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Abstract 11 

Agrostis castellana is one of the few plants colonizing one of the most extreme geothermal 12 

alteration fields characterized by low pH and high temperature of soil. 13 

The study of species surviving in these multi-stress habitats can help to know more in deep the 14 

adaptive ability of plants. In this work morpho-anatomical and physiological traits of leaves of A. 15 

castellana living few meters from fumaroles were studied, focusing on their putative ecological 16 

significance.  17 

Some typical xeromorphic traits occurred in the leaves of these plants: abundant cutinisation, cell 18 

wall thickening, slightly convolute and adaxially ribbed leaf blades, tissutal reinforcements by 19 

sclereids, pubescence, protected stomata and densely packed mesophyll. Additionally abundant 20 

pectins, important in water balance adjusting and as monosaccharide source, were observed in 21 

epidermal cell walls. Despite the low value of relative water content, indicative of a disturbed 22 

hydric state, oxidative damage was significantly lower than in other plants of the same environment, 23 

probably tanks to an adequate antioxidant response based mainly on enzymatic machinery. 24 

Interestingly catalase activity was not inhibited by extreme conditions of the geothermal alteration 25 

field as in other plants of the same habitat. In conclusion a cooperation of xeromorphic traits and 26 

antioxidant response seems to make A. castellana able to survive in such a prohibitive environment. 27 
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Introduction 1 

Geothermal alteration fields are extremely restrictive environments where both chemical and 2 

physical stress factors coexist. High soil temperature and acidity, local intensity of gas emissions 3 

and ground micromorphology are the main stressors determining vegetation composition (Selvi & 4 

Bettarini 1999; Bonini et al. 2005; Chiarucci et al. 2008). Moreover the emission of water steam 5 

mixed with different gases, toxic elements and compounds (e.g. CO2, CH4, NH3, H2S, Rn, As, Hg, 6 

B) frequently experienced in an active geothermal area (Loppi 2001), contributes to the selection of 7 

the specialised flora typical of the geothermal areas. The study of plants of these sites is of 8 

particular interest to have a whole picture of adaptive mechanisms in natural habitats, that could not 9 

be adequately described by investigations made applying a single stress factor to plants under 10 

laboratory controlled conditions (Miller et al. 2010). In fact, in natural habitat, different stressors 11 

often coexist inducing a specific response, different from the sum of responses to individual stress 12 

factors (Rizhsky et al. 2002). The few plants living in geothermal environment activate a wide 13 

range of responses at different levels of organization (Feder & Hofmann 1999) developing specific 14 

morpho-anatomical and physiological traits (Bartoli et al. 2013; Bartoli et al. 2014) that help species 15 

to cope the geothermal constraints.  16 

The prohibitive conditions of geothermal alteration field can induce the overproduction of reactive 17 

oxygen species (ROS) resulting in oxidative damage (Bartoli et al. 2013; Bartoli et al. 2014), 18 

counteracted by multiple antioxidant defence mechanisms, both enzymatic and non-enzymatic. 19 

Plant defence is strictly dependent on species and distance from fumaroles (Bartoli et al. 2013; 20 

Bartoli et al. 2014) with distinct antioxidants having different importance.  21 

Agrostis castellana is a perennial caespitose grass that, as few other pioneer plants (eg. Calluna 22 

vulgaris and Cistus salviifolius) colonises the geothermal alteration field of Sasso Pisano (Tuscany, 23 

Italy), one of the most extreme geothermal alteration fields in terms of both soil acidity and hot 24 

temperatures (Chiarucci et al. 2008). The aim of this work is to analyze the morpho-anatomical and 25 

physiological traits of A. castellana leaves, focusing on their putative ecological significance.  26 

 27 
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Materials and Methods 1 

 2 

Site description 3 

The collection site was the geothermal alteration field (Fig. 1a) near to Sasso Pisano town 4 

(Castelnuovo Val di Cecina, Pisa province, Italy), in the site of Regional Interest (RIS B12, IT 5 

