
Finding available services in TOSCA-compliant cloudsI

Antonio Brogi, Jacopo Soldani

Department of Computer Science, University of Pisa, Italy

Abstract

The OASIS TOSCA specification aims at enhancing the portability of cloud applications
by defining a language to describe and manage them across heterogeneous clouds. A
service template is defined as an orchestration of typed nodes, which can be instantiated
by matching other service templates. In this paper, we define and implement the notions
of exact and plug-in matching between TOSCA service templates and node types. We
then define two other types of matching (flexible and white-box), each permitting to ignore
larger sets of non-relevant syntactic differences when type-checking service templates
with respect to node types. The paper also describes how a service template that plug-
in, flexibly or white-box matches a node type can be suitably adapted so as to exactly
match it.

Keywords: service matching, software adaptation, cloud applications, TOSCA

1. Introduction

How to deploy and manage, in an efficient and adaptive way, complex multi-service
applications across heterogeneous cloud environments is one of the problems that have
emerged with the cloud revolution. Currently, migrating (parts of) an application from
one cloud to another is still a costly and error-prone process. As a result, cloud users tend
to end up locked into the cloud platform they are using since it is practically unfeasible
for them to migrate (parts of) their application across different clouds platforms [32].

In this scenario, OASIS recently released the Topology and Orchestration Specifica-
tion for Cloud Application (TOSCA [28]), a standard to describe —in a vendor-agnostic
way— complex cloud applications and to support the automation of their management.
Essentially, TOSCA defines a modelling language that permits specifying the topology
and management of an application as a service template that orchestrates typed nodes.

As stated in the TOSCA primer ([29], page 35): “node types can be made concrete by
substituting them by a service template”. However, while the matching between service
templates and node types is mentioned with reference to an example (“service template
ST may substitute node type N because the boundary of ST matches all defining elements
of N”), no formal definition of matching is given either in [28] or in [29].

IThis work was partly supported by project EU-FP7-ICT-610531 SeaClouds.

Preprint submitted to Science of Computer Programming March 31, 2019

The objective of our work is to contribute to the TOSCA specification by first provid-
ing a formal definition of the notion of exact matching between TOSCA service templates
and node types, and by then extending such definition in order to provide three other
types of matching (plug-in, flexible and white-box), each permitting to ignore larger sets
of non-relevant syntactic differences when type-checking service templates with respect
to node types (Fig. 1).

exact matching It mirrors the informal definition of matching in [29] by permit-
ting to match a node type N by a service template S exposing
exactly the same features as N on its boundaries.

plug-in matching It relaxes the exact matching by permitting to match a node
type N by a service template S which exhibits less require-
ments and offers more features on its boundaries.

flexible matching It relaxes the plug-in matching by permitting to match a
node type N by a service template S whose features may be
syntactically different but semantically equivalent to those of
N (e.g., N ’s property “CPUs” flexibly —but not plug-in—
matches S’s property “Central Processing Units”).

white-box matching It relaxes flexible matching by permitting to match the features
of a node type N not only with the features on the boundaries
of S, but also with those that S owns internally.

Figure 1: A snapshot of the notions of matching introduced in this paper.

In order to show the feasibility of the proposed notions, we include a proof-of-concept
implementation of both the exact and the plug-in matching. Moreover, to allow exploiting
the new notions of matching not only during type-checking but also for node instantiation,
we describe how a service template that plug-in, flexibly or white-box matches a typed
node can be suitably adapted so as to exactly match it. We also provide a pseudo-code
to adapt plug-in matched service templates and a methodology to adapt flexibly and
white-box matched ones.

The results presented in this paper intend to contribute to the formal definition of
TOSCA. The different types of matching defined in this paper can be fruitfully inte-
grated in the TOSCA implementations (e.g., OpenTOSCA [4]) that are currently under
development in order to enhance their type-checking capabilities. More in general, the
definitions of matching presented in this paper can be exploited to implement type-
checking mechanisms over service descriptions by taking into account, beyond functional
features, also requirements, capabilities, policies, and properties.

The rest of paper is organised as follows. The main notions of TOSCA are introduced
in Sect. 2. The notions of exact and plug-in matching between a service template and a
node type are defined in Sect. 3, which also describes a proof-of-concept implementation
of the defined matchings and shows how to adapt plug-in matched services. Two other
notions of matching (flexible and white-box) are introduced, along with the corresponding
adaptation techniques, in Sect. 4. Related work is discussed in Sect. 5, while some
concluding remarks are drawn in Sect. 6.

2

2. Background: TOSCA

TOSCA [28] is an OASIS standard aimed at enabling the specification of portable cloud
applications and the automation of their management. To do so, TOSCA provides a
modelling language to describe the structure of a cloud application as a typed topology
graph, and its tasks as plans. More precisely, each cloud application is represented as a
ServiceTemplate (Fig. 2), consisting of a mandatory TopologyTemplate and of optional
management Plans.

Figure 2: TOSCA ServiceTemplate.

The TopologyTemplate is a typed directed graph describing the structure of a com-
posite cloud application. Its nodes (NodeTemplates) model the application components,
while its edges (RelationshipTemplates) model the relations among those components.
NodeTemplates and RelationshipTemplates are typed by means of NodeTypes and Re-

lationshipTypes, respectively. A NodeType defines the requirements of an application
component, the capabilities it offers to satisfy other components’ requirements, its ob-
servable properties, and its management operations. RelationshipTypes describe the
properties of relationships occurring among components, as well as the operations to
manage such relationships. Syntactically, requirements are described by Requirement-

Definitions (of certain RequirementTypes), capabilities by CapabilityDefinitions
(of certain CapabilityTypes), properties by PropertiesDefinition, and operations by
Interfaces and Operations. Requirements, capabilities, properties and operations ex-
ternally exposed by a ServiceTemplate can be described in its BoundaryDefinitions.

NodeTemplates and RelationshipTemplates can also declare QoS information by
exposing Policy elements, which in turn must be typed by referring PolicyTypes. A
PolicyType defines the structure of the QoS information (as well as the NodeTypes to
which it is applicable), while a Policy assigns it concrete values.

Finally, Plans permit describing the management of a ServiceTemplate. More pre-
cisely, each Plan is a workflow orchestrating the Operations offered by the application
components to address (part of) the management of the whole cloud application.

A more detailed and self-contained introduction to TOSCA can be found in [13].

3

3. Matching ServiceTemplates with NodeTypes

According to the TOSCA primer [29], a NodeType can be made concrete by substituting it
by a ServiceTemplate, provided that they expose the same features on their boundaries.
While such matching is mentioned with reference to an example, no definition of matching
is given either in TOSCA [28] or in its primer [29].

In this section we first formally define when a ServiceTemplate can exactly match
(≡) a NodeType. Then, we formally define the plug-in matching ('), which relaxes the
exact one (viz., ≡⊂') in order to identify larger sets of ServiceTemplates that can
be adapted so as to (exactly) match a NodeType. Finally, we show a proof-of-concept
implementation of the introduced notions of matching.

3.1. Exact matching

In this section we formalize the definition of exact matching between a ServiceTemplate

and a NodeType, which mirrors the informal definition of matching mentioned in [28, 29].
The following definition specifies when a ServiceTemplate S exactly matches a NodeTy-

pe N in terms of the requirements (Reqs), capabilities (Caps), policies (Pols), properties
(Props) and interfaces (Ints) of S and N1.

Definition 1. A ServiceTemplate S exactly matches a NodeType N (S ≡ N) iff:
(1) Reqs(S) ≡R Reqs(N) and
(2) Caps(S) ≡C Caps(N) and
(3) Pols(S) ≡PO Pols(N) and
(4) Props(S) ≡PR Props(N) and
(5) Ints(S) ≡I Ints(N).

Before digging into the details of conditions (1—5), we introduce some shorthand nota-
tions to retrieve names and types of TOSCA elements.

Notation 1. Let N be a NodeType and let S be a ServiceTemplate. Then:
- name(x) denotes the name of x, where x can be a requirement, capability, property,
interface, operation, or parameter of N or S.
- type(x) denotes the type of x, where x can be a requirement, capability, policy, property,
or parameter of N or S.
- XMLtype(x) denotes the XML type of x, where x can be Props(N) or Props(S).

We now define the exact matching of requirements. Essentially, they must have the same
name and type, and they must be in a one-to-one correspondence. The same holds for
capabilities.

Definition 2. Let N be a NodeType and let S be a ServiceTemplate. Then:

Reqs(S) ≡R Reqs(N) iff
∀rS ∈ Reqs(S) ∃!rN ∈ Reqs(N) : name(rS) = name(rN) ∧ type(rS) = type(rN), and

1Strictly speaking, the definition relates the Requirements exposed by S with the RequirementDe-

finitions of N , the Capabilities exposed by S with the CapabilityDefinitions of N , the Policies

exposed by S with the PolicyTypes applicable to N , and the Properties exposed by S with the Pro-

pertiesDefinition declared by N .

4

∀rN ∈ Reqs(N) ∃!rS ∈ Reqs(S) : name(rN) = name(rS) ∧ type(rN) = type(rS).
Caps(S) ≡C Caps(N) iff
∀cS ∈ Caps(S) ∃!cN ∈ Caps(N) : name(cS) = name(cN) ∧ type(cS) = type(cN), and
∀cN ∈ Caps(N) ∃!cS ∈ Caps(S) : name(cN) = name(cS) ∧ type(cN) = type(cS).

