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Abstract. The discovery of graphene and the related fascinating capabilities
 
have triggered an 

unprecedented interest in inorganic two-dimensional (2D) materials. Despite the impressive 

impact in a variety of photonic applications, the absence of energy gap has hampered its 

broader applicability in many optoelectronic devices. The recent advance of novel 2D 

materials, such as transition-metal dichalcogenides or atomically thin elemental materials, (e.g. 

silicene, germanene and phosphorene) promises a revolutionary step-change. Here we devise 

the first room-temperature Terahertz (THz) frequency detector exploiting few-layer 

phosphorene, e.g., a 10 nm thick flake of exfoliated crystalline black phosphorus (BP), as 

active channel of a field-effect transistor (FET). By exploiting the direct band gap of BP to 

fully switch between insulating and conducting states and by engineering proper antennas for 

efficient light harvesting, we reach detection performance comparable with commercial 

detection technologies, providing the first technological demonstration of a phosphorus-based 

active THz device. 
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Graphene-oriented 
[1] 

research has had a dramatic impact during the last decade.
2
 The superior 

carrier mobility, induced by the massless Dirac fermions in graphene, combines with a 

gapless spectrum that, although beneficial for applications requiring frequency-independent 

absorption,
 [3,4]

 also prevents the effective switching of its conductivity in electronic devices 

and the achievement of a high on/off current ratio in transistors. Finite and direct bandgaps 

are desirable for a wealth of applications, including transparent optoelectronics, photovoltaics 

and photodetection. As an example, current visible graphene detector performances are 

strongly limited by the large dark currents that dominate under non-zero bias operation.
 [5,6]

  

These issues are driving present research in the quest for alternative 2D materials: as a 

prototypical example, single-unit-cell thick layers of transition-metal dichalcogenides 

(TMDCs: MoS2, MoSe2, WS2, WSe2, etc.) have recently emerged as a valuable alternative.
 [7]

 

2D TMDCs can be obtained from bulk crystals by employing the micromechanical exfoliation 

method,
 [4]

 like for the case of graphene, but they show a direct bandgap, ranging between 

~0.4 eV and ~2.3 eV, which enables applications that well complement graphene 

capabilities.
[8]

 In particular, 2D TMDCs are suitable for photovoltaic applications 
[9]

 and for 

devising robust ultra-thin-body field effect transistor (FET) architectures which can easily 

provide subthreshold swing of ~ 60 mV/dec and Ion/Ioff ratio up to 10
8
. 

[10]
 Nonetheless, their 

relatively low mobility (≤ 200 cm
2
V

-1
s

-1
) is a major constraint for high-frequency electronic 

applications.  

A good trade-off between graphene and TMDCs is represented by a novel class of 

atomically thin 2D elemental materials: silicene,
 [11]

 germanene 
[12]

 and phosphorene.
 [13]

 

Among them, the latter one allows a peculiar single- or few-layer isolation from its bulk phase, 

e.g., black-phosphorus (BP). Unlike silicon and germanium, BP, the most thermodynamically 

stable allotrope of the phosphorus element in standard conditions, shows a layered graphite-

like structure, where atomic planes are held together by weak Van der Waals forces of 

attraction, thus allowing the application of standard micromechanical exfoliation techniques. 
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As in graphene, each atom in BP is connected to three neighbours, forming a stable layered 

honeycomb structure with an interlayer spacing of ~5.3 Å. In contrast with graphene, the 

hexagonally distributed phosphorus atoms are arranged in a puckered structure rather than in a 

planar one (Figure 1a). This property generates an intrinsic in-plane anisotropy that results in 

a peculiar angle-dependent conductivity.
 [14]

 

Bulk BP has a small direct bandgap of ~0.3 eV, which enables the complete switching 

between insulating and conducting states in transistor devices. The reduction of the flake 

thickness leads to quantum confinement which enhances the gap up to Eg~1.0 eV in the limit 

case of phosphorene (a single layer of BP); as a result the Ion/Ioff ratio of a BP-based FET can 

be improved by employing thinner flakes: an Ion/Ioff ratio of ~10
5
 has been recently reported 

[8]
 

in back-gated FET structures. On the other hand, thickness reduction is detrimental for carrier 

mobility: thinner flakes are more vulnerable to scattering by interface impurities 
[15]

 and the 

effective mass of charge carriers increases when the number of atomic layers is reduced.
 [16]

 

