

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

Simulating LTE/LTE-Advanced networks with SimuLTE*

Antonio Virdis, Giovanni Stea, Giovanni Nardini

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy

a.virdis@iet.unipi.it, giovanni.stea@unipi.it, g.nardini@ing.unipi.it

Abstract. In this work we present SimuLTE, an OMNeT++-based simulator for LTE and LTE-Advanced networks. Following

well-established OMNeT++ programming practices, SimuLTE exhibits a fully modular structure, which makes it easy to be

extended, verified and integrated. Moreover, it inherits all the benefits of such a widely-used and versatile simulation framework

as OMNeT++, i.e., experiment support and seamless integration with the OMNeT++ network modules, such as INET. This allows

SimuLTE users to build up mixed scenarios where LTE is only a part of a wider network. This paper describes the architecture

of SimuLTE, with particular emphasis on the modeling choices at the MAC layer, where resource scheduling is located. Further-

more, we describe some of the verification and validation efforts and present an example of the performance analysis that can be

carried out with SimuLTE.

Keywords: LTE, LTE-Advanced, System-Level Simulator, OMNeT++.

1 INTRODUCTION

The Long-Term Evolution (LTE) of the UMTS (3GPP-TS 36.300) is the de-facto standard for next-generation cel-

lular access networks. In an LTE cell, a base station or eNodeB (eNB) allocates radio resources to a number of User

Equipments (UEs), i.e. handheld devices, laptops or home gateways, using Orthogonal Frequency Division Multi-

plexing Access (OFDMA) in the downlink, and Single-Carrier Frequency Division Multiplexing (SC-FDMA) in the

uplink. On each Transmission Time Interval (TTI, 1ms), a time/frequency frame of resource blocks (RBs) is allo-

cated to the UEs, in both directions. Each RB carries a variable amount of bytes to/from an UE, depending on the

selected modulation and coding scheme. The latter, in turn, is chosen by the eNB based on the Channel Quality

Indicator (CQI) reported by the UE, which measures how the UEs perceive the channel. The new Release 10, called

LTE-Advanced (LTE-A) (3GPP-TS 36.913), besides promising larger bandwidths due to spectrum aggregation,

envisages different transmission paradigms, such as Coordinated Multi-Point (CoMP) Scheduling or device-to-de-

vice (d2d) communications.

Resource allocation and management in LTE/LTE-A is a key performance enabler: carefully selecting which UEs

to target, using which modulation scheme, etc., clearly affects the efficiency of the system. Moreover, inter-cell

interference coordination, cooperative transmission, antenna selection, resource partitioning among macro and mi-

cro-/pico- cells, energy efficiency and battery saving schemes, etc., enable a wealth of declinations of the classical

point-to-multipoint LTE scheduling problem. The performance evaluation of resource management schemes for

LTE/LTE-A is normally carried out via simulation. This is because – on one hand – testbeds are hardly available,

especially to the academia, and – on the other – the entire set of protocols, features and functions of this standard,

and their complex interactions, defy any attempt at unified analytical modeling, whereas neglecting or abstracting

away some aspects incurs the risk of oversimplification.

* A preliminary version of this paper appeared in the proceedings of SIMULTECH 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80265049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

Most of the research on LTE/LTE-A is evaluated via home-brewed “disposable” simulators, which are never made

available to the community. This makes the claims backed up by such results unverifiable, hence unauthoritative. In

the recent past, more structured efforts have been made to provide the research community with reference, open-

source simulation frameworks for LTE/LTE-A. Leaving aside physical-layer simulators - e.g., (Mehlfuerer et al.,

2009), or (Bouras et al., 2013) - which are outside the scope of this paper, there are three main contributions. The

first one is (Ikuno et al., 2010), written in MATLAB, which is limited to the downlink and does not consider some

salient aspects of LTE simulation, e.g., realistic traffic generators.

The second one is LTE-Sim (Piro et al., 2011), written in object-oriented C++. This includes many more function-

alities, such as the uplink, handover, mobility, UDP and IP protocols, several schedulers and some traffic generators

(e.g., VoIP, CBR, trace-based, full-buffer). This simulator, however, comes with some limitations. Hybrid ARQ (H-

ARQ) seems not to be supported. Moreover, scenarios are written as static C++ functions. Thus, they are hard to

verify for correctness, and they are compiled together with the simulator. Mixing models, scenarios, and experiment

definition in a simulator is hardly desirable from a software engineering standpoint. The main drawback of

standalone simulators such as the above two is that they are costly to extend and not interoperable. Even granting a

state-of-the-art code structure, they force users to invest an often unreasonable time into modeling, coding and ver-

ifying any extra functionality, an effort which is seldom reusable. For instance, the current release of LTE-Sim lacks

TCP. The effort required to develop the code to run a web-browsing simulation on LTE-Sim (e.g., to back up a claim

in a scientific paper) entails modeling TCP, HTTP, server, content, and user behavior, and is probably large enough

to discourage most scientists. The same can be said for the setup of a WiFi-core-LTE simulation scenario. Moreover,

these simulators offer no support to simulation workflow automation. This includes, ideally, the ability to define

parametric scenarios, to manage multiple repetitions with independent initial conditions, to define and collect

measures, to efficiently store, retrieve, parse, analyze and plot simulation results, etc. The lack of such instruments

(and the ensuing need to make up for it with home-brewed, error-prone or however unstructured solutions) is a major

cause of delay and errors in simulation studies, especially large-scale ones, as shown in (Perrone et al., 2009,

Kurkowski et al., 2005).