According to [28], a PolicyType can be associated with a set of NodeTypes to which it
is applicable2. To ensure exact matching, the type of each Policy of S must therefore
be one of the PolicyTypes applicable to N .

Definition 3. Let N be a NodeType and let S be a ServiceTemplate. Then:
Pols(S) ≡PO Pols(N) iff ∀polS ∈ Pols(S) : type(polS) ∈ Pols(N).

Furthermore, since a NodeType only specifies the XML schema of its observable properties
(while ServiceTemplates specify actual values of properties), property matching reduces
to comparing XML types.

Definition 4. Let N be a NodeType and let S be a ServiceTemplate. Then:
Props(S) ≡PR Props(N) iff XMLtype(Props(S)) = XMLtype(Props(N)).

Finally, interfaces must have the same name and must be in a one-to-one correspon-
dence. The same holds for interface operations and for operation parameters. Operation
parameters must also have the same type.

Definition 5. Let N be a NodeType and let S be a ServiceTemplate. Then:
Ints(S) ≡I Ints(N) iff
∀iS ∈ Ints(S) ∃!iN ∈ Ints(N) : name(iS) = name(iN) ∧

∀oS ∈ Ops(iS) ∃!oN ∈ Ops(iN) : oS ≡o oN and
∀iN ∈ Ints(N) ∃!iS ∈ Ints(S) : name(iN) = name(iS) ∧

∀oN ∈ Ops(iN) ∃!oS ∈ Ops(iS) : oN ≡o oS
where Ops(.) denotes the set of operations of an interface and where
ox ≡o oy iff
name(ox) = name(oy) and
∀a ∈ I(ox),∃!b ∈ I(oy) : name(a) = name(b) ∧ type(a) = type(b), and
∀b ∈ I(oy),∃!a ∈ I(ox) : name(a) = name(b) ∧ type(a) = type(b), and
∀a ∈ O(ox),∃!b ∈ O(oy) : name(a) = name(b) ∧ type(a) = type(b), and
∀b ∈ O(oy),∃!a ∈ O(ox) : name(a) = name(b) ∧ type(a) = type(b)

where I(o) and O(o) denote the input and output parameters of operation o.

It is easy to observe that the notion of exact matching is quite strict, as illustrated by
the following example.

Example 1. Consider the NodeTypes N1 and N2 and the ServiceTemplate S of Fig. 3, where C
and Csup denote sets of capabilities, R and Rsub denote sets of requirements, pj denotes a property,
ij denotes an interface, oj denotes an operation, and where policies and operation parameters are
omitted for readability. Suppose that S exactly matches N1 (viz., S ≡ N1) and that N2 differs
from N1 since it exposes “more” requirements than N1 and “less” capabilities, properties and
operations than N1. While, according to Defs. 1—5, S cannot exactly match N2 (viz., S 6≡ N2),
a less strict definition of matching should allow S to match also N2 (as we will discuss in the
next section).

2We assume that a PolicyType is applicable to all NodeTypes if not specified otherwise.

5

Figure 3: Exact matching examples.

3.2. Plug-in matching

Intuitively speaking, a ServiceTemplate plug-in matches a NodeType if the former “re-
quires less” and “offers more” than the latter. Similarly to Def. 1, the following definition
specifies when a ServiceTemplate S can plug-in match a NodeType N in terms of the
requirements, capabilities, policies, properties and interfaces of S and N . As NodeTypes
do not specify concrete policies (just applicable policies), the matching of policies (≡PO)
is unchanged.

Definition 6. A ServiceTemplate S plug-in matches a NodeType N (S ' N) iff:
(1) Reqs(S) 'R Reqs(N) and
(2) Caps(S) 'C Caps(N) and
(3) Pols(S) ≡PO Pols(N) and
(4) Props(S) 'PR Props(N) and
(5) Ints(S) 'I Ints(N).

Intuitively speaking, a ServiceTemplate must expose “less” requirements than a Node-

Type. According to [28], names of requirements cannot be different, but types do not
need to strictly coincide.

Notation 2. In the following we write t′ ≥ t when type t′ extends3 or is equal to t.

Definition 7. Let N be a NodeType and let S be a ServiceTemplate. Then:

Reqs(S) 'R Reqs(N) iff
∀rS ∈ Reqs(S) ∃rN ∈ Reqs(N) : name(rN) = name(rS) ∧ type(rN) ≥ type(rS).

Dually, a ServiceTemplate must expose “more” capabilities and properties of a Node-

Type. According to [28], names of capabilities cannot be different, but types do not need
to strictly coincide.

Definition 8. Let N be a NodeType and let S be a ServiceTemplate. Then:

Caps(S) 'C Caps(N) iff
∀cN ∈ Caps(N) ∃cS ∈ Caps(S) : name(cS) = name(cN) ∧ type(cS) ≥ type(cN).

Props(S) 'PR Props(N) iff XMLtype(Props(S)) ≥ XMLtype(Props(N)).

Finally, a ServiceTemplate must expose all the operations exposed by a NodeType. The
matching can focus on operations and abstract from (names of) interfaces.

3More precisely, if t and t′ are TOSCA elements then t′ extends t if t′ is (directly or undirectly)
DerivedFrom t. If t and t′ are instead XML types then the standard notion of XML extension applies.

6

Definition 9. Let N be a NodeType and let S be a ServiceTemplate. Then:

Ints(S) 'I Ints(N) iff ∀iN , oN : iN ∈ Ints(N) ∧ oN ∈ Ops(iN)
∃iS , oS : iS ∈ Ints(S) ∧ oS ∈ Ops(iS) : oS ≡o oN .

It is worth noting that when a ServiceTemplate S plug-in matches a NodeType then
S can be easily adapted into a new ServiceTemplate S′ that exactly matches that Node-
Type. Such S′ is built by creating a new ServiceTemplate having S as its only node, and
by simply exposing (via the BoundaryDefinitions) the capabilities, policies, properties,
and interfaces of the NodeType to be matched. If requirements plug-in match (but do not
exactly match) then a dummy NoBe NodeTemplate is introduced to artificially extend
the set of requirements of S so as to expose the same requirements of the NodeType to
be matched.

Example 2. Example 1 illustrated a ServiceTemplate S that cannot exactly match a Node-

Type N2 since the latter exposes “more” requirements and “less” capabilities, properties and
operations than the former. Since S exposes one property (p2) and one operation (o4) more
than N2, we have that Props(S) 'PR Props(N2) and Ints(S) 'PR Ints(N2) by Defs. 8 and 9,
respectively. Therefore, if R 'R Rsub and C 'R Csup hold too, then S plug-in matches N2

(S ' N2). Fig. 4.(a) illustrates how S can be adapted to exactly match N2.

(a)

(b)

Figure 4: Plug-in matching examples.

Consider now the NodeType N3 in Fig. 4.(b), which differs from N2 only since it exposes
property pA instead of property p1. According to Def. 8, S cannot plug-in match N3 (S 6' N3).
However, if p1 and pA were (syntactically) different names for the same property and if the type
of p1 were compatible with the type of pA (i.e., type(p1) ≥ type(pA)), then a less strict definition
of matching should allow S to match also N3 (as we will discuss in Sect. 4).

7

3.3. Proof-of-concept implementation of exact and plug-in matching

The definitions of matching presented in this paper can be fruitfully integrated in the
OpenTOSCA open source environment [4], as well as in other TOSCA implementations
currently under development, in order to enhance their type-checking capabilities. Since
current TOSCA implementations are all written in Java, we shall now describe a proof-
of-concept Java implementation4 of both exact and plug-in matchings.

3.3.1. High-level modeling of TOSCA

The OpenTOSCA environment directly exploits TOSCA XSD [30] to automatically gen-
erate the Java representation of TOSCA files. The obtained representation is quite
low-level and it does not ease the development of integrated plug-ins. For example,
consider the management of the relationships between capabilities, capability types and
capability definitions. In TOSCA both Capabilities and CapabilityDefinitions can
reference CapabilityTypes by means of QNames. To avoid that the automated XSD-
based conversion of TOSCA Capabilities and CapabilityDefinitions looses such
references, ad-hoc mechanisms must be developed to generate an explicit representation
of such references that associates QNames with the corresponding Java classes.

Since OpenTOSCA and Winery do not provide a high-level API to manage TOSCA
elements [3], we will employ a higher level Java representation of TOSCA elements,
which is still a hierarchy of classes that corresponds to the hierarchy of elements defined
in the TOSCA XSD. For instance, the management of Capabilities, CapabilityTy-
pes and CapabilityDefinitions is simply performed by directly referring the relative
Java objects (Fig. 5). Thanks to its schema definition orientedness, such higher level
representation can be easily mapped on the lower level representations currently employed
by the available TOSCA implementations5.

Figure 5: High-level management of TOSCA capabilities.

4The source code is publicly available on GitHub at https://github.com/jacopogiallo/

Finding-available-services-in-TOSCA-compliant-clouds.
5The documentation of the higher level API is available at http://jacopogiallo.github.io/

Finding-available-services-in-TOSCA-compliant-clouds/.

