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Abstract 

Secondary relaxations have been classified into two types, depending on whether they are 

related to the structural -relaxation in properties or not. Those secondary relaxations that are 

related to the -relaxation may have fundamental importance, and are called the Johari-

Goldstein (JG) -relaxations. Two polar molecular glass-formers, one flexible and another 

rigid, dissolved in apolar host with higher glass transition temperature are studied by 

broadband dielectric spectroscopy at ambient and elevated pressure. The neat flexible glass-

former diethylphthalate (DEP) has a resolved secondary relaxation which unlike the -

relaxation is insensitive to pressure and hence not the JG -relaxation. In the solution, the JG 

-relaxation of DEP shows up in experiment and its relaxation time  is pressure and 

temperature dependent like . The result supports the universal presence of the JG -

relaxation in all glass-formers, and the separation between  and  is determined by 

intermolecular interaction. The rigid glass-former is cyano-benzene (CNBz) and its secondary 

relaxation involves the entire molecule is necessarily the JG -relaxation. The dielectric 

relaxation spectra obtained at a number of combinations of pressure and temperature at 

constant  show not only unchanged is the frequency dispersion of the -relaxation but also 

. The remarkable results indicate that the JG -relaxation bears a strong connection to the -

relaxation, and the two relaxations are inseparable when considering the dynamics of glass-

forming systems. Experimentally,  has been found to be a function of the product variables, 

T/ρ
γ
, where  is the density and  is a material constant. From the invariance of the ratio, 

/, to change of thermodynamic conditions seen in our experiment as well in other systems, 

it follows that  is also a function of T/ρ
γ
, with the same  at least approximately. Since the 

JG -relaxation is the precursor of the -relaxation, causality implies that the T/ρ
γ
-dependence 

originates from the JG -relaxation and is passed on to the -relaxation.  
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1. Introduction 

Relaxation dynamics of glass-forming systems presents a complex scenario, 

characterized by numerous relaxation processes over a very broad frequency window of more 

than 12 decades. Among these processes manifested over wide temperature or broad 

frequency range, the structural or α-relaxation process traditionally had been considered as 

the most important. Therefore research on glass transition was usually centred around this 

slow -relaxation process alone, and inadvertently the other faster secondary relaxations are 

often thought to have no fundamental role. In the early years, secondary relaxation in general 

were considered as originating from some intramolecular degree of freedom, and hence 

cannot be related to the intermolecularly cooperative α-relaxation. Historically this is perhaps 

the primary reason for trivializing the role of secondary relaxations in glass transition.  

There are two research developments separated by almost three decades and together 

they have changed the attitude towards the secondary relaxations. In 1970, Johari and 

Goldstein shocked the research community by showing the existence of secondary relaxation 

in a totally rigid small molecular glass-former [1]. Starting from 1998, Ngai [2-4], Ngai and 

co-workers [5-26], and other workers [27-33] found secondary relaxations belonging to a 

special class have properties bearing strong connection to the -relaxation in glass-formers of 

various chemical and physical compositions. For non-polymeric glass-formers in general that 

can be flexible or not totally rigid, the secondary relaxation in the special class has to involve 

the entire molecule or the basic relaxation unit. For polymeric glass-formers, the secondary 

relaxation in the special class must involve also some motion of the backbone of the repeat 

unit. This discovery since 1998 was motivated by the Coupling Model (CM) [4,34-37]. The 

CM is based on the primitive relaxation, which is a local and independent relaxation 

involving the motion of the entire molecule and acting as the precursor of the cooperative -

relaxation. The primitive relaxation time, 0, rigorously related to the -relaxation time, , 

given by the time honoured equation, 

𝜏𝛼 = [𝑡𝑐
−𝑛𝜏0]

1/(1−𝑛),        (1) 

where tc is about 1 to 2 ps for molecular and polymeric glass-formers, and (1-n) is the 

fractional exponent in the Kohlrausch correlation function of the -relaxation, 
𝜙(𝑡) = exp⁡[−(𝑡/𝜏𝛼)

1−𝑛].       (2) 

Existence of strong connections in properties and dependencies on variables between the 

primitive relaxation and the -relaxation is immediate consequence of Eq.(1). Since by 

definition secondary relaxation of the special class is also a local and independent process, 

involving the motion of the entire molecule, and having connections with the cooperative -

relaxation in properties, the approximate relation, 0, between 0 and the relaxation time, 

, of the secondary relaxation is expected. On combining this approximate relation with 

Eq.(1), we have the approximate relations 

𝜏𝛽 ≈ 𝜏0 = (𝑡𝑐)
𝑛(𝜏𝛼)

1−𝑛,       (3) 

or the approximate relation between  and  

𝜏𝛼 ≈ [𝑡𝑐
−𝑛𝜏]

1/(1−𝑛).        (4) 

Either (3) or (4) predicts not only the values of  and  are related quantitatively, but also 

their dependencies on temperature T and pressure P or other variables are related, albeit 

approximately. The various predictions coming out from these approximate relations have 

been amply verified in many glass-formers and non-glassformers since the start in 1998 (see 

Ref.[4] for a comprehensive review).  

Certainly, all totally rigid molecular glass-formers investigated by Johari and 

Goldstein (JG) belong to this special class because there is only one secondary relaxation, 

and it necessarily involves the entire rigid molecule. With the intent to honour JG for their 



important findings three decades ago, the glass-formers belonging to the special class are 

summarily called the JG -relaxations by Ngai and co-workers [2-26]. This usage of the term 

has to be distinguished from some workers in the field who still refer to any secondary 

relaxation as JG -relaxation, irrespective of whether it has connection to the -relaxation or 

not. Moreover, secondary relaxation of this special class is universal and found in all kinds of 

glassformers, organic molecular, polymeric, metallic, inorganic, ionic, colloidal, and plastic 

crystalline [4]. Most remarkable is the finding of the secondary relaxation in metallic glasses 

[38,39], which are atomic particles devoid of rotational degree of freedom, and in plastic 

crystals which have no translational degree of freedom [40-42].  