A third contribution has been realized within the framework of ns-3 (ns3-homepage, 2014). ns-3 is being developed

by a large community of scientists with heterogeneous research interests, and it already includes a considerable

number of network modules (e.g., WiFi, WiMAX, 802.11s mesh networks, etc.). The ns-3 LTE simulator (Baldo et

al., 2011), henceforth ns-3-LTE for want of a better name, is an ongoing effort, which has been designed to allow

end-to-end simulation with realistic traffic models. It includes both the Radio Access Network and the Evolved

Packet Core. Recently, the SAFE (Simulation Automation Framework for Experiments) framework has been re-

leased, providing functionalities for planning, control and result storage of experiments in ns-3 (Perrone et al., 2012).

However, the SAFE project – still ongoing at the time of writing – appears to require a non-trivial effort on the user

side to be integrated with ns-3.

Recently, some LTE open-source emulators have appeared. LibLTE (Gomez, 2014) is a library for Software-defined

Radio UEs and eNodeBs, still in pre-alpha development status. OpenLTE (Wojtowicz, 2014) includes a simple im-

plementation of an eNB relying on dedicated hardware boards, which however lacks the whole user plane at the

time of writing. The OpenAirInterface project (Eurecom, 2014) offers a complete physical layer implementation,

working both with open-source hardware equipment and in a simulated environment (single machine or multi-ma-

chine via LAN), a mostly complete layer 2 implementation for both eNBs and UEs, and a testing suite with custom-

izable scenarios. The project appears to be in rapid development, although still lacking complete documentation. It

is well known that emulation packages often allow a greater degree of realism than simulators, often at the price of

a more limited scalability and flexibility.

Our contribution is a new LTE simulator, called SimuLTE, which has been developed for the OMNeT++ simulation

framework (Varga et al., 2008) and has been released under LGPL at http://www.simulte.com. We chose OMNeT++

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

for several reasons: first, it is a stable, mature and feature-rich framework, much more so than ns-3. It was released

in 2001, with the explicit goal of automating as many steps of the simulation workflow as possible, so as to enable

large-scale simulation studies and bridge the gap between writing down models and getting credible results. Second,

it is perfectly modular, which made it easy to write all the required code from scratch, and makes it easy to extend

it. Third, it already includes a large amount of simulation models, e.g. INET (http://inet.omnetpp.org/), which boasts

an impressive protocol matrix, all the TCP/IP stack, mobility, wireless technologies, etc.. Thanks again to the mod-

ular structure, this allows users to simulate mixed scenarios, of which LTE/LTE-A constitutes only one part, and get

a feeling of the true end-to-end performance of simulated applications. Fourth, OMNeT++ has a smooth learning

curve: novice users can exploit graphic interfaces to setup and run fairly complex scenarios in no time, while ad-

vanced users may exploit a structured topology-definition language (NED, NEtwork Description). Last, but not least,

it is supported by a large and active community of users, from both academia and networking industries, which is a

guarantee that any setup time invested in learning the ropes can be amortized over a long future.

SimuLTE simulates the data plane of the LTE Radio Access Network and Evolved Packet Core. It consists of over

40,000 lines of code (i.e., roughly double as many as LTE-Sim, which however also factors in many extra function-

alities, e.g. mobility, applications, IP/UDP, event queues, etc., which instead we took from the OMNeT++ kernel

and INET). In this paper, we describe its modeling approach and show some non-trivial results that can be obtained

with it regarding resource allocation. As for the modeling, besides giving a high-level description, we focus on the

modeling approaches that differ from those of the other simulators. Specifically, the H-ARQ functionalities – which

are not described in other simulators – are introduced in some detail. Furthermore, we detail the scheduling model,

which is based on virtual schedulers, which can be run concurrently and then be chosen among by an allocator. As

for performance evaluation, we profile the simulator execution time in several scenarios, we show how scheduling

heuristics for multi-band resource allocation problems fare against the optimum, and we highlight results related to

multi-cell environments which defy analytical modeling.

The rest of the paper is organized as follows. Section 2 describes the OMNeT++ framework. Section 3 provides an

overview of SimuLTE. We describe some SimuLTE validation and verification in Section 4 and performance results

in Section 5. Finally, Section 6 concludes the paper and outlines future work.

2 THE OMNeT++ FRAMEWORK

SimuLTE is based on the OMNeT++ simulation framework, which can be used to model several things – i.e., not

only networks. We focus only on the aspects of OMNeT++ which are more relevant to understanding SimuLTE.

The interested reader is referred to http://www.omnetpp.org for more details.

The basic OMNeT++ building blocks are modules, which can be either simple or compound. Modules communicate

through messages, which are usually sent and received through a connection linking the modules’ gates, which act

as interfaces. A network is a particular compound module, with no gates to the outside world, which sits at the top

of the hierarchy. Connections are characterized by a bit rate, delay and loss rate, and cannot bypass module hierar-

chy: with reference to Figure 1, simple module 3 cannot connect to 2, but must instead pass through the compound

module gate. Simple modules implement model behavior. Although each simple module can run as an independent

coroutine, the most common approach is to provide them with event handlers, which are called by the simulation

kernel when modules receive a message. Besides handlers, simple modules have an initialization function and a

finalization function, often used to write results to a file at the end of the simulation. The kernel includes an event

queue, whose events correspond to messages (including those a module sends to itself).

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

OMNeT++ allows one to keep a model’s implementation, description and parameter values separate. The imple-

mentation (or behavior) is coded in C++. The description (i.e., gates, connections and parameter definition) is ex-

pressed in files written in Network Description (NED) language. Moreover a modular development is favoured by

allowing inheritance of both module description and behavior. The parameter values are written in initialization

(INI) files. NED is a declarative language, which exploits inheritance and interfaces, and it is fully convertible (back

and forth) into XML. NED allows one to write parametric topologies, e.g. a ring or tree of variable size. NED files

can be edited both textually and graphically (through a Graphic User Interface, GUI), switching between the two

views at any time. INI files contain the values of the parameters that will be used to initialize the model. For the

same parameter, multiple values or intervals can be specified.