8

3.3.2. Implementation of the matchmakers

Since plug-in matching generalizes exact matching (viz., ≡⊂'), we implemented the two
matchings as a class hierarchy. The top element of such hierarchy will be the abstract
Matchmaker class. It groups the fields and methods common to both the exact and
the plug-in matchmakers. More precisely, it declares the ServiceTemplate s and the
NodeType n to be matched, and the sets of unmatched elements (e.g., unmatchedCapa-
bilities). It also provides the constructor method, as well as the abstract methods to
check whether s matches n and to access the above mentioned sets of unmatched elements
(e.g., getUnmatchedCapabilities).

The abstract Matchmaker class is then extended to provide the implementation of the
exact matchmaker. The resulting ExactMatchmaker suitably stores the exactly matched
TOSCA elements (e.g., exactlyMatchedCapabilities) and provides access to them
(e.g., getExactlyMatchedCapabilities). It also implements the match method by

01 public boolean match() {
02 matchCapabilities();
03 matchRequirements();
04 matchPolicies();
05 matchProperties();
06 matchInterfaces();
07 return (areCapabilitiesMatched && areRequirementsMatched && arePoliciesMatched &&
08 arePropertiesMatched && areInterfacesMatched);
09 }

Figure 6: ExactMatchmaker.match() method.

checking whether a ServiceTemplate s exactly matches a NodeType n (Fig. 6). Ac-
cording to Def. 1, the matching is performed in a step-wise way (lines 2-6). Each kind of
element is matched with a separate method (e.g., matchCapabilities) which properly
instantiates the corresponding boolean variable (e.g., areCapabilitiesMatched). The
result of the whole matchmaking is the logical and among all sub-results (lines 7-8).

Consider, for instance, the matchmaking of capabilities6 (Fig. 7). After initialization
(lines 2-7), the method checks whether all the capabilities defined by the NodeType are
present on the boundaries of s. More precisely, for each CapabilityDefinition in n

(line 8) it checks whether there exists a Capability on the boundaries of s such that
they exactly match (lines 10-16). The comparison is performed by the match method
which checks whether a CapabilityDefinition and a Capability have same name and
type (lines 24-27). If no capability matches the capability definition under consideration,
then the latter is added to a new set of unmatched CapabilityDefinitions (line 17).
After the end of the loop, the set of unmatchedCapabilities is updated (line 19). Then,
to ensure the one-to-one correspondence needed by Def. 2, the method checks whether
both n and s expose the same number of capabilities (line 20). If so, and if there are no
unmatched CapabilityDefinitions, then the areCapabilitiesMatched variable is set
to true (line 21). Otherwise, the method ends (by leaving it set to false).

The ExactMatchmaker is in turn extended by the PlugInMatchmaker. The latter
stores and provides access to the plug-in matched TOSCA elements (e.g., via the field

6The (exact) matchmaking of the other TOSCA elements is analogous.

9

01 protected void matchCapabilities() {
02 exactlyMatchedCapabilities = new ArrayList<Capability>();
03 areCapabilitiesMatched = false;
04 unmatchedCapabilities = n.getCapabilityDefinitions().getList();
05 List<Capability> sCaps = s.getBoundaryDefinitions().getCapabilities().getList();
06 List<CapabilityDefinition> newUnmatchedCapabilities = new ArrayList<CapabilityDefinition>();
07 boolean matched;
08 for(CapabilityDefinition cDef : unmatchedCapabilities) {
09 matched = false;
10 for(Capability c : sCaps) {
11 matched = match(cDef, c);
12 if(matched) {
13 exactlyMatchedCapabilities.add(c);
14 break;
15 }
16 }
17 if(!matched) newUnmatchedCapabilities.add(cDef);
18 }
19 unmatchedCapabilities = newUnmatchedCapabilities;
20 if(n.getCapabilityDefinitions().getList().size() != sCaps.size()) return;
21 if(unmatchedCapabilities.isEmpty()) areCapabilitiesMatched = true;
22 }
23
24 protected boolean match(CapabilityDefinition cDef, Capability c) {
25 return (cDef.getName().equals(c.getName()) &&
26 cDef.getCapabilityType().getName().equals(c.getType().getName()));
27 }

Figure 7: ExactMatchmaker.matchCapabilities() method.

plugInMatchedCapabilities and the method getPlugInMatchedCapabilities) and
overrides the match method by making it check whether a NodeType n plug-in matches a
ServiceTemplate s (Fig. 8). The method starts by checking whether the two elements
exactly match (lines 2-8). If this is not the case, the plug-in matching of (unmatched)
TOSCA elements is performed separately (lines 10-13). Finally, the whole matchmaking
result is computed with the logical and among all partial results (lines 14-15).

01 public boolean match() {
02 super.matchCapabilities();
03 super.matchRequirements();
04 super.matchPolicies();
05 super.matchProperties();
06 super.matchInterfaces();
07 if(areCapabilitiesMatched && areRequirementsMatched && arePoliciesMatched
08 && arePropertiesMatched && areInterfacesMatched) return true;
09
10 if(!areCapabilitiesMatched) matchCapabilities();
11 if(!areRequirementsMatched) matchRequirements();
12 if(!arePropertiesMatched) matchProperties();
13 if(!areInterfacesMatched) matchInterfaces();
14 return (areCapabilitiesMatched && areRequirementsMatched && arePoliciesMatched &&
15 arePropertiesMatched && areInterfacesMatched);
16 }

Figure 8: PlugInMatchmaker.match() method.

Consider, for instance, the matchmaking of capabilities7 (Fig. 9). Since it is per-
formed after the exact matching, the set up of the environment is lighter than that of

7The (plug-in) matchmaking of the other TOSCA elements is analogous.

10

01 protected void matchCapabilities() {
02 pluginMatchedCapabilities = new ArrayList<Capability>();
03 List<Capability> sCaps = s.getBoundaryDefinitions().getCapabilities().getList();
04 List<CapabilityDefinition> newUnmatchedCapabilities = new ArrayList<CapabilityDefinition>();
05 boolean matched;
06 for(CapabilityDefinition cDef : unmatchedCapabilities) {
07 matched = false;
08 for(Capability c : sCaps) {
19 matched = match(cDef, c);
10 if(matched) {
11 pluginMatchedCapabilities.add(c);
12 break;
13 }
14 }
15 if(!matched) newUnmatchedCapabilities.add(cDef);
16 }
17 unmatchedCapabilities = newUnmatchedCapabilities;
18 if(unmatchedCapabilities.isEmpty()) areCapabilitiesMatched = true;
19 }
20
21 protected boolean match(CapabilityDefinition cDef, Capability c) {
22 if(!cDef.getName().equals(c.getName())) return false;
23 CapabilityType cType = c.getType();
24 while(cType != null) {
25 if(cDef.getCapabilityType().getName().equals(cType.getName())) return true;
26 cType = cType.derivedFrom();
27 }
28 return false;
29 }

Figure 9: PlugInMatchmaker.matchCapabilities() method.

Fig. 7 (lines 2-5). The method then proceeds by checking whether all the capabilities
defined by n are compatible with those on the boundaries of s. More precisely, for each
CapabilityDefinition in n (that has not yet been matched — line 6), it checks whether
there exists a Capability on the boundaries of s such that they plug-in match (lines
7-14). The comparison is performed by the match method (lines 21-29) which checks
whether a Capability c has the same name as CapabilityDefinition cDef (line 22)
and whether c either has the same type of or is derived from cDef (lines 23-28). If
no capability matches the capability definition under consideration, then the latter is
added to the (new) set of unmatched capability definitions (line 15). After the end of
the loop, the set of unmatchedCapabilities is properly updated (line 17). If there are
no unmatched capability definitions, then the areCapabilitiesMatched variable is set
to true (line 18). Otherwise, the method terminates (by leaving it set to false).

Example 3. We now use a (toy) example to illustrate the behaviour of our proof-of-concept
implementation. Consider the NodeType Server and the ServiceTemplates8 ApacheServer, PaaS-
Server, and PaaSServer2 in Fig. 10. Suppose that the Capability WSRuntime of Server and
ApacheServer is of WSRuntimeCapabilityType, while those of PaaSServer and PaaSServer2 are of
WebAppCapabilityType (which is a sub-type of WSRuntimeCapabilityType). Suppose also that the
type of all requirements is SWContainerRequirementType, the type of all properties is String,
and all ServiceTemplates expose a HighAvailabilityPolicy which is applicable to Server.

Please note that the example is built in such a way that, according to Defs. 1 and 6, all
possible situations are covered:

ApacheServer ≡ Server ∧ PaaSServer 6≡ Server ∧ PaaSServer ' Server ∧ PaaSServer2 6' Server.

8For the sake of readability we abstract from the internal structure of the ServiceTemplates.

11

Figure 10: A NodeType (Server) and three ServiceTemplates (ApacheServer, PaaSServer, PaaSServer2).

We can easily develop a test class9 which let us obtain the above mentioned results (Fig. 11)
by employing the ExactMatchmaker and PlugInMatchmaker previously introduced.

Figure 11: Snapshot of the matchmaking results.

3.3.3. Further remarks

Thanks to the way in which the match() methods were implemented (Figs. 6 and 8),
the PlugInMatchmaker can be directly exploited to determine whether a ServiceTempla-
te exactly or plug-in matches a NodeType. Suppose for instance that areCapabilities-
Matched is true. If plugInMatchedCapabilities is empty, then capabilities were exactly
matched. Otherwise, they were plug-in matched. The same holds for requirements,
policies, properties, and interface operations.

