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Abstract  

 

Tyrosine kinase inhibitors (TKIs) are molecules that compete with ATP on tyrosine kinase receptors 

(TKRs), blocking tyrosine kinase (TK) activation and then oncogenic pathways; they have been 

studied, and some of them are right approved for the treatment of many types of cancer. 

Among TKIs, one of the most explored chemical template is the pyrazolo[3,4-d]pyrimidine (PP) 

heterocyclic core, which proved to be a useful scaffold for the obtainment of effective compounds. 

Actually, derivatives belonging to this structural class show a large spectrum of activity, thus standing 

out as multi-target agents. Different PP compounds have been shown to act as: a) ABL inhibitors and 

antiproliferative agents against human leukemia cell lines; b) Src kinase inhibitors in neuroblastoma, 

medulloblastoma and osteosarcoma; c) Phospholipase D inhibitors in different neoplasias; d) Urokinase 

plasminogen activator inhibitors, in breast cancer.  

In thyroid cancer (TC), PP1 and PP2 (inhibitors of RET, Hck, lck, and fynT kinases, and a good 

inhibitor of c-Src and platelet-derived growth factor receptor) showed antineoplastic actvity in human 

papillary TC cell lines that carry spontaneous RET/PTC1 rearrangements. More recently, new 

derivatives, (R)-1-phenethyl-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, namely, CLM3 

and CLM29, have been demonstrated to exert a multiple signal transduction inhibition (including the 

RET-TK, BRAF, EGFR, and with antiangiogenic activity), showing antineoplastic activity, in vitro and 

in vivo, in papillary dedifferentiated, medullary and anaplastic TC.  

These data have shown the antineoplastic activity of PP in different neoplasias, opening the way to a 

future clinical evaluation in human cancers. 

 

Keywords: antiangiogenic inhibitors, CLM29, CLM3, PP1, PP2, pyrazolo[3,4-d]pyrimidine, RET 

inhibitors, tyrosine kinase inhibitors.  
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1. INTRODUCTION 

In the last years several mutations and pathogenic mechanisms leading to onset of tumors, or their 

dedifferentation and resistance, were discovered. It was shown the cornerstone role of tyrosine kinases 

(TKs) and tyrosine kinase receptors (TKRs), like epidermal growth factor receptor (EGFR), vascular 

endothelial growth factor receptor (VEGFR), RET, BRAF, RAS/RAF/ERK and RAS/PI3K/AKT 

pathways, that are capable of causing cell transformations, giving mitogenic and survival signals, for 

example in thyroid cancer (TC) [1-6], and in other neoplasias [7-9].  

Furthermore recently, it has been shown the importance of cytokines and chemokines [10] (usually 

involved in autoimmune disorders [11, 12]) in tumorigenesis of TC [13-15], and in other cancers [16, 

17].  

TKs and TKRs are actually targets of new antineoplastic therapies. Tyrosine kinase inhibitors (TKIs) 

are molecules that compete with ATP on TKRs, blocking TK activation and then oncogenic pathways 

[18]. 

Recently, some TKIs have been studied [1, 19-24], and some of them are right approved for the 

treatment of some types of cancer, as imatinib (for chronic myelogenous leukemia [25] and 

gastrointestinal stromal tumors [26]), sorafenib (for advanced renal cell carcinoma [27], advanced 

hepatocellular carcinoma [28], and radioactive iodine resistant advanced TC [29]), vandetanib and 

cabozantinib for medullary thyroid cancer (MTC) [30-33], and others [34]. 

Among TKIs, pyrazolopyrimidines-derived compounds are produced and tested as useful 

antineoplastic agents. The pyrazolopyrimidines are constituted by a pyrazole ring fused with the 

pyrimidine moiety differently from the imidazole moiety in purines [35, 36]. At the beginning, 

pyrazolopyrimidines were studied as adenosine receptor antagonists [37]. Different chemical 

compounds with pyrazolopyrimidines as central core were produced [38] and recently Mahajan et al. 

published a paper about ACK1-TK targeted cancer cells inhibition of proliferation, including 

pyrazolo[3,4-d]pyrimidines derivatives [39]. There are several isomeric forms of pyrazolopyrimidines 

with various mechanisms of action and possible purposes like antiviral [40], anticoccidials [41], 

antimicrobial [42-44], antitumor [45, 46], antileukemic [47], tuberculostatic [48], radioprotectant [49], 

and several other activities [50]. 