As far as coding is concerned, OMNeT++ is integrated into Eclipse, thus it comes with an IDE which facilitates

development and debugging. In fact, modules can be inspected, textual output of single modules can be turned on/off

during execution, and the flow of messages can be visualized in an animation, all of which occurs automatically.

Events can be logged and displayed on a time chart, which makes it easy to pinpoint the causes or consequences of

any given event.

As for simulation workflow automation, OMNeT++ clearly separates models (i.e., C++ and NED files) from studies.

Studies are generated from INI files, by automatically making the Cartesian product of all the parameter values and,

possibly, generating replicas of the same instance with different seeds for the random number generators. Note that

the IDE allows one to launch and manage multiple runs in parallel, exploiting multiple CPUs or cores, so as to

reduce the execution time of a simulation study. Finally, data analysis is rule-based: the user only needs to specify

the files and folders she wants to extract data from, and the recipe to filter and/or aggregate data. The IDE automat-

ically updates and re-draws graphs when simulations are rerun or new data become available. The performance of

OMNeT++ has been compared to that of other simulators, notably ns-3 (Weingartner, 2009). The result is that the

two are comparable as for run time and memory usage, with ns-3 faring marginally better within the limits of the

analyzed scenarios.

Figure 1: OMNeT++ module connection.

3 Overview of SIMULTE

SimuLTE simulates the data plane of the LTE/LTE-A Radio Access Network and Evolved Packet Core. Due to lack

of space, we assume that the reader is familiar with the LTE architecture (a table of acronyms is reported in the

Appendix for ease of reference), and we only describe the RAN modeling. SimuLTE allows simulation of LTE/LTE-

A in Frequency Division Duplexing (FDD) mode, with heterogeneous eNBs (macro, micro, pico etc.), using omni-

directional and anisotropic antennas, possibly communicating via the X2 interface. Realistic channel models, MAC

and resource scheduling in both directions are supported. In the current release, the Radio Resource Control (RRC)

is not modeled.

The general structure of the three main nodes is shown in Figure 2. SimuLTE implements eNBs and UEs as com-

pound modules. These can be connected with each other and with other nodes (e.g. routers, applications, etc.) in

order to compose networks. The Binder module is instead visible by every other node in the system and stores

information about them, such as references to nodes. It is used, for instance, to locate the interfering eNBs in order

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

to compute the inter-cell interference perceived by a UE in its serving cell. UE and eNB are further composed of

modules. Every module has an associated description file (.ned) defining its structure, and may have a class defi-

nition file (.cpp, .h) which implements the module functionalities.

The UDP and TCP modules, taken from the INET package, implement the respective transport layer protocols, and

connect the LTE stack to TCP/UDP applications. As Figure 2 shows, TCP and UDP applications (TCP App and

UDP App) are implemented as vectors of N modules, thus enabling multiple applications per UE. Each TCP/UDP

App represents one end of a connection, the other end of which may be located within another UE or anywhere else

in the topology. SimuLTE comes with models of real-life applications (e.g., VoIP and Video on Demand), but any

other TCP/UDP-based OMNeT++ application can also be used. The IP module is taken from the INET package as

well. In the UE it connects the Network Interface Card (NIC) to applications that use TCP or UDP. In the eNB it

connects the eNB itself to other IP peers (e.g., a web server), via PPP (Point-To-Point Protocol).

The NIC module, whose structure is shown in Figure 3, implements the LTE stack. It has two connections: one

between the UE and the eNB and one with the LTE IP module. It is built as an extension of the IWirelessNic interface

defined in the INET library, so as to be easily plugged into standard scenarios. This allows one – among other things

– to build hybrid connectivity scenarios, e.g. with nodes equipped with both Wi-Fi and LTE interfaces. With refer-

ence to Figure 3, each of the NIC submodules on the left side represents one or more parts of the LTE protocol stack,

which is common to the eNB as well. The only module in the UE that has no counterpart in the eNB is the Feeback

Generator, which creates channel feedbacks that are then managed by the PHY module. The communication be-

tween modules takes place only via message exchange, thus each action starts from a message handler. Cross module

calls are used only in the form of getter/setter functions. This allows us to maintain a strong control over the inter-

actions between modules, thus limiting possible buggy behaviors. In the following we describe each sub-module

with their related functionalities. We will use downstream and upstream, respectively, to identify the flow of traffic

from an upper to a lower layer within the same module and vice-versa, and downlink and uplink for the traffic flow

from the eNB to the UE and vice-versa.

Figure 2: UE and eNB module structure. Shaded modules are taken from the INET framework.

3.1 PDCP-RRC module

The PDCP-RRC module is the connection point between the NIC and LTE-IP modules. The PDCP-RRC module

receives data from upper layers in the downstream direction and from the RLC layer in the upstream. In the first

case it performs RObust Header Compression (ROHC) and assigns/creates the Connection Identifier (CID) that

uniquely identifies, together with the UE ID, a connection in the whole network. A Logical Connection Identifier

(LCID) is kept for each 4-tuple in the form <sourceAddr, destAddr, sourcePort, destPort>. When a

packet arrives at the PDCP-RRC module, the correct LCID is attached to it (if there exists one), otherwise a new

one is created storing the new 4-tuple. Then, the packet is encapsulated in a PDCP PDU and forwarded to the proper

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

RLC port, depending on the selected RLC mode, as described in Section 3.2. In the upstream, a packet coming from

the RLC is decapsulated, its header is decompressed and the resulting PDCP PDU is sent to the upper layer.

Figure 3: NIC module architecture on the UE.

Figure 4: RLC module representation.

3.2 RLC module

The RLC module performs multiplexing and demultiplexing of MAC SDUs to/from the MAC layer, implements

the three RLC modes Transparent Mode (TM), Unacknowledged Mode (UM) and Acknowledged Mode (AM) as

defined in (3GPP-TS 36.322), and forwards packets from/to the PDCP-RRC to/from the proper RLC mode entity.