The information in the fields of PlugInMatchmaker can also be employed to automate
the adaptation of a matched ServiceTemplate. Fig. 12 shows the pseudo-code of a
method to be included in the PlugInMatchmaker class in order to automatically adapt
a ServiceTemplate s that it plug-in matches the NodeType n.

The proposed implementation can be fruitfully employed by the user also in case of no
matching. Since the matchmaking is performed in a “verbose” way (i.e., instead of halting
when a condition is not satisfied, it always checks all conditions and properly instantiates
the corresponding fields), the collected information can be fruitfully exploited to manually
adapt an available ServiceTemplate. In this respect, a methodology to manually adapt
unmatched services (if possible) is described in [12].

9The source code of the example is available at https://github.com/jacopogiallo/

Finding-available-services-in-TOSCA-compliant-clouds/blob/master/src/di/unipi/example/

Example.java.

12

1 ServiceTemplate getAdaptation() {
2 //Creation of the adapted ServiceTemplate
3 Create the ServiceTemplate adapted;
4 Add s to the topology of adapted;
5
6 //Adaptation of the capabilities
7 For each Capability c in exactMatchedCapabilities

8 Expose c on the boundaries of adapted;
9 For each Capability c in plugInMatchedCapabilities

10 Expose c on the boundaries of adapted;
11
12 //Adaptation of the requirements
13 If plugInMatchedRequirements is empty
14 For each Requirement r in exactMatchedRequirements

15 Expose r on the boundaries of adapted;
16 Else
17 Create the (no-behaviour) NodeTemplate echo;
18 Add echo to the topology of adapted;
19 Create the relationship relEcho from s to echo;
20 Add relEcho to the topology of adapted;
21 For each Requirement r in n.getRequirements()

22 Add r to the requirements of echo;
23 Expose r on the boundaries of adapted;
24
25 //Adaptation of the policies
26 For each Policy pol in exactMatchedPolicies

27 Expose pol on the boundaries of adapted;
28
29 //Adaptation of the properties
30 For each Property prop in exactMatchedProperties

31 Expose prop on the boundaries of adapted;
32 For each Property prop in plugInMatchedProperties

33 Expose prop on the boundaries of adapted;
34
35 //Adaptation of the interfaces
36 For each Interface inf in exactMatchedInterfaces

37 Expose inf on the boundaries of adapted;
38 For each Interface inf in plugInMatchedCapabilities

39 Expose inf on the boundaries of adapted;
40
41 return adapted;
42 }

Figure 12: Pseudo-code of the adaptation of plug-in matched services.

13

4. Overcoming syntactic differences

Example 2 illustrated that a ServiceTemplate S may fail to plug-in match a Node-

Type N only because of syntactically different names for compatible features, while a
less strict definition of matching should allow S to match also N . We now define two
other types of matching (flexible and white-box), each permitting to ignore larger sets
of non-relevant syntactic differences when type-checking ServiceTemplates with respect
to NodeTypes. Finally, we show how to avoid the usage of ontologies by providing a
methodology for adapting unmatched plug-in ServiceTemplates which is based upon
the notions of flexible and white-box matching.

4.1. Flexible matching

We now further extend the definition of matching of a ServiceTemplate with a NodeType

in order to ignore non-relevant syntactic differences between names of features (i.e., by
permitting to match features whose names are syntactically different, but semantically
equivalent). Since the semantics of policies depends only on types, we extend plug-in
matching (Def. 6) only on capabilities, requirements, properties and interfaces.

Definition 10. A ServiceTemplate S flexibly matches a NodeType N (S ∼ N) iff:
(1) Reqs(S) ∼R Reqs(N) and
(2) Caps(S) ∼C Caps(N) and
(3) Pols(S) ≡PO Pols(N) and
(4) Props(S) ∼PR Props(N) and
(5) Ints(S) ∼I Ints(N).

Intuitively speaking, a ServiceTemplate must expose “less” requirements than a Node-

Type. Names of requirements can be semantically equivalent, and types of requirements
do not need to strictly coincide.

Notation 3. Let n1 and n2 be the names of two TOSCA definitions. We will write
n1 on n2 to denote that names n1 and n2 are semantically equivalent10.

Definition 11. Let N be a NodeType and let S be a ServiceTemplate. Then:

Reqs(S) ∼R Reqs(N) iff
∀rS ∈ Reqs(S) ∃rN ∈ Reqs(N) : name(rN) on name(rS) ∧ type(rN) ≥ type(rS).

A ServiceTemplate must expose all capabilities of a NodeType. Names of capabilities
can be semantically equivalent, and types of capabilities do not need to stricly coincide.
The same holds for properties.

Definition 12. Let N be a NodeType and S a ServiceTemplate. Then:

10The semantical equivalence of syntactically different names may be implemented by employing
ontology-based descriptions of cloud service functionalities (e.g., [31]). Namely, TOSCA NodeTypes
and ServiceTemplates may include ontology-based annotations associated with the names of their ca-
pabilities, requirements, properties and operations. Instead of assuming that all TOSCA cloud service
descriptions are ontology-annotated, we will describe (Sect. 4.3) an ontology-free methodology for adapt-
ing a ServiceTemplate S that flexibly or white-box matches a NodeType N so as to match N .

14

Caps(S) ∼C Caps(N) iff
∀cN ∈ Caps(N) ∃cS ∈ Caps(S) : name(cS) on name(cN) ∧ type(cS) ≥ type(cN).

Props(S) ∼PR Props(N) iff
∀pN ∈ Props(N) ∃pS ∈ Props(S): name(pS) on name(pN) ∧ type(pS) ≥ type(pN).

A ServiceTemplate must also expose all the operations exposed by a NodeType. Names
of operations can be ignored, while names of operation parameters can be semantically
equivalent and their types do not need to strictly coincide.

Definition 13. Let N be a NodeType and let S be a ServiceTemplate. Then:
Ints(S) ∼I Ints(N) iff ∀iN , oN : iN ∈ Ints(N) ∧ oN ∈ Ops(iN)

∃iS , oS : iS ∈ Ints(S) ∧ oS ∈ Ops(iS) : oS ∼o oN .
where ox ∼o oy iff

|I(ox)| = |I(oy)| and
|O(ox)| = |O(oy)| and
∀a ∈ I(ox),∃!b ∈ I(oy) : name(a) on name(b) ∧ type(b) ≥ type(a) and
∀b ∈ O(oy),∃!a ∈ O(ox) : name(a) on name(b) ∧ type(a) ≥ type(b).

In Sect. 3.2 we illustrated how a ServiceTemplate S that plug-in matches a NodeType

can be easily adapted so as to exactly match that NodeType. The same holds for flexible
matching: A ServiceTemplate S that fexibly matches a NodeType can be easily adapted
into a new ServiceTemplate S′ that exactly matches that NodeType. As for the case of
plug-in matching, S′ is built by creating a new ServiceTemplate having S as its only
node, and by simply exposing (via the BoundaryDefinitions) the capabilities, policies,
properties, and interfaces of the NodeType to be matched. If requirements flexibly match
(but do not exactly match) then a dummy NoBe node is introduced to artificially extend
the set of requirements of S so as to expose the same requirements of NodeType to be
matched. Moreover, differently from plug-in adaptation, flexible adaptation may rename
properties, interfaces, operations, and operation parameters.

Example 4. Example 2 illustrated a ServiceTemplate S that does not plug-in match a Node-

Type N3 since S exposes a property p1 different from the property pA exposed by N3. It is easy

Figure 13: Flexible matching example.

to see that Def. 12 permits S to flexibly match N3 (viz., S ∼ N3) if the type of p1 extends or is
equal to the type of pA and if p1 and pA —even if syntactically different— refer to the same
property (viz., name(p1) on name(pA)). Fig. 13 illustrates how S can be adapted so as to exactly
match N3, by letting the new ServiceTemplate S′ expose also the renamed property pA.

15

Example 5. Suppose that a cloud application developer needs to employ a NodeType OS (Fig.
14), whose management interface M exposes the following operations

Start : {} → {}, InstallPkg : {name} → {succeded}, and Shutdown : {} → {}.

Suppose also that a ServiceTemplate UbuntuOS is available, and that it exhibits a management
interface U featuring the following operations:

Start : {} → {}, Shutdown : {} → {}, Retrieve : {pkgName} → {url},
Download : {url} → {sourcePath}, and Install : {sourcePath} → {installed},

with name on pkgName and succeded on installed. For the sake of simplicity we also assume that
name(x) on name(y) implies type(x) = type(y).

Figure 14: ServiceTemplate that cannot flexibly match a NodeType.

It is easy to see that while UbuntuOS capabilities exactly match OS capabilties, UbuntuOS
properties and interfaces cannot flexibly match OS’s ones. This is because OS is exposing a prop-
erty (DiskSpace) that UbuntuOS is not featuring, and because UbuntuOS does not offer operation
InstallPkg exposed by OS. Still, one may observe that property DiskSpace may correspond to
one of the properties of an internal node of UbuntuOS (i.e., to VMWare’s property DiskSize) and
that operation getTemp might be offered by UbuntuOS by suitably combing some of its opera-
tions. This suggests that a “white-box” definition of matching could allow the ServiceTemplate

UbuntuOS to match the desired NodeTypeOS (as we will discuss in the next section).

4.2. White-box matching

A ServiceTemplate S that does not flexibly match a NodeType because of some miss-
ing requirement, capability, property, or operation, may actually include such missing
elements internally, without exposing them on its boundaries.