 

2. ANTINEOPLASTIC ACTIVITY 
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Pyrazolopyrimidines were evaluated against different targets as RET, VEGFR, EGFR, ABL, SRC, 

Aurora kinase, and others, each employed in the upset, progression and trasformation of many tumors.  

 

2.1. ABL inhibitors  

Manetti et al. [51] examined the role of the pyrazolo[3,4-d]pyrimidines as ABL inhibitors and their 

antiproliferative action on human leukemia cell line. The effect of substituting different groups, as 

halogens and the hydrophobic regions of the ATP binding, was demonstrated by molecular modeling 

studies, showing its determinant activity on the affinity toward Abl. Pyrazolo[3,4-d]pyrimidines were 

produced by Radi et al. [52, 53] with an inhibitory effect in hypoxic human leukemia cells and the in 

vitro "absorption, distribution, metabolism, and excretion" (ADME) properties and metabolic activities 

were shown. The abovementioned molecules inhibited the Bcr-Abl kinase, increased caspase-3 action 

and the cleavage of poly-ADP-ribose-polymerase. 

 

2.2. SRC inhibitors  

Tintori et al. [54] evaluated the antineoplastic activity against neuroblastoma cell proliferation. A 

subclass of nonreceptor TKs as target in the treatment of human cancers is the Src-family TKs. Among 

these, c-Src was found to stimulate cell proliferation, migration, and invasion as well as angiogenesis 

[55]. Hyperactivation of c-Src leads to aberrant cell activity that contributes to cancer development. 

Elevated expression levels of c-Src have been shown in different types of cancer and are associated 

with a poor prognosis with respect to overall survival. Moreover, recent studies suggest that c-Src 

could be associated with the development of acquired drug resistance [56]. 

The antiproliferative and proapoptopic effects of pyrazolo[3,4-d]pyrimidines as Src kinase inhibitors in 

human osteosarcoma cells have been evaluated [57], concluding that they are capable in stimulating 

apoptosis and decreasing the Src phosphorylation. The inhibitory action of the compounds has been 

demonstrated to be dose dependent, via DNA damage or via increasing apoptosis. 

New pyrazolo[3,4-d]pyrimidine derivatives as Src kinase inhibitors able to arrest cell cycle at G2/M 

phase and reduce growth of human medulloblastoma cells were produced [58]. 

 

2.3. Aurora kinases inhibitors 

In 2012, 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and 
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CDK1 were synthesized [59] and the structure activity relationship (SAR) was reported, revealing to be 

particularly strong in case of low distribution volumes, elevated clearance rate, satisfying ADME 

properties, and thus demonstrating to be a good antitumor agent in leukemia cells. 

 

2.4. Phospholipase D (PLD) inhibitors 

PLD catalyzes the cleavage of phosphatidylcholine at the ester linkage–releasing choline and 

phosphatidic acid (PA) [60], that is a second lipid messenger belonging to different essential signaling 

and metabolic pathways [61], and is involved in the regulation of cellular functions mediating the 

enhancement of cell migration. The enhanced PLD activity and expression have been shown in 

different human cancer tissues [62-64]; PLD supports cells in initiating defence mechanisms, and its 

inhibition diminishes the ability of cells to adhere. Kulkarni et al. [65] evaluated the action of 

aminopyrazolopyrimidines, that have earlier been used as TKI [66] and dual inhibitors of tyrosine and 

phosphoinositide kinases [67], that were produced and used to initially screen the capability of purified 

bacterial PLD, strongly homologous to the human PLD. 

These inhibitory molecules directly blocked enzyme/vesicle substrate binding. Preliminary activity 

studies, performed by recombinant human PLDs in in vivo cell assays evaluating 

transphosphatidylation and head-group cleavage, showed inhibition in the mid- to low-nanomolar 

range in a physiological environment. 