RLC operation is the same on both the eNB and the UE. The structure of the RLC module is shown in Figure 4.

There are three different gates connected with the PDCP-RRC module, one for each RLC mode. The TM submodule

has no buffer, as it forwards packets transparently, while AM and UM have their own set of transmission/reception

buffers, one for each CID associated to that RLC mode.

Figure 5: MAC packet flows.

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

Figure 6: MAC Scheduling Operation.

3.3 MAC module

The MAC module is where most of the intelligence of each node resides. Its main tasks are buffering packets from

upper (RLC) and lower layers (PHY), encapsulating MAC SDUs into MAC PDUs and vice-versa, managing channel

feedback, adaptive modulation and coding (AMC) and scheduling. Those operations are the same at the UE and the

eNB, with scheduling and channel-feedback management being the only exceptions. The high-level structure of the

MAC is shown in Figure 5. In the downstream, MAC SDUs coming from the RLC layer are stored in MAC Buffers,

one for each CID. On each TTI some connections are scheduled for transmission, according to the schedule list

composed by the scheduler. MAC SDUs from the scheduled connections are then encapsulated into MAC PDUs,

which are then stored in the H-ARQ buffers and forwarded to the physical layer. The detailed structure of H-ARQ

buffers will be explained later on. In the upstream, MAC PDUs coming from the physical layer are stored into H-

ARQ buffers. They are then checked for correctness, decapsulated and forwarded to the RLC.

The entities involved in eNB scheduling are shown in Figure 6. Resource scheduling is performed at the eNB for

both the uplink and the downlink. For the uplink, decisions are notified to the UEs via grant messages, i.e., in the

current release the Physical Downlink Control Channel (PDCCH) is not directly simulated. Each UE reads the grants

and decides which local connection will be able to use the granted resources, if any. UEs in turn request uplink

resources via the Random Access (RAC) Procedure, which is again implemented through messages generated by the

MAC module. The Physical Random Access Channel (PRACH) is not directly simulated. In order to properly make

scheduling decisions, both downlink and uplink schedulers need the status of user connections and the channel

quality perceived by each UE. The downlink connection status is inferred directly from MAC buffers, while in the

uplink the status is inferred from virtual uplink buffers. The latter are kept synchronized with the real MAC buffers

on the UE side via Buffer Status Reports (BSR), as defined in (3GPP - TS 36.321), which are control elements

attached to uplink transmissions.

The Adaptive Modulation and Coding (AMC) entity stores channel status information from the UE reports, deciding

(Pilot entity) and storing (User Tx Params entity) transmission parameters such as modulation and coderate, and

computing the amount of bytes per resource block for each user based on those parameters, as defined in (3GPP -

TS 36.213).

As far as H-ARQ is concerned, Transmission and Reception H-ARQ Buffers (from now on TxHbuff and RxHbuff)

store MAC PDUs that are being sent and received respectively. This means that a MAC PDU is stored therein until

it is received correctly or the maximum number of retransmissions is reached. Reception is notified via H-ARQ

feedback messages. H-ARQ buffers on the eNB maintain MAC PDU information for each connected UE in both

downlink and uplink, for each H-ARQ process and for each codeword (hence, these modules require no modification

to support Single-User MIMO). The general structure shown in Figure 7 is valid for both Tx- and Rx-Hbuffs, hence

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

we will use the neutral Hbuff to denote both. A Hbuff contains K buffers, one for each active connection to another

node. Hence an eNB has as many buffers as connected UEs in each direction, whereas a UE has up to one per

direction, as it communicates directly only with its serving eNB. Each buffer contains N processes (N=8, usually),

one per H-ARQ process. Finally, each Process contains two Units, to support SU-MIMO. A Unit contains the in-

formation related to a transmitting/receiving MAC PDU. The status of the Unit is stored in a different manner on

TX- and RX-buffs as it depends on the feedback management procedure. The finite state automata for transmission

is represented in Figure 8 (the one for reception is similar, mutatis mutandis). ACK and NACK are the reception of

the corresponding H-ARQ feedback. TxCount is the transmission counter, increased in the SELECTED state and

reset in the EMPTY one. MAX_TX is the maximum number of transmissions before discarding a PDU.

The hierarchy of eNB schedulers is shown in the left part of Figure 9. The eNB Scheduler base class implements

operations that are common to the DL and UL, such as data structures initialization, allocation management via the

Allocator, and statistics collection. The two classes eNB Scheduler UL and DL extend the base class by implementing

the rtxSchedule() method, which manages retransmissions. In addiction the eNB Scheduler UL manages RAC

requests.

At the beginning of each TTI the eNB prepares a schedule list in each direction, which shares available resources

among the active connections, according to a given policy. This is performed by a member of the eNB Scheduler

called Scheduling Policy. Its main function, schedule(), consists of two steps: first, the scheduling policy is

applied on a set of virtual connections, without modifying MAC buffers; then the decisions are stored and passed to

the MAC, which enforces them by fetching the data from its buffers and constructing the PDUs (see again Figure

6). The scheduling policy builds the schedule lists by repeatedly polling the Allocator for given amounts of bytes

transmitted at the CQI of the connection being examined. This allows one to envisage general schedulers, that decide

both the priority order of connections and the amount of data to be scheduled from each: for instance, schedulers

that only serve urgent data from each connection (instead of attempting to empty each queue sequentially), or set

fixed quanta.

Process

Unit

Unit

Process

Unit

Unit

Buffer

Process

Unit

Unit

Process

Unit

Unit

Buffer

Hbuff

K

...

...

...N

Figure 7: Common Hbuff structure.

Figure 8: Finite State Automata for Unit status in TX.

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

Figure 9: eNB schedulers and Sch. Policy hierarchy.