As for the previous definitions of matching, the following definition specifies when
a ServiceTemplate S white-box matches a NodeType N in terms of the requirements,
capabilities, policies, properties and interfaces of S and N . As we already observed in
Sect. 4.1, intuitively speaking, a NodeType N must expose (at least) a set of requirements
which are semantically equivalent to (all) those of the ServiceTemplate S. Moreover, No-
deTypes do not specify concrete policies. For these reasons, the following definition
extends Def. 10 only on capabilities, properties and interfaces.

Definition 14. A ServiceTemplate S white-box matches a NodeType N (S�N) iff:

16

(1) Reqs(S) ∼R Reqs(N) and
(2) Caps(S) �C Caps(N) and
(3) Pols(S) ≡PO Pols(N) and
(4) Props(S) �PR Props(N) and
(5) Ints(S) �I Ints(N).

The following definition extends the matching of capabilities and properties (Defs. 8
and 12) to consider also the internal nodes of a ServiceTemplate.

Notation 4. Let S be a ServiceTemplate, and let E be a NodeTemplate or a Rela-

tionshipTemplate. We denote by S → E the fact that E is an element of the (internal)
topology of S.

Definition 15. Let N be a NodeType and let S be a ServiceTemplate. Then:

Caps(S) �C Caps(N) iff ∀cN ∈ Caps(N) ∃cS :
(cS ∈ Caps(S)
∨

(∃E : S → E ∧ E is NodeTemplate ∧ cS ∈ Caps(E)))
∧
(name(cS) on name(cN) ∧ type(cS) ≥ type(cN)).

Props(S) �PR Props(N) iff ∀pN ∈ Props(N) ∃pS :
(pS ∈ Props(S)
∨

(∃E : S → E ∧ (E is NodeTemplate or RelationshipTemplate)
∧ pS ∈ Props(E)))

∧
(name(pS) on name(pN) ∧ type(pS) ≥ type(pN)).

The following definition extends the matching of operations (Def. 13) to consider also
operations that a ServiceTemplate can feature by combining its operations in a suitable
plan.

Definition 16. Let N be a NodeType, let S be a ServiceTemplate, and let Π(S) the
set of all possible plans combining S operations. Then:

Ints(S) �I Ints(N) iff ∀iN , oN : iN ∈ Ints(N) ∧ oN ∈ Ops(iN):
(∃iS , oS : iS ∈ Ints(S) ∧ oS ∈ Ops(iS) ∧ oS ∼o oN)
∨
(∃p : p ∈ Π(S) ∧ [p] ∼o oN)

where [p] is the operation modelling the overall input-output behaviour of plan p.

The existence of a plan that suitably combines a set of operations into an input-output
behaviour equivalent to a given operation can be determined by adapting the (ontology-
aware) discovery algorithm in [9].

The FindOperations algorithm (Fig. 15), given a set of available operations Ops,
returns a set of selectedOperations ⊆ Ops that can be composed into a plan featuring
the input-output behaviour of a given operation op. The algorithm inputs a set of

17

FindOperations(Ops, op, selectedOperations, needed, available) {
1 needed = {x | x ∈ needed ∧ 6 ∃y ∈ available : y . x};
2 if needed = ∅
3 then return selectedOperations;
4 else {
5 c = choose(needed);
6 needed = needed \ {c};
7 opSet = {o ∈ Ops | ∃d ∈ O(o) : d . c};
8 if opSet = ∅
9 then fail;
10 else foreach o ∈ opSet do {
11 selectedOperations = selectedOperations ∪ {o};
12 if nonMinimal(selectedOperations, op)
13 then fail;
14 else {
15 available = available ∪ O(o);
16 needed = needed ∪ I(o);
17 FindOperations(Ops, op, selectedOperations, needed, available)
18 }
19 }
20 }
21 }

Figure 15: Algorithm to discover sets of operations that can be composed into plans featuring the
input-output behaviour of a given operation.

available operations Ops, the operation op to be simulated, a (initially empty) set of
selectedOperations, the set needed of outputs to be generated (initially the outputs O(op)
of op), and the set of available outputs (initially the inputs I(op) of op). First, if the set of
available outputs includes an output “equal to or more general than” some needed output
z, then z is removed from the set of needed outputs (line 1). The notation y . x stands
for name(y) on name(x) and type(y) ≥ type(x). Then, if there are no missing outputs to
be generated the current set of selectedOperations is returned (lines 2-3). Otherwise, a
missing output c is nondeterministically chosen11 and removed from the set of missing
outputs (lines 5 and 6). The algorithm then checks (lines 7 and 8) whether there is at
least one operation in Ops that produces an output equal to or more general than c.
If there is no such operation then the current instance of the algorithm fails (line 9).
Otherwise, for each operation o in Ops producing an output equal to or more general
than c, o is added to the current set of selectedOperations (line 11). If the obtained set
of selectedOperations is not minimal12 then (the instance of) the algorithm fails (lines 12
and 13). Otherwise the set of available outputs is extended with the outputs of o (line

11Execution of choose forks a new instance of the algorithm for each possible choice.
12Because of space limitations, we do not include here the definition of the nonMinimal function, which

can be found in [9]. Following [9], a set S of operations can simulate the input-output behaviour of an
operation op iff (1) ∀x ∈ O(op)∃y ∈

⋃
o∈S O(o) : y . x, and (2) ∀y ∈

⋃
o∈S I(o)∃x ∈ (

⋃
o∈S O(o)∪ I(op)) :

x . y. A set S of operations that can emulate an operation op is minimal iff 6 ∃S′ ⊂ S that can emulate
op.

18

15), and the set of needed outputs is extended (line 16) with the inputs of o. Finally,
the algorithm recurs (line 17) on the new set of selectedOperations, and of needed and
available outputs.

Finally, it is worth highlighting that when a ServiceTemplate S white-box matches a
NodeType N then S can be adapted into a new ServiceTemplate S′ that exactly matches
that NodeType. Differently from the cases of plug-in and flexible matching, the Bounda-

ryDefinitions of S are first extended in order to expose the capabilities, properties or
plans internal to S that were detected by the white-box matching. The obtained Servi-

ceTemplate Stmp flexibly matches NodeType N , and the adaptation described in Sect.
4.1 can be now applied to build a ServiceTemplate S′ having Stmp as its only node, and
by simply exposing (via the BoundaryDefinitions) the capabilities, policies, properties,
and interfaces of the NodeType N to be matched. If requirements plug-in match (but
do not exactly match) then a dummy node is introduced to artificially extend the set of
requirements of S so as to expose the same requirements of the NodeType to be matched.

Example 6. Example 5 illustrated a ServiceTemplate UbuntuOS) that cannot flexibly match
a NodeTypeOS since the latter exposes one property more than the former (i.e., DiskSpace),
and since UbuntuOS does not offer the operation InstallPkg. We observe that Def. 14 per-
mits UbuntuOS to white-box match OS (viz., UbuntuOS�OS) if, for instance, property DiskSize
of node VMWare of UbuntuOS is semantically equivalent to property DiskSpace of OS, and if
there exists a plan P combining some UbuntuOS’s operations, whose input-output behaviour
simulates operation InstallPkg (viz., [P] ∼o InstallPkg). It is easy to observe that algorithm
FindOperations returns a minimal set of operations of UbuntuOS that can simulate InstallPkg,
namely {Retrieve,Download,Install}. Such set can then be used to build a plan p simulating the
input-output behaviour of the desired operation InstallPkg:

P = Retrieve · Download · Install

Figure 16: White-box adaptation of a ServiceTemplate.

Fig. 16 illustrates the adaptation of UbuntuOS. Its BoundaryDefinitions are first extended
to expose property DiskSize of node VMWare as property DiskSpace, and to expose the plan P
as operation InstallPkg. Then, the resulting ServiceTemplate is encapsulated into a new Ser-

viceTemplate so as to expose only the capabilities, properties, and interfaces of the NodeType

OS to be matched.

19

4.3. Adaptation of matched ServiceTemplates

The matching definitions given in the previous sections may be implemented by employ-
ing ontology-based descriptions of cloud services [31]. To avoid all the ontology-related
problems (such as the cross-ontology matchmaking [22, 25]), in this section we propose a
methodology to manually adapt unmatched plug-in ServiceTemplates so as to exactly
match the target NodeTypes. Namely, we show how to exactly match target NodeTy-

pes by non-intrusively adapting flexibly matched ServiceTemplates and by intrusively
adapting white-box matched ServiceTemplates.

Figure 17: Available ServiceTemplate WebAppEnvironment.

In doing so, we also provide some examples showing how to adapt the ServiceTem-

plate WebAppEnviroment (Fig. 17) to exactly match different NodeTypes. For the sake of
simplicity, we will assume that each Capability or Requirement is of an homonym Capa-

bilityType or RequirementType (e.g., the CapabilityWebAppRTE is of WebAppRTE
CapabilityType, the RequirementSWContainer is of SWContainer RequirementType,
etc.). We will also assume that all properties are of type String, and that all operations
have no input parameters and return a Boolean parameter witnessing whether they
successfully completed (e.g., the TomcatServer’s operation Start, as well as the operation
StartServer on the boundaries, return a parameter TomcatServerStarted, which is true if
the TomcatServer has correctly started, and false otherwise). Finally, we will abstract
from Policies, as they just require to check whether they are applicable to a NodeType,
and do not require any adaptation.

