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1. INTRODUCTION 

In spatial econometric literature, “the matrix is the fundamental tool used to 
model the spatial interdependence between regions. More precisely, each region 
is connected to a set of neighboring regions by means of a spatial pattern
introduced exogenously as a spatial weight matrix W ” (Le Gallo et al., 2003, 
p.110). 

The traditional specification of the spatial weights matrix relies on the 
geographical relation between observations, implying that areal units are 
neighbors when they share a common border (first-order contiguity), or the 
distance between their centroids is within a distance cut-off value (distance-
based contiguity). As pointed out by Anselin and Bera (1998), other speci-
fications of the spatial weights matrix are possible as, for example, weights 
reflecting whether or not two individuals belong to the same social network, or 
based on some “economic” distance. Although these specifications are desired, 
the resulting spatial process must satisfy necessary regularity conditions. “For 
example, this requires constraints on the extent on the range of interaction 
and/or the degree of heterogeneity implied by the weights matrices" (Anselin 
and Bera, 1998, p. 244). 

Moreover, “in the standard estimation and testing approaches, the weights 
matrix is taken to be exogenous" (Anselin and Bera, 1998, p. 244). Therefore, 
the W  matrix represents the a priori assumption about interaction strength 
between regions. However, in many cases considerable attention should be 
given to specifying the matrix W  to represent as far as possible economic links 
(see Corrado and Fingleton, 2012). 

In a companion paper (see Fiaschi and Parenti, 2013) we show how is 
possible to estimate the interdependence between European regions by a 
connectedness matrix, which is the result of a general variance decomposition 
analysis on the residuals of a VAR model. The connectedness matrix has the 
advantage to be immediately interpretable as a network, allowing for the use of 
network connectedness measures to understand the interdependence among 
regions (see Diebold and Yilmaz, 2014). 

The aim of the paper is to discuss how our (contemporaneous) 
connectedness matrix is strictly related to the spatial matrix W , and to compare 
the network deriving from connectedness matrix with that deriving from a 
spatial model that can display mixed dynamics in both space and time. An 
empirical application using growth rate volatility of per capita GDP of 199 
European NUTS2 regions (EU15) over the period 1981-2008 is used to 
illustrate our analysis. 

The paper it is organized as it follows: Section 2 explains the methodology 
to estimate the connectedness matrix. Section 3 traces a comparison between 
our connectedness matrix and the spatial weights matrix. Section 4 contains the 
empirical application to EU regions. Section 5 concludes. 
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2.  THE METHODOLOGY 
 

The estimate of connectedness matrix follows the methodology described in 
Fiaschi and Parenti (2013). To sum up: firstly, a panel of growth rate volatilities 
(GRV) of per capita GDP for a sample of regions is estimated; then, the panel is 
used to perform a general variance decomposition analysis (GVD hereafter) on 
the residuals from a VAR in order to estimated the so-called connectedness
matrix. The procedure is largely inspired by Diebold and Yilmaz (2014), with 
the additional difficulty arising in the estimate of VAR, that the number of 
observations for each region is generally lower than the number of regions, i.e. 
we face a typically high-dimensional problem (see Hastle et al. 2008). To 
overcome this problem a Bayesian Model Averaging is used. 

2.1. The Connectedness Matrix  

Following McConnell and Perez-Quiros (2000) and Fiaschi and Lavezzi 
(2011) the basic idea to build a panel of GRV is that the dynamics of growth 
rate of per capita GDP can be well-approximated by an autoregressive process 
of order p  (denoted by pAR ):

jtptjptjjjt ,1,1 ...=  (1) 

where jt  is assumed to be normally distributed. Given that jt  follows a 
normal distribution, an unbiased estimator of the standard deviation of jt ,

jt , is given by: 

|ˆ|
2

=ˆ jtjt  (2) 

From Eq. (2) we derive the unbiased estimator of the standard deviation of 
the growth rate of per capita GDP, jt . For example, if the growth rate follows 
an AR(1) process (see Hamilton 1994, p. 53), the standard deviation of the 
growth rate is given by: 

2
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This method is easily extended to higher-order AR models (see Hamilton 
1994, pp. 58-59). 