In the earlier years, relations (3) and (4) have been mainly the criteria used to verify 

whether the secondary relaxation is the JG -relaxation or not. If the approximate relations 

(3) or (4) are satisfied, the connection between  and  becomes obvious. Not only the value 

of  approximately predicted by (3) is verified quantitatively, but also the dependence of  

on any variable , including temperature T and pressure P, are related to the corresponding 

dependence of  on . An example is that  of JG -relaxation has to be pressure dependent 

because  is invariably pressure dependent. These expanded criteria for JG -relaxation were 

summarized in the paper of 2004 [6] as one of the methods to classify secondary relaxations.  

An important advance was made by Böhmer and co-workers in 2006 [27,28]. Using spin-

lattice relaxation weighted stimulated-echo spectroscopy, they were able to suppress the 

contributions of some sub-ensembles of the JG -relaxation above the glass transition 

temperature in ortho-terphenyl, D-sorbitol, and cresolphthaleindimethylether, and it was 

found that the -relaxation is modified. The findings provide direct experimental support for 

the strong connection between the - and the JG -relaxation. 

The advance of broadband dielectric relaxation spectroscopy in making measurements 

at elevated pressure up to 2 GPa and compensated by increasing temperature has helped 

immensely to bring out the strong connection of the JG -relaxation to the -relaxation, and 

hence its fundamental importance was not appreciated before. This experimental advance is 

complemented by elegant molecular dynamics simulations of polymers [33]. Another 

research trend of recent years is the study of the modification of the relation between the JG 

-relaxation and the -relaxation of a glass-former by mixing with another glass-former 

having significantly different Tg [14,25,32,43]. The presence of the other component alters 

the coupling parameter n of the -relaxation, and in turn the approximate relation between  

and  according to relation (4). By combining the two new research trends (i.e. studying the 

dynamics of a component in binary mixtures under elevated pressure), deeper insight is 

gained into the fundamental role played by the JG in the dynamics of glass-formers and in 

glass transition. In this paper we present new results from such combined experimental study 

of component dynamics of novel binary mixtures at ambient and elevated pressure. The far 

reaching implications of the results on the physics of the dynamics of glass-forming systems 

as well as the impact on other current research efforts are brought out. 

2. Experimental Section 

Mixing polar aromatic molecules with oligomers of styrene is an ideal strategy to 

have very good glass-formers with a good miscibility range. The presence of aromatic rings, 

in fact, improve the solubility of the polar probes in the apolar oligo-styrene system due to 

the affinity of the - interactions. The study of the dielectric response of such binary 

mixtures can selectively reveal the rotational dynamics of the polar component alone, even 

when the polar component is dilute. Actually the permanent dipole moment of the styrene 



repeating unit (=0.2 D) is very small compared to the strong permanent dipole moment of 

the solute (in our case  is in the range between 2.5 and 5 D). Since the dielectric strength, 

i.e. the intensity of the loss peak, scales as N
2
 (where N is the number of dipoles per unit 

volume and  is the permanent dipole moment), we can affirm that the dynamics of the polar 

component dominates the dielectric response of the mixtures presented in this paper, having a 

molar concentration of the polar component of XM=0.1.  

Cyanobenzene (CNBz, MW=103 g/mol) and diethylphthalate (DEP, MW=222.2 g/mol) 

were purchased at high purity grade from Sigma-Aldrich and used as received. CNBz was 

mixed at molar fraction XM=0.1 with tristyrene (PS370) (Tg=234 K, MW=370 g/mol, obtained 

from Polymer Standard Service). DEP was mixed at molar fraction XM=0.1 with and 

oligostyrene of Mw=820g/mol, Mw/Mn=1.01, (PS800) (Tg =282 K, obtained from Scientific 

Polymer Product). All samples were stored and handled in a dry nitrogen atmosphere.  

Novocontrol Alpha-Analyzer was used for dielectric measurements, both at atmospheric 

and at high pressure, in the frequency interval from 10 mHz to 10 MHz. The sample cell 

consisted in a parallel plate capacitor separated by a quartz spacer (empty capacitance ~ 90 

pF) and filled by the sample in the liquid state. For atmospheric pressure measurements the 

temperature was controlled using a dry nitrogen-flow Quatro cryostat (T=100–360 K) with a 

temperature accuracy of better than 0.1 K. For high pressure measurements, a sample-holder 

multi-layer capacitor (empty capacitance ~30 pF) was separated from the pressurizing fluid 

(silicon oil) by a Teflon membrane. The high pressure chamber (Cu–Be alloy), provided by 

UNIPRESS, was connected to a hydraulic pump able to reach 700 MPa and controlled in the 

interval 195–360 K within 0.1 K by means of a thermally conditioned liquid flow. 

3. Results and Discussion 

3.1 Johari-Goldstein relaxation of flexible polar probes in apolar solvents 

In the Introduction, we mention the existence of the special class of secondary 

relaxations, namely the Johari-Goldstein (JG) -relaxations, which involves the motion of the 

entire molecule or some motion of the backbone in the case of polymers and opposed by the 

intermolecular energy barrier. Although the JG -relaxation is not of cooperative in character, 

its relaxation time  is sensitive to change in density, although to a smaller extent than the 

cooperative -relaxation [6]. In contrast, intra-molecular secondary relaxations albeit in an 

intermolecular environment are governed by intra-molecular energy barrier, and are not 

affected either at all or to a much lesser extent by the reduction of density. JG -relaxations 

have to overcome intermolecular barrier, and are more affected by pressure.  