The fact that scheduling occurs in two steps allows a user to run multiple schedulers in parallel, choosing which

schedule list to commit among a set of alternatives. The Scheduling Policy hierarchy is shown in the right part of

Figure 9. To implement a new scheduling policy, a developer only needs to implement the two steps of the sched-

ule() function. Three well-known scheduling policies are included in the current release, namely Maximum Car-

rier-over-Interference (Max C/I), Proportional Fair (PF), Deficit Round Robin (DRR). Finally, we observe that

scheduling policies may redefine the rtxSchedule() function. Retransmissions can be scheduled either at a

higher/lower priority than first transmissions, or jointly with them.

3.4 PHY module

The PHY module implements functions related to the physical layer, such as channel feedback computation and

reporting, data transmission and reception, air channel emulation and control messages handling. It stores the phys-

ical parameters of the node, such as the transmission power and antenna profile (i.e., omni-directional or anisotropic).

This allows one to define macro- micro-, pico-eNBs, with different radiation profiles. Each physical module on the

eNB and the UE has an associated Channel Model C++ class that represents the physical channel as perceived by

the node itself. The Channel Model is an interface that defines two main functions: getSINR(), which returns the

Signal to Interference plus Noise Ratio (SINR), and error(), which checks if a packet has been corrupted. We

describe the current implementation of the channel model later on, but one can easily implement its own model by

implementing the Channel Model interface.

On the UE side, some tasks related to physical layer procedures are performed by an independent Feedback Gener-

ator module. This module generates channel feedback (i.e., CQIs), which can be configured to be periodic or aperi-

odic. Furthermore, CQIs can be either wideband or per-sub-band: in the latter case, the user can configure the number

of sub-bands and of reported CQIs. The feedback generation process exploits the function provided by the Channel

Model interface. Note that the physical LTE channels, such as the Physical Downlink Control Channel (PDCCH),

Physical Uplink Control Channel (PUCCH) and Physical Random Access Channel (PRACH) are not modeled down

to the level of OFDM symbols, to keep both memory and CPU usage limited. Their functionalities are instead im-

plemented via control messages sent between the eNB and UE nodes. Any limitation of those channels, (e.g., on the

maximum number of UEs that can be scheduled simultaneously on the PDCCH), can nevertheless be emulated by

imposing constraints on the messages themselves.

In the downstream, MAC PDUs are received from the MAC layer and encapsulated in an Air Frame packet. Packets

are marked with a Type, i.e. data or control, then they are directly sent to their destination module, selected according

to the control information attached to the packet. In the upstream, a received Air Frame packet is selectively pro-

cessed depending on its type: control packets are directly forwarded to the upper layer (assuming correct reception),

whereas data packets are tested against the error() function of the Channel Model before being marked and sent

to the upper layer.

Our implementation of the Channel Model interface is called Realistic Channel Model. The SINR is computed as

()eNB i

RX RXi
SINR P P N= +∑ , where eNB

RX
P is the power received from the serving eNB,

i

RX
P is the power received from

the interfering eNB i, N is the Gaussian noise. Furthermore,
RX

P is computed as
RX TX

P P Ploss F S= − − − , where

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

TX
P is the transmission power, Ploss is the path loss due to the eNB-UE distance (which depends on the frequency),

and F and S are the attenuation due to fast and slow fading respectively (Jakes, 1975). The above operations are

performed within the getSINR(), on a per-RB basis. This allows one to simulate the effects of interference on

every single RB, e.g. taking into account the transmissions from neighboring eNBs, so as to evaluate LTE-A inter-

ference-coordination mechanism such as the Enhanced inter-cell interference coordination (eICIC) or Coordinated

MultiPoint (CoMP). The error() function compares the CQI used for transmitting a packet with the one computed

at the moment of reception. An error probability
errP is then obtained by using realistic BLER curves and the two

previously computed CQIs. A uniform random variable []0,1X ∈ is sampled and the packet is assumed to be cor-

rupted if
errX P< , and correct otherwise.

The choice of the channel model usually arises strong feelings among scientists and practitioners in wireless net-

works. For this reason, besides proposing one, we took care of implementing it in an easily modifiable way. Modi-

fications can be done in either of the following ways:
• extend the base LteChannelModel class, and specifically implement the two functions getSINR()and er-
ror(). This requires some work, but allows maximum flexibility.
• Modify our Realistic Channel Model, and specifically the functions for computing pathloss, fading and shad-
owing. This requires minimal modifications, at the price of less flexibility.

Note that, whichever the choice, the rest of the code is obviously unaffected.

4 Validation and verification

Validating the simulation model of a complex system and checking its implementation for correctness are funda-

mental tasks. In this section we will first show some validation of the SimuLTE model, and then describe the veri-

fication techniques that were used during/after the development of the simulator.

4.1 Model validation

Validating the tons of data produced by a simulator is a very common problem. One possible approach is to compare

these values against measurement obtained from real systems. Unfortunately, to the best of our knowledge, none of

these measurements are publicly available. Another possible solution, as suggested in (Zhou et al., 2013), is to com-

pare simulation results with theoretical ones obtained in simple reference scenarios. We thus choose a single cell in

two scenarios: a single-user one (scenario I) and a multi-user one (scenario II). In both cases UEs are static and

measurements are made at distances to the eNB ranging from 500 to 2000 meters. In scenario II UEs are placed

within a 50m-radius circle centered at the specified distance. The main simulation parameters are described in Table

1..We compare the throughput of the simulated scenarios against a reference throughput obtained as

(,) τ=
PRB

Tpt S MCS N (Zhou et al., 2013) where τ is the duration of a TTI (i.e. 1ms), (,)
PRB

S MCS N is the transport

block size for the measured CQI and for NPRB physical resource blocks.

As we show in Figure 10, simulation results match the reference ones, in both scenarios. Note that the results ob-

tained with distances greater than 500m are not directly comparable with the ones of the above work, as the two

pathloss models are different.

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

Table 1: Simulation parameters.