5160103) named ‘‘Monterotondo Marittimo and Sasso Pisano geothermal fields’’, hosting two types 6 

of natural habitats listed in the Natura 2000 EU directive: the ‘‘Forests of Castanea sativa Miller 7 

(cod 9260)’’ and the ‘‘Lava fields and natural cavities (cod 8320)’’ (Bonini et al. 2005). The 8 

sampling site is characterized by emissions of steam vents containing H2S, CO2, boric acid and 9 

water vapour from cracks in the rocks that contribute to soil overheating and acidification 10 

(Chiarucci et al. 2008). 11 

The considered geothermal alteration field is part of the geothermoelectric basin of Larderello, in 12 

southern Tuscany. The geological structure of the Larderello geothermal area is described in Bertini 13 

et al. (2006). 14 

The sampling site is located in the upper valley of Cornia river, at an elevation of about 550 m a.s.l. 15 

The climate is Mediterranean, with a mean annual temperature of 13.3 °C (Barazzuoli et al. 1993) 16 

and a mean annual rainfall of 1107 mm (Chiarucci et al. 2008).  17 

At the time of the sample collection (May 2013), the mean monthly temperature recorded was 12.9 18 

°C (min: 8.8 °C; max: 17.6 °C) and the mean monthly rainfall was 120.0 mm (data from the 19 

weather station of Castelnuovo Val di Cecina, Pisa available at http://www.castelnuovometeo.it/) 20 

and the monthly averaged daily mean global insulation upon a normal surface was 7780.1 Wh/m2 21 

(data from ‘‘Atlante Italiano della radiazione solare’’, edited by ‘‘ENEA, Agenzia nazionale per le 22 

nuove tecnologie, l’energia e lo sviluppo economico sostenibile’’, available at 23 

http://www.solaritaly.enea.it/index.php). In the sampling site, the daily temperature of the soil was 24 

recorded 30.4 °C (min: 25 °C; max: 35 °C) and soil pH was 3.8 (Bartoli et al. 2013) 25 

 26 

Experimental plant material 27 

Ten healthy plants (8-10 tillers) of A. castellana (Fig. 1.b), similar in size and growing at a distance 28 

of some meters from fumaroles, were screened and fully expanded mature leaves (at the same 29 

developmental phonological state) were sampled and then considered for morphoanatomical and 30 

histochemical analyses (fresh material or chemically fixed) and for physiological determinations 31 

(fresh materials or fixed in liquid nitrogen and stored at -20°C until use). 32 

 33 
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Light microscopy 1 

Leaf portions from the leaf sheath and the leaf blade were excised from A. castellana leaves and 2 

were fixed for 24 h in FAA fixative (10 % formaldehyde–5 % acetic acid–45 % ethanol), 3 

dehydrated in a graded ethanol series, and embedded in LR-White medium Grade (London Resin 4 

Company). Semi-thin sections (3 μm) were cut with an ultramicrotome (Ultratome Nova LKB 5 

Producter, Bomma, Sweden) and stained with different dyes, as follows: toluidine blue O (TBO) 6 

(0.05% in 100mM benzoate buffer at pH 4.4) for general cytological investigations (Feder & 7 

O’Brien 1968), Sudan black B (0.07% in saturated solution of ethanol 70%) for lipid compounds 8 

detection (Bayliss & Adams 1972), Coomassie brilliant blue R-250 (0.05% in Carnoy solution) for 9 

protein staining (Fisher 1968), Ruthenium red (0.1%) for pectic-substance characterisation (Jensen 10 

1962) and iodine–potassium iodide (IKI) for starch detection (Ruzin 1999).The sections were 11 

cleared in xylene, air dried, mounted in DPX Mountant (Sigma) and then observed with a LEITZ 12 

DIAPLAN light microscope. At least 100 histological sections for each experimental group were 13 

analysed. Images of each slide were taken using a Leica DFC 420. 14 

Epidermal stripping of both adaxial and abaxial surfaces of fresh leaves were made to determine 15 

stomatal density (SD), expressed as the number of stomata per square millimetre leaf area 16 

