into DF and NDF events and, using logistic regression, 

thresholds of different probability of debris flow occurrence (from 10% to 90%) were determined. 

Independently of the rainfall variables chosen, the probabilistic thresholds for Carrara are the 

lowest, while those for Fossacava are the highest, and those for Rif. Belvedere and CMB fall 

between the two. The goodness of fit of the logistic regression in defining the thresholds was 

evaluated by means of a ROC analysis. The AUC values for all the thresholds of the CMB are 

similar and higher than 0.84. This means that the predictive capability of the three types of 

threshold is acceptable. Moreover, the contingencies and the skill scores indicate that the best 

compromise between number of correct predictions and the number of incorrect predictions is 

obtained for the 40% probability threshold for each rain gauge and for the whole CMB, 

independently of the threshold type. 

The probabilistic thresholds obtained for the CMB can provide a guidance to set up debris flow 

warning systems and plan emergency actions. Decisions on warning and emergency responses can 
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be based on the comparison of rainfall measurement and forecast with empirical rainfall thresholds. 

Automated analysis of real-time rainfall and digital quantitative precipitation forecast are needed to 

fully implement a warning system based on rainfall thresholds (Chleborad et al., 2008). The 

thresholds can be compared with the measured rainfall amount (variation of the rainfall variable 

from the beginning of the rainfall event) and/or the forecasted rainfall amount. For example, the 

evolution of a certain event can be more easily observed and interpreted visualizing the temporal 

evolution of the cumulative rainfall and overlaying its graphic to the probabilistic ED thresholds. 

The evolution of a rainstorm can be followed in the graph of the probabilistic thresholds; 

consequently, the increasing probability of debris flow occurrence can be assessed in real time. 

When the rainfall gets close to or exceeds a prearranged probability threshold, appropriate 

emergency actions can be adopted for the expected risk scenario. This approach needs to be tested 

for a certain period, but can help the civil protection authorities in planning emergency actions. 
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Figure Caption List 

 

Fig. 1. The Apuan Alps close to Carrara. Quarries and quarry waste stand out as white areas. 

 

Fig. 2. The Carrara Marble Basin: white areas evidence quarries and quarry waste (base map by Google Earth, captured 

in 2014). 

 

Fig. 3. Rainfall map of the mean annual precipitation of the Apuan Alps (modified after Baldacci et al., 1993). The box 

indicates the CMB. 

 

Fig. 4. Active quarry waste mobilized by the 23 September 2003 heavy rainstorm in the CMB. (a) Waste material 

occupying a valley bottom; (b) scars and tracks on a large quarry dump; (c) large fan of debris flow; and (d) debris flow 

with the source area, track and levees. 

 

Fig. 5. Quarry waste involved in landslides (a) and detail of a debris flow track (b), showing the complex texture of a 

recent quarry deposit (after Cortopassi et al., 2008). 

 

Fig. 6. (a) Contingency table showing the four possible outcomes of a binary classifier model and the five skill scores 

(POD, POFD, POFA, Ef, and HK) that can help in the selection of the best threshold. TP: number of true positives; TN: 

number of true negatives; FP: number of false positives; FN: number of false negatives. (b) ROC space, with three 

hypothetical ROC curves. AUC = 0.50: model with no prediction capabilities. AUC = 0.79: model with an acceptable 

capability of prediction. AUC = 1: model with the maximum capability of prediction. 

 

Fig. 7. Seasonal distribution of the main rainstorms recorded at Carrara, Fossacava, Rif. Belvedere and in the whole 

study area (CMB) from 1950 to 2005. (a) Distribution of all the analyzed rainstorms; (b) distribution of the rainstorms 

inducing debris flows. 

 

Fig. 8. Probabilistic ID thresholds for (a) Carrara, (b) Fossacava, (c) Rif. Belvedere and (d) CMB. The thresholds at 

10%, 30%, 50%, 70% and 90% probability of debris flow occurrence and the related equations are shown. 

 

Fig. 9. Probabilistic ED thresholds for (a) Carrara, (b) Fossacava, (c) Rif. Belvedere and (d) CMB. The thresholds at 

10%, 30%, 50%, 70% and 90% probability of debris flow occurrence and the related equations are shown. 

 

Fig. 10. Probabilistic EMAPI thresholds for (a) Carrara, (b) Fossacava, (c) Rif. Belvedere and (d) CMB. The thresholds at 

10%, 30%, 50%, 70% and 90% probability of debris flow occurrence and the related equations are shown. 