A survey of publications in the literature as well as from our own laboratory shows there 

is no concrete evidence of the presence of the JG -relaxation in some well studied small 

molecular glass-formers composed of flexible molecular units. This casts doubts on the 

universality of the JG -relaxation in glass-formers and their importance in the research of 

glass transition. An example is diethyl phthalate (DEP) which has a single well resolved 

secondary relaxation, whose dynamics have been proven to be insensitive to applied pressure 

[44], and hence not the JG -relaxation we are looking for. By comparing spectra with the 

same loss maximum frequency for the -peak, obtained with different combination of T and 

P, Pawlus and co-workers [44] found that the shape of the α-relaxation as well as the excess 

wing present on the high frequency flank of the -peak does not change with density, 

whereas the prominent secondary process, here named the γ-relaxation, becomes more and 



more separated from the -relaxation on increasing density. At 293 K, by applying a pressure 

of more than 1.2 GPa, while the -relaxation slows down and DEP becomes vitrified, the 

relaxation time τγ remain constant at 0.1 s. This fact is not unexpected from the -relaxation 

of the DEP and higher members of the dialkyl phthalates family because it originates from 

fluctuations of –C=O- dipole moment in the presence of the very mobile alkyl chains. This 

intramolecular degrees of freedom can fluctuate without the need of a large activation volume 

and thus they can be quite insensitive to density reduction. Considering that the α-loss peak is 

rather narrow, and near Tg it can be well fitted by the Fourier transform of the Kohlrausch 

function with non-exponentiality parameter n= 0.36, the CM relation (4) would suggest that 

the JG β-relaxation near Tg should be located at a frequency few tens of Hz, and therefore it is  

obscured by the high frequency flank of the -peak, and manifests itself as an “excess wing”.  

A way to increase the coupling parameter n is to change the intermolecular environment. 

The method that has been explored [14,16,18,22,31,32,43] is to mix the polar molecule in a 

solvent with a slower dynamics, that could enhance the degree of cooperativity of the 

rotational relaxation, thus increasing n and separating the timescale of the JG relaxation from 

that of -process according to the CM relation (4). In the research reported in this paper, we 

dissolved DEP in an apolar host with higher Tg like PS800 at low molar fraction (XM=0.1). In 

this way, the α-relaxation associated with the DEP component is enhanced in intermolecular 

coupling and cooperativity and is slowed down and separated further from the prominent γ-

process, and making it possible for a new secondary relaxation to appear in between. We will 

show that this slower secondary relaxation has the characteristics of the JG -relaxation.  

Fig.1 shows the loss spectra of DEP at five selected temperatures from the entire set of 

measurements. The top two temperatures are above the Tg observed via the DEP component, 

and the other three temperatures are below Tg. At the two lowest temperatures, the loss 

spectra show two well resolved secondary relaxations, β and γ. At higher temperatures, the 

faster -relaxation moves out of the experimental frequency window, but the slower - 

relaxation continues to be observed even above Tg. 
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Figure 1. Dielectric loss spectra of DEP dissolved in PS800 mixture (XM=0.1). Black continuous line is the 

Fourier transform of a KWW function (n=0.70) fitted to the -peak. Other lines represents fitting to the spectra 

in the glassy state obtained as a superposition of Cole-Cole functions. 

 

For this system, at temperatures near Tg the  and the  relaxations usually appear within the 

experimental frequency window, and well separated from each other so that the -loss peak 

can be isolated and well fitted by the Fourier transform of the KWW function (Eq.2) and the 

n parameter can be extracted. The fit to the -loss peak was performed in a semi-logarithmic 

scale, choosing the same footing for all the spectra as the region of the full width half 

maximum (FWHM). A Filon trapezoidal algorithm was used for calculating the KWW 

Fourier Transform contribution. A simplex optimization algorithm was used to minimize the 

mean squared deviation between data and fitting function. Alternatively, dielectric spectra 

can be well fitted in the whole temperature range by a superposition of Havriliak-Negami (for 

-process) and Cole-Cole (for - and γ-processes) functions. In this way the contribution of 

each process can be singled out by a simple superposition fitting procedure [45], and the most 

probable relaxation times of the single processes, , ,  can be obtained as m=(2fm)
-1

, the 

reciprocal of the loss peak maximum angular frequencies fm related to the -, - and γ-

relaxation, respectively. The relaxation frequencies of the -relaxation and the two secondary 

relaxations deduced from the spectra obtained at all temperatures are plotted against 1000/T, 

and the results are presented in Fig.2. Shown also in the same figure are the relaxation 

frequencies of the - and the -relaxations of neat DEP taken from the published data of 

ref.[44]. The T-dependence of f can be represented by f=fexp[-B/(T-T0)], the Vogel-

Fulcher-Tamman (VFT) function, whereas the temperature dependence of secondary 

relaxation frequency is of the Arrhenius type.  
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Figure 2. Relaxation map for DEP pure (open symbols) from Ref.[44] and DEP dissolved in PS800 (filled 

symbols). Black straight lines are representing fitting with Arrhenius laws, while red curve is a fit using VFT 

function. 