Despite this, BP thin films are endowed with hole mobilities exceeding 650 cm
2
V

-1
s

-1
 at room 

temperature (RT) and well above 1000 cm
2
V

-1
s

-1
 at 120 K,

 [14]
 thus overtaking the limiting 

factor of large-gap TMDCs, allowing to reach high-frequency operation up to 20 GHz.
 [18]

  

For all the reasons above, BP represents an ideal material for infrared optoelectronic 

applications 
[17]

 and high-speed thin film electronics. 
[18]

  

Furthermore, the superb10
5
 Ion/Ioff ratio of BP-based FETs makes BP well suited for 

detection of Terahertz (THz) -frequency light, being finite and direct bandgaps and huge 

carrier density tunability undisputed benefits in the viewpoint of higher modulation frequency, 

large responsivity (Rν) and low  dark currents. 

THz detection in FETs is based on the rectification of plasma waves induced by the 

external ac electric field.
 [19]

 When an electromagnetic field is coupled between the source (S) 

and the gate (G) electrodes, it excites carrier density oscillations, which, in turn, generate a 

driving longitudinal electric field through the channel. This simultaneous modulation of 
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carrier density and drift velocity results in the onset of a dc signal that can be measured at the 

drain (D) electrode as a voltage, if D is kept in an open circuit configuration (photovoltage 

mode), or as a current, if D is in a short-circuit configuration (photocurrent mode). The 

asymmetric feeding of the ac signal,
 [20]

 or the intrinsic asymmetry in the transistor channel,
 

[21]
 defines a preferential direction for charge flow across the channel, allowing FET detectors 

to work without any applied bias, thus reducing the noise level and the system complexity.  

At RT the propagation of plasma waves in the transistor channel is usually limited by 

the phonon scattering which reduces the channel mobility (µ): when the plasma oscillations, 

excited at the S side of the transistor, are damped in a distance Ld, which is shorter than the 

channel length (Lc), the FET is said to be operating in the non-resonant overdamped regime. 

This mechanism is very promising for applications because the rectification takes place over a 

distance Ld regardless of the total length of the channel: the FET can operate beyond its cut-

off frequency even though the channel mobility is low and its dimensions are not sub-micron. 

FETs allow for the integration, as active channels, of a variety of one-dimensional 
[22,23]

 or 2D 

[11,13,24-26]
 structures whose properties can either be exploited for 

[22,25]
 or investigated via 

[27]
 

THz detection experiments.  

Conceiving and exploiting new material combinations can open the path to ground-

breaking implementations of active devices and passive components across the intriguing and 

underexploited THz frequency range. Here we show efficient THz detectors working at RT by 

combining top-gated BP FETs with THz antennas designed to enhance sensitivity.  

BP crystals were grown via chemical vapour transport techniques.
 [28]

 Flakes having thickness 

10 nm were then mechanically exfoliated from bulk BP crystal using a standard adhesive 

tape technique on a 300 nm thick SiO2 layer on the top of a 300 µm intrinsic silicon wafer. 

The thickness of individual BP flakes was assessed via a combination of optical microscope 

mapping (Figure 1b), scanning electron microscopy imaging (Figure 1c) and atomic force 

microscopy (AFM) imaging (Fig. 1e).  Reproducible correlation has been found between the 
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color map of the flake, as seen under the optical microscope (Fig. 1b), and its thickness 

measured via atomic force microscopy (AFM) (Figure 1d). 

Micro-Raman spectroscopy measurements have been performed to evaluate the 

crystalline quality of BP flakes: the Raman spectrum presents three characteristic peaks at 362, 

440, and 468 cm
-1

 (Figure 1d) corresponding to the Ag
1
, B2g, and Ag

2
 phonon modes observed 

in bulk BP. The topographic AFM scan of a single transferred flake (Figure 1d) shows a 

layered structure with two visible stacks with thicknesses 6.2 and 1.7 nm, respectively. By 

measuring a set of similar flakes we found that every stack has a thickness corresponding to 

an integer multiple of ~ 0.61 nm, i.e. the thickness of a BP monolayer (phosphorene). 