Once the panel of GRV has been estimated, we follow Diebold and Yilmaz 
(2014) in the use of a vector-autoregressive (VAR) model to represent the 
process governing the GRV of regions, and estimate the GVD which allows to 
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measure the population connectedness, i.e. assessing the share of forecast error 
variance in a region due to shocks arising elsewhere.

The use of VAR implicitly implies that relationships across units of 
observations are essentially linear, and that the contemporaneous relationships 
are well represented by pairwise correlations (i.e., the variance-covariance 
matrix). Moreover, the use of GVD is subject to some restrictive assumptions, 
the most notable is the Gaussian distribution of shocks.1

Assume that a VAR of order p  is a good approximating model of the 
process governing the GRV of regions:2

                                ,1,...,=,=
1=

Tttiti

p

i
t xcx                                  (4) 

where c  is a 1N  vector of constants, ),...,(= 1 Nttt xxx  is a 1N  vector of 
jointly determined dependent variables, Nii 1,...,=,  is the NN
coefficients matrix and t  is an error term such that 0=)( tE ,

tE tt =)( , where }1,...,=,{= Njij  is an NN  positive definite 

matrix, and 0=)'( ttE  for all tt .

Assuming also that all roots of 0|=|
1=

i
i

p

iN zI  fall inside the unit 

circle, that is tx  is covariance-stationary (see Pesaran and Shin, 1998), Eq. (4) 
can be rewritten as the infinite moving average representation:  

                                 ,1,...,=,=
0=

Ttiti
i

tx                                       (5) 

where cI 1
1 )(= pN  is the mean of the process, and the NN

coefficient matrices i  can be obtained as 
1,2,...=,...= 11 ipipii  with NI=0  and 0=i  for 0<i .

To measure the effect of shocks at a given point in time on the expected 
future values of variables in a dynamical system, Koop et al. (1996), advance 
the generalized impulse response function. In particular the scaled generalized 
impulse response function of tx  at horizon H  is given by: 

                                                      
1 Alternatively, the use of Cholesky-factor identification is sensitive to ordering of the 
units of observations. 
2 Notation refers to Pesaran and Shin (1998). 
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where je  is the selection vector (a vector of all zeros with 1 in the j -th
element), which measures the effect of one standard error shock to the j -th unit 
of observations at time t  on expected values of x  at time Ht .

From the above generalized impulses, Pesaran and Shin (1998) derive the 
generalized (i.e., order-invariant) forecast error variance decomposition, defined 
as the proportion of the H -step ahead forecast error variance of variable i
which is accounted for by innovations in variable j . Then, for 1,2,...=H , H-
step GVD matrix ][= gH

ij
gH dD  has entries:3
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where h  is the coefficient matrix of the h-lagged shock vector in the MA 
representation of the non-orthogonalized VAR,  is the covariance matrix of 
the shock in the non-orthogonalized VAR, and ii  its diagonal. 

As in Diebold and Yilmaz (2014) we normalize the GVD matrix by row in 
order to have unity sums of forecast error variance contribution (remember that 
the shocks are not necessarily orthogonal in GVD, therefore their sum is not 
equal to 1 in the standard decomposition). Therefore, the connectedness matrix
has entries as:  

.=~

1=

gH
ij

N

j

gH
ijgH

ij

d

d
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In particular, gH
ijd~  is the fraction of region’s i  H-step forecast error variance 

due to shocks in region j . The cross-variance decomposition, that is the off-
diagonal elements (i.e., ji ), measure the pairwise directional connectedness;

in general, gH
ji

gH
ij dd ~~

), i.e. GVD matrix is not symmetric. On the other hand, 
the diagonal elements (own connectedness) measure the fraction of region’s i
H-step forecast error variance due to shocks arising in the same region (i.e. 
idiosyncratic shocks). 