 



The relaxation frequencies of the faster secondary relaxation of DEP in the mixture are 

almost the same as the -relaxation times of neat DEP at the same temperature and has the 

same activation enthalpy of 29.3 kJ/mol. The coincidence indicates that the faster secondary 

relaxation in the mixture is the same motion as the -relaxation in neat DEP. The insensitivity 

of its relaxation times to mixing supports that the -relaxation originates from local motion of 

the alkyl chains about the oxygen linkage with dielectric strength derived from the dipole 

moment of the polar carboxyl group. On the other hand, having a much high activation 

enthalpy of 66.1 kJ/mol than the -relaxation, the slower secondary relaxation observed in the 

mixture must involve in addition other parts of the DEP molecule, and is the JG -relaxation 

of DEP that we are looking for. It is clear in Fig.2 that the presence of the higher Tg PS800 in 

the mixture does increase the separation between the -relaxation time and the -relaxation 

time of DEP above and below Tg, making room for the JG -relaxation of DEP to be resolved 

and observed.  

Actually for the JG relaxation we have a temperature dependence of the type 

f=fexp(EJG/RT) in the glassy state but it crosses over to stronger temperature dependence in 

vicinity of Tg. This change of temperature dependence of f at Tg is similar as that of the -

process when it crosses from a structurally arrested state (below Tg) to the equilibrium liquid 

state. The similar property indicates that the JG -relaxation is sensitive to change of density 

or entropy dependence on crossing the glass transition temperature.  

The -relaxation of DEP in the mixture is much slower than in the neat state, reflected in the 

increase of Tg from 183 K of the neat system to 250 K of the mixture. At 250 K, their -

relaxation times differ by about 12 orders of magnitude. This is due to the fact that the -

relaxation of DEP in the mixture necessarily involves the host PS800 repeat units, which 

have significantly lower mobility. As a result, the -relaxation of DEP in the mixture is 

stretched to longer times. If the Kohlrausch function is used to describe the correlation 

function of the -relaxation, then  is much longer and n is larger for DEP in the mixture 

than in neat DEP. This increase of n or width of the -dispersion of DEP in the mixture 

originates from stronger intermolecular coupling [23,26,46]. This is the primary cause of the 

larger width the -loss peak of DEP in the mixture than in neat DEP, according to the CM 

description of component dynamics in binary mixtures and polymer blends. There is however 

additional cause of broadening of the -loss peak. Apparently, the concentration of the DEP 

in the mixture is not low enough to exclude the presence of concentration fluctuations of the 

two components. Moreover, there is a difference in mobility between chain ends and inner 

monomers of PS800. These factors introduce some distribution of environments and 

heterogeneous broadening of the -relaxation of DEP in the mixture beyond that coming 

from intermolecular coupling. The heterogeneous broadening introduces a distribution of 

Kohlrausch functions each with different ni and i, and each pair is related by the CM 

relation, 
)1/(1

0][ ii nn

ci t


  . As a special case, the most probable value of ni in the distribution, 

n̂ , and the corresponding most probable observed -relaxation time ̂  are related by

)ˆ1/(1

0

ˆ
][ˆ nn

ct
  . Furthermore from 0 JG , we have the approximate relation between ̂

and JG given by 
)ˆ1/(1ˆ

][ˆ n

JG

n

ct
  . When there is no component concentration fluctuation 

like in neat glassformers, n̂  is simply n in the Kohlrausch function in Eq.(4), and the JG 

calculated via CM relation is in good agreement with the observed value. In the mixture, the 

slower PS800 host stretch the -relaxation of DEP to longer times, thereby the value n̂  can 

be significantly larger than n=0.36 of neat DEP. At temperatures near Tg of DEP in the 



mixture, to fit the observed JG by the calculated values of 0 via the CM equation Eq.(3) the 

value of n̂  required is 0.55 and is larger than 0.36 of neat DEP as expected. The -loss peak 

of DEP in the mixture with ̂  near 0.1 s is much broader than the shape of the one-sided 

Fourier transform of the Kohlrausch function with n=0.55 (the actual value is 0.7) due to 

heterogeneous broadening as discussed in the above. The loss contributed by the JG -

relaxation is about half of the maximum -loss. It severely broadens the high frequency side 

of the -loss peak to the extent not seen before in neat glassformers. The presence of the 

more mobile alkyl-chain units in DEP may have something to do with this. It is partly 

responsible for the larger value of 0.7 of n̂  required to fit the -dispersion. 

A critical test to verify the character of the newly resolved -relaxation in the DEP/PS800 

mixture is to apply pressure. Selected spectra obtained in isothermal conditions are shown in 

Fig.3. Interestingly the newly resolved -process is pressure sensitive, since it moves toward 

lower frequencies together with -process. The fast -secondary process remains outside the 

experimental window over all the pressure range investigated, confirming the same behavior 

observed in the pure DEP system. The fitting of the -loss peak of DEP in the mixture with 

the one-sided Fourier transform of the Kohlrausch function yields n around 0.7, confirming 

that density change does not change the relaxation loss peak shape.  
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Figure 3. Selected dielectric loss spectra for DEP dissolved in PS800 mixture at constant temperature 283 K 

and different pressures. The arrow marks the increasing pressure trend. 

 

It is interesting to compare the combined effect of T and P on the dynamics of the - and -

process shown above. Cooling and compressing seem to have similar effect on - and -

dynamics, both shifting the characteristic frequencies to lower values, even if each relaxation 

has its own different T-P dependence, as shown by the combined plots in Fig.4. A similar 

dynamic range has been shown, in order to compare the two effects. The isothermal diagram 

at 283 K in Fig.4b corresponds to the first point at the left in Fig.4a. It is clear that the -



relaxation never enter into Fig.4b, because at this temperature the  frequency of the -loss 

maximum lies outside the experimental window and also because it is insensitive to pressure. 