 

2.5. Urokinase plasminogen activator (uPA) inhibitors 

uPA converts the circulating plasminogen to the active plasmin, is secreted as an inactive single-chain 

proenzyme by various cell types and is able to bind to a specific membrane uPA receptor (uPAR), in 

this way existing in a soluble or cell associated form [68]. uPA is involved in cancer invasion and 

metastasization, as members of the matrix metalloproteinases family, and takes part in many 

physiological functions [69]. After binding to uPAR, uPA initiates versatile intracellular signal 

pathways regulating cell proliferation, adhesion, and migration, interacting with different integrins and 

vitronectin [70]. Urokinase is involved in many malignancies, in lung, breast, cervix, bladder, kidney, 

brain, and stomach [71, 72]. The cytotoxicity of several compounds was tested using sulforhodamine B 

assay [73] in the breast cancer cell line MCF-7, the liver cancer cell line HepG2, and the lung 

carcinoma cell line A549. Shamroukh et al. [74] showed that pyrazole derivatives inhibit the activity of 
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the urokinase enzyme, that is able to reduce cell proliferation leading to growth inhibition, and exerting 

an anti-carcinogenic activity in MCF-7 breast and HepG2 liver cancer cells. The SAR of the tested 

compounds showed that whereas substituted amino group enhanced the activity. However, fusining 

another ring (oxazine, pyrimidine, or fused pyrimidine) to the pyrazole structure decreased the 

anticancer activity. 

 

2.6. Generation of reactive oxygen species 

The synthesis and anticancer activities of new pyrazolo[3,4-d]pyrimidine derivatives were evidenced 

by Rashad et al. [75] in 2011, as they generate reactive oxygen species (ROS) in human breast 

adenocarcinoma cells. Tumor cells are more sensitive than normal cells to the elevated levels of ROS 

present in cancer and increased by the supplementary oxidative stress created by anticancer agents, that 

causes injury to cellular components leading to cell death. The abovementioned compounds exert their 

antitumor effect partly owing to the production of H2O2. 

The pyrazolo[3,4-d]pyrimidines have in vitro cytotoxic activity against breast adenocarcinoma [76] 

producing hydrogen peroxide and other free radicals leading to oxidative distress. The potency of 

pyrazolo[3,4-d]pyrimidines was higher that the one of pyrazole; anticancer activity was increased if the 

sulfonyl group was present between pyrazolo[3,4-d]pyrimidine and 4-chlorophenyl moiety. 

Imine-pyrazolopyrimidinones have been reported as antitumoral agents [46], by multiple stress 

pathways in tumoral cells, as increased ROS levels, leading to DNA damage and topoisomerase II 

inhibition. Its binding interactions with topoisomerase II were investigated, showing knowledges about 

SAR and performing molecular modeling studies. 

 

2.7. PP1 and PP2 

Dysregulation of RET signaling by oncogenic mutation, gene rearrangement, overexpression or 

transcriptional up-regulation is involved in different human cancers (thyroid, breast, lung, etc) [77-83].  

Carlomagno et al. [84] found that the 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-

pyrimidine (PP1) inhibited RET-derived oncoproteins with a half maximal inhibitor concentration of 

80 nM. Moreover, RET/PTC3-transformed cells lost proliferative autonomy and showed 

morphological reversion if treated with 5 µM PP1. PP1 inhibited the growth of two human papillary 

TC (PTC) cell lines, carrying spontaneously RET/PTC1 rearrangements, and stopped anchorage-
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independent growth and tumorigenicity in NIH3T3 fibroblasts from nude mice, expressing the 

RET/PTC3 oncogene. The obtained results showed that a new treatment strategy for RET-associated 

neoplasms could be targeting RET oncogenes using PP1 or related compounds. 

Even if PP1 has a powerful growth inhibitory activity against human TC cell lines with RET/PTC 

rearrangements, it is not selective for RET, as it is a strong inhibitor also of lck, Hck, and fynT kinases, 

and a good inhibitor of c-Src and platelet-derived growth factor receptor (PDGFR) [85]. For this 

reason, besides to the direct effect on the RET kinase in vitro, indirect effects mediated in vivo by the 

inhibition of other kinases (particularly of c-Src, a crucial downstream RET effector) cannot be 

excluded [86]. If this hypothesis is correct, a single molecule could be used for “multiple-signal 

transduction therapy” of RET-dependent tumor formation. Furthermore, PP1 has been suggested to be 

also an inhibitor of PDGFR and c-Src, to prevent restenosis and vascular remodeling [87]. 

Another pyrazolopyrimidine (PP2; 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) 

[88] is able to block the enzymatic activity of the isolated RET kinase and RET/PTC1 oncoprotein and 

the in vivo phosphorylation and signaling of the RET/PTC1 oncoprotein. PP2 inhibited the serum-

independent growth of RET/PTC1-transformed NIH3T3 fibroblasts and of the two human PTC cell 

lines (TPC1 and FB2) harboring spontaneously RET/PTC1 rearrangements. Moreover, PP2 stopped the 

potential of invasion of type I collagen matrix exerted by TPC1 cells. Therefore, pyrazolopyrimidines 

could be a good novel therapy for the treatment of human cancers supporting oncogenic activation of 

RET. 