                                                      
3 Notice that 1=H  actually corresponds to the contemporaneous connectedness. 
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Table  1. Connectedness Matrix derived from the GVD Matrix 

1x ... Nx From Others 

1x gHd11
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Nd1
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N
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The connectedness matrix is conditioned to the predictive horizon H , which 
is in turn related to the concept of dynamic connectedness. In particular, GVD 
1-step ahead represents the contemporaneous connectedness. As the predictive 
horizon H  increases there is more possibility for connectedness to appear. In 
this sense, we can distinguish between short-run and long-run connectedness. 

The typical dimensions of datasets used in cross-country and cross-region 
analysis are such that the number of countries/regions N  is much higher than 
the length of time series T , i.e. we generally face a high-dimensional problem 
with N T . Firstly, this suggests to maintain the order of VAR at the 
minimum level equal to 1, i.e. GRV of each region at time t  will depend on a 
constant, on its lagged GRV at time 1t , and on the GRV of all other regions 
at time 1t . Secondly, since the total number of parameters to be estimated 
equal to 1= NK , i.e. all lagged GRV of regions plus constant, is higher than 
the number of observations T , the VAR(1) cannot be estimated by standard 
OLS. We overcome this problem by using a Bayesian Model Averaging 
approach (see Fiaschi and Parenti (2013), for technical details). 

2.2. A Network Interpretation of Connectedness Matrix  

The proposed methodology has a straightforward interpretation in terms of 
network and of percolation of shocks through it. As stated by Diebold and 
Yilmaz, (2014, p.123) “[...] variance decompositions are networks. More 
precisely, the variance decomposition matrix D , which defines our 
connectedness table, and all associated connectedness measure, is a network 
adjacency matrix A . Hence network connectedness measures can be used in 
conjunction with variance decompositions to understand connectedness among 
components”. Specifically, GVD defines a weighted, directed network. 

For the sake of simplicity consider the case with three regions and a 
representation by VAR(1), whose variance-covariance matrix  is given by:  

3332

232221

1211

0

0
 (9) 



                 Région et Développement       59 

from which the GVD matrix at 1=H :
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12

1gD  (10) 

In case of VAR(1) NI=0 , =1 , 2
2 = , ..., where  is the 

coefficient matrix of VAR. 

The network representation related to 1gD  in Eq. (10) is reported in Fig. (1). 
The structure of contemporaneous network fully reflects the shape of  both in 
terms of existence of links and in terms of their strength. However, differently 
from , 1gD  is not symmetric, i.e. the contemporaneous network is both 
weighted and directional. The row standardization has not an impact on the 
analysis in the case we are interested in only the existence of links between two 
regions. In a more complete analysis of percolation of shocks trough network 
this normalization is however not neutral and the use of the original values of 
GVD matrix is the best option. 

Assuming that the coefficient matrix 1  of the 1-lagged shock vector in the 
MA representation of the VAR(1) is given by: 
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1

0
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0
==  (11) 

GVD matrix at 2=H  is given by: 
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The network representation related to 2gD  in Eq. (12) is reported in Fig. (2). 
The structure of network appears crucially affected by  both in terms of the 
emergence of new links and in terms of their strength. 

In particular, new links appear connecting Regions 1 and 3 through the VAR 
coefficients 13  and 31 .

Figure  1. Network representation of GVD matrix at horizon 1=H   

  

Figure  2. Network representation of GVD matrix at horizon 2=H  

 
VAR coefficients also drive the extent of persistence of shocks over time; 

for example, 2
11
gd  depends on 11  (the effect of autoregressive component of 

Region 1) and 13  (the shocks received from Region 3); coefficients appear to 
have a power proportional to time horizon (i.e. for 2=H ), that is shocks have 
an exponential decay. It is straightforward to show that a longer time horizon 
increases the strength of links with an exponential decay (for example 3

11
gd

includes terms like 4
11  and 2

13 ).