Parameter Value

NPRB 25

Pathloss model ITU-R, Rural Macro

Mobility model Stationary (OMNeT++ model)

eNB Tx Power 30 dBm

Noise figure 5 dB

Cable loss 2 dB

Distance eNB – UE 500, 1000, 1500, 2000 m

Simulation time 2 seconds

Figure 10 - Cell Throughtput for Scenario I and Scenario II compared against theoretical reference throughput.

4.2 System verification

We describe here the verification techniques used to ensure correctness of the implementation. The latter take ad-

vantage of both well-known verification techniques and instruments made available by the OMNeT++ framework.

First of all, during the whole development process, anti-bugging has been used to enforce the consistency of the

variables that define the crucial elements of the system. For example, for each scheduling operation, we repeatedly

check the number of allocated RBs, verifying that none of them is in use at the beginning of a TTI and that their

number never exceeds the system capacity. Whenever a consistency check fails, the simulation is stopped and an

error is reported. This avoids obtaining results from a system that traversed an inconsistent state.

Second, we monitored the values of many statistics during some critical scenarios, in order to check for odd behav-

iors throughout the transient phase. In this case we take advantage of OMNeT++ vectors, which allow the user to

store all the values of a metric, together with the time at which they were recorded. This way we can easily trace key

metrics over time.

Finally we checked module interactions for correctness using structured testing. For each module we defined a stub

counterpart, with the same interfaces to other modules, but no operations. Stubs are helpful to test other modules in

isolation. For instance, we can monitor the interactions between MAC and PHY layers alone, without the added

burden of the other layers, for which stubs are used. Moreover each simulation can be configured to produce a hash

value, the latter depending on the way messages are exchanged between modules. We can thus define a set of refer-

ence scenarios and obtain their associated hash values. After each modification to the system (e.g., an enhancement

or a new version), we can then run the same reference scenarios again and check for any changes by just comparing

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

the obtained hash values. Note that a mismatch in a hash value, does not necessarily imply an error. Rather, it

highlights a change in the communication pattern, that may possibly be the subject of further investigation.

5 Performance Evaluation

We present three contribution. First, we show how the simulation times varies with the number of UEs and cells and

with the traffic profile. Second, we show that inter-cell interference increases the number of allocated RBs in a cell

in a way which analytical formulas fail to predict. Finally, we formulate the MaxC/I scheduling problem in a multi-

band setting as an optimization problem, we show how to solve it optimally by interfacing SimuLTE and CPLEX,

and we use it to benchmark a simple heuristic.

Figure 11: Simulation scenario.

5.1 Profiling of execution time

We setup a scenario with a varying number of UEs and cells. eNBs use anisotropic antennas, radiating at 120° angles

and transmitting at 46dBm, and employ MaxC/I scheduling. The simulation scenario is shown in Figure 11, where

each circle represents a cluster of three co-located cells. CQIs are wideband and reported periodically. The UM RLC

is employed, and the MAC fragment is set to 20 bytes. The overall number of available RBs is 50. UEs are uniformly

distributed among cells and receive VoIP traffic (40-byte application packets on each 20ms, with alternated talk-

spurts and silences), which is generated by a server and forwarded to the eNBs through a router. 20s of the above

system are simulated on an Intel(R) Core(TM) i7 CPU at 2.80 GHz, with 8 Gb of RAM, a Linux Ubuntu 12.04

operating system, and OMNeT++ version 4.2.2. Each run is repeated five times in independent conditions. 95%

intervals are displayed unless negligible.

Figure 12 reports the running time for three, nine and 21 cells. The latter depends almost linearly on the number of

UEs in all cases. Increasing the number of cells influences the overall running time, as computing interference re-

quires more operations.

In the scenario with nine cells, Figure 13 shows how the simulation time depends on the traffic profile: we vary the

packet size and the period, while keeping the same application-layer bitrate,. However, Figure 14 shows that the

MAC-level per-UE bitrate is quite different, due to the protocol overheads. In particular, the MAC PDU size is 33

bytes larger than the application packet (header compression is not used). In Figure 13, bottom, mid and top markers

on each curve are for 30, 60, and 90 UEs, respectively. For the same MAC-layer offered load (i.e., the same abscissa),

smaller packets sizes require shorter simulation times. However, for the same number of UEs (i.e., the same group

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

of markers), the simulation time depends on the number of transmitted packets, hence a smaller packet size (i.e.,

more packets per unit of time) implies longer simulation times.

Figure 12: Execution time with varying number of cells.

Figure 13: Execution time with varying offered load.

Figure 14: Bitrate per UE at MAC level.

5.2 Inter-cell interference

SimuLTE allows in-depth analysis of the effects of the inter-cell interference. We consider three co-located cells as

in Figure 13. UEs receive CBR traffic at a rate of 0.2 Mbps. Figure 15 reports the average number of RBs allocated

by a cell. We compare the results with those obtained by using the formula in (Fantini et al., 2011), using the same

channel model in both cases. The formula evaluates the interference based on the probability that two cells use the

same RB, given the amount of RBs allocated by the two cells and assuming that each cell picks its RBs at random

in the frame. Since the interference depends on the allocated RBs and vice versa, the formula is updated until it

reaches a steady state. We note that there is a point (at 65-70 UEs) where the simulative curve has a step. This

happens because the more a cell fills its own frame, the more it generates interference on UEs of neighbouring cells,

which in turn report lower CQIs. Accordingly, neighbouring cells need to allocate more RBs to serve their UEs, thus

producing additional interference that further decreases CQIs and causes retransmissions. Moreover, transmissions

may occur simultaneously on RBs with low and high interference. Since wideband CQIs are used, high-interference

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

RBs may be corrupted, causing retransmission, hence even more allocated RBs. At low loads, the system is still able

to satisfy the additional requests, whereas at high loads this results in a positive feedback that rapidly drives the

system towards saturation. This effect cannot be observed using the analytical formula because it does not account

for the impact of errors and retransmissions.