4.3.1. Adaptation of flexibly matching ServiceTemplates

As we illustrated in Sect. 4.1, a ServiceTemplate S flexibly matches a target NodeType
N when the plug-in matching fails only because of non-relevant syntactic differences.
Furthermore, if S flexibly matches N , then the former can be adapted into a new Servi-

ceTemplate which exactly matches N . The adaptation consists in building a new Servi-

ceTemplate which contains the available one as a NodeTemplate and whose boundaries
are built by declaring the same features of N and by mapping each of them to the
matched feature of S. This can be done automatically if we employ ontologies, otherwise
we need the manual intervention of the application designer.

20

We now illustrate how the application designer may non-intrusively adapt a Servi-

ceTemplate S which does not plug-in match a NodeType N into a new ServiceTem-

plate S′ which exactly matches N . Fig. 18 describes how such an adaptation can be

(1) Create the adapted ServiceTemplate S′ which initially contains S as the only NodeTem-

plate in its topology.

(2) For each capability (property) exposed by N

(a) define a capability (property) with the same name and type on the boundaries of S′,
and

(b) map the defined capability (property) onto the corresponding one of S.

(3) For each interface exposed by N , define an interface with the same name on the boundaries
of S′. Then, for each operation o exposed by (an interface of) N

(a) define an operation with the same name and parameters in the corresponding interface
exposed by S′, and

(b) map such operation onto an operation of S which is semantically equivalent to o.

(4) Add a dummy NodeTemplate NoBe (whose capabilities satisfy the requirements of S and
whose requirements are the same of N) to the topology of S′. Then, for each requirement
exposed by N

(a) define a requirement with the same name and type on the boundaries of S′, and

(b) map the defined requirement to the corresponding one of NoBe.

(where mapping f onto f ′ simply means that f is a reference to f ′)

Figure 18: Adaptation of flexibly matching ServiceTemplates.

successfully performed when S exposes all capabilities, properties, interface operations
and requirements as N , but in a syntactically different way. The adaptation described
in Fig. 18 implements the relaxed matching conditions of Def. 10 (in terms of ontology-
based name equivalences). It is worth noting that, according to the definition of flexible
matching, the adaptation process cannot succeed if capability, property, operation or
requirement mismatches are not just syntactic (i.e., if they are not only due to names
which are syntactically different but semantically equivalent). Namely, the adaptation in
Fig. 18 will fail if one of the steps cannot be performed, while it succeed if all the steps
are performed.

Example 7. Consider the target NodeType WebEnv in Fig. 19, where the capabilities WebApp-
Runtime and MySQLRuntime are respectively of type WebAppRTE and MySQLRTE, and where

Figure 19: Target NodeType WebEnv.

21

both requirements are of type OSContainer. All operations are without input parameters, and
return a Boolean parameter witnessing whether they successfully completed (e.g., the operation
StartWebAppRuntime returns a parameter WebAppRuntimeStarted, which is true if the WebApp-
Runtime capability is concretely provided, and false otherwise). We observe that, according
to Def. 10, the available ServiceTemplate WebAppEnvironment (Fig. 17) flexibly matches the
target NodeType WebEnv.

Figs. 20, 21 and 22 illustrate how WebAppEnvironment can be adapted so as to exactly match
WebEnv. First, (1) we create a new ServiceTemplate which contains WebAppEnvironment as
the only NodeTemplate (Fig. 20).

Figure 20: Example of application of step 1 (of the adaptation methodology).

Since WebAppRTE and WebAppRuntime, as well as MySQLRTE and MySQLRuntime, are of
the same CapabilityType, (2) we adapt the capabilities by adding WebAppRuntime and My-
SQLRuntime to the boundaries of the adapted ServiceTemplate and by mapping them to the
corresponding capabilities of the available ServiceTemplate (i.e., WebAppEnvironment. Anal-
ogously, (3) we adapt the operations StartMySQLRuntime, StartWebAppRuntime, StopMySQL-
Runtime, and StopWebAppRuntime, by mapping them to the corresponding operations of Web-
AppEnvironment (i.e., StartDBMS, StartServer, StopDBMS, and StopServer — Fig. 21).

Figure 21: Example of application of steps 2 and 3 (of the adaptation methodology).

Finally, (4) we artificially extend the requirements of the available ServiceTemplate (i.e.,
WebAppEnvironment) to exactly match those of target NodeType (i.e., WebEnv). Namely, we
add a dummy NodeTemplate NoBe (whose capabilities satisfy the requirements of WebApp-
Environment and whose requirements are the same of WebEnv) to the topology of the adapted

22

ServiceTemplate, we define the same requirements of the target NodeType on the boundaries
of the adapted ServiceTemplate, and we map each of them to the corresponding one of NoBe
(Fig. 22).

Figure 22: Example of application of step 4 (of the adaptation methodology).

The obtained ServiceTemplate (Fig. 22) exposes all the features exhibited by the target
NodeType WebEnv. This implies that they exactly match, and subsequently that the adapted
ServiceTemplate can be employed to instantiate WebEnv.

4.3.2. Adaptation of white-box matching ServiceTemplates

White-box matching relaxes flexible matching by extending the feature research to the
internal elements of a ServiceTemplate’s topology, and by allowing to combine inter-
nal operations in order to obtain plans which are semantically equivalent to missing
operations (Sect. 4.2). Furthermore, if S white-box matches N , then the former can be
adapted into a new ServiceTemplate which exactly matches N . The adaptation consists
of building a new ServiceTemplate which contains the available one as a NodeTemplate

and whose boundaries are built by declaring the same features of N and by mapping
each one of them to the matched feature of S. This can be done automatically if we
employ ontologies, otherwise the application designer needs to manually adapt S.

Fig. 23 illustrates how an application designer may intrusively adapt a ServiceTem-

plate S which does not flexibly match a NodeType N into a new ServiceTemplate

S′ which exactly matches N . Namely, it describes how such an adaptation can be
successfully performed when (i) S exposes all capabilities, properties, and requirements
as N , but internally and/or in a syntactically different way, and (ii) when N features
one or more interface operation which is not matched by any operation featured by S,
while it can be matched by some composition of S’s internal operations. The adaptation
described in Fig. 23 implements the relaxed matching conditions that were defined in
Def. 14 (in terms of ontology-based name equivalences).

It is worth noting that, according to the definition of white-box matching, the adap-
tation process cannot succeed if missing capabilities and properties cannot be matched
internally as well as if operation mismatches cannot be solved by composing internal
operations. Namely, the adaptation in Fig. 23 will fail if one of the steps cannot be
performed, while it succeed if all the steps are performed.

23

(1) Create the adapted ServiceTemplate S′ which initially contains S as the only NodeTem-

plate in its topology.

(2) For each capability (property) c exposed by N

(a) define a capability (property) with the same name and type on the boundaries of S′,

(b) if c does not correspond to any capability (property) exposed by S, search inside of
the topology of S a capability (property) corresponding to c and expose it on the
boundaries of S, and

(c) map such capability (property) to the corresponding one exposed by S.

(3) For each interface exposed by N , define an interface with the same name on the boundaries
of S′. Then, for each operation o exposed by N ,

(a) define an operation with the same name and parameters in the corresponding interface
exposed by S′, and

(b) map the defined operation to

• an operation of S which is semantically equivalent to o, or

• a (new) operation oex of S which is suitably extracted from its internal definitions.
With “suitably extracted” we mean that (i) a new interface has been defined on
the boundaries of S, and (ii) oex has been added to its operations, and (iii)
oex has been mapped to either an internal operation of S which is considered
semantically equivalent to o or a plan which combines the internal operations of
S to obtain an operation which is semantically equivalent to o.

(4) Add a dummy NodeTemplate NoBe (whose capabilities satisfy the requirements of S and
whose requirements are the same of N) to the topology of S′. Then, for each requirement
exposed by N

(a) define a requirement with the same name and type on the boundaries of S′, and

(b) map the defined requirement to the corresponding one of NoBe.

(where mapping f onto f ′ simply means that f is a reference to f ′).

Figure 23: Adaptation of white-box matching ServiceTemplates.

Example 8. Consider the target NodeType IntegratedWebEnv in Fig. 24, where the capabilities
WebAppRuntime and MySQLRuntime are respectively of type WebAppRTE and MySQLRTE,
and where both requirements are of type OSContainer. Both operations are without input
parameters, and return two Boolean parameters witnessing whether they successfully completed
(e.g., the operation Start returns two parameters WebAppRuntimeStarted and MySQLRuntime-

Figure 24: Target NodeType IntegratedWebEnv.

24

Started, each of which is true if the corresponding capability is concretely provided, and false

otherwise). We observe that, according to Def. 14, the available ServiceTemplate WebApp-
Environment (Fig. 17) white-box matches the target NodeType IntegratedWebEnv.

Fig. 25 illustrates the ServiceTemplate obtained by applying the adaptation process of
Fig. 23 to the ServiceTemplate WebAppEnvironment (to exactly match the target NodeType

IntegratedWebEnvironment). Namely, we first created a new ServiceTemplate which contains
WebAppEnvironment as the only NodeTemplate in its topology. Capabilities and requirements
have been adapted as shown in Example 7. The HostName property has been extracted from
WebAppEnvironment’s internal topology and then mapped on the boundaries of the adapted
ServiceTemplate. The operation Start required to generate a Plan PStart combining the Start
operations of TomcatServer and MySQLDBMS, to expose such Plan as an operation of Web-
AppEnvironment, and then to expose such operation also on the boundaries of the adapted
ServiceTemplate. The adaptation required to obtain operation Stop was analogous.