(Radoglou et al. 1990) and hair density (HD), expressed as the number of hairs per square 17 

millimetre leaf area. For each experimental group, 20 leaves collected from the selected plants (10 18 

individuals) were analysed. Counts were made on both surfaces of the leaves for a total of 40 counts 19 

per experimental group. 20 

 21 

Determination of water content and of relative water content 22 

Calculations of leaf fresh weight, dry weight and moisture content were based on weights 23 

determined before and after oven drying of leaf samples at 100°C for 24 h. Water content 24 

percentage was estimated on the fresh weight basis. Leaf relative water content (RWC; Turner 1981 25 

with minor modifications) was calculated with the formula: 26 

RWC = [(FW-DW)/(TW-DW)] x 100 27 

FW = Fresh weight 28 

DW = Dry weight 29 

TW = Turgid weight 30 

Fresh weight was obtained by weighing the fresh leaves. The leaves were then immersed in water 31 

over night, blotted dry and then weighed to get the turgid weight. The leaves were then dried in an 32 

oven at 100°C to constant weight and reweighed to obtain the dry weight. 33 
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 1 

Chlorophyll and carotenoid determination 2 

Chlorophylls (a, b and total) and carotenoids were extracted in 80 % acetone and determined 3 

according to Hassanzadeh et al. (2009) and to Lichtenthaler (1987) respectively. 100 mg of fresh 4 

leaves were homogenised and the extracts were centrifuged for 10 min at 6000 x g at 4°C. The 5 

supernatants were collected and the pellets were resuspended and extracted with 80% acetone until 6 

they resulted colourless. The collected supernatants were read using spectrophotometer at 645, 663 7 

and 470 nm. Pigment contents were expressed as mg g-1DW. 8 

 9 

Hydrogen peroxide and lipid peroxidation 10 

H2O2 content of leaves was determined according to Jana & Choudhuri (1982) using titanium 11 

chloride in H2SO4 for peroxide detection. The intensity of the yellow colour of the supernatant was 12 

measured at 410 nm. The amount of H2O2 in the extracts, calculated from a standard curve, was 13 

expressed as mol g-1DW. 14 

The amount of lipid peroxidation products in leaves was estimated by determining the 15 

malonyldialdehyde (MDA) content in the leaves according to Hartley-Whitaker et al. (2001) with 16 

minor modifications as in Spanò et al. (2007). Powder from freeze-dried leaves material was mixed 17 

with TBA reagent, heated (95°C), cooled and centrifuged. The level of MDA (155 mM-1cm-1 18 

extinction coefficient) was measured as specific absorbance at 532 nm and by subtracting the non-19 

specific absorbance at 600 nm (De Vos et al. 1989).  20 

 21 

Non enzymatic antioxidants 22 

Level of phenolic compounds was calculated as equivalent of gallic acid (GAE mg g-1DW) 23 

according to Arezki et al. (2001) using the Folin-Ciocalteu reagent.  24 

Ascorbate (ASA) and dehydroascorbate (DHA) extraction and determination were performed 25 

according to Kampfenkel et al. (1995) with minor modifications. Total ascorbate (ASA+DHA) was 26 

determined at 525 nm after reduction of DHA to ASA by dithiothreitol and DHA level was 27 

estimated on the basis of the difference between total ascorbate and ASA value. Calculations were 28 

made on the base of a standard curve and ascorbate content was expressed as mg g-1DW.  29 

Glutathione was extracted and determined according to Gossett et al. (1994). Total glutathione 30 

(reduced form, GSH+ oxidized form, GSSG) was determined by the 5,5’-dithio-bis-nitrobenzoic 31 

acid (DTNB)-glutathione reductase recycling procedure (Anderson et al. 1992) and the reaction was 32 

monitored as the rate of change in absorbance at 412 nm. GSSG was determined after removal of 33 



6 

 