Figure 15: Average allocated RBs per cell.

5.3 Multi-band scheduling

Many resource allocation problems in LTE/LTE-A can be formulated as optimization problems. Hereafter, we de-

scribe a typical one, and we show how to interface SimuLTE with optimization solver CPLEX to solve it, believing

this to be useful to researchers working in this area, for both the results and the way we obtained them.

MaxC/I scheduling is a relatively simple problem if we assume wideband CQIs and a number of transmitted bytes

which is linear with the number of allocated RBs, with the CQI representing the line slope. In fact, in this case, all

it takes to obtain the maximum throughput is to allocate enough RBs to empty the queue of each UE, in decreasing

order of CQI (taking some extra care when padding is involved). Therefore, MaxC/I scheduling can be obtained at

a complexity of ()logO N N , N being the number of UEs. When per-sub-band CQI are used, however, obtaining

the maximum throughput becomes an NP-hard problem, as shown in (Accongiagioco et al., 2013), hence some

heuristics are used to obtain suboptimal solutions. Recall that a UE can use one CQI in a TTI (typically, the minimum

of all the CQIs in the sub-bands where it is allocated some RBs). The maximum throughput problem can be formu-

lated as:

()

() ()

()

() ()

()

()

()

{ } ()

,1 1

,1 1

, , max

, ,

,1

, ,

max

. .

1

1

,

,

0,1 , ,

N M

i i j ii j

M M

i i j i ij j

i i

i i j i j

i j i j

N

i j ji

i i

i j i j

r x p

s t r x p Q i i

p r i ii

r CQI b CQI i iii

x b i j iv

x B j v

r p i vi

b x i j vii

= =

= =

=

+

+

⋅ −

⋅ − ≤ ∀

≤ − ∀

≤ + − ⋅ ∀

≥ ∀

≤ ∀

∈ ∀

∈ ∈ ∀

∑ ∑

∑ ∑

∑
�

�

, (1)

where M is the number of sub-bands, each one having
jB RBs. ir is the rate that will be used by UE i (assumed to

be a number of bytes per RB),
,i jCQI is the CQI of UE i in sub-band j (translated to a number of bytes per RB as

well), ip and iQ are the padding and queue length for UE i.
,i jb is a binary variable that is equal to 1 if UE i is

allocated RBs in sub-band j, and
,i jx is the number of RBs that it has allocated in that sub-band.

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

The above one is a mixed integer-non-linear problem, which can be linearized using standard enumeration tech-

niques and solved through CPLEX (which only solves linear problems). Therefore, we can use the optimal solutions

to benchmark heuristics, provided that we interface SimuLTE and CPLEX. There are two ways to do so: one is to

use its C++ API, which requires integrating it into Eclipse and learning to use it, both being non-trivial. The other,

which we chose, is to manage files via tmpfs, i.e., save files in volatile memory: while this is less efficient, it only

requires one to be able to write down a scheduling problem in the LP file format used by CPLEX (which is very

intuitive) and to write a parser for SOL CPLEX output solution files, which are XML-based.

At each TTI, we do the following: first we obtain the constants, i.e., queue size, per-sub-band CQIs, etc. Then, we

generate an LP file describing the linearized problem. The problem is then solved by invoking CPLEX with the LP

file as an input. The resulting SOL file can be easily parsed via xml-related functions given by the omnetpp envi-

ronment. Figure 16 shows a snippet of the output file that defines the final allocation: each line specifies the name

of a variable (xi_j, in this case) and its value, i.e. the RBs allocated to user i within sub-band j. Finally the allocation

is enforced in the simulated system and the rest of the operations for the TTI are executed.

The multi-band MaxC/I heuristic that we choose to benchmark is the following: we sort all UEs by decreasing sum

of per-sub-band CQIs, and we allocate enough RBs to empty their queue (as if multiple CQIs could be used simul-

taneously). Then we use the minimum CQI among the selected sub-bands. We compare the above solutions in a

scenario with six RBs, a number of UEs ranging from 10 to 75, and VoIP traffic. Both solutions achieve the same

throughput, since the system is still far from saturation conditions, but the heuristics uses up to 30% more RBs, as

shown in Figure 17.

Figure 16: Snippet of CPLEX XML output file.

Figure 17: RB occupancy comparison between the heuristic and optimum solutions.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10 25 50 75

R
B

s

Number of UEs per cell

Avg Allocated RBs per cell

Heuristic
Optimum

[…]

<variable name="x4_1" […]value="1"/>

<variable name="x4_2" […]value="1"/>

<variable name="x4_3" […]value="1"/>

<variable name="x4_4" […]value="1"/>

<variable name="x4_5" […]value="1"/>

<variable name="x5_0" […]value="1"/>

[…]

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

6 Conclusions

This paper described SimuLTE, an open-source LTE/LTE-A simulator based on the OMNeT++ framework. The

current release supports the data plane of the radio access network, with a full protocol stack, a realistic physical

layer and scheduling capabilities. We have described the modeling approach in detail, especially focusing on the

MAC and resource allocation models. Then we explained some validation of the model and the main verification

techniques that have been used. Moreover, we have shown some examples of performance evaluation that can be

obtained through SimuLTE. There are at least two directions in which this work can be extended, most of which are

being pursued at the time of writing:
• As explained in the Introduction, there are other LTE simulators and emulators available for the public domain.
A comparison of SimuLTE against these is on the agenda. We expect this comparison to reinforce validation, to
provide insight regarding the different features and capabilities of the simulators, and to benchmark their efficiency.
• The LTE-A technology is evolving, and SimuLTE evolves accordingly. We are in fact adding several models
to SimuLTE. Among the planned future releases we mention support to device-to-device (D2D) communications
and Coordinated Multi-Point transmission (CoMP).