Pressure decreases the frequency of the maximum of -process in a non-linear way, with an 

activation volume increasing on approaching Tg. This behavior is the analogue of the well 

known VFT behavior for temperature. On the other hand, the pressure effect on the logarithm 

of -relaxation frequency has an almost linear behavior, with an activation volume that 

changes on crossing Pg, reflecting the change of compressibility of the glassy state from that 

of the liquid. The most striking feature of Fig.4a and Fig.4b is the coincidence that can be 

found on comparing the position of the maximum frequency of the -relaxation for the same 

-relaxation frequency. In particular, choosing the glass transition condition as when =100 

s, the frequency of -relaxation is the same if evaluated either from the temperature 

dependence at constant pressure (Fig.4a) or from the pressure dependence at constant 

temperature (Fig.4b).  
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Figure 4. Relaxation maps for DEP dissolved in PS800 comparing the effects of (a) isobaric cooling at 0.1 MPa 

and of (b) the isothermal compression at 283 K. Black solid squares represent data for -relaxation, open blue 

circles are for the -relaxation data, -relaxation data are indicated by green open diamonds. Lower dashed 

horizontal line marks the frequency corresponding to the glass transition ((Tg)=100 s), while higher dashed 

horizontal line mark the frequency of the -relaxation at Tg. Black curves represent the fitting of -relaxation 

frequencies with VFT function (panel a) and VFT-like function for pressure (panel b). Straight dashed lines 

represent fitting the pressure activated behavior. 

 

The fact that the -relaxation frequency is the same when obtained at different T and P but 

with the same structural -relaxation frequency f or time  (isochronal spectra) shows 

additional evidences of the correlation or connection between the -relaxation and the 

structural -relaxation. The same result applied also if both T and P were varied over wide 

ranges. Increasing pressure increases the -relaxation time , but the increase can be 

compensated by raising temperature. Naturally, widely different combinations of P and T can 

be found to have the same -relaxation time , which are accompanied by significant 



variations in the density. This correlation can be easily explained by the CM relations (3) or 

(4). If the coupling parameter n does not change appreciably, once  is fixed, the  or f is 

approximately the same. Thanks to these additional results, we can confirm the new 

secondary relaxation resolved in the DEP/PS800 mixture is the JG -relaxation of DEP in the 

mixture. A better test of the correlation will be shown in the next sub-section for a rigid polar 

molecule in an apolar glass-forming solvent, like the mixture of chlorobenzene in cis-decalin 

used by Johari-Goldstein many years ago.  

3.2 Johari-Goldstein relaxation of rigid polar probes in apolar solvents 

Cyanobenzene (CNBz) has a very strong dipole moment (= 5.0 D) and a putative glass 

transition temperature that should be in the range of those of halogenated benzenes, i.e. below 

150 K. A suitable apolar solvent for this polar rigid probe is PS370 or tristyrene, that has a 

higher Tg (232 K) than CNBz. Since tristyrene is a compact small molecule, when mixed with 

CNBz it does not introduce heterogeneity to the dynamics of CNBz, unlike the previous case 

of DEP dissolved in  PS800 which  has the chain ends which are more mobile than the 

internal repeat units. Thus, this is the ideal mixture to study the effects due to change of 

intermolecular coupling when CNBz is mixed with tristyrene.   

The dielectric response of the mixture of CNBz in PS370 at molar fraction XM=0.1 

shows a bimodal relaxation scenario, with α- and β- relaxation well separated but still visible 

within the same experimental frequency window. Selected dielectric loss spectra of the 

mixture of CNBz in PS370 at molar fraction XM=0.1 are shown in Fig.5 under isothermal 

condition at different pressures. 
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Figure 5. Selected dielectric loss spectra for CNBz dissolved in PS370 mixture at constant temperature 268.2 K 

and different pressures. The arrow marks the increasing pressure trend. Black dashed line is a KWW function 

(n=0.55) fitted to the -peak. 

Like DEP/PS800, the -process of CNBz (henceforth referred to as the JG -relaxation, 

because for sure it involve the entire molecule and is intermolecular since CNBz is a rigid 

polar molecule) appears to be very sensitive to pressure. Applying a fitting procedure as 

mentioned before, it is possible to single out the contributions of the - and -relaxations. A 



relaxation map for the loss maximum frequencies of both processes under temperature and 

pressure variations can be found in Fig.6. 
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Figure 6. Relaxation maps for CNBz dissolved in PS370 comparing the effects of (a) isobaric cooling at 0.1 

MPa and of (b) the isothermal compression at 268.2 K. Red solid circles represent maximum frequencies for -

relaxation, open red circles are for maximum frequencies of the -relaxation. Lower dashed horizontal line 

marks the frequency corresponding to the glass transition ((Tg)=100 s), while higher dashed horizontal line 

mark the frequency of the -relaxation at Tg. Red curves represent the fitting of -relaxation frequencies with 

VFT function (panel a) and VFT-like function for pressure (panel b). Straight dashed lines represent fits to the  

pressure activated behavior. 

 

As the case shown in §.3.1, pressure decreases the frequency of the maximum of the -

process in a non-linear way, with an activation volume (i.e. its pressure derivative) increasing 

on approaching Tg. The logarithm of -relaxation frequency has an almost linear behavior, 

with an activation volume that changes on crossing Tg, reflecting the change of 

compressibility of the liquid on vitrification. It is noteworthy that the ratio between the 

pressure slope of log(f) over that of log(f) is almost 0.5, if both are calculated above and 

near Tg. Again the frequency of the -relaxation maximum obtained by either isothermal 

compression or isobaric cooling is the same at glass transition defined by f=1/2 with 

=100 s. The coincidence of log(f) from isothermal compression or isobaric cooling can be 

extended to other values of f  and different isochronal combinations of T and P. Moreover, 

the correlation between - and JG -relaxation can be also tested by comparing isochronal 

spectra. The comparison in Fig.7 of selected spectra of the system CNBz/PS370 obtained at 

various combinations of P and T but with the same structural -relaxation frequency f or 

time  shows additional evidences of the strong correlation or inseparable relation between 

the JG -relaxation and the -relaxation.  
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Figure 7.  T-P superposition of loss spectra for CNBz/PS370 (XM=0.1) measured at different T and P 

combinations but the same frequency f=29 mHz. The arrow marks the CM prediction for the 

frequency maximum of the JG peak. The inset show the combinations of T and P used in the main 

plot for the isochronal comparison. 