GSH from the sample extract by 2-vinylpyridine derivatisation. Calculations were made on the base 1 

of a standard curve and content was expressed as nmol g-1DW.  2 

 3 

Enzymatic antioxidants 4 

For enzyme extraction acetonic powders were made according to Saari et al. (1996) with 5 

modifications. Briefly, leaves were homogenised in ice-cold acetone. Homogenates were filtered 6 

through a Buckner filter with Macherey-Nagel MN 618 filter paper under vacuum and washings 7 

were repeated until the powder resulted colourless. After complete removal of acetone under 8 

vacuum, acetonic powders were extracted in 100 mM potassium phosphate buffer pH 7.5 9 

containing 1 mM EDTA, and 1% (w/v) polyvinylpyrrolidone (PVP-40) as in Spanò et al. (2011). All 10 

the extractions were performed at 4°C. The homogenate was then centrifuged at 15000 x g for 20 11 

min. For ascorbate peroxidase, 2 mM ascorbate was added to the extraction medium. For 12 

glutathione reductase the supernatant was desalted on a Sephadex G-25 column. Supernatants were 13 

collected and stored in liquid nitrogen until their use for enzymatic assays. 14 

APX (EC 1.11.1.11) activity was measured according to Nakano & Asada (1981) with 15 

modifications. Enzyme activity was assayed from the decrease in absorbance at 290 nm (extinction 16 

coefficient 2.8 mM-1cm-1) as ascorbate was oxidised. The reaction mixture contained 100 mM 17 

potassium phosphate pH 7.5, 0.5 mM ascorbate and enzyme extract (25 μg protein ml-1). The 18 

reaction was started by adding 0.2 mM H2O2. Correction was made for the low, non enzymatic 19 

oxidation of ascorbate by hydrogen peroxide (blank).  20 

DHAR (EC 1.8.5.1) activity was determined as described by Nakano & Asada (1981). The activity 21 

of DHAR was determined by monitoring the glutathione-dependent reduction of dehydroascorbate. 22 

Enzymatic extract contained 12.5 μg protein ml-1. The activity was determined by measuring the 23 

increase in absorbance at 265 nm for 3 min. Specific activity was calculated from the 14 mM-1 cm-1 24 

extinction coefficient. A correction for the non-enzymatic reduction of DHA by GSH was carried 25 

out in the absence of the enzyme sample (blank). 26 

GR (EC 1.6.4.2) activity was determined as described by Rao et al. (1995) following the oxidation 27 

of NADPH at 340 nm (extinction coefficient 6.2 mM-1 cm-1). Enzymatic extract contained 25 μg 28 

protein ml-1. A correction for the non-enzymatic reduction of GSSG was carried out in the absence 29 

of the enzyme sample (blank). 30 

GPX (EC 1.11.1.9) activity was determined according to Navari-Izzo et al. (1997) by coupling its 31 

reaction with that of GR, using as substrate 0.45 mM H2O2. The activity was determined by 32 

following the oxidation of NADPH at 340 nm (extinction coefficient 6.2 mM-1 cm-1). Enzymatic 33 
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extract contained 25 µg protein ml-1.  1 

CAT (EC 1.11.1.6) activity was determined as described by Aebi (1984). Enzymatic extract 2 

contained 25 µg protein ml-1. A blank containing only the enzymatic solution was made. Specific 3 

activity was calculated from the 39,4 mM-1 cm-1 extinction coefficient.  4 

All enzymatic activities were determined at 25°C and expressed as U g-1 protein. Protein 5 

measurement was performed according to Bradford (1976), using BSA as standard. 6 

 7 

Data analysis 8 

All the experiments were performed at least in triplicate. Value in the tables indicates mean value ± 9 