7 Acknowledgements

We would like to thank all those who have contributed to the SimuLTE code as former students of the University of

Pisa, namely Matteo Maria Andreozzi of NVIDIA, UK, Daniele Migliorini of Aruba, Italy, Giovanni Accongiagioco

of CNR, Italy, Generoso Pagano of INRIA Grenoble Rhône-Alpes, France, Vincenzo Maria Pii of ZHAW, Switzer-

land. Many thanks also to Andras Varga, Rudolf Hornig, Levente Mészáros and Gábor Tabi of SimulCraft for sup-

port and discussion on the code.

8 References

3GPP - TS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access

Network (E-UTRAN); Overall description; Stage 2

3GPP - TS 36.913 Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA)

(LTE-Advanced)

Varga, A. and Hornig, R. (2008), "An overview of the OMNeT++ simulation environment", in Proc. SIMUTools '08,

Marseille, France, March 2008.

Mehlfuerer, C., Wrulich, M., Ikuno, J.C., Bosanska D., Rupp, M., “Simulating the long term evolution physical layer”, in

Proc. 17th EUSIPCO, Glasgow, UK, 2009

Ikuno, J.C. , Wrulich, M., Rupp, M., “System level simulation of LTE networks”, in Proc. of IEEE VTC-Spring, Taipei,

Taiwan, May 2010, pp. 1-5

Piro, G. , Grieco, L. A., Boggia, G., Capozzi F., Camarda, P., “Simulating LTE Cellular Systems: An Open-Source Frame-

work”, IEEE Trans. on Vehicular Technology, 60:(2), Feb. 2011

Ns-3 homepage, available at http://www.nsnam.org/ [accessed 2014/04]

Baldo, N., Miozzo, M., Requena-Esteso, M., Nin-Guerrero, J., “An Open Source Product-Oriented LTE Network Simu-

lator based on ns-3”, in Proc. of ACM MSWiM’11, Miami, US, Nov. 2011

Perrone, L. F., Cicconetti, C., Stea, G., Ward, B., "On the Automation of Computer Network Simulators", in Proc. of

SIMUTools’09, Rome, Italy, March 3-5, 2009

3GPP - TS 36.322 Radio Link Control (RLC) protocol specification

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

Weingartner, E., Vom Lehn, H., Wehrle, K., “A performance comparison of recent network simulators”, in Proc. of IEEE

ICC’09, June 14-18, Dresden, DE, 2009

3GPP - TS 36.321 Medium Access Control (MAC) protocol specification

3GPP - TS 36.213 Physical layer procedures

Kurkowski, S., Camp, T., Colagrosso, M., “MANET Simulation Studies: The Incredibles”. ACM SIGMOBILE MCCR 9

(4): 50–61, 2005

Jakes, W.C., Microwave Mobile Communications, Wiley, 1975

Accongiagioco, G., Andreozzi, M.M., Migliorini, D., Stea, G., “Throughput-optimal Resource Allocation in LTE-

Advanced with Distributed Antennas” Computer Networks, vol. 57(2013), pp. 3997-4009

Fantini, R., Sabella, D., Caretti, M., “An E3F based assessment of Energy Efficiency of Relay Nodes in LTE-Advanced

networks”, in Proc. IEEE PIMRC 2011, 11-14 Sept. 2011, pp.182-186.

Perrone, L.F., Main, C., Ward, B.C., “SAFE: Simulation Automation Framework for Experiments”, in Proc. of IEEE WSC

2012, Berlin, DE, 9-12 Dec. 2012

Zhou, D., Baldo, N., Miozzo, M., “Implementation and Validation of LTE Downlink Schedulers for ns-3”, in Proc. SI-

MUTools '13, Cannes, France, March 3013

Bouras, C., Diles, G., Kokkinos, V., Kontodimas, K., Papazois , A., “A Simulation Framework for Evaluating Interfer-

ence Mitigation Techniques in Heterogeneous Cellurar Environments”, Wireless Personal Communications,

Springer-Verlag, 2013

Gomez, I. “libLTE: Open source 3GPP LTE library,”[Online]. Available at: http://sourceforge.net/projects/liblte/, Last

Update: Oct. 2013.

Wojtowicz, B. “openLTE: An open source 3GPP LTE implementation,” [Online]. Available at: http://source-

forge.net/projects/openlte/, Last Update: Sept. 2014.

Institut Eurecom, “OpenAirInterface,” [Online]. Available at: https://twiki.eurecom.fr/twiki/bin/view/OpenAirInter-

face/WebHome.

Published in "Simulation and Modeling Methodologies, Technologies and Applications", Volume 402 of the series Advances in Intelligent Systems

and Computing, pp. 83-105, Springer, ISBN 978-3-319-26469-1, 15 January 2016

9 Appendix

Table 2: LTE-related acronyms used in the paper.

Acronym Definition

AM Acknowledged RLC mode

BLER Block Error Rate

BSR Buffer Status Report

CID Connection identifier

CoMP Coordinated Multi-Point

CQI Channel Quality Indicator

DL Downlink

DRR Deficit Round Robin

eNB Evolved Node-B

EPC Evolved Packet Core

e-ICIC Enhanced Inter-Cell Interference Cancellation

FDD Frequency Division Duplexing

H-ARQ Hybrid Automatic Repeat reQuest

LCID Logical Connection identifier

LTE Long-term Evolution

LTE-A Long-term Evolution Advanced

MaxC/I Maximum Carrier over Interference

PDCCH Physical Downlink Control CHannel

PDCP Packet Data Convergence Protocol

PDU Protocol Data Unit

PF Proportional Fair

PRACH Physical Random Access CHannel

RAC Random Access Procedure

RB Resource Block

RLC Radio Link Control

RRC Radio Resource Control

RU Remote Unit

SDU Service Data Unit

SU-MIMO Single-User MIMO

TM Transparent RLC mode

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UM Unacknowledged RLC mode