 

Spectra selected in Figure 7 are at various combinations of T and P that keep constant the 

most probable frequency of the structural -process at f(T,P)=29 mHz. Interestingly we got 

a remarkably perfect superposition of the entire spectra including the -relaxation and the JG 

-relaxation without any vertical shift of any data. Here T has been varied over the range 

from 223.0 K to 303.0 K and pressure increased from ambient pressure of 0.1 MPa to 554.3 

MPa (see the inset of Fig.7). Such a huge variation of about 80 K in temperature and an 

increase of pressure by nearly 4 orders of magnitude are accompanied by significant changes 

in volume and entropy as expected. Still there is nearly perfect superposition of all relaxation 

processes at constant τα. It is noteworthy that, for the same f, also the shape (or the 

dispersion) of the -peak is found invariant. The KWW function fits very well the loss peak 

with a value of n=0.55. This result can be restated as coinvariance of three quantities, τ, τα, 

and the -dispersion or the fractional exponent, (1-n), of the Kohlrausch correlation function 

for the -relaxation to variations of P and T. Remarkably, the approximate relation (4) from 

the Coupling Model is in accord with the nearly perfect co-invariance found. Furthermore, 

the experimental value of τ is approximately the same as 0 calculated from Eq.(3) (shown 

by an arrow indicating the location of the corresponding maximum frequency f0=1/(20) 

with the values of τα and (1-n) from the experimental data and tc=2 ps and thus verifying the 

approximate correspondence between τ0 and τ from the Coupling Model. 

 



3.3 Universality of the coinvariance, fundamental importance of the JG -relaxation, and 

implication on the origin of density scaling   

The approximate coinvariance was found before in dipropyleneglycol dibenzoate 

(DPGDB) [7], and  benzoyn isobutylether (BIBE) [13], but in these neat glass-formers the -

relaxation was not well resolved [18]. Recently in a study of the conductivity relaxation 

dynamics of the room-temperature ionic liquid, 1-methyl-3-trimethylsilylmethylimidazolium 

tetrafluoroborate ([Si-MIm][BF4]), a prominent and well resolved conductivity -relaxation 

was observed [19]. The broadband conductivity () relaxation measurements at ambient 

pressure and elevated pressures up to 600 MPa found approximate co-invariance of τ, τα, 

and (1-n) in this neat ionic liquid glass-former. Here τα and τ stand for the conductivity -

and -relaxation times. The CM is applicable to ion conductivity relaxation, and successful in 

accounting for experimental data in many ionically conducting materials [4,18,19,47-49] with 

the same equation (3) and relation (4), but with τ0, τ, and τα replace the corresponding 

quantities in there. Thus, the co-invariance of τ, τα, and (1-n) found experimentally is 

consistent with the CM. Moreover in [Si-MIm][BF4], there is approximate agreement 

between the primitive conductivity relaxation time τ0 and τ from experiment.  Conductivity 

relaxation is distinctly different from structural relaxation of glass-forming systems, and yet it 

has a conductivity -relaxation, which bears the same strong relation to the conductivity -

relaxation. We submit that this conductivity -relaxation should not be called JG -relaxation 

because otherwise it is not the same.  Notwithstanding, the generality of the phenomenon 

indicates the physics governing it is fundamental, as suggested by the CM.  

 

There are two other binary mixture of polar probe molecules with apolar host that show 

well resolved -relaxation. The mixtures are quinaldine dissolved in tristyrene [32], and 

picoline in tristyrene [14,43]. The dielectric spectra of the polar component measured with 

different combinations of P and T at constant -loss peak frequency show the approximate 

coinvariance of τ, τα, and (1-n). Moreover, molecular dynamics simulations of linear 

polymer melts represented by simple bead-necklace models were performed at ambient and 

elevated pressure by Bedrov and Smith, showing the same trend [33]. The torsional 

autocorrelation function (TACF) shows the presence of the JG -relaxation at shorter times to 

be followed by the -relaxation. The TACF obtained at T=130 K, P=1 atm matches the 

TACF obtained at T=213 K, P=5000 atm, and also the same for the TACF obtained at T=60 

K, P=1 atm and T=100 K, P=7000 atm. There are also other combinations exhibiting the 

same effect. These results demonstrate the invariance of the time dependence of the 

correlation function of the -relaxation as well as the ratio /. Together, the two invariance 

can be restated again as approximate co-invariance of , n, and  to change of 

thermodynamic conditions. In all the experiments and simulations considered in this 

paragraph, an approximate correspondence between τ and τ0 calculated from the Eq.(3) of 

the Coupling Model has been found. 

The remarkable and general property of approximate co-invariance of , n, and  

oblivious to changing thermodynamics conditions is another strong evidence that the JG -

relaxation is fundamentally important and it is strongly connected to the -relaxation. This 

connection has impact on the interpretation of other experimental findings on dynamics of 

glass-forming systems. For example it has been shown by various authors that the α-

relaxation times, τα, obtained at various T and P, superpose when plotted versus T/ρ
γ
, where ρ 

is density and γ a material constant for many van der Waals liquids and polymers [50-54]. 