Figure 25: Example of intrusive adaptation of a white-box matching ServiceTemplate.

The obtained ServiceTemplate exposes all the features exhibited by the target NodeTy-

pe IntegrateWebEnvironment. This implies that they exactly match and subsequently that the
adapted ServiceTemplate can be employed to instantiate IntegratedWebEnvironment.

4.3.3. Further remarks

It is important to observe that the adaptation of a TOSCA ServiceTemplate S to
(exactly) match a NodeType N does suffice to reuse any actual service modelled by S to
deploy cloud applications that rely on N . This is thanks to the powerful way in which
TOSCA supports the deployment of cloud applications. TOSCA permits to pack in a
CSAR (Cloud Service ARchive) file an application specification together with the actual
executable files to be deployed on a cloud platform. When a CSAR file is given in input
to a TOSCA container, the latter takes care of deploying and executing the application
specification contained in the CSAR file [13, 29]. Therefore, in order to adapt an actual
service modelled by a ServiceTemplate S to deploy an application that relies on a No-

25

deType N , it suffices to adapt S into a new ServiceTemplate S′ that matches N —
without having to generate an implementation of the adaptation specified by S.

Note that the adaptation works also in the case in which the CSAR of S should not
be available, for instance when S is a proprietary service offered by a third party. In
such cases it suffices to develop a simple proxy of the remote service modelled by S, and
to pack it in a new CSAR file together with the application specification containing S′

(and the executable files associated with such specification).
Finally, it is also worth highlighting that, thanks to the features of TOSCA, the simple

adaptation methodology described in this paper considerably reduces the work needed
to reuse cloud services if compared with the alternative of explicitly devising adapters as
in traditional software adaptation approaches (e.g., [6, 20, 23]).

5. Related work

Our work started from the observation that while the matching between ServiceTem-

plates and NodeTypes is indicated in [29] as a way to instantiate abstract TOSCA
NodeTypes, no formal definition of matching is given in either [28] or [29]. A concrete
definition of matching for TOSCA was used in [35] to define a way to merge TOSCA
services by matching entire portions of their TopologyTemplates. The definition of
matching of single service components employed in [35] is however very strict, as two
service components are considered to match only if they expose the same qualified name.
Our work aims to contribute to the TOSCA specification by proposing four definitions
of matching between ServiceTemplates and NodeTypes, each identifying larger sets of
ServiceTemplates that can be adapted so as to (exactly) match a NodeType.

It is worth mentioning that, in our previous work [11], we assumed that the semantics
of requirements was determined by RequirementTypes. Nevertheless, according to [28],
a NodeType might define multiple requirements of the same RequirementType, in which
case each occurrence of a requirement definition is uniquely identified by its name (e.g.,
two requirements of DBRequirementType where one could be named CustomerDatabase

and the other one could be named ProductsDatabase). Since the same holds for capa-
bilities, in this paper we refined the plug-in/flexible/white-box matching of requirements
and capabilities accordingly.

This paper extends [11] also by providing a proof-of-concept implementation of both
the exact and plug-in matching, by providing a pseudo-code for automatically adapt
plug-in matched ServiceTemplate, and by defining a methodology for adapting Ser-

viceTemplates which flexibly/white-box match target NodeTypes (which replaces the
usage of ontologies — and subsequently removes all ontology-related problems — with
the application developer decisions). Please note that the proposed methodology is an
adaptation of that we proposed in [12] for non plug-in matching ServiceTemplates.

In the following we will position our work with respect to other solutions for the
matching of available services (Sect. 5.1) and their adaptation (Sect. 5.2).

5.1. Service matching

The problem of how to match (Web) services has been extensively studied in recent
years. Many approaches are ontology-aware [31], like for instance the ontology-aware

26

matchmaker for OWL-S services described in [22]. Other approaches are behaviour-
aware, like the (ontology-aware) trace-based matching of YAWL services defined in [10],
the (ontology-aware) behavioural congruence for OWL-S services defined in [5], or the
graph transformation based matching defined in [14] and the heuristic black-box matching
described in [18] for WS-BPEL processes. The main difference between the aforemen-
tioned approaches and ours is the type of information considered when matching single
nodes. The matching levels considered for instance in [22] and [18] are all defined in
terms of input and output data, while we consider also technology requirements and
capabilities, properties and policies.

On the other hand, many proposals of QoS-aware service matching have been devel-
oped, like for instance [24] or [26]. Generally speaking, the notion of matching defined in
the present paper differs from most QoS-aware matching approaches since it compares
types rather than actual values of extra-functional features like QoS. For instance, a type-
based definition of matching is defined in [17] to type check “stream flows” for interactive
distributed multimedia applications. While the context of [17] is different from ours, two
of the matching conditions considered in [17] resemble our notions of exact and plug-in
matching, even if for simpler service abstractions.

Summing up, to the best of our knowledge, our definition of matching is the first
definition of (TOSCA) node matching that takes into account both functional and extra-
functional features, by relying both on types and on ontologies to overcome non-relevant
syntactic information.

It is also worth highlighting that our notions of plug-in, flexible and white-box match-
ing share the basic objectives with alternating refinement relations [1] (and more in
general with the notion of simulation [33]). Indeed, they all check whether an available
component is capable of offering all the features/options of a desired component (without
imposing additional requirements). However, while [1, 33] rely on both the signature and
behaviour of components, our notions of matching only rely on components’ signature,
as this is what can be described in TOSCA.

It is thus interesting to extend TOSCA by permitting to describe the behaviour of a
component, and to extend our notions of matching to take into account such behaviour
information. For instance, one may model a component’s behaviour through labelled
transition systems (e.g., management protocols [7, 8]) or service contracts [27]. This
would permit extending our matching notions by checking whether a transition system
“simulates” [33] another, whether they directly match one another (as for interface au-
tomata theory [15]), or whether the contract of an available ServiceTemplate is coherent
with that of a desired NodeType.

5.2. Service adaptation

The development of systematic approaches to adapt (and reuse) existing software is
widely recognized as one of the crucial problems in system integration [36]. In spite of
the increasing availability of cloud services, currently platform-specific code often needs
to be manually modified to (re)use services in cloud applications. This is obviously an
expensive and error-prone activity, as pointed out in [34], both for the learning curve
and for the testing phases needed.

Various efforts have been recently oriented to try devising systematic approaches to
reuse cloud services. For instance, [16] and [21] propose two approaches to transform

27

platform-agnostic source code of applications developed with a model-driven methodol-
ogy into platform-specific applications. In contrast, our approach does not restrict to
applications developed with a specific methodology, nor it requires the availability of
applications’ source code, and it is hence applicable also to third-party services whose
source code is not available nor open.

[20] proposes a framework which allows developers to write the source code of cloud
services as if they were “in-house” applications. Cloud deployment information must
be provided in a separate file, and a middleware layer employs source and deployment
information to generate the artifacts to be deployed on cloud platforms. We believe that
our approach improves [20] in three ways. First, only some cloud platforms are targeted in
[20], while our approach can be applied on any (TOSCA-compliant) platform. Moreover,
in [20] the reuse of a cloud service requires invoking the middleware layer, while in our
approach adaptation is performed only once. Finally, [20] always requires to write source
code, while our approach only requires to edit the application specification.

In general, most existing approaches to the reuse of cloud services support a from-
scratch development of cloud-agnostic applications, and do not account for the possibility
of adapting existing (third-party) cloud services. To the best of our knowledge, ours is
the first approach which proposes a methodological approach for adapting existing cloud
applications, by relying on TOSCA [28] as the standard for cloud interoperability, and
to support an easy reuse of third-party services.

Finally, it is worth noting that the novelty of our approach does not reside in the
type of adaptation techniques that we employ to adapt ServiceTemplates. Indeed,
our methodology exploits well-know adaptation patterns (e.g., [2, 19]) to adapt TOSCA
templates. The novelty of our approach is rather that, in contrast with traditional
adaptation approaches (e.g., [6, 20, 23]), no additional code must be developed to reuse
existing applications. This is because we exploit the possibilities natively provided by
TOSCA of mapping exposed features onto internal ones, and of entirely delegating the
management of such mappings to TOSCA engines.

More precisely, TOSCA natively only supports the one-to-one mapping among re-
quirements, capabilities, and properties, and the one-to-many mapping among opera-
tions, and this is why our approach only combines operations. Going beyond one-to-one
mapping among requirements, capabilities, and properties could be interesting, even if
this would require to go also beyond what is natively supported by TOSCA (thus requir-
ing developers to write the additional source code implementing the adaptation).

6. Conclusions

The results presented in this paper intend to contribute to the formal definition of
TOSCA. After defining the notion of exact matching between TOSCA ServiceTem-

plates and NodeTypes, we have defined three other types of matching (plug-in, flexible
and white-box), each permitting to ignore larger sets of non-relevant syntactic differences
when type-checking ServiceTemplates with respect to NodeTypes. To allow exploiting
the new notions of matching not only for type-checking but also for node instantiation, we
have also described how a ServiceTemplate that plug-in, flexibly or white-box matches
a NodeType can be suitably adapted so as to exactly match it.