To devise the FET detectors, we selected 10 nm thick BP flakes. This choice is 

motivated by the fact that THz detection, in the overdamped plasma-wave regime, is only 

marginally affected by the channel mobility, that decreases by reducing the flake thickness; 

conversely, the expected photoresponse significantly increases when huge carrier tunabilities 

are reached, i.e. in thinner flakes. THz detectors have been realized by exploiting a 

combination of electron beam lithography (EBL) and metal evaporation (see Experimental 

details). The S and G electrodes were patterned in the shape of two halves of a planar bow-tie 

antenna having a total length 2L = 500 µm and a flare angle of 90°, in resonance with a 0.3 

THz radiation. Figure 2 shows the device layout: the channel length (source-to-drain 

distance) has been set to Lc = 2.78 µm, the gate length is LG = 580 nm and the average 

channel width W = 2.6 µm. Under this configuration and in the presence of an 80 nm thick 

oxide layer, we simulated the geometrical gate-to-channel capacitance (Cgc) with a 

commercial 3D-FEM simulation software (COMSOL Multiphysics) and found Cgc ~ 1.1 fF.   

The RT transport characterization was carried out using two dc voltage generators to 

drive the source-to-drain voltage (VSD) and the gate voltage (VG) independently (Figure 3). 

The device shows ohmic behaviour, with no signature of a contact Schottky barrier at RT .The 

transconductance characteristics have been acquired while sweeping VG in a limited bias 
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range (see Figure 3) to prevent the top-gate insulating layer from breakdown. The resulting 

device is a p-type depletion mode FET with a visible hysteresis connected with the direction 

of the gate sweep. This effect is likely due to charge trapping in the top oxide layer and at the 

BP-dielectric interfaces.
 [29]

 The ambipolar transport, typical of BP-based FETs,
 [15,30]

 has not 

been observed in the present case due to the use of Cr/Au contacts that can significantly alter 

the band alignment and eventually suppress the electron conduction even at high positive VG.
 

[31]
 The achieved maximum transconductance gm = 150 nA/V is independent of the gate sweep 

direction (dash-dot line in Figure 3a) and the Ion/Ioff ratio ~10
3
, provides a satisfactory 

switching behavior.  

In a 2D FET the mobility is conventionally extrapolated in a back-gate (BG) 

configuration 
[10,30]

 or via capacitance-to-VG (C-VG) measurements.
 [29]

 In the present 

configuration, these strategies are difficult to be implemented because: (i) back-gates require 

doped substrates, which are detrimental for THz detection; (ii) any C-VG measurement is 

largely affected by the huge shunt capacitance induced by the presence of the bow-tie antenna. 

Therefore, here we have adopted a different method to extrapolate the mobility (µFE) 

indirectly from the transconductance gm curve through the relation gm=µFECoxVSDW/LG, 

where Cox = CTG/AG is the oxide capacitance per unit area, CTG is the top-gate capacitance and 

AG the gated area. This relation holds while the mobility is constant over the entire length and 

does not depend on the applied bias, as is reasonable to assume in a top-gated system. For a 

thin layer channel, CTG (Figure 3b, inset) is given by the sum in series of the geometrical 

capacitance Cgc (whose value can be obtained via FEM simulations) and the parallel of the 

interface trap capacitance (Ct) and the quantum capacitance (Cq):
 [29,32]

 

   

 

  

𝐶𝑇𝐺 = (
1

𝐶𝑔𝑐
+

1

𝐶𝑡+𝐶𝑞
)
−1

                                       (1) 
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The quantum capacitance is related to the material density of states and takes into account the 

fraction of VG dropped within the channel to modify the carrier population. Therefore, 

according to equation (1), the gate voltage modulates the band structure (via Cgc) and 

simultaneously fills trap states (via Ct) and carrier states (via Cq). An estimation of the 

quantity (Ct + Cq) can be obtained from the subthreshold swing (Ss) of the FET. The 

logarithmic plot of the transconductance curve shows a linear region (shaded areas in Fig.3b) 

whose slope corresponds to the subthreshold slope (Ss)
-1

: this regime corresponds to the onset 

of a pure hole thermionic emission current over the potential barrier generated at positive VG. 

In general, Ss ~ 60 β mV/dec, where β is the band movement factor: β = [1+(Ct+Cq)/Cgc]. In 

the subthreshold regime, the channel is almost depleted of free carriers, hence Cq can be 

safely neglected: the channel bands move one-to-one with the applied gate bias.
 [8]

 In the 

present case, we estimate β = 7 (independently from the VG sweep direction) from the linear 

fit to the data (shaded areas, Figure 3b), then Ct = 6 Cgc; by varying VG, the top gate 

capacitance will vary in the range [6/7 Cgc, Cgc]. From these considerations, we can infer a 

lower bound for µFE: 

∆𝑢𝑇 ∝ −
1

𝜎
∙

d𝜎

d𝑉𝐺
∙ [

RL
1

𝜎
+RL

]                                               (2)                                                 

corresponding to µFE = 470 cm
2
V

-1
s

-1
.  