Region 2, missing any lag with itself and with the other regions in the VAR, 
displays a network partially independent of the time horizon considered. In 
particular, the connectedness from Region 2 to other regions are affected 
through the contemporaneous covariances 12 , 22 , and 32 , while the 
connectedness from other regions to Region 2 are not affected by H. 
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Relaxing the assumption of VAR(1), for example in favor of VAR(2), 
increases both the percolation of shocks through network and their persistence, 
but the qualitative results remain the same. 

3. CONNECTEDNESS MATRIX  
VERSUS SPATIAL WEIGTHS MATRIX  

 
As discussed in the introduction the main goal of the paper is to get some 

insights on the shape of spatial weights matrix W , which in spatial literature 
measures the spatial dependence across different regions. 

W  is generally taken as exogenous in spatial literature, and it is specified or 
in term of geographic contiguity or in terms of geographical distance (see 
Anselin, 2001). Corrado and Fingleton (2012) formulate three main critiques to 
current literature: i) the values in the cells of W  comprise an explicit 
hypothesis about the strength of interlocation connection”, in particular, “a
priori assumption about interaction strength”; ii) “Typically, isotropy is 
assumed, so that only distance between j  and h  is relevant, not the direction 
j  to h ”; iii) “The potential for dynamic W  matrices poses some problems for 

estimation, given the assertion that W  is necessarily a fixed entity. While this 
may not be such an issue for cross-section approaches, [...], with the extension 
of spatial econometrics to include panel data modelling it may be the case that 
W  is evolving.” 

To discuss how our contemporaneous connectedness matrix 1gD  is strictly 
related to W  assume that the data generating process of GRV of N  regions y
follows:

ttNNttNNt vXWIuXWIy 11 ==  (13) 

where N  is the vector of fixed effects of length N , ty  is a vector of length 
N , tX  is a matrix of dimensions kN ,  is a vector of coefficients of 
length k , and tu  is the vector of error component of length N , and tv  is the 
vector of spatially filtered error component of length N .4 The error component 

tu  is specified as: 

,= 11 ttttt uWuWuu  (14) 

where t  is the vector of innovations, with E t, = 0, Ntt IE 2=,' , and 

0=,'ttE  for each tt . Eq. (14) reflect the possibility that tu  can 
display mixed dynamics in both space and time. We follow the literature 

                                                      
4 See Elhorst (2014) for a general introduction to spatial panel models. 
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assuming that W  is the same for the spatially lagged dependent variable and 
the errors. 

From Eq. (14) we derive:5

it

i

NN
i

i
Nt

1

0=

1= WIWIWIu

from which we get the variance-covariance matrix of tu , U , for all t , i.e.:

12='= WIuuU NttE

1
112 WIWIWIWII NNNNN

1WI N  (15) 

Therefore, the variance-covariance matrix of tv , V , for all t  is given by:  

.='= 11 WIUWIvvV NNttE  (16) 

Assuming that the VAR representation well approximates the dynamics of 
ty , a possible estimation of V  is given by the variance-covariance matrix of 

the VAR(1) model, i.e. ˆ .

The approximation of stochastic process of ty  through a VAR 
representation allows to overcome the incidental parameters problem discussed 
in Anselin (2002). In our model the total number of parameters to be estimate is 
equal to 52 NN  (all no-zero elements of W  plus , , , , and 2 )

and the number of observations are equal to 2N  (the elements of V ); under 
the assumption 5>N  it is therefore possible to estimate the elements of W  as 
well as the other parameters of Eq. (16). But the estimate of W  from ˆ
becomes very unreliable already for small N : for our sample of 199=N
observations, the total number of parameters o estimate is equal to 39407 
against a number of observations equal to 39601. 

However, a comparison between Eqq. (7) and (16) makes clear that 1gD  and 
W  are calculated on the same information set, i.e. ˆ .