This T/ρ
γ
-dependence of τα was obtained by combining the pressure-temperature-volume 

relation with τα deduced from the dielectric relaxation spectra measured at various 



combinations of P and T. Since experiments and simulations have shown that for any  that 

the ratio / is approximate constant independent of P and T, if τα is a function of T/ρ
γ
, then 

it immediately follows that τ is also approximately a function of T/ρ
γ
 with the same . 

Actually in practice we have demonstrated that approximately τ is also a function of T/ρ
γ
 

with the same  as  in diglycidyl ether of bisphenol-A (DGEBA) with molecular 

weight=380 g/mol, and other glass-formers. [20]. Since the JG -relaxation is the precursor 

of the -relaxation, causality implies that the dependence of  on T/ρ
γ
 originates from the 

dependence of  on T/ρ
γ
. This has support from results of molecular dynamics simulations of 

binary Lennard-Jones systems, 1,4 polybutadiene, ionic liquids, and 2Ca(NO3)2·3KNO3 

(CKN) that the scaling exponent  is related to the steepness of the repulsive part of 

intermolecular potential U(r), evaluated around the distance of closest approach between 

particles in the case of Lennard-Jones systems, and less than the distance  of the L-J 

potentials for non-bonded interactions in the case of 1,4 polybutadiene. Such short distance is 

akin to the local and non-cooperative -relaxation. For details see Ref.[20]. 

Throughout the previous sections we emphasize that the relation (4) between  and 
proposed by the Coupling Model is only approximate and not exact. We heighten the 

awareness of this fact by using therein the approximate equality sign ‘’ instead of ‘=’. The 

warning that the relation is only approximate had appeared in the first paper on this subject 

published in 1998 [2], many other papers following that such as Ref.[3], and review article 

[5] and book [4]. Since our relation between τα and τ is only approximate, τ is not expected 

to scale exactly for the same γ used to scale τα. A recent study of dielectric relaxation of a low 

molecular weight polymethylmethacrylate (PMMA) at various combinations of P and T 

found  can be scaled to show that it is a function of T/ρ
γ
 over a range of 7 orders of 

magnitude change in  [55]. On the other hand, the accompanying data of  when scaled in 

the same way cannot be described exactly by a function of T/ρ
γ
 with the same γ as for τα over 

the same range. Notwithstanding, the scatters of the  data from a plausible function of T/ρ
γ
 

are all within  0.5 decade over the entire range of the scaling variable T/ρ
γ
, where τα changes 

by 7 orders of magnitude (see fig.4 of Ref.[55]). Such small scatters of  from a function of 

T/ρ
γ
 actually verify that the results of PMMA are consistent with the approximate relation (4). 

Unfortunately the authors mistakenly assert the exact equality (i.e.⁡𝜏𝛼 = [𝑡𝑐
−𝑛𝜏]

1/(1−𝑛)) is the 

prediction of the CM instead of the approximate relation (4). The mistake has led these 

authors to the wrong conclusion that their PMMA data contradict the CM, but actually the 

data are consistent with it. Nevertheless, the results from the experiment on PMMA [55] 

verify the prediction from relation (4) that the JG -relaxation time obey approximately T/ρ
γ
-

scaling with the same  as the -relaxation time.    

The strong connection between the -relaxation and the JG -relaxation bought out by 

the invariance of / at constant  for different combinations of P and T implies that the 

two relaxations are not independent. Fitting the data with the sum of the Fourier transform of 

the KWW function for the -relaxation and the Cole-Cole loss peak for the JG relaxation is 

like treating the two processes as independent. In view of the strong connection between the 

two processes, this procedure is invalid. For well resolved -loss peaks, the  determined 

from this fit will not be too different from that of  obtained simply from the reciprocal of 

the loss peak frequency. However, if the -relaxation is not resolved, this unjustified fitting 

procedure can give spurious result for . An example of such practice is the analysis of the 

loss spectrum of the lower molecular weight (402 g/mol) PMMA taken at T=294.8 K and 

P=367.4 MPa, which exhibits a broad shoulder on the high frequency side of the -loss peak 

[55]. A contrasting situation occurs in the mechanical relaxation measurements of the 



metallic glasses, Pd40Ni40P20, and Pd30Ni50P20 [56]. As can be seen from the Arrhenius plot of 

log and log in the paper [56], the separation between the two relaxations is small as 

indicated by (log-log)2 for T>Tg. The loss from -relaxation in these metallic glasses is 

not small compared with the high frequency flank of the -loss peak as can be inferred from 

the isothermal spectra. Consequently the frequency dispersion of the -relaxation is 

broadened by the encroaching -relaxation at temperatures above Tg. There is no 

unambiguous way to separate out the loss contributed by the -relaxation process from the 

raw data. Without doing that, it is meaningless to compare the broadened frequency 

dispersion of the -relaxation in Pd40Ni40P20, and Pd30Ni50P20 with that of the two other Cu-

containing metallic glasses, Pd40Ni10Cu30P20 and Pd42.5Ni7.5Cu30P20. The latter Cu-containing 

metallic glasses have -relaxation well resolved and well separated from the -relaxation, 

and hence the -loss peak is not broadened by the -relaxation. Without taking into 

consideration of the difference in the relation between the two processes in these two types of 

metallic glasses, comparison of their raw frequency dispersion data was made. Superficially 

the frequency dispersions of the -loss peaks of all four glasses appear to be no different, and 

contradict the prediction of relation (4) that larger width of the -dispersion (or larger n) 

corresponds to larger separation from the -relaxation, found to hold in so many neat glass-

formers and mixtures [2,26]. In reality, this comparison create no more than a confusion in 

interpreting the experimental data because the actual width of the -relaxation in Pd40Ni40P20, 

and Pd30Ni50P20 is narrower than the raw data shown because of broadening by the -

relaxation located close by. In another similar paper on metallic glasses where the same 