 

2.8. CLM3, CLM29 and CLM94 

Recently CLM3, (R)-1-phenethyl-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine, proposed 

for a multiple signal transduction inhibition (including the RET-TK, BRAF, EGFR, and with 

antiangiogenic activity) was disclosed. CLM3 showed an antiangiogenic effect with a less marked 

inhibitory activity on human TC cell lines, demonstrating time- and dose-dependent antiproliferative 

and proapoptotic effects on specific cell lines [89, 90]. 

Sartini et al. [91] evaluated new derivatives of CLM3 in order that they completely comply with 

pharmacophore requirements of the ATP binding sites of VEGFR2 and RET. The new molecules were 

tested for their inhibitory properties against the target TKs and for their antiproliferative effect against 

endothelial and human TC cell lines, revealing a promising antiproliferative profile on endothelial and 
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MTC cell lines. The tested compounds were more efficient against the target TC cell line TT, 

expressing mutated RET, with respect to the lead CLM3. 

Moreover, the antitumor and antiangiogenic activities of the new ‘‘cyclic amide’’ compound CLM94 

[92], as well as those of CLM3 [93] and CLM29 (a pyrazolo[3,4-d]pyrimidine, that inhibits RET, 

EGFR, VEGFR, and has an anti-angiogenic activity) [89], have been demonstrated in primary 

anaplastic TC cells. Antonelli et al. showed that CLM3 and CLM29 inhibited the migration of papillary 

dedifferentiated thyroid cancer (DePTC) cells. The inhibitory effect of CLM3 and CLM29 was 

independent from the presence of V600EBRAF mutation. A DePTC cell line (AL), with V600EBRAF 

mutation, was produced, which was able to grow in nu/nu mice when inoculated sc. CLM3 and CLM29 

increased TSP-1 expression in the AL cell line. The antineoplastic activity of CLM3 and CLM29 may 

result from the combination of an antiproliferative effect associated with the increase of apoptosis in 

the tumoral cells and the inhibition of the migration and the neoplastic neovascularization. This last 

effect has been shown in vivo. In fact, a significant reduction of microvessels was observed in the 

CLM3-treated tumors. In addition, a significant decrease in the percentage of anti-VEGF antibody 

immunoreactivity in the tumor mass was also observed in the CLM3-treated group of animals. The 

mechanisms underlying the inhibition of the neoplastic neovascularization are probably related to the 

up-regulation of the main endogenous inhibitor of the angiogenesis, i.e. TSP-1; in fact, CLM3 and 

CLM29 increased TSP-1 expression in the AL cell line. TSP-1 has many antiangiogenic effect: 1) 

inducing apoptosis of endothelial replicating cells [94]; and 2) interacting with many extracellular 

proteins involved in the angiogenic process, such as VEGF [95, 96]. 

Ferrari et al. [97] reported the in vitro antineoplastic and antiangiogenic activities of CLM3 and 

CLM94 in primary cultures of MTC (pMTC) cells and the MTC cell line TT (harboring a RET C634W 

activating mutation) and MZ-CRC-1 (carrying the MEN2B RET M918T mutation). These compounds 

inhibited the proliferation of TT and pMTC cells in vitro, in part by increasing the level of apoptosis. 

The inhibitory effect of CLM3 and CLM94 seemed to be independent from the presence of RET 

mutation in pMTC. These results are in agreement with the possibility that CLM3 and CLM94 seem to 

be inhibitors of multiple signal transduction pathways (including the RET-TK, EGFR, VEGFR) and 

have an anti-angiogenic effect. A significant decrease in the gene expression of VEGF-A was also 

observed in TT cells after CLM3 and CLM94 treatments. 

More recently, CLM29 was tested in MTC, both in pMTC cells obtained at surgery, and in TT cells 
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with the C634W RET mutation [98]. CLM29 (10, 30, 50 µM) inhibited significantly (P<0.001) the 

proliferation, and increased the percentage of apoptotic pMTC, TT and human dermal microvascular 

endothelial cells. The inhibition of proliferation by CLM29 was similar in pMTC cells with/without 

RET mutation. TT cells were injected sc in CD nu/nu mice, and tumor masses became detectable after 

20-30 days from xenotransplantation; CLM29 (50 mg/kg/die) reduced significantly tumor growth and 

weight, and microvessel density. These data showed the antineoplastic activity of CLM29 in MTC in 

vitro, and in vivo, opening the way to a future clinical evaluation [98]. 