SE based on three independent experiments and was significantly different as assessed by the 10 

analysis of variance (ANOVA) and Student-Newman-Keuls post hoc test, with values of p<0.01 11 

sufficient to reject the null hypothesis. 12 

 13 

Results 14 

Morphoanatomical and histochemical leaf characterization 15 

Mature leaves of A. castellana were simple and alternate (Fig. 1b). They consisted in a tubular 16 

sheath with free overlapping margins and in a lanceolate blade, slightly curved from both sides of 17 

the abaxially prominent mid vein and acuminate at the apex (Fig. 1b; Fig. 2 a, b).  18 

The outer and the inner epidermises of the leaf sheath delimited a thin mesophyll, consisting in a 19 

wide aerenchyma interspersed with collateral bundles, accompanied by sclerenchyma (Fig. 2a, g). 20 

With respect to the cells of the inner epidermis (Fig. 2d), those of the outer one were lobed in shape 21 

(Fig. 2c) and evidenced thicker cuticle and walls (mainly the outer periclinal ones) (Fig. 2g). 22 

Additionally, outer epidermis showed elongate-sinuous phytolites arranged in linear rows (Fig. 2c) 23 

and a greater stomatal and hair densities than the inner epidermis (Table 1). 24 

The adaxial side of the leaf blade was organized in more ribs alternating with furrows (Fig. 2b). The 25 

ribs, with single, centrally arranged vascular bundles, were symmetrically arranged on each side of 26 

the midrib. Both adaxial and abaxial epidermises evidenced a costal and intercostal zonation with 27 

fusiform cells, stomata, unicellular prickle-hairs and elongate-sinuous silica bodies arranged in rows 28 

(Fig. 2.e, f). However, with respect to the adaxial epidermis, the abaxial one was characterized by 29 

cells with thicker outer periclinal walls and cuticle (Fig. 2.h) and by lower stomatal and hair 30 

densities (Table 1). Between two consecutive adaxial ribs, linear rows of bulliform cells and slightly 31 

sunken stomata occurred along the vascular system (Fig. 2b, h). Bulliform cells, contained abundant 32 

pectins in their outer periclinal walls and little lipidic bodies in their extensive vacuoles (Fig. 2k, 33 
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m). Girders consisting in few sclerenchymatic fibres occurred underlying the epidermis at the 1 

adaxial tip of each rib and abaxially, at level of both vascular bundles and bulliform cell clusters 2 

(Fig. 2b). In the mesophyll, the photosynthetic parenchyma was not differentiated into palisade and 3 

spongy parenchyma (Fig. 2b, 2h). Its cells, containing abundant chloroplasts, well defined nuclei, 4 

little lipid deposits and no significant starch deposits (Fig. 2h, j, l, m), were tightly arranged, so that 5 

the mesophyll resulted densely packed, except at the level of the stomata, where well developed 6 

sub-stomatal chambers occurred (Fig. 2.h). The outermost mesophyll cells contained crystals (Fig. 7 

2.i). The collateral vascular bundles showed a poorly differentiated xylem and few tracheal 8 

elements; they were surrounded by a mestome accompanied by a layer of round parenchymatic cells 9 

with chloroplasts (Fig. 2.h).  10 

 11 

Leaf water content, RWC and pigments 12 

Leaf water content was 62.67% and its relative water content (RWC) was 68.67% (Table 2). The 13 

content of chlorophyll a, b, and carotenoids were 2.54, 0.99, and 0.77 respectively (Table 2). 14 

 15 

Oxidative stress evaluation 16 

ROS production was monitored by detecting the concentration of hydrogen peroxide. The content 17 

of this molecule was about 200 μmol g-1DW. The measurement of lipid peroxidation (Tab. 2), 18 

indirectly indicating membrane damage, was detected as TBARS and was 367.33 nmol g-1DW.  19 

 20 

Enzymatic and non-enzymatic antioxidants 21 

The content of phenols and ascorbate/glutathione cycle metabolites were detected (Tab. 2). Phenol 22 

content, measured as gallic acid equivalents, was about 6 mg GAE g-1DW, ascorbate pool was 2.13 23 

mg g-1DW, and glutathione pool was about 226 nmol g-1DW. Both ascorbate and glutathione were 24 

predominantly in the oxidised form, with AsA/DHA and GSH/GSSG ratios of 0.85 each. 25 