In order to prove THz detection at RT, we employed an electronic source whose output 

frequency was tuned in the range 0.26-0.38 THz. The output beam, having polarization 

parallel to the antenna axis, was collimated by a set of two 1/f off-axis parabolic mirrors in a 4 

mm diameter spot while its amplitude was modulated as a square wave at 618 Hz by means of 

a mechanical chopper. The photoresponse was measured in photovoltage mode: with the S 

electrode grounded, the response voltage (Δu) was collected at the D electrode in open circuit 

configuration (see Methods).  
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Figure 4a shows the channel conductance dependence on the gate bias, measured while 

the 0.298 GHz radiation (see Experimental details) is impinging on the device. When the 

detection mechanism is dominated by the aforementioned plasma-wave rectification, the 

transfer characteristics allow predicting the device responsivity, according to the diffusive 

hydrodynamic model of transport.
 [6,19]

 Loading effects arising from the finite impedance (RL) 

of the measurement setup have been also properly weighted, leading to:  

∆𝑢𝑇 ∝ −
1

𝜎
∙

d𝜎

d𝑉𝐺
∙ [

RL
1

𝜎
+RL

]                                               (3)                                                        

where the minus sign accounts for the hole majority carriers. Figure 4b shows the predicted 

ΔuT trend as a function of VG: the THz response is expected to peak around VG = +3.5 V. The 

comparison with the experimental responsivity curve (Figure 4c) reveals a good agreement 

and unveils that THz-induced plasma waves arise in the BP channel, allowing the efficient 

detection of the rectified signal. In the present experiment, plasma-waves are strongly damped 

being 2πντ << 1. Here τ is the hole relaxation time whose upper limit of ≈ 200 fs has been 

assessed through the mobility relation µ = eτ/m
*
, where m

*
 is the hole effective mass. For BP 

flakes thicker than 5 layers, m
*
 is smaller than the electron mass, regardless of the flake 

orientation.
 [16]

 

It is worth noticing that, at negative gate biases, Rν does not decrease to zero (Fig. 4c), in 

contrast with the model predictions, but saturates at an average value of ~ 0.03 V/W, likely 

due to the enhanced impedance matching between the antenna (70 Ω) and the FET. The 

measured net residual noise, shown in Figure 4c (black curve), has been estimated by 

measuring the photovoltage signal while obscuring the THz beam with an absorber. The 

direct comparison between the signal curve (blue) and noise curve (black), the maximum 

signal-to-noise ratio (SNR) was estimated to be ~32 at VG = 3.26 V. 

The noise-equivalent power (NEP) has been extracted from the ratio Nth/Rν, by assuming that 

the main contribution to the noise figure is the thermal Johnson-Nyquist noise (Nth),
 [25]
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associated with the non-zero resistance of the FET channel.
 [33]

 Although this hypothesis 

neglects the 1/f and the shot noise contributions, it provides a lower limit for the NEP.
 [34,35]

 

Minimum values of ~ 40 nW/(Hz)
½

 have been reached, comparable with the NEP of 

graphene-based THz photodetectors.
 [25] 

The achieved results highlights the potential of the 

devised BP active THz devices to deeply impact a plethora of technological applications in 

the gap between microwave and optical technology domains. 

Experimental Details  

Fabrication Micro-Raman spectroscopy on the exfoliated BP flaxes have been performed 

with a Renishaw (InVia) system, equipped with a frequency doubled Nd:Yag 532 nm laser 

having maximum output power of 500 mW (CW). In the present experiments, we kept the 

optical intensity ≤ 0.4 mW/µm
2
, since intensity values larger than 0.8 mW/µm

2
 are likely to 

damage the flakes. The S-D FET channel has been defined via a combination of electron 

beam lithography (EBL) and thermal evaporation to deposit the (10/70 nm) (Cr/Au) S and D 

metal contacts. A 80 nm think SiO2 oxide layer was then deposited on the sample via Ar 

sputtering. The G electrode was patterned on the oxide via EBL and a (10/90 nm) (Cr/Au) 

layer thermally evaporated on it. Although high work-function metals, like Pd or Ni, are 

preferable to achieve ohmic contacts on p-type semiconductors 
[30]