 

Fig. 11. ROC curve of the ID (a), ED (b) and EMAPI (c) thresholds for each rain gauge and for the CMB. Each POFD–

POD couple (black dot) corresponds to a threshold with a specified probability. The perfect classification points (black 

square in the upper left corner) are also shown. The AUC values for each type of regression are listed. Black lines: 

Carrara; black dotted lines: Fossacava; gray dotted lines: Rif. Belvedere; gray lines: CMB. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Table 1. Main rainfall events recorded in Apuan Alps from 1980. 

Rainfall event date Deaths Source 

8 June 1984 2 Giannecchini (2006) 

11 July 1992 and 22 August 1992 3 Giannecchini and D’Amato Avanzi (2012) 

19 June 1996 14 D’Amato Avanzi et al. (2004) 

5 October 1998 - Giannecchini and D’Amato Avanzi (2012) 

6 November 2000 - Giannecchini (2006) 

23 September 2003 1 Cortopassi et al. (2008) 

22–23 and 24–25 December 2009 - D’Amato Avanzi et al. (2010) 

31 October 2010 3 D’Amato Avanzi et al. (2013a) 

10–11 November 2012 - Tuscany Region Hydrologic Service 

5 November 2014 - Tuscany Region Hydrologic Service 

 

Table 2. Number and percentage (%) of DF (debris flow) and NDF (no debris flow) recorded in each rain gauge and in 

all the rain gauges of the CMB. 

Rain gauges 

DF NDF (DF + NDF) 

no. % no. % no. 

Carrara 31 44.9 38 55.1 69 

Fossacava 15 35.6 29 64.4 44 

Rif. Belvedere 25 32.0 53 68.0 78 

CMB 71 37.5 120 62.5 191 

 

Table 3. Best-fit parameters (β0
'
, β1

'
 and β2

'
) and related p-values for the variables D–I for each rain gauge and for all the 

rain gauges (CMB). 

Rain gauge 
Parameter p-value 

β0
'
 β1

'
 β2

'
 p(β0

'
) p(β1

'
) p(β2

'
) 

Carrara -20.09 4.49 5.45 1.01×10
-4

 1.23×10
-4

 2.19×10
-4

 

Fossacava -51.52 10.77 12.36 3.55×10
-3

 3.52×10
-3

 5.11×10
-3

 

Rif. Belvedere -29.50 5.68 7.75 8.79×10
-6

 2.62×10
-5

 8.45×10
-6

 

CMB -20.00 3.94 5.43 2.59×10
-11

 9.41×10
-11

 2.93×10
-10
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Table 4. Best-fit parameters (β0
''
, β1

''
 and β2

''
) and related p-values for the variables D–E for each rain gauge and for the 

CMB. 

Rain gauge 
Parameter p-value 

β0
''
 β1

''
 β2

''
 p(β0

''
) p(β1

''
) p(β2

''
) 

Carrara -19.72 -0.94 5.34 1.17×10
-4

 1.27×10
-1

 2.59×10
-4

 

Fossacava -52.61 -1.69 12.65 3.47×10
-3

 2.20×10
-1

 5.00×10
-3

 

Rif. Belvedere -28.92 -2.05 7.61 8.22×10
-6

 1.87×10
-3

 7.96×10
-6

 

CMB -19.67 -1.47 5.34 2.43×10
-11

 1.06×10
-4

 2.96×10
-10

 

 

Table 5. Best-fit parameters (β0
'''
, β1

'''
 and β2

'''
) and related p-values for the variables I–EMAP for each rain gauge and for 

the CMB. 

Rain gauge 
Parameter p-value 

β0
'''
 β1

'''
 β2

'''
 p(β0

'''
) p(β1

'''
) p(β2

'''
) 

Carrara -8.28 0.96 4.46 2.21×10
-4

 1.17×10
-1

 1.34×10
-4

 

Fossacava -22.39 1.58 10.92 4.07×10
-3

 2.54×10
-1

 3.36×10
-3

 

Rif. Belvedere -13.42 2.07 5.62 3.41×10
-6

 1.82×10
-3

 2.52×10
-5

 

CMB -10.83 1.59 4.82 5.96×10
-12

 5.56×10
-5

 2.06×10
-11
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Table 6. Rainfall thresholds for triggering debris flows for Carrara, Fossacava, Rif. Belvedere and CMB. Type: type of 

threshold. Equation: D, rainfall duration in hours; I, rainfall intensity in mm h
−1

; E, cumulated event rainfall in mm; 

EMAP, cumulated event rainfall normalized by MAP. Range: range of validity for the threshold in hours. 