Pd40Ni10Cu30P20 [57], less data and deeper in the glassy state are shown for , and the 

authors extrapolate these data by an Arrhenius fit to the temperature dependence a long way 

back to Tg and above. Shown as an inset to their Fig.10(b), the extrapolated value of (Tg) at 

T=Tg=562 K is about 4 s. This value of (Tg) are longer by several orders of magnitude from 

that given in the publication cited before for the same material [56]. Moreover, the activation 

energy, Ea, of the Arrhenius dependence of (T) used in the extrapolation is about 3206 K or 

26.65 kJ/mol. Hence the ratio, Ea/RTg, is equal to 5.7, much smaller than the nominal values 

of 25 and up for non-metallic and metallic glass-formers, and is unacceptable. Thus the 

Arrhenius extrapolation is problematic, and the value of (Tg) obtained is highly unreliable 

and should not be compared with any respectable model or theory. Despite these problems 

and the large uncertainties introduced by the long extrapolation, these authors compare their 

value of about 4 s for (Tg) to the CM prediction, and conclude by the irrelevant statement 

“… however, we find that the separation between the α and β processes in these cases is 

several orders of magnitude smaller than what is predicted from the CM.”. Qiao and co-

workers recognized the gross inconsistency in the extrapolation to get the value of (Tg) in 

their two papers, and rectify the inconsistency by publishing a new figure 10b in an erratum 

[58]. However, in the erratum they stated that “This correction does not require any change in 

the text of the paper.”. This sentence in the erratum is incorrect because in the text of their 

paper [57], there is the negative remark on the CM (cited above), which no longer holds, and 

this blunder remains and requires change in the text of their paper [57].   

4. Summary and Conclusion 

The results from our study of the dynamics of two glass-formers presented in this paper serve 

several purposes. Diethylphthalate (DEP) is a flexible glass-former having a well resolved 

and prominent secondary relaxation. Calling it the JG -relaxation has no meaning until there 



is some criterion or criteria to distinguish it from the other garden variety of secondary 

relaxations. This is the reason why there is need to provide criteria to distinguish the JG -

relaxation of fundamental importance to glass transition from the rest of the secondary 

relaxations [6]. All criteria introduced before have to do with some properties of the JG -

relaxation that are related to the -relaxation. One criterion emphasized in this paper is the 

pressure dependence of the secondary relaxation time . If  is pressure independent unlike 

, this immediately shows that the secondary relaxation is not the JG -relaxation. Dielectric 

relaxation study of DEP at elevated pressure has been done [44], and the secondary relaxation 

time  was found pressure insensitive, and hence the resolved secondary relaxation is not the 

JG -relaxation. Since there is only one resolved secondary relaxation, the question that 

immediately follows is whether the JG -relaxation exists or not in DEP. If not, the 

consequence is serious because then the JG -relaxation is not a universal feature of glass-

formers and hence not fundamental. The way to answer this question is motivated by another 

criterion for JG -relaxation that it has  approximately the same as the primitive relaxation 

time 0 of the CM, i.e. relation (3). Calculating by Eq.(1) with the relatively small value of 

the coupling parameter n of neat DEP, it turns out that 0 lies between  and , 

suggesting the JG -relaxation is obscured by the more intense - and -relaxations in the 

dielectric spectra. The way to resolve the JG -relaxation from the -relaxation, if it exists in 

DEP, is to increase the difference, log-log0, or the separation of the two processes. 

According to Eq.(2), this can be achieved by increasing the coupling parameter n of DEP, and  

experimentally this is done by dissolving DEP in solvent with much higher Tg. Elevating 

pressure will separate the JG -relaxation from the non-JG -relaxation because the former is 

pressure dependent and the latter is not. By studying the dynamics of DEP in mixture with 

oligo-styrene at elevated pressure, we have resolved a new secondary relaxation, which has 

properties related to that of the -relaxation, and is the JG -relaxation of DEP. 

The other glass-formers CNBz we studied is a rigid molecule and there is only one 

secondary relaxation. It is likely the JG -relaxation because the one criterion that the motion 

involves the entire molecule is satisfied. We take advantage of this simpler situation of CNBz 

and study its dynamics with emphasis on the relation between the -relaxation and the JG -

relaxation in mixtures with tristyrene and at different combinations of pressure and 

temperature. There is almost perfect superposition of the spectra at all frequencies for various 

combinations of P and T at constant . In other words, the frequency dispersions of the -

relaxation and the JG -relaxation as well the processes intermediate between the two are 

invariant to change of P and T in this case. In particular, the ratio, /, is also invariant 

despite large changes in thermodynamic quantities including volume and entropy. The same 

effects have been found in ionic conductivity relaxation. Thus, being independent of 

thermodynamic condition, these remarkable and general dynamic properties come from the 

evolution of the dynamics with time, which is solely governed by the intermolecular 

potential. One consequence is that if  is a function of T/ρ
γ
, then  is necessarily and 

approximately another function of T/ρ
γ
, with the same . On the other hand, the primitive 

relaxation time 0 is exactly a function of T/ρ
γ
 in view of the CM Eq.(2). Since the JG -

relaxation or the primitive relaxation has already taken place at times before the -relaxation, 

causality implies that the former is more fundamental, and the T/ρ
γ
-dependence actually 

originates from the JG -relaxation or the primitive relaxation, and is passed onto the -

relaxation at later times in the manner as prescribed by relations (3) and (4) of the CM. 
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