 

CONCLUSION (Table 1) 

TKIs are molecules that compete with ATP on TKRs, blocking TK activation and then oncogenic 

pathways; they have been studied, and some of them are right approved for the treatment of many types 

of cancer [99]. 

Among TKIs, one of the most explored chemical template is the pyrazolo[3,4-d]pyrimidine (PP) 

heterocyclic core, which proved to be a useful scaffold for the obtainment of effective compounds. 

Actually, derivatives belonging to this structural class show a large spectrum of activity, thus standing 

out as multi-target agents. Different PP compounds have been shown to act as: a) ABL inhibitors and 

antiproliferative agents against human leukemia cell lines; b) Src kinase inhibitors in neuroblastoma, 

medulloblastoma and osteosarcoma; c) Phospholipase D inhibitors in different neoplasias; d) Urokinase 

plasminogen activator inhibitors, in breast cancer.  

In TC, PP1 and PP2 (inhibitors of RET, Hck, lck, and fynT kinases, and a good inhibitor of c-Src and 

PDGFR) showed antineoplastic activity in human papillary TC cell lines carrying spontaneous 

RET/PTC1 rearrangements. More recently, the new derivatives, CLM3 and CLM29, have been 

demonstrated to exert a multiple signal transduction inhibition (including the RET-TK, BRAF, EGFR, 

and with antiangiogenic activity), showing antineoplastic activity, in vitro and in vivo, in papillary 

dedifferentiated, medullary and anaplastic TC. These data have shown the antineoplastic activity of PP 

in different neoplasias, opening the way to a future clinical evaluation in human cancers.  
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LIST OF ABBREVIATIONS 

 

absorption, distribution, metabolism, and excretion (ADME) 

(R)-1-phenethyl-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (CLM3) 

epidermal growth factor receptor (EGFR) 

medullary thyroid cancer (MTC) 

papillary dedifferentiated thyroid cancer (DePTC) 

papillary thyroid cancer (PTC) 

phosphatidic acid (PA) 

phospholipase D (PLD) 

platelet-derived growth factor receptor (PDGFR) 

primary cultures of MTC (pMTC) 

pyrazolo[3,4-d]pyrimidine (PP) 

4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) 

4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) 

reactive oxygen species (ROS) 

structure activity relationship (SAR) 

thyroid cancer (TC) 

tyrosine kinases (TKs) 

tyrosine kinase inhibitors (TKIs) 

tyrosine kinase receptors (TKRs) 

urokinase plasminogen activator (uPA) 

uPA receptor (uPAR) 

vascular endothelial growth factor receptor (VEGFR) 
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Table 1. Key messages.  

 

1. The important role of tyrosine kinases (TKs) and tyrosine kinase receptors (TKRs) has been shown, 

that are capable of causing cell transformations, giving mitogenic and survival signals, in thyroid 

cancer (TC), and in other neoplasias. 

2. Tyrosine kinase inhibitors (TKIs) are molecules that compete with ATP on TKRs, blocking TK 

activation and then oncogenic pathways. 

3. Among TKIs, the pyrazolo[3,4-d]pyrimidine (PP) heterocyclic core is a useful scaffold for the 

obtainment of effective compounds, and derivatives belonging to this structural class show a large 

spectrum of activity, thus standing out as multi-target agents. 

4. Different PP compounds have been shown to act as: a) ABL inhibitors and antiproliferative agents 

against human leukemia cell lines; b) Src kinase inhibitors in neuroblastoma, medulloblastoma and 

osteosarcoma; c) Phospholipase D inhibitors in different neoplasias; d) Urokinase plasminogen 

activator inhibitors, in breast cancer. 

5. In thyroid cancer (TC), PP1 and PP2 (inhibitors of RET, Hck, lck, and fynT kinases, and a good 

inhibitor of c-Src and PDGFR) showed antineoplastic activity in human papillary TC cell lines with 

spontaneous RET/PTC1 rearrangements. 

6. Recently, the new derivatives, CLM3 and CLM29, have been demonstrated to exert a multiple 

signal transduction inhibition (including the RET-TK, BRAF, EGFR, and with antiangiogenic 

activity), showing antineoplastic activity, in vitro and in vivo, in papillary dedifferentiated, medullary 

and anaplastic TC. 

 

 

 

 

  

 

  