                                                      
5 We are assuming that the first-order spatial autoregressive process is ergodic. 
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Moreover, the comparison highlights how spatial panels whose observations 
refer to variable with different timing (e.g. panel of annual observations versus 
panel with five-year average observations) should include different spatial 
matrix reflecting the different degrees of interconnectedness (five-year average 
observations are likely to have a higher level of interconnectedness). A similar 
argument is made in network literature (see, e.g., Newman, 2009). 

4. EMPIRICAL APPLICATION 
 

Our sample consists of a panel of GRV of per capita GDP of 199 European 
NUTS2 regions belong to EU15 over the period 1981-2008.6

In order to compare our connectedness matrix with the spatial weights 
matrices mostly used in the spatial econometric literature, we construct a 
network derived from the contemporaneous connectedness matrix 1gD  (that is 
the GVD at time horizon H=1)7 and two networks derived from the GVD of the 
variance-covariance matrix of a spatial model as the one in Eq. (16) of Section 
3. In particular, we assume two different spatial weights matrices, i.e. a first-
order contiguity matrix, contW , and a distance based matrix with cut-off, 

1invDistQW , (both row-standardized) whose weights are given by: 

wcont (i, j ) = 1 if i and j share a border
0 otherwise

 and  

winvDistQ1(i, j ) = distij
2 if distij  < 370 miles

0 otherwise
;

We have calibrated the parameters of the model as =0.32, =0.42,
=0.32, =0 and 2 =1 to get networks which are similar to our 
contemporaneous network in terms of mean degrees (see Table 2).8

                                                      
6  See Fiaschi and Parenti (2013) for details on the sample, sources of data and 
estimation of the GRV. All the calculations are made using R (R Core Team, 2014). 
Codes and data are available on author’s web page http://dse.ec.unipi.it/ fiaschi/. 
7  In Fiaschi and Parenti (2013) we extensively discuss the connectedness matrix 
estimated at different time horizons (contemporaneous H1, 5-year ahead H5, 10-year 
ahead H10 and 20-year ahead H20). 
8  Table 2 reports some basic statistics of the networks. We follow the notation in 
Newman (2009) labelling by n  the number of vertices (the number of regions), m  the 
number of edges (the number of no-zero links), c  the mean degree (i.e. nm/ ), S  the 
fraction of vertices in the largest (weakly connected) component, l  the mean geodesic 
distance (any two no-connected links are excluded by calculation), d  the diameter of 
network (the length of the longest finite geodesic path), C  the average clustering 
coefficient (based on transitivity in weak form), and r  the assortative coefficient. 
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 To analyze our connectedness matrix as an unweighed and direct network 
links, i.e. pairwise directional connectedness, with a strength greater than 2.12% 
will be set equal to 1, while all the others equal to 0. In other words, we have 
assigned a value of 1 to the ij  element of adjacent matrix if the fraction of 
region’s i  1-year ahead forecast error variance due to shocks in region j , 1

ijd ,
is higher than 2.12%, which corresponds to a significance level equal to 2.5% 
under the null hypothesis of no percolation of shocks from region j  to region i
(see Fiaschi and Parenti, 2013 for details).9

Table  2. Characteristics of the networks derived from the GVD matrix  
 n m c S l d C r

1gD 199 1188 5.97 1 3.3 6 0.15 0.83 

contW 199 1082 5.44 18 2.47 16 0.56 0.94 

1invDistQW 199 1237 6.22 5 4.05 21 0.63 0.97 

with H=1, 1gD , contW  and 1invDistQW . n  is the number of vertices (the number of 
regions), m  the number of edges (the number of no-zero links), c  the mean degree 
(i.e. nm/ ), S  the fraction of vertices in the largest (weakly connected) component, l
the mean geodesic distance (any two no-connected links are excluded by calculation), 
d  the diameter of network (the length of the longest finite geodesic path), C  the 
average clustering coefficient (based on transitivity in weak form), and r  the 
assortative coefficient (see Newman, 2009). 

Figures (3)-(5) report the Kamadakawai network for the adjacent matrix 
derived from 1gD , contW  and 1invDistQW  respectively. In all the figures the 
colours of the vertices are the same for regions belonging to the same country. 