 

Type Rain gauge Equation Range 

ID 

Carrara        
   

 
 

     

       3 ≤ D ≤ 100 

Fossacava        
   

 
 

     

       3 ≤D ≤ 100 

Rif. Belvedere        
   

 
 

     

       2 ≤ D ≤ 100 

CMB        
   

 
 

     

       2 ≤ D ≤ 100 

ED 

Carrara        
   

 
 

     

      3 ≤ D ≤ 100 

Fossacava        
   

 
 

     

      3 ≤ D ≤ 100 

Rif. Belvedere        
   

 
 

     

      2 ≤ D ≤ 100 

CMB        
   

 
 

     

      2 ≤ D ≤ 100 

EMAPI 

Carrara          
   

 
 

     

       1 ≤ I ≤ 25 

Fossacava          
   

 
 

     

       1 ≤ I ≤ 20 

Rif. Belvedere           
   

 
 

     

       1 ≤ I ≤ 30 

CMB          
   

 
 

     

       1 ≤ I ≤ 30 
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Table 7. Contingencies (TP, FP, FN, and TN) and skill scores (POD, POFD, POFA, Ef, HK, and δ) computed for the ID 

thresholds of the CMB at different probabilities of debris flow occurrence; best scores are shown in bold. The parameter 

δ is described in follow. 

Probability TP FN FP TN POD POFD POFA Ef HK δ 

90% 14 57 0 120 0.20 0.00 0.00 0.70 0.20 0.80 

80% 26 45 1 119 0.37 0.01 0.04 0.76 0.36 0.63 

70% 32 39 2 118 0.45 0.02 0.06 0.79 0.43 0.55 

60% 39 32 8 112 0.55 0.07 0.17 0.79 0.48 0.46 

50% 44 27 14 106 0.62 0.12 0.24 0.79 0.50 0.40 

40% 51 20 19 101 0.72 0.16 0.27 0.80 0.56 0.32 

30% 55 16 39 81 0.77 0.33 0.41 0.71 0.45 0.40 

20% 63 8 54 66 0.89 0.45 0.46 0.68 0.44 0.46 

10% 69 2 85 35 0.97 0.71 0.55 0.54 0.26 0.71 

 

Table 8. Contingencies (TP, FP, FN, and TN) and skill scores (POD, POFD, POFA, Ef, HK, and δ) computed for the 

ED thresholds of the CMB at different probabilities of debris flow occurrence; best scores are shown in bold. 

Probability TP FN FP TN POD POFD POFA Ef HK δ 

90% 13 58 0 120 0.18 0.00 0.00 0.70 0.18 0.82 

80% 25 46 1 119 0.35 0.01 0.04 0.75 0.34 0.65 

70% 31 40 2 118 0.44 0.02 0.06 0.78 0.42 0.56 

60% 40 31 8 112 0.56 0.07 0.17 0.80 0.50 0.44 

50% 45 26 15 105 0.63 0.13 0.25 0.79 0.51 0.39 

40% 51 20 20 100 0.72 0.17 0.28 0.79 0.55 0.33 

30% 55 16 39 81 0.77 0.33 0.41 0.71 0.45 0.40 

20% 61 10 53 67 0.86 0.44 0.46 0.67 0.42 0.46 

10% 69 2 88 32 0.97 0.73 0.56 0.53 0.24 0.73 
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Table 9. Contingencies (TP, FP, FN, and TN) and skill scores (POD, POFD, POFA, Ef, HK, and δ) computed for the 

EMAPI thresholds of the CMB at different probabilities of debris flow occurrence; best scores are shown in bold. 

Probability TP FN FP TN POD POFD POFA Ef HK δ 

90% 19 52 1 119 0.27 0.01 0.05 0.72 0.26 0.73 

80% 32 39 1 119 0.45 0.01 0.03 0.79 0.44 0.55 

70% 34 37 2 118 0.48 0.02 0.06 0.80 0.46 0.52 

60% 43 28 9 111 0.61 0.08 0.17 0.81 0.53 0.40 

50% 47 24 16 104 0.66 0.13 0.25 0.79 0.53 0.36 

40% 51 20 20 100 0.72 0.17 0.28 0.79 0.55 0.33 

30% 57 14 33 87 0.80 0.28 0.37 0.75 0.53 0.34 

20% 63 8 45 75 0.89 0.38 0.42 0.72 0.51 0.39 

10% 69 2 73 47 0.97 0.61 0.51 0.61 0.36 0.61 
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Highlights 

 

Analysis of 191 rainstorms in a human-modified landscape in 1950-2005 period. 

Determination of debris flow probability using logistic regression. 

Rainfall thresholds definition for different probability of debris flows occurrence. 

Evaluation of thresholds using contingency table, skill scores and ROC analysis. 

Proposal of a possible use of rainfall thresholds in debris flow forecasting. 