Among the hydrogen peroxide scavenging enzymes, APX and GPX had activities higher than 500 26 

U g-1protein while catalase had an activity that amounted on about 100 U g-1protein (Table 2). 27 

DHAR activity was about 811 U g-1protein and GR activity was 64.53 U g-1protein.28 
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Discussion 1 

 2 

Geothermal alteration field of Sasso Pisano, as many other geothermal ecosystems in the world, is a 3 

multi-stress habitat that poses significant constraints to plant colonization and surviving. However, 4 

few pioneer species, including Calluna vulgaris and Cistus salviifolius, are able to live in this site, 5 

especially through the expression of specific morphoanatomical and physiological traits that can be 6 

conveniently modulated in response to specific and sudden environmental situations, sometimes 7 

having to mediate between opposite requirements (eg. toxicants defence, water balance) (Bartoli et 8 

al. 2013; Bartoli et al. 2014)). Selvi & Bettarini (1999) observed that most plant species of 9 

solfataras and fumaroles with strongly acid soil, developed xeromorphic traits that can make these 10 

plants more adapted to support various kinds of environmental stresses (Bomfleur et al. 2011; 11 

Bartoli et al. 2013; Bartoli et al. 2014). Accordingly, also A. castellana plants living some meters 12 

distant from geothermal manifestations exhibited some xeromorphic characters in their leaves: 13 

abundant cutinisation and cell wall thickening, leaf blades slightly convolute and adaxially ribbed 14 

with well developed bulliform cells and sclerenchymatic reinforcements, pubescence, protected 15 

stomata, densely packed mesophyll. Epidermis constitutes the first barrier against geothermal 16 

stressors. Thus, abundant cutinisation and wall thickening occurred mainly in the epidermal cells of 17 

the surfaces particularly subjected to geothermal constraints. Additionally, epidermal cell walls of 18 

A. castellana leaf blades evidenced abundant pectins, as observed also in the leaves of C. vulgaris 19 

and C. salviifolius plants living in the same geothermal site (Bartoli et al. 2013; Bartoli et al. 2014). 20 

Pectins can be involved both in fixation of metal cations deriving from the environment or in water 21 

storage (Pellerin & O’Neill 1998; Bartoli et al. 2013). In particular, abundant pectins occurred in 22 

bulliform cell walls and can represent a way to adjust in the short term the water balance of these 23 

cells that modulate the leaf rolling in response to the adverse and sometime unpredictable 24 

environmental conditions of geothermal habitats.  25 

Thanks to the occurrence of sclerenchymatic fibres and silica bodies, both increasing tissutal 26 

stiffness and toughness (Turner 1994; Ma & Yamaji 2006), the leaves of A. castellana resulted less 27 

liable to be damaged. Silica, other than in tissutal strengthening, is involved in mitigation of many 28 

chemical and physical abiotic stresses (eg. salt, metal toxicity, nutrient imbalance, drought, high 29 

temperature, UV) (Banowetz et al. 2008; Ma & Yamaji 2006).  30 

Both leaf blade and sheath of A. castellana leaves were amphystomatic and presented 31 

morphological and anatomical strategies aimed at stomata defence, such as stomata localization in 32 

furrows or in the inner surface of the leaf sheath, stomata sinking below the plane of the epidermis 33 
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and protection by hairs. These strategies are aimed to enhance boundary layers around leaves of A. 1 

castellana thereby buffering the evaporative demand of the atmosphere and retarding transpirational 2 

water loss (Hill 1998; Benz et al. 2006; Roth-Nebelsick 2007). Accordingly, an increased morpho-3 

anatomical protection might explain the higher stomatal density occurring on the adaxial side than 4 

in the abaxial one of the leaf blade. Regarding pubescence, the thrichomes can also play a role in 5 

protection from excess radiation, including avoidance of overheating (Jordan et al. 2005). 6 