28

To demonstrate the feasibility of our approach, we have also presented a proof-of-
concept implementation of the exact and plug-in matchings. Such implementation should
be properly extended so as to be fruitfully integrated in a plug-in for the OpenTOSCA
[4] open source environment, in order to enhance its type-checking capabilities. Further-
more, our implementation performs the matchmaking in a “verbose” way (i.e., by suitably
storing information also if there is no matching). We showed how to employ the “ver-
bose” matching results to exploit the adaptation of plug-in matched services. Since the
proposed approach is based on purely syntactic choices, it can be completely automated
and implemented in the above mentioned plug-in for the TOSCA implementations. As
no high-level API is available yet to manage TOSCA elements [3], the implementation
of such a plug-in is left for future work.

In this paper we also presented a way to manually perform the flexible/white-box
matching and adaptation. As we already mentioned, this allows cloud application devel-
opers to work without equipping their services with ontologies and to avoid all ontology
related problems (e.g., cross-ontology matchmaking [22], [25]). It is worth noting that
the composition of operations may be employed not only for white-box matching but also
for the flexible one.

The definitions of matching presented in this paper can be extended to also take into
account the behaviour of cloud services. As we discussed in Sect. 5.1, an interesting
direction is to employ management protocols [7, 8] to model the behaviour of NodeTypes
and ServiceTemplates, and to devise (new) techniques to check whether the protocol
of an available ServiceTemplate can “simulate” [33] that of a desired NodeType. This
would permit extending the matching notions we proposed in this paper to take into
account the behaviour of services by simply including such notions of simulation. This
extension is in the scope of our immediate future work.

Besides types, one would also like to check actual values of policies and properties.
This would permit verifying also the compliance of a ServiceTemplate with NodeTem-

plates that instantiate a matching NodeType (e.g., by considering a partial ordering over
the domain of a policy/property, we could be able to determine whether a desired value
is compatible with an available one). This extension is also in the scope of our immediate
future work.

References

[1] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating refine-
ment relations. In Proceedings of the 9th International Conference on Concurrency Theory, CON-
CUR ’98, pages 163–178. Springer-Verlag, 1998.

[2] Steffen Becker, Antonio Brogi, Ian Gorton, Sven Overhage, Alexander Romanovsky, and Massimo
Tivoli. Towards an engineering approach to component adaptation. In Proceedings of the 2004
International Conference on Architecting Systems with Trustworthy Components, pages 193–215.
Springer-Verlag, 2006.

[3] Tobias Binz. Personal communication, 2013, November 22nd.
[4] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann, Alexander Nowak,

and Sebastian Wagner. OpenTOSCA – a runtime for TOSCA-based cloud applications. In 11th
International Conference on Service-Oriented Computing. Springer, 2013.

[5] Filippo Bonchi, Antonio Brogi, Sara Corfini, and Fabio Gadducci. A net-based approach to web
services publication and replaceability. Fundam. Inf., 94(3-4):305–330, 2009.

[6] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to component adaptation.
J. Syst. Softw., 74(1):45–54, 2005.

[7] Antonio Brogi, Andrea Canciani, and Jacopo Soldani. Modelling and analysing cloud applica-
tion management. In Proceedings of the 4th European Conference on Service-Oriented and Cloud
Computing (ESOCC 2015), LNCS. Springer, 2015. In press.

29

[8] Antonio Brogi, Andrea Canciani, Jacopo Soldani, and PengWei Wang. Modelling the behaviour
of management operations in cloud-based applications. In Daniel Moldt, editor, Proceedings of the
International Workshop on Petri Nets and Software Engineering, PNSE’15, volume 1372 of CEUR
Workshop Proceedings, pages 191–205. CEUR-WS.org, 2015.

[9] Antonio Brogi and Sara Corfini. Behaviour-aware discovery of web service compositions. Int. J.
Web Service Res., 4(3):1–25, 2007.

[10] Antonio Brogi and Razvan Popescu. Service adaptation through trace inspection. International
Journal of Business Process Integration and Management, 2(1):9–16, 2007.

[11] Antonio Brogi and Jacopo Soldani. Matching cloud services with TOSCA. In Carlos Canal and
Massimo Villari, editors, Advances in Service-Oriented and Cloud Computing, volume 393 of Com-
munications in Computer and Information Science, pages 218–232. Springer, 2013.

[12] Antonio Brogi and Jacopo Soldani. Reusing cloud-based services with TOSCA. In INFORMATIK
2014, Lecture Notes in Informatics (LNI), volume 232, pages 235–246. Gesellschaft für Informatik
(GI), 2014.

[13] Antonio Brogi, Jacopo Soldani, and PengWei Wang. TOSCA in a Nutshell: Promises and Perspec-
tives. In Massimo Villari, Wolf Zimmermann, and Kung-Kiu Lau, editors, Service-Oriented and
Cloud Computing, volume 8745 of LNCS, pages 171–186. Springer, 2014.

[14] Juan Carlos Corrales, Daniela Grigori, and Mokrane Bouzeghoub. BPEL processes matchmaking
for service discovery. In Proceedings of the 2006 Confederated International Conference on On the
Move to Meaningful Internet Systems: CoopIS, DOA, GADA, and ODBASE - Volume Part I,
ODBASE’06/OTM’06, pages 237–254. Springer-Verlag, 2006.

[15] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference Held Jointly with 9th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-9, pages 109–120. ACM, 2001.

[16] Beniamino Di Martino, Dana Petcu, Roberto Cossu, Pedro Goncalves, Tamás Máhr, and Miguel
Loichate. Building a mOSAIC of clouds. In Proceedings of the 2010 Conference on Parallel Pro-
cessing, Euro-Par 2010, pages 571–578. Springer-Verlag, 2011.

[17] Frank Eliassen and S. Mehus. Type checking stream flow endpoints. In Proceedings of the IFIP
International Conference on Distributed Systems Platforms and Open Distributed Processing, Mid-
dleware ’98, pages 305–320. Springer-Verlag, 1998.

[18] Rik Eshuis and Paul Grefen. Structural matching of BPEL processes. In Proceedings of the Fifth
European Conference on Web Services, ECOWS ’07, pages 171–180. IEEE Computer Society, 2007.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[20] Joaqúın Guillén, Javier Miranda, Juan Manuel Murillo, and Carlos Canal. A service-oriented
framework for developing cross cloud migratable software. J. Syst. Softw., 86(9):2294–2308, 2013.

[21] Mohammad Hamdaqa, Tassos Livogiannis, and Ladan Tahvildari. A reference model for developing
cloud applications. In Frank Leymann, Ivan Ivanov, Marten van Sinderen, and Boris Shishkov,
editors, CLOSER 2011 - Proceedings of the 1st International Conference on Cloud Computing and
Services Science.

[22] Matthias Klusch, Benedikt Fries, and Katia Sycara. OWLS-MX: A hybrid semantic web service
matchmaker for OWL-S services. Web Semant., 7(2):121–133, 2009.

[23] Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Benatallah, Fabio Casati, and Regis
Saint-Paul. Mismatch patterns and adaptation aspects: A foundation for rapid development of web
service adapters. IEEE Trans. Serv. Comput., 2(2):94–107, 2009.

[24] Farzad Mahdikhani, Mahmoud Reza Hashemi, and Marjan Sirjani. QoS aspects in web services
compositions. In Service-Oriented System Engineering, 2008. SOSE’08. IEEE International Sym-
posium on, pages 239–244. IEEE, 2008.

[25] Jorge Martinez-Gil, Ismael Navas-Delgado, and Jose F Aldana-Montes. Maf: An ontology matching
framework. Journal of Universal Computer Science, 18(2):194–217, 2012.

[26] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie Issarny, and Yolande Berbers.
EASY: Efficient semantic service discovery in pervasive computing environments with qos and
context support. J. Syst. Softw., 81(5):785–808, 2008.

[27] Eric Newcomer and Greg Lomow. Understanding SOA with Web services. Addison-Wesley, 2005.
[28] OASIS. Topology and Orchestration Specification for Cloud Applications. http://docs.

oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf, 2013.
[29] OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer Version

1.0. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf, 2013.
[30] OASIS. TOSCA XML Schema Definition. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/

30

schemas/TOSCA-v1.0.xsd, 2013.
[31] Declan O’Sullivan and David Lewis. Semantically driven service interoperability for pervasive

computing. In Proceedings of the 3rd ACM International Workshop on Data Engineering for
Wireless and Mobile Access, MobiDe ’03, pages 17–24. ACM, 2003.

[32] Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Crciun. Portable cloud applications-
from theory to practice. Future Gener. Comput. Syst., 29(6):1417–1430, 2013.

[33] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
2011.

[34] Van Tran, Jacky Keung, Anna Liu, and Alan Fekete. Application migration to cloud: A taxonomy
of critical factors. In Proceedings of the 2Nd International Workshop on Software Engineering for
Cloud Computing, SECLOUD ’11, pages 22–28. ACM, 2011.

[35] Andreas Weiss. Merging of TOSCA cloud topology templates. Master’s thesis, Institute of Ar-
chitecture of Application Systems, University of Stuttgart, 2012. http://elib.uni-stuttgart.de/
opus/volltexte/2012/7932/pdf/MSTR_3341.pdf.

[36] Xie Xiong and Zhang Weishi. The current state of software component adaptation. In First
International Conference on Semantics, Knowledge and Grid, 2005. SKG ’05., pages 103–103,
Nov 2005.

31