The network for the adjacent matrix derived from the contemporaneous 
connectedness matrix 1gD , is very different from contW and 1invDistQW . In parti-
cular, although the number of mean degrees, i.e. the mean number of links, is 
very similar across the three networks (we choose the parameters in Eq. 16 to 
match this characteristic), the network derived from the GVD matrix with H=1 
shows no evidence of specific geographical pattern.10 The opposite holds for the 
networks derived from the GVD matrix with contW and 1invDistQW , which obviou-
sly impose a geographical structure through the exogenous definition of W .

                                                      
9 In the estimation of the unweighed and direct networks derived from the two spatial 
matrices we have used the same level of significance on the pairwise directional con-
nectedness equal to 2.12%. 
10 In Fiaschi and Parenti (2013) we show that a clear pattern of core-periphery exists but 
not defined in geographical terms, and that most of the regions belonging to Belgium, 
Finland and Sweden tend to be more connected to the rest of Europe than to regions 
belonging to their country, while for most of the regions of Denmark, Greece and Italy 
the opposite holds. 
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Figure  3. Kamadakawai network with threshold on the share of GVD 
equal to 2.12% for the adjacent matrix derived from 1gD  

 
 

Figure  4. Kamadakawai network with threshold on the share of GVD 
equal to 2.12% for the adjacent matrix derived from the spatial model   

with contW  
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Figure  5. Kamadakawai network with threshold on the share of GVD 
equal to 2.12% for the adjacent matrix derived from the spatial model    

with 1invDistQW  

 

Hence, the assumption that spatial interaction between regions is represented 
by a geographical weights matrix can lead to a misspecification of the spatial 
interdependence structure. The effects of such a misspecification are studied by 
Florax and Rey (1995), who show that both over and under-specification of the 
geographical weights matrix increases the mean square errors for spatial 
econometric models. However, no systematic exploration has been conducted 
so far; the intuition is that misspecification of the spatial weights matrix could 
lead to a substantial bias in the estimate. 

5.  CONCLUDING REMARKS  
 

The estimate of the connectedness matrix for EU regions proposed in the 
paper has allowed to highlight how the most popular spatial weights matrices 
used in literature are very far from the true spatial weights matrix (if any). 

This paper would represent a first step in the development of a methodology 
to estimate a spatial weights matrix which explicitly takes into account the 
critiques advanced by Corrado and Flingleton (2013). The next step should be 
the definition of a methodology that, starting from the estimated connectedness 
matrix, allows to estimate the associated spatial weights matrix. The biggest 
obstacle appears the high number of matrix elements to estimate, which calls 
for some non-standard econometrics techniques and /or for imposing some 
regularity conditions on the shape of the spatial weights matrix. 
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EST-CE QU’UNE DÉFINITION GÉOGRAPHIQUE  
DES MATRICES DE POIDS EST PERTINENTE ? 

Résumé - L’objectif de cet article est d’estimer la pertinence de l’utilisation de 
la matrice d’interconnection de Diebold et Yilmaz (2014) dans l’étude de 
l’autocorrélation spatiale entre des régions institutionnellement définies. 
L’article montre que l’utilisation d’une telle matrice d’interconnection fournit 
des résultats sensiblement différents de ceux obtenus par les matrices de poids 
spatial, généralement utilisées en économétrie spatiale. Nous illustrons ces 
deux approches par l’étude de la volatilité des taux de croissance annuels du 
PIB par habitant dans 199 régions européennes (NUTS2 durant la période 
1981-2008 (UE15). L’article montre clairement que les résultats obtenus avec 
l’utilisation d’une matrice d’interconnection diffèrent de ceux obtenus 
lorsqu’on s’appuie sur les matrices de poids spatial, utilisées en économétrie 
spatiale.

Mots-clés - CONTIGUITÉ DE PREMIER ORDRE, MATRICES DE 
DISTANCES, MATRICES DE CONNECTIVITÉ, RÉGIONS EUROPÉENNES, 
RÉSEAU