A densely packed mesophyll was observed in A. castellana leaves. This trait, reducing the 7 

intercellular spaces, is useful in minimizing water transpiration and can improve photosynthetic 8 

process increasing the amount of chloroplasts per leaf surface unit. The photosynthetic process can 9 

be also improved by the abundant crystals occurring in the outer layer of the mesophyll. In fact, 10 

crystals in palisade cells, other than a reserve of Ca2+ for cell metabolism, can represent a tool to 11 

improve photosynthesis: druses have multiple, radial oriented facets with potential reflective 12 

properties that would help disperse light to the surrounding chloroplasts (Kuo-Huang et al. 2007). 13 

While leaf water content was not significantly different from other plants living in the same 14 

environment (Calluna vulgaris and Cistus salviifolius, Bartoli et al. 2013; Bartoli et al. 2014 15 

respectively), relative water content (RWC), useful indicator of the state of the water balance in 16 

plants (González & González-Vilar 2001), was significantly lower, suggesting a worse hydric state 17 

in A. castellana. In particular, the RWC value, well below 80%, could produce changes in the 18 

metabolism (González & González-Vilar 2001) affecting photosynthetic physiology, carbon 19 

assimilation and energy use (Lawlor & Cornic 2002). A signal of a partially altered carbon 20 

metabolism could be the starch absence in chloroplasts, probably counterbalanced by pectin 21 

deposits observed in cell walls. In fact these storage molecules may be remobilised as 22 

monosaccharides, important in short-term osmotic and ionic adjustments (Clifford et al. 2002; 23 

Ghanem et al. 2010) and could be a source of energy in prohibitive environmental conditions 24 

(Bartoli et al. 2013). Despite the disturbance in water balance, chloroplasts were abundant and did 25 

not show any histologically evident alteration in their morphology and carotenoid/total chlorophyll 26 

ratio did not differ significantly with respect to the other plants of the geothermal alteration field 27 

(Bartoli et al. 2013; Bartoli et al. 2014). In addition, hydrogen peroxide content and lipid 28 

peroxidation, indicative of membrane damage and measured as TBARS, were significantly lower in 29 

A. castellana than in Calluna vulgaris and Cistus salviifolius of the same habitat. To this respect, the 30 

little lipid deposits observed in leaf tissues could be used in membrane repair events, thus 31 

explaining their relative low oxidative damage. As a matter of fact, there was a good ability of our 32 

species to counteract oxidative damage commonly associated with stressors typical of this 33 
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environment such as soil low pH and high temperature (Huang et al. 2001; Bartoli et al. 2013; 1 

Bartoli et al. 2014). In fact, plants have evolved complex enzymatic and non enzymatic protective 2 

system to keep under control stress-related ROS evolution. A. castellana had a lower phenol and 3 

low molecular weight antioxidant content in comparison with the two other plants of the same 4 

habitat. Of particular interest is the low reducing power of GSH/GSSG couple (0.85), significantly 5 

lower (p < 0.01) than C. vulgaris and C. salviifolius (2.53 and 9.25 respectively). The low content 6 

of non-enzymatic antioxidant is counteracted by a high activity of hydrogen peroxide scavenging 7 

enzymes such as APX and CAT. The high CAT activity is a peculiar trait of Agrostis as previous 8 

studies had detected a low catalase activity, probably due to the inhibitory effect the extreme 9 

conditions of the geothermal environment could have an on this enzyme (Bartoli et al. 2013). APX 10 

and CAT were assisted in their role by GPX, characterized by values of activity similar to C. 11 

vulgaris and C. salviifolius. 12 

In conclusion Agrostis castellana, as expected, showed typical xeromorphic traits (eg. cutinisation 13 

and wall thickenings, pubescence, protected stomata, etc.) that together with an active antioxidant 14 

response, based mainly on enzymatic systems, could help this plant to survive under the prohibitive 15 

conditions of the geothermal alteration field. 16 
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Figure legends  1 