, chromium ensures better 

adhesion to the SiO2 substrate, which turned out to be crucial to safely lift-off large area 

planar metallic structures. Furthermore, the electrical performances of BP-based FETs are 

prone to time degradation due to ambient air humidity,
 [36]

 therefore surface passivation 

strategies have to be adopted. The deposition of an insulating oxide layer over the exposed 

face of a BP-flake proved to be reasonably effective,
 [37]

 in our case. We indeed electrically 

characterized our FETs after three weeks of exposure to the environment, finding a less than a 

factor of 4 reduction in the channel conductance and an Ion/Ioff ratio two times smaller than in 

post processing tests. Further improvements can be envisaged if SiO2 is replaced by high-k 

dielectrics (Al2O3, HfO2, etc.), which are expected to provide more efficient protections.
37
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Optical testing The voltage response (Δu) has been recorded at the D electrode in an open 

circuit configuration, while keeping the S electrode grounded, by means of a lock-in amplifier, 

connected to a low-noise voltage pre-amplifier having an input impedance of 10 MΩ and a 

gain factor Gn=1000. Δu has been retrieved from the voltage signal read on the lock-in (LIA) 

via the relation Δu = 2.2·LIA/Gn, where the factor 2.2 accounts for the square wave 

modulation, since the lock-in measures the rms of the sine wave Fourier component. The 

highest photoresponse was achieved at 0.28 THz; the corresponding source power, measured 

at the focal point of the optical system was 325 µW. The detector responsivity (Rν) was then 

extracted from Δu through the relation Rν = (Δu·St)/(PTHz·Sa), where St is the beam spot area 

(St=πd
2
/4, where d is the spot diameter) and Sa is the active detection area. In our geometry, 

the area of the 500 µm long bow-tie antenna is lower than the diffraction limited one (Sλ), 

hence we assumed Sa = Sλ = λ
2
/4.  
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Figure 1: Flake identification and characterization. (a) BP atoms are arranged in 

puckered honeycomb layers bounded together by Van der Waals forces. (b) Optical 

image of exfoliated flakes of BP. (c) Scanning electron microscope (SEM) image of the 

same area; optical and electron-beam microscopy were used as a first step to identify 

thinner layers of BP. (d) Micro-Raman spectrum measured using a 523 nm excitation 

laser: peaks are found at 362, 440, and 468 cm
-1

, corresponding to the Ag
1
, B2g, and Ag

2
 

vibrational modes, respectively. (e) Atomic force microscopy topographic image of an 

individual flake with thickness 6.2 nm. A topographic line profile, acquired along the 

dashed green line is shown.  

 

Figure 2: Sample Fabrication. (a) Sketch of the device structure (vertical section). (b) 

False colors SEM image of the BP-based FET. The channel length (Lc) is 2.7 µm, the 

gate length (Lg) is 530 nm. (c) S and G electrodes are designed to form a 500 µm, 90° 

flare angle, planar bow-tie antenna. The D electrode is connected to a rectangular 

bonding pad.  

 

Figure 3. Transport characterization. (a) RT transfer characteristic obtained while 

sweeping VG in the (-3 V; 4 V) range, by keeping VSD = 1 mV. ISD was amplified by a 

factor 10
6
 by using a transimpedance amplifier. The shaded areas indicate the linear 

regime of operation. From a linear fit to the data (dash-dot-lines) we obtained gm = 150 

nA/V. (b) Logarithmic plot of ISD as a function of VG. The shaded areas mark the sub-

threshold regime and the dashed lines are linear fits to the data, used to infer the sub-

threshold slope. 

 

Figure 4. THz detection. (a) Channel conductance (σ) as a function of VG measured 

while progressively increasing VG and with the 0.298 THz radiation impinging on the 

detector surface. (b) Predicted photoresponse as a function of VG, under the 

overdamped plasma-wave regime. This is the expected responsivity following a 

diffusive model of transport. (c) Gate bias dependence of the experimental RT 

responsivity. The red line (curve 1) was measured by impinging the THz beam on the 

detector surface; the black line (curve 2) was measured while blanking the beam with an 

absorber (considering unaltered the incident power). The extracted maximum signal to 

noise ratio (SNR) is ~20 for VG = -2 V. Inset: NEP as a function of VG, extracted from 
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the relation Nth/Rν . The spectral density of Nth has been calculated via the relation Nth = 

(4kBTσ
-1

)
½
. 
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