Fig. 1: The sampling site in the geothermal alteration field of Sasso Pisano (Pisa, Italy) with 2 

significant steam emissions from the geothermally altered soil (a) and plants of Agrostis castellana 3 

living close to a fumarole (b).  4 

 5 
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Fig. 2. Leaf anatomy of A. castellana. Transverse section of the leaf sheath (a) and leaf blade (b) 1 

(TBO, Bar = 50 μm). Stripping of outer and inner epidermis of the leaf sheath (c and d respectively, 2 

Bar = 50 μm) and of outer and inner epidermis of the leaf blade (e and f respectively, Bar = 50 μm). 3 

Particular of leaf sheath in transverse section, showing the outer epidermis (with cells having 4 

thickened walls and cuticle), the inner epidermis and the mesophyll, consisting in a wide 5 

aerenchyma intermingled with vascular bundles (g; TBO, Bar = 50 μm). Transverse section of leaf 6 

blade, showing the outer epidermis, and mesophyll organization around a vascular bundle (h; TBO, 7 

Bar = 30 μm ). Particular of leaf blade, showing the outer epidermis, chlorenchyma cells with 8 

crystals (i; TBO, Bar = 50 μm). Istochemical determination of starch (j; iodine-potassium iodide 9 

staining, Bar = 30 μm), pectic substances (k; Ruthenium-red staining, Bar = 30 μm), proteins (l; 10 

Coomassie brilliant blue R-250 staining, Bar = 30 μm) and lipid deposits (m; Sudan black staining, 11 

Bar = 30 μm) in leaf tissues. abe: abaxial epidermis; ade: adaxial epidermis; ae: aerenchyma; b: 12 

bulliform cell; ch: chloroplast; cr: crystal; cz: costal zone; h: hair; ie: inner epidermis; icz: 13 

intercostals zone; m: mestome; n: nucleus; oe: outer epidermis; p: phytolite; pc: parenchymatic 14 

cell; ph: phloem; s: stoma; scl: sclerenchyma; ssc: sub-stomatal chamber; vb: vascular bundle; x: 15 

xylem. 16 
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Table 1. Stomatal and hair densities in leaves of Agrostis castellana. 1 

 Outer sheath Inner sheath Adaxial blade Abaxial blade 

Stomatal density 

(stomata/mm2) 

17.00±0.63 c 4.10±0.76 d 108.25±3.58 a 28.95±1.79 b 

Hair density 

(hairs/mm2) 

5.60±1.75 c 0.00±0.00 c 130.35±3.89 a 116.85±4.33 b 

Data are mean ±SE. Values within a row followed by the same superscript letter do not differ 2 
significantly (at P=0.01). 3 
 4 
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Table 2. Physiological parameters in Agrostis castellana of the geothermal alteration field 1 
of Sasso Pisano (Italy). 2 

Water content (%) 62.67±0.33 

RWC (%) 68.67±2.67 

Chl a (mg g-1DW) 2.54±0.12 

Chl b (mg g-1DW) 0.99±0.05 

Total Chl (mg g-1DW) 3.53±0.18 

Carotenoids (mg g-1DW) 0.77±0.04 

Car/Tot Chl 0.22±0.01 

Hydrogen peroxide (μmol g-1DW) 199.74±12.41 

TBARS (nmol g-1DW) 367.33±5.70 

Phenols (mg GAE g-1DW) 6.07±0.20 

ASA (mg g-1DW) 0.98±0.01 

DHA (mg g-1DW) 1.15±0.05 

GSH (nmol g-1DW) 67.43±2.04 

GSSG (nmol g-1DW) 79.49±0.01 

APX (U g-1protein) 525.15±28.65 

DHAR (U g-1protein) 811.40±25.6 

GR (U g-1protein) 64.53±7.17 

GPX (U g-1protein) 599.95±22.45 

CAT (U g-1protein) 100.42±1.70 

Data are the mean of at least three replications of three independent experiments ± standard 3 
error. 4 
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